The paper discusses experiments on a 17-kW downflow combustor to determine how sorbent injection into the postflame influenced the particle size distribution of a lead (Pb) aerosol formed from a surrogate Pb-containing waste. n the absence of chlorine (CI), the Pb aerosol size di...
Properties of Supersonic Evershed Downflows
NASA Astrophysics Data System (ADS)
Esteban Pozuelo, S.; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.
2016-12-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.
PROPERTIES OF SUPERSONIC EVERSHED DOWNFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozuelo, S. Esteban; Rubio, L. R. Bellot; Rodríguez, J. de la Cruz, E-mail: sara.esteban@astro.su.se
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regionsmore » during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.« less
Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna
NASA Astrophysics Data System (ADS)
Tarquini, Simone; Favalli, Massimiliano
2011-07-01
In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.
Lateral Downflows in Sunspot Penumbral Filaments and their Temporal Evolution
NASA Astrophysics Data System (ADS)
Esteban Pozuelo, S.; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.
2015-04-01
We study the temporal evolution of downflows observed at the lateral edges of penumbral filaments in a sunspot located very close to the disk center. Our analysis is based on a sequence of nearly diffraction-limited scans of the Fe i 617.3 nm line taken with the CRisp Imaging Spectro-Polarimeter instrument at the Swedish 1 m Solar Telescope. We compute Dopplergrams from the observed intensity profiles using line bisectors and filter the resulting velocity maps for subsonic oscillations. Lateral downflows appear everywhere in the center-side penumbra as small, weak patches of redshifts next to or along the edges of blueshifted flow channels. These patches have an intermittent life and undergo mergings and fragmentations quite frequently. The lateral downflows move together with the hosting filaments and react to their shape variations, very much resembling the evolution of granular convection in the quiet Sun. There is a good relation between brightness and velocity in the center-side penumbra, with downflows being darker than upflows on average, which is again reminiscent of quiet Sun convection. These results point to the existence of overturning convection in sunspot penumbrae, with elongated cells forming filaments where the flow is upward but very inclined, and weak lateral downward flows. In general, the circular polarization profiles emerging from the lateral downflows do not show sign reversals, although sometimes we detect three-lobed profiles that are suggestive of opposite magnetic polarities in the pixel.
A steady-state supersonic downflow in the transition region above a sunspot umbra
NASA Astrophysics Data System (ADS)
Straus, Thomas; Fleck, Bernhard; Andretta, Vincenzo
2015-10-01
We investigate a small-scale (~1.5 Mm along the slit), supersonic downflow of about 90 km s-1 in the transition region above the lightbridged sunspot umbra in AR 11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2 from 16:40 to 17:59 UT. The downflow shows up as redshifted "satellite" lines of the Si iv and O iv transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the redshifted satellites of the O iv lines (Ne = 1010.6 ± 0.25 cm-3) is only a factor 2 smaller than the one inferred from the main components (Ne = 1010.95 ± 0.20 cm-3). Consequently, this implies a substantial mass flux (~5 × 10-7 g cm-2 s-1), which would evacuate the overlying corona on timescales close to 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop that is rooted in the central umbra of the spot. The movie is available in electronic form at http://www.aanda.org
Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben
2015-12-01
For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.
Statistical Investigation of Supersonic Downflows in the Transition Region above Sunspots
NASA Astrophysics Data System (ADS)
Samanta, Tanmoy; Tian, Hui; Prasad Choudhary, Debi
2018-06-01
Downflows at supersonic speeds have been observed in the transition region (TR) above sunspots for more than three decades. These downflows are often seen in different TR spectral lines above sunspots. We have performed a statistical investigation of these downflows using a large sample that was missing previously. The Interface Region Imaging Spectrograph (IRIS) has provided a wealth of observational data of sunspots at high spatial and spectral resolutions in the past few years. We have identified 60 data sets obtained with IRIS raster scans. Using an automated code, we identified the locations of strong downflows within these sunspots. We found that around 80% of our sample shows supersonic downflows in the Si IV 1403 Å line. These downflows mostly appear in the penumbral regions, though some of them are found in the umbrae. We also found that almost half of these downflows show signatures in chromospheric lines. Furthermore, a detailed spectral analysis was performed by selecting a small spectral window containing the O IV 1400/1401 Å and Si IV 1403 Å lines. Six Gaussian functions were simultaneously fitted to these three spectral lines and their satellite lines associated with the supersonic downflows. We calculated the intensity, Doppler velocity, and line width for these lines. Using the O IV 1400/1401 Å line ratio, we find that the downflow components are around one order of magnitude less dense than the regular components. Results from our statistical analysis suggest that these downflows may originate from the corona and that they are independent of the background TR plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinina, Elena Arkadievna; Hardin, Ernest
This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uke, Matthew N., E-mail: cnmnu@leeds.ac.uk; Stentiford, Edward
2013-06-15
Highlights: ► Combined downflow and upflow water addition improved hydraulic conductivity. ► Upflow water addition unclogged perforated screen leading to more leachate flow. ► The volume of water added and transmitted positively correlated with hydrolysis process. ► Combined downflow and upflow water addition increased COD production and yield. ► Combined downflow and upflow leachate recycle improved leachate and COD production. - Abstract: Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D andmore » U at 22 ± 3 °C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D.« less
BMP FILTERS: UPFLOW VS. DOWNFLOW
Stormwater filters are typically operated in a downflow mode. This research had two objectives: 1) to determine the increased life of a filter operated in an upflow mode, and 2) to determine if the operation of a downflow, mixed-media filter could be modeled using the power equat...
Solar Flare Termination Shock and Synthetic Emission Line Profiles of the Fe xxi 1354.08 Å Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Lijia; Li, Gang; Reeves, Kathy
Solar flares are among the most energetic phenomena that occur in the solar system. In the standard solar flare model, a fast mode shock, often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the TS has been recently related to spectral hardening of a flare’s hard X-ray spectra at energies >300 keV. Observations of the Fe xxi 1354.08 Å line during solar flares by the Interface Region Imaging Spectrograph ( IRIS ) spacecraft have found significant redshifts with >100 km s{sup −1}, which is consistent with amore » reconnection downflow. The ability to detect such a redshift with IRIS suggests that one may be able to use IRIS observations to identify flare TSs. Using a magnetohydrodynamic simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe xxi 1354.08 line in this work. We show that the existence of the TS in the solar flare may manifest itself in the Fe xxi 1354.08 Å line.« less
Solar Flare Termination shock and the Synthetic Fe XXI 1354.08 Å line
NASA Astrophysics Data System (ADS)
Guo, L.; Li, G.; Reeves, K.; Raymond, J. C.
2017-12-01
Solar flares are one of the most energetic phenomena occurred in the solar system. In the standard solar flare model, a fast mode shock, which is often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the termination shock has been recently related to spectral hardening of flare hard X-ray spectrum at energies > 300 keV. Observations of the Fe XXI 1354.08 Å line during solar flares by the IRIS spacecraft have found significant redshift with >100 km/s, which is consistent with a reconnection downflow. The ability to identify such a redshift by IRIS is made possible by IRIS's high time resolution, high spatial resolution, high sensitivity and cadence spectral observations. The ability to identify such a redshift by IRIS suggests that one may be able to use IRIS observations to identify flare termination shocks. Using a MHD simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe XXI 1354.08 Å line in this work. We show that the existence of the TS in the solar flare may manifest itself from the Fe XXI 1354.08 Å line.
Distinguishing Between Supra-Arcade Downflows and Plasmoids
NASA Technical Reports Server (NTRS)
Savage, Sabrina
2015-01-01
Supra-arcade downflows (SADs) and downflowing loops (SADLs), observed as sunward-traveling voids and thin flux tubes in the current sheet region above developing flare arcades, are considered indicators of magnetic reconnection fueling long-duration solar eruptions. These flows are located in regions of very low signal-to-noise in the corona where high cadence magnetic field measurements are not yet achievable, making observations difficult to fully interpret with respect to reconnection. Several models have been developed to explain their characteristics and behaviors, but most do not successfully recreate the observations. We will present a variety of downflow observations and provide comparisons to a number of the more prominent models.
Performance evaluation of mobile downflow booths for reducing airborne particles in the workplace.
Lo, Li-Ming; Hocker, Braden; Steltz, Austin E; Kremer, John; Feng, H Amy
2017-11-01
Compared to other common control measures, the downflow booth is a costly engineering control used to contain airborne dust or particles. The downflow booth provides unidirectional filtered airflow from the ceiling, entraining released particles away from the workers' breathing zone, and delivers contained airflow to a lower level exhaust for removing particulates by filtering media. In this study, we designed and built a mobile downflow booth that is capable of quick assembly and easy size change to provide greater flexibility and particle control for various manufacturing processes or tasks. An experimental study was conducted to thoroughly evaluate the control performance of downflow booths used for removing airborne particles generated by the transfer of powdered lactose between two containers. Statistical analysis compared particle reduction ratios obtained from various test conditions including booth size (short, regular, or extended), supply air velocity (0.41 and 0.51 m/s or 80 and 100 feet per minute, fpm), powder transfer location (near or far from the booth exhaust), and inclusion or exclusion of curtains at the booth entrance. Our study results show that only short-depth downflow booths failed to protect the worker performing powder transfer far from the booth exhausts. Statistical analysis shows that better control performance can be obtained with supply air velocity of 0.51 m/s (100 fpm) than with 0.41 m/s (80 fpm) and that use of curtains for downflow booths did not improve their control performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Hannah; Chae, Jongchul; Song, Donguk
We report three-minute oscillations in the solar chromosphere driven by a strong downflow event in a sunspot. We used the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope and the Interface Region Imaging Spectrograph (IRIS). The strong downflow event is identified in the chromospheric and transition region lines above the sunspot umbra. After the event, oscillations occur at the same region. The amplitude of the Doppler velocity oscillations is 2 km s{sup −1} and gradually decreases with time. In addition, the period of the oscillations gradually increases from 2.7 to 3.3 minutes. In the IRIS 1330 Åmore » slit-jaw images, we identify a transient brightening near the footpoint of the downflow detected in the H α +0.5 Å image. The characteristics of the downflowing material are consistent with those of sunspot plumes. Based on our findings, we suggest that the gravitationally stratified atmosphere came to oscillate with a three-minute period in response to the impulsive downflow event as was theoretically investigated by Chae and Goode.« less
Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops
NASA Astrophysics Data System (ADS)
Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji
2018-06-01
We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.
Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Murray, S.; Tian, H.; McKillop, S.
2013-12-01
We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).
Uke, Matthew N; Stentiford, Edward
2013-06-01
Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D and U at 22 ± 3°C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D. Copyright © 2013 Elsevier Ltd. All rights reserved.
Watari, Takahiro; Cuong Mai, Trung; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi
2017-01-01
Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m -3 day -1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m -3 day -1 . 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.
Extended Subadiabatic Layer in Simulations of Overshooting Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Käpylä, Petri J.; Arlt, Rainer; Rheinhardt, Matthias
2017-08-20
We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper partsmore » of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.« less
DD 21A-A Capable, Affordable, Modular 21st Century Destroyer
1993-12-01
1 1.000 2 0.OOOOE+00 3 0.OOOOE+00 4 1.000 5 1.000 ARRANGEMENT OPERATION SEP SS GEN OP ARRAY = ( 2X 1) 1 2.000 2 2.000 ARRANGEMENT CG MACHY KG IND... GEN SIZE IND = GIVEN SEP SS GEN KW = 2000.00 KW SS ENGINES SS ENG SELECT IND = GIVEN SS ENG MODEL IND = DDA-501-K17 SS ENG TYPE IND = GT SS ENG SIZE...1733.6 PROPELLERS: 2 - CP - 17.0 FT DIA AREA SUMMARY - FT2 SEP GEN : 3 CT 0 2000.0 KW HULL AREA - 55529.2 SUPERSTRUCTURE AREA - 21232.1 24 HR LOAD 1858.1
47 CFR 73.313 - Prediction of coverage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... strength at 1 kilometer of about 107 dB above 1 uV/m (221.4 mV/m). (2) To use the chart for other ERP... for an ERP of 50 kW should be adjusted by 17 dB [10 log (50 kW) = 17 dBk], and therefore a field... predicting the distance to field strength contours, use the maximum ERP of the main radiated lobe in the...
NASA Astrophysics Data System (ADS)
Zou, S.; Lu, J.; Varney, R. H.
2017-12-01
This study aims to investigate the occurrence rate of ion upflow and downflow events in the auroral ionosphere, using a full 3-year (2011-2013) dataset collected by the Poker Flat Incoherent Scatter Radar (PFISR) at 65.5° magnetic latitude. Ion upflow and downflow events are defined if there are three consecutive data points larger/smaller than 100/-100 m/s in the ion field-aligned velocity altitude profile. Their occurrence rates have been evaluated as a function of magnetic local time (MLT), season, geomagnetic activity, solar wind and interplanetary magnetic field (IMF). We found that the ion upflows are twice more likely to occur on the nightside than the dayside, and have slightly higher occurrence rate near Fall equinox. In contrast, the ion downflow events are more likely to occur in the afternoon sector but also during Fall equinox. In addition, the occurrence rate of ion upflows on the nightside increases when the aurora electrojet index (AE) and planetary K index (Kp) increase, while the downflows measured on the dayside clearly increase as the AE and Kp increase. In general, the occurrence rate of ion upflows increases with enhanced solar wind and IMF drivers. This correlation is particularly strong between the upflows on the nightside and the solar wind dynamic pressure and IMF Bz. The lack of correlation of upflows on the dayside with these parameters is due to the location of PFISR, which is usually equatorward of the dayside auroral zone and within the nightside auroral zone under disturbed conditions. The occurrence rate of downflow at all MLTs does not show strong dependence on the solar wind and IMF conditions. However, it occurs much more frequently on the dayside when the IMF By is strongly positive, i.e., >10 nT and the IMF Bz is strongly negative, i.e., < -10 nT. We suggest that the increased occurrence rate of downflows on the dayside is associated with dayside storm-enhanced density and the plume.
Intermittent Reconnection Downflow Enhancements In A Simulated Flux Rope Eruption
NASA Astrophysics Data System (ADS)
Kliem, Bernhard; Linton, M. G.
2009-05-01
Supra-arcade downflows in X-ray and EUV flare emissions and post-eruption inflows in coronagraph data have been interpreted to be signatures of the downward reconnection outflow from a vertical (flare) current sheet. These downflows show an intermittent occurrence pattern, indicating that the reconnection is bursty in time or patchy in space, or both. We present MHD simulations of such reconnection in the realistic configuration of a vertical current sheet formed beneath and driven by an erupting flux rope. The reconnection is found to develop bursty outflows, both upward and downward, with the upward outflows generally showing the stronger variablity. While the reconnection starts early in the rise of the flux rope and its peak upward outflow velocity is closely correlated with the rope's rise velocity, the burstiness develops in a clear fashion only as the rope's height has increased from the initial position by about an order of magnitude, so that the current sheet has reached a sufficient vertical extent. The reconnection downflow shows a series of enhancements, each of them starting at a successively greater height from a newly developed magnetic X line. The plasma temporarily accelerated downward in such an enhancement soon turns into a gradual deceleration and then eventually comes to rest on top of previously accelerated plasma. These findings are consistent with the observations of intermittent downflows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriques, V. M. J.; Mathioudakis, M.; Socas-Navarro, H.
We perform non-LTE inversions in a large set of umbral flashes, including the dark fibrils visible within them, and in the quiescent umbra by using the inversion code NICOLE on a set of full Stokes high-resolution Ca ii λ 8542 observations of a sunspot at disk center. We find that the dark structures have Stokes profiles that are distinct from those of the quiescent and flashed regions. They are best reproduced by atmospheres that are more similar to the flashed atmosphere in terms of velocities, even if with reduced amplitudes. We also find two sets of solutions that finely fitmore » the flashed profiles: a set that is upflowing, featuring a transition region that is deeper than in the quiescent case and preceded by a slight dip in temperature, and a second solution with a hotter atmosphere in the chromosphere but featuring downflows close to the speed of sound at such heights. Such downflows may be related, or even dependent, on the presence of coronal loops, rooted in the umbra of sunspots, as is the case in the region analyzed. Similar loops have been recently observed to have supersonic downflows in the transition region and are consistent with the earlier “sunspot plumes,” which were invariably found to display strong downflows in sunspots. Finally, we find, on average, a magnetic field reduction in the flashed areas, suggesting that the shock pressure is moving field lines in the upper layers.« less
Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2
NASA Astrophysics Data System (ADS)
1983-03-01
The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.
Land Use by System Technology | Energy Analysis | NREL
compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility 5.5 0.7 Photovoltaics 1 10 MW 6.1 1.7 Wind <10 kW 30 n/a Wind 10 100 kW 30 n/a Wind 100- 1000 kW 30 n/a Wind 1 10 MW 44.7 25.0 Biomass Combustion Combined Heat & Power 3.5 1.9 Technology Type Size
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... total capacity of 1,700 kilowatts (kW), installed within the existing intake tower; (2) an electrical control booth constructed on top of the intake tower; and (3) a 700- foot-long, 13.2 kilo-Volt (kV...; (3) a powerhouse containing two generating units with a total capacity of 3,320 kW; (4) the existing...
NASA Astrophysics Data System (ADS)
Oba, T.; Riethmüller, T. L.; Solanki, S. K.; Iida, Y.; Quintero Noda, C.; Shimizu, T.
2017-11-01
Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km s-1 and +3.0 km s-1 at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... approval to replace the existing Unit 1 turbine, with a hydraulic capacity of 162 cfs and a nameplate capacity of 1,100 kW, with a new turbine unit having a hydraulic capacity of 177 cfs and a nameplate... 1,900 kW to 2,251 kW, and increase total project hydraulic capacity from 254 cfs to 269 cfs. l. A...
Velocity Characteristics of Evaporated Plasma using Hinode/EIS
NASA Technical Reports Server (NTRS)
Milligan, Ryan O.; Dennis, Brian R.
2009-01-01
This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with HXR observat,ions from RHESSI. The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T=0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity was found to scale with temperature as v(sub up) (kilometers per second) approximately equal to 5-17 T (MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of greater than 200 kilometers per second, their line profiles were found to be dominated by a stationary component in stark contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v(sub down) (kilometers per second) approximately equal to 60-17 T (MK) and was interpreted as the downward-moving 'plug' characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy contained in the electron beam was found to be greater than or equal to 10(sup 11) ergs per square centimeter per second consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.
High-resolution Observations of Downflows at One End of a Pre-eruption Filament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qin; Deng, Na; Jing, Ju
Studying the dynamics of filaments at the pre-eruption phase can shed light on the precursor of eruptive events. Such high-resolution studies (of the order of 0.″1) are highly desirable yet very rare. In this work, we present a detailed observation of a pre-eruption evolution of a filament obtained by the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO). One end of the filament is anchored at the sunspot in the NOAA active region (AR) 11515, which is well observed by NST H α off-bands from four hours before to one hour after the filament eruption.more » A M1.6 flare is associated with the eruption. We observed persistent downflowing materials along the H α multi-threaded component of the loop toward the AR end during the pre-eruption phase. We traced the trajectories of plasma blobs along the H α threads and obtained a plane-of-sky velocity of 45 km s{sup −1} on average. Furthermore, we estimated the real velocities of the downflows and the altitude of the filament by matching the observed H α threads with magnetic field lines extrapolated from a nonlinear force-free field model. Observations of chromospheric brightenings at the footpoints of the falling plasma blobs are also presented. The lower limit of the kinetic energy per second of the downflows through the brightenings is found to be ∼10{sup 21} erg. Larger FOV observations from BBSO full-disk H α images show that the AR end of the filament started ascending four hours before the flare. We attribute the observed downflows at the AR end of the filament to the draining effect of the filament rising prior to its eruption. During the slow-rise phase, the downflows continuously drained away ∼10{sup 15}g mass from the filament over a few hours, which is believed to be essential for the instability, and could be an important precursor of eruptive events.« less
A novel observational test of momentum balance in a solar flare
NASA Technical Reports Server (NTRS)
Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.; Zarro, Dominic M.
1987-01-01
A unique combination of SMM X-ray spectra and Sacramento Peak Observatory H-alpha imaging spectra has been used, for the first time, to measure and compare momentum values of upflowing and downflowing plasmas during the impulsive phase of a solar flare. The well-known blue asymmetry of X-ray spectral lines, indicative of upflow, was observed in the coronal Ca XIX line. The red asymmetry of H-alpha line profiles, indicative of downflow, was simultaneously observed in bright H-alpha kernels. It is found that, to within observational uncertainty, the momentum transported by the upflowing X-ray plasma was the same as that of the downflowing H-alpha material. Of the several physical mechanisms advanced to explain the observed blue asymmetry of X-ray lines, only explosive chromospheric evaporation predicts oppositely directed momenta of equal magnitude.
Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben
2017-04-01
The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oba, T.; Riethmüller, T. L.; Solanki, S. K.
Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode /SP data inmore » an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of −3.0 km s{sup −1} and +3.0 km s{sup −1} at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance.« less
NASA Astrophysics Data System (ADS)
1983-03-01
The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.
Momentum balance in four solar flares
NASA Technical Reports Server (NTRS)
Canfield, Richard C.; Metcalf, Thomas R.; Zarro, Dominic M.; Lemen, James R.
1990-01-01
Solar Maximum Mission soft X-ray spectra and National Solar Observatory (Sacramento Peak) H-alpha spectra were combined in a study of high-speed flows during the impulsive phase of four solar flares. In all events, a blue asymmetry (indicative of upflows) was observed in the coronal Ca XIX line during the soft X-ray rise phase. In all events a red asymmetry (indicative of downflows) was observed simultaneously in chromospheric H-alpha. These oppositely directed flows were concurrent with impulsive hard X-ray emission. Combining the velocity data with estimates of the density based on emission measurements and volume estimates, it is shown that for the impulsive phase as a whole the total momentum of upflowing soft X-ray plasma equaled that of the downflowing H-alpha plasma, to within an order of magnitude, in all four events. Only the chromospheric evaporation model predicts equal total momentum in the upflowing soft X-ray-emitting and downflowing H-alphba-emitting materials.
Low-altitude ion heating with downflowing and upflowing ions
NASA Astrophysics Data System (ADS)
Shen, Y.; Knudsen, D. J.; Burchill, J. K.; Howarth, A. D.; Yau, A. W.; James, G.; Miles, D.; Cogger, L. L.; Perry, G. W.
2017-12-01
Mechanisms that energize ions at the initial stage of ion upflow are still not well understood. We statistically investigate ionospheric ion energization and field-aligned motion at very low altitudes (330-730 km) using simultaneous plasma, magnetic field, wave electric field and optical data from the e-POP satellite. The high-time-resolution (10 ms) dataset enables us to study the micro-structures of ion heating and field-aligned ion motion. The ion temperature and field-aligned bulk flow velocity are derived from 2-D ion distribution functions measured by the SEI instrument. From March 2015 to March 2016, we've found 17 orbits (in total 24 ion heating periods) with clear ion heating signatures passing across the dayside cleft or the nightside auroral regions. Most of these events have consistent ion heating and flow velocity characteristics observed from both the SEI and IRM instruments. The perpendicular ion temperature goes up to 4.5 eV within a 2 km-wide region in some cases, in which the Radio Receiver Instrument (RRI) sees broadband extremely low frequency (BBELF) waves, demonstrating significant wave-ion heating down to as low as 350 km. The e-POP Fast Auroral Imager (FAI) and Magnetic Field (MGF) instruments show that many events are associated with active aurora and are within downward current regions. Contrary to what would be expected from mirror-force acceleration of heated ions, the majority of these heating events (17 out of 24) are associated with the core ion downflow rather than upflow. These statistical results provide us with new sights into ion heating and field-aligned flow processes at very low altitudes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
...-high, 35-foot-long and one 12-foot-high, 85-foot- long; (6) an existing powerhouse with two new Kaplan turbine generating units, a 215 kilowatt (kW) unit and a 145 kW unit, with a total installed capacity of...
Color and Morphology of Lava Flows on Io
NASA Astrophysics Data System (ADS)
Piatek, Jennifer L.; McElfresh, Sarah B. Z.; Byrnes, Jeffrey M.; Hale, Amy Snyder; Crown, David A.
2000-12-01
Analyses of color and morphologic changes in Voyager images of lava flows on Io were conducted to extend previous flow studies to additional volcanoes in preparation for comparison to Galileo data. Blue and orange filter images of Atar, Daedalus, and Ra Paterae were examined to identify systematic downflow decreases in blue/orange reflectivity suggested in earlier studies as diagnostic of color changes in cooled sulfur flows. Analyses of the color and morphology of 21 lava flows were conducted at these volcanoes, with additional morphologic analysis of lava flows at Agni, Masaaw, Mbali, Shoshu, and Talos Paterae. A total of 66 lava flows of up to 245 km in length were mapped to identify morphologic changes consistent with the rheologic changes expected to occur in sulfur flows. Although downflow color changes are observed, the trends are not consistent, even at the same edifice. Individual flows exhibit a statistically significant increase in blue/orange ratio, decrease in blue/orange ratio, or a lack of progressive downflow color variation. Color changes have similar magnitudes downflow and across flow, and the color ranges observed are similar from volcano to volcano, suggesting that similar processes are controlling color ratios at these edifices. In addition, using flow widening and branching as an indicator of the low viscosity exhibited by sulfur cooling from high temperatures, these flows do not exhibit morphologic changes consistent with the systematic behavior expected from the simple progressive cooling of sulfur.
Electronically commutated motors for vehicle applications
NASA Astrophysics Data System (ADS)
Echolds, E. F.
1980-02-01
Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.
Regimes of association of arsenic and selenium during pulverized coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne S. Seames; Jost O.L. Wendt
2007-07-01
A suite of six coals, of widely differing As, Se, Ca, Fe, and sulfur contents, was burned under self-sustaining conditions in a 17 kW downflow laboratory combustor. Size segregated ash-laden aerosol samples were isokinetically withdrawn and collected on a Berner low pressure impactor. Correlations between trace element concentration (As or Se) and that of major elements (as functions of particle size) were then used to infer chemical associations between trace metals and Ca and/or Fe, and how these depended on sulfur. These baseline data led to formation of the following hypotheses, namely: (1) dominant As and Se partitioning mechanisms dependmore » on the availability of Ca and/or Fe active sites for surface reaction; (2) increasing combustion temperature increases the availability of active cation sites, and increases partitioning of As and Se to fly ash by surface reaction; (3) sulfur competes with these surface reactions, decreasing As and Se partitioning to fly ash surfaces. These hypotheses were tested by manipulating the As, Se, Ca, Fe, and S contents for various coals by doping. Temperature was adjusted in order to achieve comparisons of different coals and different coal constituents at similar thermal conditions, through O{sub 2} and CO{sub 2} addition, as required. These results confirmed the hypotheses above, and allowed an association regime map to be constructed. This map shows that both As and Se associate with Fe and Ca, provided active sites are available. Se reacts preferentially with Fe over Ca when both are available while As reactions with both Fe and Ca are comparable. Sulfur can prevent association of both As and Se, by preferentially reacting with active sites, especially those on Fe. When sufficient sites are not available, the release of vapor-phase As and Se species is promoted. 23 refs., 4 figs., 4 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
...-mile-long, 294- acre impoundment with a normal water surface elevation of 200.0 feet NAVD88; (3) a 25...-high trash sluice gate; (6) six 8-foot-wide, 10-foot-high turbine bay headgates with 17.33-foot-high... 640-kilowatt (kW) turbine-generating units for a total installed capacity 1,920 kW; (8) three 11.5...
Observational Signatures of Magnetic Reconnection in the Extended Corona
NASA Technical Reports Server (NTRS)
Savage, Sabrina; West, Matthew J.; Seaton, Daniel B.; Kobelski, Adam
2016-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of coronas mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
Observational Signatures of Magnetic Reconnection in the Extended Corona
NASA Technical Reports Server (NTRS)
Savage, Sabrina; West, Matthew J.; Seaton, Danial B.; Kobelski, Adam
2016-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of corona mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
Observational Signatures of Magnetic Reconnection in the Extended Corona
NASA Technical Reports Server (NTRS)
Savage, Sabrina; West, Matthew J.; Seaton, Daniel B.; Kobelski, Adam
2017-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of corona mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
Quantitative Examination of a Large Sample of Supra-Arcade Downflows in Eruptive Solar Flares
NASA Technical Reports Server (NTRS)
Savage, Sabrina L.; McKenzie, David E.
2011-01-01
Sunward-flowing voids above post-coronal mass ejection flare arcades were first discovered using the soft X-ray telescope aboard Yohkoh and have since been observed with TRACE (extreme ultraviolet (EUV)), SOHO/LASCO (white light), SOHO/SUMER (EUV spectra), and Hinode/XRT (soft X-rays). Supra-arcade downflow (SAD) observations suggest that they are the cross-sections of thin flux tubes retracting from a reconnection site high in the corona. Supra-arcade downflowing loops (SADLs) have also been observed under similar circumstances and are theorized to be SADs viewed from a perpendicular angle. Although previous studies have focused on dark flows because they are easier to detect and complementary spectral data analysis reveals their magnetic nature, the signal intensity of the flows actually ranges from dark to bright. This implies that newly reconnected coronal loops can contain a range of hot plasma density. Previous studies have presented detailed SAD observations for a small number of flares. In this paper, we present a substantial SADs and SADLs flare catalog. We have applied semiautomatic detection software to several of these events to detect and track individual downflows thereby providing statistically significant samples of parameters such as velocity, acceleration, area, magnetic flux, shrinkage energy, and reconnection rate. We discuss these measurements (particularly the unexpected result of the speeds being an order of magnitude slower than the assumed Alfven speed), how they were obtained, and potential impact on reconnection models.
Cai, Li; Zhu, Jinghan; Hou, Yanglong; Tong, Meiping; Kim, Hyunjung
2015-10-01
Four types of NPs: carbon nanotubes and graphene oxide (carbon-based NPs), titanium dioxide and zinc oxide metal-oxide NPs, were utilized to systematically determine the influence of gravity on the transport of NPs in porous media. Packed column experiments for two types of carbon-based NPs were performed under unfavorable conditions in both up-flow (gravity-negative) and down-flow (gravity-positive) orientations, while for two types of metal-oxide NPs, experiments were performed under both unfavorable and favorable conditions in both up-flow and down-flow orientations. Both breakthrough curves and retained profiles of two types of carbon-based NPs in up-flow orientation were equivalent to those in down-flow orientation, indicating that gravity had negligible effect on the transport and retention of carbon-based NPs under unfavorable conditions. In contrast, under both unfavorable and favorable conditions, the breakthrough curves for two types of metal-oxide NPs in down-flow orientation were lower relative to those in up-flow orientation, indicating that gravity could decrease the transport of metal-oxide NPs in porous media. The distinct effect of gravity on the transport and retention of carbon-based and metal-oxide NPs was mainly attributed to the contribution of gravity to the force balance on the NPs in quartz sand. The contribution of gravity was determined by the interplay of the density and sizes of NP aggregates under examined solution conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
High-power CO(2) laser with a Gauss-core resonator for high-speed cutting of thin metal sheets.
Takenaka, Y; Nishimae, J; Tanaka, M; Motoki, Y
1997-01-01
A novel resonator, the Gauss-core resonator, based on a stable resonator configuration designed to yield a highly focusing beam operating in a large-volume TEM(00) mode, is presented. A 6.2 kW linearly polarized output beam with an M(2) factor of 1.7 is obtained experimentally for a high-power cw CO(2) laser. The capability of the Gauss-core resonator to process laser materials is also studied. We can cut 1-mm-thick mild (soft) steel with a maximum cutting speed of 58 m/min at 5.6 kW and 0.2-mm-thick steel 145 m/min at 2.8 kW.
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.
1991-01-01
During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
...-kilowatt (kW) turbine/generator unit; and (2) an approximately 1,290-foot-long, 26-inch-diameter high...); (2) an existing structure which will house a single turbine/generator with an installed capacity of... structure which will house a single turbine/generator unit with an installed capacity of 50 kW; (3) a...
Vigorous convection in a sunspot granular light bridge
NASA Astrophysics Data System (ADS)
Lagg, Andreas; Solanki, Sami K.; van Noort, Michiel; Danilovic, Sanja
2014-08-01
Context. Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. Aims: An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Methods: Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Results: Central hot upflows surrounded by cooler fast downflows reaching 10 km s-1 clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. Conclusions: The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression. The two movies are available in electronic form at http://www.aanda.org
Explosive plasma flows in a solar flare
NASA Technical Reports Server (NTRS)
Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.
1988-01-01
Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.
47 CFR 73.31 - Rounding of nominal power specified on applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... power of an existing station shall specify nominal power rounded to two significant figures as follows: Nominal power (kW) Rounded down to nearest figure (kW) Below 0.25 0.001 0.25 to 0.99 0.01 1 to 9.9 0.1 10... shall be adjusted accordingly. If rounding upward to the nearest figure would result in objectionable...
47 CFR 73.31 - Rounding of nominal power specified on applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... power of an existing station shall specify nominal power rounded to two significant figures as follows: Nominal power (kW) Rounded down to nearest figure (kW) Below 0.25 0.001 0.25 to 0.99 0.01 1 to 9.9 0.1 10... shall be adjusted accordingly. If rounding upward to the nearest figure would result in objectionable...
47 CFR 73.31 - Rounding of nominal power specified on applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... power of an existing station shall specify nominal power rounded to two significant figures as follows: Nominal power (kW) Rounded down to nearest figure (kW) Below 0.25 0.001 0.25 to 0.99 0.01 1 to 9.9 0.1 10... shall be adjusted accordingly. If rounding upward to the nearest figure would result in objectionable...
47 CFR 73.31 - Rounding of nominal power specified on applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... power of an existing station shall specify nominal power rounded to two significant figures as follows: Nominal power (kW) Rounded down to nearest figure (kW) Below 0.25 0.001 0.25 to 0.99 0.01 1 to 9.9 0.1 10... shall be adjusted accordingly. If rounding upward to the nearest figure would result in objectionable...
47 CFR 73.31 - Rounding of nominal power specified on applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... power of an existing station shall specify nominal power rounded to two significant figures as follows: Nominal power (kW) Rounded down to nearest figure (kW) Below 0.25 0.001 0.25 to 0.99 0.01 1 to 9.9 0.1 10... shall be adjusted accordingly. If rounding upward to the nearest figure would result in objectionable...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... maximum hydraulic capacity of 331 cubic feet per second (cfs), to two generating units with a total installed capacity of 321 kW and a maximum hydraulic capacity of 333 cfs. The two units are: One existing unit rated at 225 kW with a maximum hydraulic capacity of 233 cfs and one proposed unit to be installed...
Performance Characteristics of a 5 kW Laboratory Hall Thruster
1996-07-01
Characteristics of a 5 kW Laboratory Hall Thruster James M. Haas’, Frank S. Gulczinski III%, and Alec D. Gallimoret Plasmadynamics and Electric Propulsion...the information learned from the study of this thruster applicable to the understanding of its commercial counterparts. INTRODUCTION Hall thrusters are...few in number at this time; and those that do exist are intended primarily Current generation Hall thruster research has for flight qualification
Driving Solar Giant Cells through the Self-organization of Near-surface Plumes
NASA Astrophysics Data System (ADS)
Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri
2018-06-01
Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.
NUMERICAL SIMULATIONS OF SUNSPOT DECAY: ON THE PENUMBRA–EVERSHED FLOW–MOAT FLOW CONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempel, M., E-mail: rempel@ucar.edu
We present a series of high-resolution sunspot simulations that cover a timespan of up to 100 hr. The simulation domain extends about 18 Mm in depth beneath the photosphere and 98 Mm horizontally. We use open boundary conditions that do not maintain the initial field structure against decay driven by convective motions. We consider two setups: a sunspot simulation with penumbra, and a “naked-spot” simulation in which we removed the penumbra after 20 hr through a change in the magnetic top boundary condition. While the sunspot has an Evershed outflow of 3–4 km s{sup −1}, the naked spot is surroundedmore » by an inflow of 1–2 km s{sup −1} in close proximity. However, both spots are surrounded by an outflow on larger scales with a few 100 m s{sup −1} flow speed in the photosphere. While the sunspot has an almost constant magnetic flux content for the simulated timespan of three to four days, the naked spot decays steadily at a rate of 10{sup 21} Mx day{sup −1}. A region with reduced downflow filling factor, which is more extended for the sunspot, surrounds both spots. The absence of downflows perturbs the upflow/downflow mass flux balance and leads to a large-scale radially overturning flow system; the photospheric component of this flow is the observable moat flow. The reduction of the downflow filling factor also inhibits the submergence of magnetic field in the proximity of the spots, which stabilizes them against decay. While this effect is present for both spots, it is more pronounced for the sunspot and explains the almost stationary magnetic flux content.« less
Down-flow moving-bed gasifier with catalyst recycle
Halow, John S.
1999-01-01
The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1972-01-01
Buoyancy effects on the critical heat flux and general data trends for a liquid nitrogen internal flow system were determined by comparison of upflow and downflow data under identical test conditions. The test section had a 1.28 cm diameter flow passage and a 30.5 cm heated length which was subjected to uniform heat fluxes through resistance heating. Test conditions covered a range of pressures from 3.4 to 10.2 atm, inlet velocities from 0.23 to 3.51 m/sec, with the liquid nitrogen temperature at saturated inlet conditions. Data comparisons showed that the critical heat flux for downflow could be up to 36 percent lower than for upflow. A nonmonotonic relationship between the critical heat flux and velocity was determined for upflow but not for downflow. A limiting inlet velocity of 4.12 m/sec was determined to be the minimum velocity required to completely suppress the influence of buoyancy on the critical heat flux for this saturated inlet flow system. A correlation of this limiting fluid velocity is presented that was developed from previously published subcooled liquid nitrogen data and the saturated data of this investigation.
Supra Arcade Downflows with XRT Informed by Dipolarization Fronts with THEMIS
NASA Technical Reports Server (NTRS)
Kobelski, Adam; Savage, Sabrina Leah; Malaspina, David
2016-01-01
Magnetic reconnection can rapidly reconfigure the magnetic field of the corona, accelerating plasma through the site of reconnection. Ambiguities due to the nature of remote sensing have complicated the interpretation of observations of the inflowing and outflowing plasma in reconnecting regions. In particular, the interpretation of sunward moving density depletions above flare arcades (known as Supra Arcade Downflows - SADs) is still debated. Hinode/XRT has provided a wealth of observations for SADs and helped inform our current understanding of these structures. SADs have been interpreted as wakes behind newly reconnected and outflowing loops (Supra Arcade Downflowing Loops - SADLs). Models have shown the plausibility of this interpretation, though this interpretation has not yet been fully accepted. We present here observations of newly reconnected outflowing loops observed via in situ instruments in the magnetosphere. These observations, provided by five THEMIS spacecraft, show that around retracting loops (dipolarization fronts in this context) similar dynamic temperature and density structures are found as seen in SADs. We compare data from multiple SADs and dipolarization fronts to show that the observational signatures implied in the corona can be directly observed in similar plasma regimes in the magnetosphere, strongly favoring the interpretation of SADs as wakes behind retracting loops.
Investigations for the improvement of space shuttle main engine electron beam welding equipment
NASA Technical Reports Server (NTRS)
Smock, R. A.; Taylor, R. A.; Wall, W. A., Jr.
1977-01-01
Progress made in the testing, evaluation, and correction of MSFC's 7.5 kW electron beam welder in support of space shuttle main engine component welding is summarized. The objective of this project was to locate and correct the deficiencies in the welder. Some 17 areas were deficient in the 7.5 kW ERI welding system and the associated corrective action was taken to improve its operational performance. An overall improvement of 20 times the original reliability was obtained at full rated capacity after the modifications were made.
Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor
1996-01-01
The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.
NASA Astrophysics Data System (ADS)
Tanjung, Abrar; Monice
2017-12-01
Electricity in Bagan Siapi city fire is channeled through a feeder distribution system of 20 kV. The main supply of Bagan Siapi-api city comes from PLTD unit Bagan Siapi fire which is  ± 1.5 kms from the load center and Duri Substation is  ± 102 kms from Bagan Siapi-api city through Hubung Ujung Tanjung. The long distances between the Duri Mainstation and Bagan Siapiapi city resulted in a 14.85 kV end-voltage and a 988.7 kW loss. Voltage losses resulted in ineffective service to the consumer and large network power losses being uneconomical for power delivery operations. The result of end voltage calculation is 10.42 kV and the power loss is 988.7 kW. After the New Substation operates, reconfiguration-1 produces the lowest end-voltage calculation of 16.21 kV and a power loss of 136.59 kW, while reconfiguration-2 produces a low end stress calculation of 17.37 kV and a power loss of 56.93 kW.
Engineering aspects of a thermal control subsystem for the 25 kW power module
NASA Technical Reports Server (NTRS)
Schroeder, P. E.
1979-01-01
The paper presents the key trade study results, analysis results, and the recommended thermal control approach for the 25 kW power module defined by NASA. Power conversion inefficiencies and component heat dissipation results in a minimum heat rejection requirement of 9 kW to maintain the power module equipment at desired temperature levels. Additionally, some cooling capacity should be provided for user payloads in the sortie and free-flying modes. The baseline thermal control subsystem includes a dual-loop-pumped Freon-21 coolant with the heat rejected from deployable existing orbiter radiators. Thermal analysis included an assessment of spacecraft orientations, radiator shapes and locations, and comparison of hybrid heat pipe and all liquid panels.
A degradation model for high kitchen waste content municipal solid waste.
Chen, Yunmin; Guo, Ruyang; Li, Yu-Chao; Liu, Hailong; Zhan, Tony Liangtong
2016-12-01
Municipal solid waste (MSW) in developing countries has a high content of kitchen waste (KW), and therefore contains large quantities of water and non-hollocellulose degradable organics. The degradation of high KW content MSW cannot be well simulated by the existing degradation models, which are mostly established for low KW content MSW in developed countries. This paper presents a two-stage anaerobic degradation model for high KW content MSW with degradations of hollocellulose, sugars, proteins and lipids considered. The ranges of the proportions of chemical compounds in MSW components are summarized with the recommended values given. Waste components are grouped into rapidly or slowly degradable categories in terms of the degradation rates under optimal water conditions for degradation. In the proposed model, the unionized VFA inhibitions of hydrolysis/acidogenesis and methanogenesis are considered as well as the pH inhibition of methanogenesis. Both modest and serious VFA inhibitions can be modeled by the proposed model. Default values for the parameters in the proposed method can be used for predictions of degradations of both low and high KW content MSW. The proposed model was verified by simulating two laboratory experiments, in which low and high KW content MSW were used, respectively. The simulated results are in good agreement with the measured data of the experiments. The results show that under low VFA concentrations, the pH inhibition of methanogenesis is the main inhibition to be considered, while the inhibitions of both hydrolysis/acidogenesis and methanogenesis caused by unionized VFA are significant under high VFA concentrations. The model is also used to compare the degradation behaviors of low and high KW content MSW under a favorable environmental condition, and it shows that the gas potential of high KW content MSW releases more quickly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Down-flow moving-bed gasifier with catalyst recycle
Halow, J.S.
1999-04-20
The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.
Method of producing gaseous products using a downflow reactor
Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C
2014-09-16
Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
Saddle antenna radio frequency ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R.; Murray, S.
Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA withmore » RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.« less
High energy laser demonstrators for defense applications
NASA Astrophysics Data System (ADS)
Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.
2017-01-01
Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.
MHD SIMULATIONS OF CORONAL SUPRA-ARCADE DOWNFLOWS INCLUDING ANISOTROPIC THERMAL CONDUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurbriggen, E.; Costa, A.; Schneiter, M.
2016-11-20
Coronal supra-arcade downflows (SADs) are observed as dark trails descending toward hot turbulent-fan-shaped regions. Due to the large temperature values and gradients in these fan regions, the thermal conduction (TC) should be very efficient. While several models have been proposed to explain the triggering and the evolution of SADs, none of these scenarios address a systematic consideration of TC. Thus, we accomplish this task numerically simulating the evolution of SADs within this framework. That is, SADs are conceived as voided (subdense) cavities formed by nonlinear waves triggered by downflowing bursty localized reconnection events in a perturbed hot fan. We generatemore » a properly turbulent fan, obtained by a stirring force that permits control of the energy and vorticity input in the medium where SADs develop. We include anisotropic TC and consider plasma properties consistent with observations. Our aim is to study whether it is possible to prevent SADs from vanishing by thermal diffusion. We find that this will be the case, depending on the turbulence parameters, in particular if the magnetic field lines are able to envelope the voided cavities, thermally isolating them from the hot environment. Velocity shear perturbations that are able to generate instabilities of the Kelvin–Helmholtz type help to produce magnetic islands, extending the lifetime of SADs.« less
Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube
NASA Technical Reports Server (NTRS)
Hallman, Theodore M.
1961-01-01
An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures varied in a periodic way.
NASA Astrophysics Data System (ADS)
1983-03-01
Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.
Wang, Yingsong; Xie, Jingming; Zhao, Zhi; Zhang, Ying; Li, Tao; Si, Yongyu
2013-05-01
Phase contrast-cine MRI (PC-cine MRI) studies in patients with syringomyelia and Chiari malformation Type I (CM-I) have demonstrated abnormal CSF flow across the foramen magnum, which can revert to normal after craniocervical decompression with syrinx shrinkage. In order to investigate the mechanisms leading to postoperative syringomyelia shrinkage, the authors studied the hydrodynamic changes of CSF flow in the craniocervical junction and spinal canal in patients with scoliosis associated with syringomyelia after one-stage deformity correction by posterior vertebral column resection. Preoperative and postoperative CSF flow dynamics at the levels of the foramen magnum, C-7, T-7 (or apex), and L-1 were assessed by electrocardiogram-synchronized cardiac-gated PC-cine MRI in 8 adolescent patients suffering from severe scoliosis with syringomyelia and CM-I (scoliosis group) and undergoing posterior vertebral column resection. An additional 8 patients with syringomyelia and CM-I without spinal deformity (syrinx group) and 8 healthy volunteers (control group) were also enrolled. Mean values were obtained for the following parameters: the duration of a CSF cycle, the duration of caudad CSF flow (CSF downflow [DF]) and cephalad CSF flow (CSF upflow [UF]), the ratio of DF duration to CSF cycle duration (DF%), and the ratio of UF duration to CSF cycle duration (UF%). The ratio of the stationary phase (SP) duration to CSF cycle duration was calculated (SP%). The maximum downflow velocities (VD max) and maximum upflow velocities (VU max) were measured. SPSS (version 14.0) was used for all statistical analysis. Patients in the scoliosis group underwent one-stage posterior vertebral column resection for deformity correction without suboccipital decompression. The mean preoperative coronal Cobb angle was 102.4° (range 76°-138°). The mean postoperative Cobb angle was 41.7° (range 12°-75°), with an average correction rate of 59.3%. During the follow-up, 1 patient with hypermyotonia experienced a significant decrease of muscle tension and 1 patient with reduced anal sphincter tone manifested recovery. A total of 5 patients demonstrated a significant decrease (> 30%) in syrinx size. With respect to changes in CSF flow dynamics, the syrinx group was characterized by slower and shorter downflow than the control group, and the difference was more significant at the foramen magnum and C-7 levels. In patients with scoliosis, CSF downflow at the foramen magnum level was significantly restricted, and a prolonged stationary phase indicated increased obstruction of CSF flow. After posterior vertebral column resection, the peak velocity of CSF flow at the foramen magnum increased, and the downflow phase duration was markedly prolonged. The parameters showed a return to almost normal CSF dynamics at the craniocervical region, and this improvement was maintained for 6-12 months of follow-up. There were distinct abnormalities of CSF flow at the craniocervical junction in patients with syringomyelia. Abnormal dynamics of downflow could be aggravated by associated severe spinal deformity and improved by correction via posterior vertebral column resection.
Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)
NASA Astrophysics Data System (ADS)
Haug, F.; LHeC Study Team, The
2012-06-01
The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.
Alberts, Steven R; Suman, Vera J; Pitot, Henry C; Camoriano, John K; Rubin, Joseph
2007-01-01
Hepatocellular carcinoma (HCC) is a common cancer in certain portions of the world. Currently no effective therapies exist for patients with advanced or metastatic HCC. KW-2189, a DNA minor groove-binding agent, has shown promising activity against HCC in preclinical evaluations. A phase II study was conducted to evaluate the activity of KW-2189 in patients with histologic or cytologic confirmed advanced or metastatic HCC who had no prior systemic therapy. Patients received KW-2189 at a dose of 0.5 mg/m2 administered on day 1 of a 6-week cycle. The primary endpoint of the trial was objective regression. Other endpoints included toxicity, disease-free survival, and overall survival. Due to hematologic toxicity the dose of KW-2189 was reduced to 0.375 mg/m2 after 11 patients had been enrolled into the trial. Due to continued significant hematologic toxicity in the next five patients enrolled at the lower dose the trial was closed to accrual. Two responses were seen in patients enrolled at the higher dose, including one sustained CR. KW-2189 showed evidence of anti-tumor activity in HCC. However, because of significant and prolonged hematologic toxicity, when given as a single dose every 6 weeks, further development of this drug in HCC is not possible. Further exploration of DNA minor groove-binding agents in the treatment of HCC appears warranted.
Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki
2017-08-24
This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.
Evaluation of actuator energy storage and power sources for spacecraft applications
NASA Technical Reports Server (NTRS)
Simon, William E.; Young, Fred M.
1993-01-01
The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.
NASA Astrophysics Data System (ADS)
Yusoff, Mohd Zairol; Mahmuddin, Massudi; Ahmad, Mazida
2016-08-01
Knowledge and skill are necessary to develop the capability of knowledge workers. However, there is very little understanding of what the necessary knowledge work (KW) is, and how they influence the quality of knowledge work or knowledge work productivity (KWP) in software development process, including that in small and medium-sized (SME) enterprise. The SME constitutes a major part of the economy and it has been relatively unsuccessful in developing KWP. Accordingly, this paper seeks to explore the influencing dimensions of KWP that effect on the quality of KW in SME environment. First, based on the analysis of the existing literatures, the key characteristics of KW productivity are defined. Second, the conceptual model is proposed, which explores the dimensions of the KWP and its quality. This study analyses data collected from 150 respondents (based on [1], who involve in SME in Malaysia and validates the models by using structural equation modeling (SEM). The results provide an analysis of the effect of KWP on the quality of KW and business success, and have a significant relevance for both research and practice in the SME
Wang, Chuqiao; Hong, Feng; Lu, Yong; Liu, Hengming
2017-01-01
Oilseed rape straw (ORS) is a kind of biorefractory waste widely existing in the rural area of China, which is highly suitable to mix with kitchen waste (KW) and duck droppings (DD) in two-phase anaerobic digestion (AD). This research introduced the importance of KW and DD addition to improve the biogas production and biodegradation of ORS. A set of comparative experiments were conducted on two-phase mono- and co-digestion with organic load of 60 g VS/L. The total methane yield (TMY) and the biodegradation of ORS of co-digestions were obviously improving, and the synergistic effect found in the two-phase co-digestions. The optimum mixing ratio of ORS, KW and DD was 50:40:10, and the corresponding TMY and VS degradation rate of ORS were 374.5 mL/g VS and 49.7%, respectively. Addition of KW and DD maintained the pH within the optimal range for the hydrolyzing-acidification, improved the phase separation and buffering capacity of AD system. PMID:28767709
An electromechanical actuation system for an expendable launch vehicle
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary E.
1992-01-01
A major effort at NASA-Lewis in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt to overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times.
CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris
2016-08-10
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field inmore » the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, Sean R.
Despite significant advances in instrumentation, there remain no studies that analyze observations of on-disk flare loop plasma flows covering the entire evolution from chromospheric evaporation, through plasma cooling, to draining downflows. We present results from an imaging and spectroscopic observation from the Interface Region Imaging Spectrograph ( IRIS ) of the SOL2015–03–12T11:50:00 M-class flare, at high spatial resolution and time cadence. Our analysis of this event reveals initial plasma evaporation at flare temperatures indicated by 100–200 km s{sup −1} blueshifts in the Fe xxi line. We subsequently observe plasma cooling into chromospheric lines (Si iv and O iv) with ∼11more » minute delay, followed by loop draining at ∼40 km s{sup −1} as indicated by a “C”-shaped redshift structure and significant (∼60 km s{sup −1}) non-thermal broadening. We use density-sensitive lines to calculate a plasma density for the flare loops, and estimate a theoretical cooling time approximately equal to the observed delay. Finally, we use a simple elliptical free-fall draining model to construct synthetic spectra, and perform what we believe to be the first direct comparison of such synthetic spectra to observations of draining downflows in flare loops.« less
Design and implementation of a 38 kW dish-Stirling concentrated solar power system
NASA Astrophysics Data System (ADS)
Yan, J.; Peng, Y. D.; Cheng, Z. R.; Liu, F. M.; Tang, X. H.
2017-11-01
Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway for converting solar energy into electricity at high efficiency. In this study, a rated power 38 kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray tracing method and then the 204 m2 parabolic dish concentrator system (diameter is 17.70 m and focal length is 9.49 m) with single concentrator plus single pillar supporting has been designed and built. A water-cooled disc target and an absorber imitation device were adopted to test the tracking performance of the dish concentrator system, homogeneity of the focal spot and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the focal position of the dish concentrator and then the net output power date of the 38 kW DS-CSP system was tested. The absorber overheating problem on the DS-CSP system performance was discussed when the DS-CSP system was installed in different locations. The testing result shows that this system achieved the net output power of 38 kW and solar-to-electricity efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m2. The net output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up to the maximum of 761 W/m2. The net output power of the 38 kW DS-CSP system has a linear function relationship with the DNI. The fitting function is Net power output=0.1003×DNI-36.129, where DNI is at the range of 460∼761 W/m2. This function could be used to predict the amount of the 38 kW DS-CSP system annual generation power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamberg, L.D.
1998-02-23
This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storagemore » basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.« less
VASIMR VX-200 thruster throttling optimization from 30 to 200 kW
NASA Astrophysics Data System (ADS)
Squire, Jared; Olsen, Chris; Chang-Diaz, Franklin; Longmier, Benjamin; Ballenger, Maxwell; Carter, Mark; Glover, Tim; McCaskill, Greg
2012-10-01
The VASIMR^ VX-200 experimental plasma thruster incorporates a 40 kW helicon plasma source with a 180 kW Ion Cyclotron Heating (ICH) acceleration stage integrated in a superconducting magnet. Argon propellant mass flow is injected up to 140 mg/s. Rapid plasma start up (< 100 ms) and high pumping speed (> 10^5 liters/s) in a 150 m^3 vacuum chamber achieve performance measurements with the charge exchange mean-free-path greater than 1 m in the background neutral gas (pressure < 10-5 Torr). The thruster efficiency at 200 kW total power is 72 ± 9%, the ratio of effective jet power to input RF power, with an Isp = 4900 ± 300 seconds (flow velocity of 49 km/s), and an ion flux of 1.7 ± 0.1 x 10^21/s. The thrust increases steadily with power to 5.8 ± 0.4 N until the power is maximized and there is no indication of saturation. The plasma density near the device exit exceeds 10^18 m-3 with a power density over 5 MW/m^2. An extensive study of thruster performance, efficiency and thrust-to-power ratio, as a function of Ar propellant flow rate and ICH-to-helicon RF power ratio has been carried out over a total power range of 30 to 200 kW. Optimized throttling set points are determined. The experimental configuration and results of this study are presented.
Distribution Functions of Sizes and Fluxes Determined from Supra-Arcade Downflows
NASA Technical Reports Server (NTRS)
McKenzie, D.; Savage, S.
2011-01-01
The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.
3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, M.; Zurbriggen, E.; Costa, A.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there maymore » be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.« less
3D MHD Simulation of Flare Supra-Arcade Downflows in a Turbulent Current Sheet Medium
NASA Astrophysics Data System (ADS)
Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin-Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.
Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows.more » Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.« less
Solar perspectives - Israel, solar pond innovator
NASA Astrophysics Data System (ADS)
Winsberg, S.
1981-07-01
Existing and planned solar pond electricity producing power plants in Israel and California are discussed. Salt ponds, with salinity increasing with depth, are coupled with low temperature, organic working fluid Rankine cycle engines to form self-storage, nonpolluting, electric plants. Average pond thermal gradients range from 25 C surface to 90 C at the bottom; 160 GW of potential power have been projected as currently available from existing natural solar ponds from a partial survey of 14 countries. The largest installation to date has a 220 kW output, and a 5 MW plant is scheduled for completion in 1983. Efficiencies of 10% and a cost of $2,000/kW for a 40 MW plant are projected, a cost which is comparable to that of conventional plants. The 40 MW plant is an optimized design, allowing for modular plant additions to increase capacity.
Ultrasmall Microfabricated Laser Cavities
2013-10-23
as 105-106 K/W, where material gain saturates and nonradiative processes overwhelm before the device can go into stimulated emission [17, 90, 96...K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, \\Effect of nonradiative recombination on light emitting properties of two dimensional photonic
NASA Technical Reports Server (NTRS)
Sovie, R. J.
1976-01-01
The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.
Preliminary analysis of a downsized advanced gas-turbine engine in a subcompact car
NASA Technical Reports Server (NTRS)
Klann, J. L.; Johnsen, R. L.
1982-01-01
Relative fuel economy advantages exist for a ceramic turbine engine when it is downsized for a small car were investigated. A 75 kW (100 hp) single shaft engine under development was analytically downsized to 37 kW (50 hp) and analyzed with a metal belt continuously variable transmission in a synthesized car. With gasoline, a 25% advantage was calculated over that of a current spark ignition engine, scaled to the same power, using the same transmission and car. With diesel fuel, a 21% advantage was calculated over that of a similar diesel engine vehicle.
NASA Astrophysics Data System (ADS)
Kauschke, M.; Schroeder, C. H.
2004-06-01
The Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, is planning an extension of the existing heavy ion accelerator. The new facilities will contain two synchrotrons, four storage rings and approximately 1.4 km of beam transport, requiring different types of magnets and cooling regimes. As the magnets for the synchrotrons have to be fast-ramped magnets, the cryogenic system heat loads will be dominated by the AC-losses of the magnets. Our approach is to adopt and modify existing magnet designs to achieve a short development time for the facility. The cryogenic system has to provide 7.5 kW at 4.4 K in the two-phase cooling regime, 3 kW at 0.4 MPa and 4.2 K in forced-flow cooling for the synchrotrons. The storage ring magnets will be placed in bath cryostats and require a refrigeration capacity of 5 kW at 4.5 K. As the project will be commissioned in several steps, an economic plan for the cryogenic infrastructure is needed, which will be sufficient for every phase of the build-up and allow experiments in some parts of the facilities as well as the testing of the components for the later parts of the facility.
Time evolution of fine structures in the solar chromosphere.
NASA Astrophysics Data System (ADS)
Tsiropoula, G.; Alissandrakis, C. E.; Schmieder, B.
1994-10-01
We have studied the temporal evolution of two quiet chromospheric regions, one with a typical rosette and another with chains of mottles at the junction of three supergranules. The observations were obtained during 15 minutes with the Multichannel Subtractive Double Pass spectrograph (MSDP) operating in Hα at the Pic du Midi Observatory. We derived intensity maps and Doppler shift velocities at different wavelengths along the Hα profile over a two dimensional field of view. The observed contrast profiles were matched with theoretical contrast profiles using Beckers' cloud model for a more accurate determination of the line of sight velocity. A statistical analysis with cross correlation functions showed that the fine structures were stable in intensity over the observation period (15 min), but the line of sight velocity showed important changes within a few minutes. A detailed analysis of the velocities along the axes of dark mottles showed that the predominant pattern of bulk motion is that of downflow at their footpoints and alternating phases of upflow and downflow at their tops. This motion is consistent with Pikel'ner's model for spicules, which attributes this pattern to the reconnection of opposite magnetic filed lines. This picture is also consistent with the velocity reversals with time observed in spicules and may be associated to the systematic downflows observed in the transition region. Doppler shift velocities in dark mottles are too low compared to those derived with the cloud model; the latter are comparable to those reported for spicules, strengthening the view that these structures are identical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, L.; Martínez-Sykora, J.; Antolin, P.
Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to bemore » the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.« less
NASA Astrophysics Data System (ADS)
Townsend, F. M.; Falkenberg, R. J.
A review of the failure of wind turbines is given. Data from strip-chart recordings are analyzed. Numerous conclusions are drawn regarding various points of system breakdown. It is also concluded that neither the 17 meter nor the 500 kW will be ready for commercialization without another prototype of each.
Abundance Variations and Flows in Plage Regions Observed with CDS/SOHO
NASA Astrophysics Data System (ADS)
Rank, G.; Bagalá, L. G.; Czaykowska, A.; Haerendel, G.
1999-10-01
We present results from CDS/SOHO observations of the spotless active region NOAA-8208, obtained on 28th April 1998 near disk center. MDI images show a bipolar magnetic configuration. The regions of enhanced He I emission correspond to the areas with strong magnetic flux and also with bright plage areas seen in Ca II and H-alpha images. A high correlation is found between intensity maps of the transition region lines He I (logTmax = 4.3), O III (logTmax = 5.0), and O V (logTmax = 5.4). The line-of-sight velocities of He I reveal a strong downflow in the plage areas. Further, the line-of-sight velocities of He I, O III, and O V are well correlated, showing that the downflow pattern exists up to temperatures of about 0.25 MK. At higher temperatures (Mg VIII at logTmax = 5.8) this flow is not detected, suggesting that material streams into the plage region from sideways in the high transition region. Maps of the electron density in the transition region have been constructed from several line ratios yielding densities of about 9.0 cm-3 in the plage regions, about dex 0.5 cm-3 higher compared to the surrounding. To study the spatial variation of the first ionization potential (FIP) effect, the abundance ratio has been mapped for the ion ratio MgVI/NeVI. The ratio is highly variable on spatial scales down to a few arcsec from photospheric values to enhancements of a factor of 10. The strongest FIP enhancements are not correlated with transition region line emission, but are found outside of the plage regions. Some areas of strong FIP enhancement appear stretched and elongated, suggesting that the material is confined in loop-like structures.
Ion extraction from a saddle antenna RF surface plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less
Ion extraction from a saddle antenna RF surface plasma source
NASA Astrophysics Data System (ADS)
Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.
2015-04-01
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).
Cost estimate of electricity produced by TPV
NASA Astrophysics Data System (ADS)
Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens
2003-05-01
A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12-20 kW, the costs of the TPV components and 100 EUR kW-1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (etasys = 1.0%), leading to 3000 EUR kW-1el,peak, an optimized Si based system using conventional, available technology (etasys = 1.5%), leading to 900 EUR kW-1el,peak, a further improved system with future technology (etasys = 5%), leading to 340 EUR kW-1el,peak and a GaSb based system (etasys = 12.3% with recuperator), leading to 1900 EUR kW-1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh-1el (including gas of about 3.5 EURcents kWh-1) were calculated and compared with those of fuel cells (31 EURcents kWh-1) and gas engines (23 EURcents kWh-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswal, R.; Jain, P.; Muljadi, Eduard
2016-01-01
The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Malhotra, Mini; Munk, Jeffrey D.
The performance of two HVAC systems was evaluated using ORNL’s FRP, which is a two-story, 3,200 ft2 (297.3 m2) multi-zone unoccupied building that represents a typical low-rise, small office building common in the US existing building stock. The FRP is equipped with a conventional 12.5 ton (44 kW) RTU-VAV reheat system as the baseline system. For this study, a 12 ton (42 kW) VRF with a dedicated outdoor air system (DOAS) was installed to be compared with the baseline RTU system.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1981-01-01
A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.
MHD simulations of coronal dark downflows considering thermal conduction
NASA Astrophysics Data System (ADS)
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2017-10-01
While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.
Magnetic loops, downflows, and convection in the solar corona
NASA Technical Reports Server (NTRS)
Foukal, P.
1978-01-01
Optical and extreme-ultraviolet observations of solar loop structures show that flows of cool plasma from condensations near the loop apex are a common property of loops associated with radiations whose maximum temperature is greater than approximately 7000 K and less than approximately 3,000,000 K. It is suggested that the mass balance of these structures indicates reconnection by means of plasma motion across field lines under rather general circumstances (not only after flares). It is shown that the cool material has lower gas pressure than the surrounding coronal medium. The density structure of the bright extreme ultraviolet loops suggests that downflows of cool gas result from isobaric condensation of plasma that is either out of thermal equilibrium with the local energy deposition rate into the corona, or is thermally unstable. The evidence is thought to indicate that magnetic fields act to induce a pattern of forced convection.
The low-cost microwave plasma sources for science and industry applications
NASA Astrophysics Data System (ADS)
Tikhonov, V. N.; Aleshin, S. N.; Ivanov, I. A.; Tikhonov, A. V.
2017-11-01
Microwave plasma torches proposed in the world market are built according to a scheme that can be called classical: power supply - magnetron head - microwave isolator with water load - reflected power meter - matching device - actual plasma torch - sliding short circuit. The total cost of devices from this list with a microwave generator of 3 kW in the performance, for example, of SAIREM (France), is about 17,000 €. We have changed the classical scheme of the microwave plasmathrone and optimised design of the waveguide channel. As a result, we can supply simple and reliable sources of microwave plasma (complete with our low-budget microwave generator up to 3 kW and a simple plasmathrone of atmospheric pressure) at a price from 3,000 €.
Post-assembly magnetization of a 100 kW high speed permanent magnet rotor.
Lv, Yiliang; Wang, Guobin; Li, Liang
2015-03-01
A post-assembly magnetizing fixture has been designed and successfully used to magnetize the rotor of a 100 kW high speed permanent magnet synchronous motor. The rotor is a solid cylinder with outer diameter of 80 mm and total length of 515 mm. The permanent magnet material is samarium-cobalt (Sm2Co17) with saturation magnetizing field of 6 T. The mechanical stability of the magnetizing fixture has been studied as well as the general design methodology. The magnetizing coil is subdivided in order to reduce the electromagnetic force, and the coils are separately reinforced in different ways. The electromagnetic and structural optimization is performed by finite element analysis and verified by experiments.
A telehealth approach to conducting clinical swallowing evaluations in children with cerebral palsy.
Kantarcigil, Cagla; Sheppard, Justine Joan; Gordon, Andrew M; Friel, Kathleen M; Malandraki, Georgia A
2016-08-01
Accurate and timely evaluation of dysphagia in children with cerebral palsy (CP) is critical. For children with limited access to quality healthcare, telehealth is an option; however, its reliability needs to be investigated. To test the reliability of an asynchronous telehealth model for evaluating dysphagia in children with CP using a standardized clinical assessment. Nineteen children (age range 6.9-17.5) were assessed at three mealtimes via the Dysphagia Disorder Survey (DDS) by three clinicians (face-to-face evaluations). Mealtimes were video-recorded to allow asynchronous evaluations by a remote clinician who also completed approximately 1/3 of face-to-face evaluations. Agreement was tested on DDS variables and dysphagia severity. Results revealed substantial to excellent agreement between face-to-face and remote assessments by the same rater (78-100%, KW=0.64-1) on all, but two variables (oral transport and oral pharyngeal swallow) and by different raters (69-89%, KW=0.6-0.86) on all but one variable (orienting). For dysphagia severity, intrarater agreement was excellent (100%, KW=1); interrater agreement was substantial (85%; KW=0.76). Asynchronous clinical swallowing evaluations using standardized tools have acceptable levels of agreement with face-to-face evaluations, and can be an alternative for children with limited access to expert swallowing care. Copyright © 2016 Elsevier Ltd. All rights reserved.
Initial experiments with a versatile multi-aperture negative-ion source and related improvements
NASA Astrophysics Data System (ADS)
Cavenago, M.
2016-03-01
A relatively compact ion source, named NIO1 (Negative-Ion Optimization 1), with 9 beam apertures for H- extraction is under commissioning, in collaboration between Consorzio RFX and INFN, to provide a test bench for source optimizations, for innovations, and for simulation code validations in support of Neutral Beam Injectors (NBI) optimization. NIO1 installation includes a 60kV high-voltage deck, power supplies for a 130mA ion nominal current, an X-ray shield, and beam diagnostics. Plasma is heated with a tunable 2MHz radiofrequency (rf) generator. Physical aspects of source operation and rf-plasma coupling are discussed. NIO1 tuning procedures and plasma experiments both with air and with hydrogen as filling gas are described, up to a 1.7kW rf power. Transitions to inductively coupled plasma are reported in the case of air (for a rf power of about 0.5kW and a gas pressure below 2Pa), discussing their robust signature in optical emission, and briefly summarized for hydrogen, where more than 1kW rf power is needed.
A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow
NASA Technical Reports Server (NTRS)
Oseguera, Rosa M.; Bowles, Roland L.
1988-01-01
A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.
BMP FILTERS: UPFLOW VS. DOWNFLOW
Filtration methods have been found to be effective in reducing pollutant levels in stormwater. The main drawback of these methods is that the filters get clogged frequently and require periodical maintenance. In stormwater treatment, because of the cost of pumping, the filters ar...
Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature
NASA Technical Reports Server (NTRS)
Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric
2012-01-01
Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.
The near-term hybrid vehicle program, phase 1
NASA Technical Reports Server (NTRS)
1979-01-01
Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
... kilowatts (kW); (5) a new transmission line connecting to an existing Central Maine Power distribution line..., pursuant to section 4(f) of the Federal Power Act, proposing to study the feasibility of the New Mills Dam...
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
Integrated, Automated Distributed Generation Technologies Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin
2014-09-01
The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kWmore » new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.« less
NASA Astrophysics Data System (ADS)
Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas
2017-02-01
In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode. We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3-5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4-7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas
2017-02-10
In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close tomore » sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.« less
Evolution of Fine-scale Penumbral Magnetic Structure and Formation of Penumbral Jets
NASA Astrophysics Data System (ADS)
Tiwari, S. K.; Moore, R. L.; Rempel, M.; Winebarger, A. R.
2015-12-01
Sunspot penumbra consists of spines (more vertical field) and penumbral filaments (interspines). Spines are outward extension of umbra. Penumbral filaments are recently found, both in observations and magnetohydrodynamic (MHD) simulations, to be magnetized stretched granule-like convective cells, with strong upflows near the head that continues along the central axis with weakening strength of the flow. Strong downflows are found at the tails of filaments and weak downflows along the sides of it. These lateral downflows often contain opposite polarity magnetic field to that of spines; most strongly near the heads of filaments. In spite of this advancement in understanding of small-scale structure of sunspot penumbra, how the filaments and spines evolve and interact remains uncertain. Penumbral jets, bright, transient features, seen in the chromosphere, are one of several dynamic events in sunspot penumbra. It has been proposed that these penumbral microjets result from component (acute angle) reconnection of the magnetic field in spines with that in interspines and could contribute to transition-region and coronal heating above sunspots. In a recent investigation, it was proposed that the jets form as a result of reconnection between the opposite polarity field at edges of filaments with spine field, and it was found that these jets do not significantly directly heat the corona above sunspots. We discuss how the proposed formation of penumbral jets is integral to the formation mechanism of penumbral filaments and spines, and may explain why penumbral jets are few and far between. We also point out that the generation of the penumbral jets could indirectly drive coronal heating via generation of MHD waves or braiding of the magnetic field.
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
Market assessment of photovoltaic power systems for agricultural applications worldwide
NASA Astrophysics Data System (ADS)
Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.
1981-11-01
Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.
Market assessment of photovoltaic power systems for agricultural applications worldwide
NASA Technical Reports Server (NTRS)
Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.
1981-01-01
Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.
NASA Technical Reports Server (NTRS)
Szabo, James
2015-01-01
Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).
ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER
In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...
Signatures of coronal rain observed in the chromosphere of an Active Region Filament
NASA Astrophysics Data System (ADS)
Pillet, V. M.; McAteer, J.
2016-12-01
Using He 10830A spectropolarimetric data from the Tenerife Infrared Polarimeter (TIP) in a rather compact active region neutral line, we observe a persistent chromospheric downflow on both sides of the neutral line that we interpret as the signature of rain from the Corona. The photospheric Si I line also present in this spectral region allows studying the continuation of the chromospheric downflow into the deeper areas dominated by granulation. Full reconstruction of the photospheric and chromospheric vector magnetic field showed that the active region filament was the central, axial, part of a magnetic flux rope. These observations demonstrate the potential of this spectral region to monitor the magnetic field and plasma motions in solar filaments. NMSU and NSO are teaming to start a synoptic program at the DST (Sac Peak) that uses this spectral region to track the evolution of magnetic fields and flows in solar filaments. We briefly present the characteristics of the synoptic program.
Zhu, Feng; Wang, Wancheng; Zhang, Xiaoyan; Tao, Guanhong
2011-08-01
A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m(2). Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I
2014-06-17
The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.
Performance characteristics of anaerobic downflow stationary fixed film reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, L.; Kennedy, K.J.
1982-01-01
Stationary fixed film reactors operated to ensure a net downflow of substrate have several characteristics different from other retained biomass reactors. The active biomass attaches itself to stationary surface and hence is difficult to wash out. Performance is related to the surface-to-volume of the film support as well as to the composition of the support. Methane production rates of up to 8 cym day at loading rates of up to 30 kg COD/m cym day, are possible. Severe hydraulic and organic overloadings can be tolerated with operation back to normal 24 hours following cessation of mistreatment. Reactors can operate withmore » dilute and concentrated wastes (4000-130,000 mg COD/L) and can change readily over from one waste to another. Intermittent loading at high loading rates are possible. Methane production rates and loading rates decreased linearly with temperature (35) to 10); at 10 C they were about 20% of those at 35 C.« less
Stretched Lens Array Squarerigger (SLASR) Technology Maturation
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan;
2007-01-01
Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities
Research on Potential Environmental Impacts of Oxy-fuel Combustion at EPA
An existing 35kW laboratory-scale combustor located at the U.S. EPA’s National Risk Management Research Laboratory, Research Triangle Park, North Carolina, has been modified for performing oxy-natural gas and oxy-coal experiments by adding O2 operation and flue gas recycling capa...
Research on Potential Environmental Impacts of Oxyfuel Combustion at EPA
An existing 35kW laboratory-scale combustor located at the U.S. EPA’s National Risk Management Research Laboratory, Research Triangle Park, North Carolina, has been modified for performing oxy-natural gas and oxy-coal experiments by adding O2 operation and flue gas recyclin...
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1982-01-01
The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.
Helicon Plasma Source Optimization Studies for VASIMR
NASA Technical Reports Server (NTRS)
Goulding, R. H.; Baity, F. W.; Barber, G. C.; Carter, M. D.; ChangDiaz, F. R.; Pavarin, D.; Sparks, D. O.; Squire J. P.
1999-01-01
A helicon plasma source at Oak Ridge National Laboratory is being used to investigate operating scenarios relevant to the VASIMR (VAriable Specific Impulse Magnetoplasma Rocket). These include operation at high magnetic field (> = 0.4 T), high frequency (<= 30 MHz), high power (< = 3 kW), and with light ions (He+, H+). To date, He plasmas have been produced with n(sub e0) = 1.7 x 10(exp 19)/cu m (measured with an axially movable 4mm microwave interferometer), with Pin = I kW at f = 13.56 MHz and absolute value of B(sub 0) = 0.16 T. In the near future, diagnostics including a mass flow meter and a gridded energy analyzer array will be added to investigate fueling efficiency and the source power balance. The latest results, together with modeling results using the EMIR rf code, will be presented.
Design, development and test of a capillary pump loop heat pipe
NASA Technical Reports Server (NTRS)
Kroliczek, E. J.; Ku, J.; Ollendorf, S.
1984-01-01
The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.
EFFECT OF ANAEROBIOSIS ON FILTER MEDIA POLLUTANT RETENTION
One of the primary problems with downflow filtration of stormwater runoff is the clogging of the filter prior to the medium's exhaustion of its chemical capacity. Upflow filtration using a siphon control may be a possibility for improving the life of the filters. However, for upf...
Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater
2007-03-01
PERCHLORATE DETECTIONS UNDER THE UCMR PROGRAM ( BRANDHUBER , 2005...AQUIFER WHERE UPFLOW WELL (U) EXTRACTS AND DOWNFLOW WELL ( D ) INJECTS WATER. ASTERISKS REPRESENT STAGNATION POINTS (CUNNINGHAM ET AL., 2004...1 Figure 1.1 Known Perchlorate Releases and Perchlorate Detections under the UCMR Program ( Brandhuber , 2005) Perchlorate is a
Three-dimensional numerical simulations of local scouring around bridge piers
USDA-ARS?s Scientific Manuscript database
This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...
Cravotta, C.A.; Ward, S.J.
2008-01-01
Passive-treatment systems that route acidic mine drainage (AMD) through crushed limestone and/or organic-rich substrates have been used to remove the acidity and metals from various AMD sources, with a wide range of effects. This study evaluates treatment of net-acidic, oxic, iron-laden AMD with limestone alone, and with organic-rich compost layered with the limestone. In the fall of 2003, a treatment system consisting of two parallel, 500-m2 downflow cells followed by a 400-m2 aerobic settling pond and wetland was installed to neutralize the AMD from the Bell Mine, a large source of AMD and baseflow to the Schuylkill River in the Southern Anthracite Coalfield, in east-central Pennsylvania. Each downflow cell consisted of a lower substrate layer of 1,090 metric tons (t) of dolomitic limestone (60 wt% CaCO3) and an upper layer of 300 t of calcitic limestone (95 wt% CaCO3); one of the downflow cells also included a 0.3 m thick layer of mushroom compost over the limestone. AMD with pH of 3.5-4.3, dissolved oxygen of 6.6-9.9 mg/L, iron of 1.9-5.4 mg/L, and aluminum of 0.8-1.9 mg/L flooded each cell to a depth 0.65 m above the treatment substrates, percolated through the substrates to underlying, perforated outflow pipes, and then flowed through the aerobic pond and wetland before discharging to the Schuylkill River. Data on the flow rates and chemistry of the effluent for the treatment system indicated substantial neutralization by the calcitic limestone but only marginal effects from the dolomitic limestone or compost. Because of its higher transmissivity, the treatment cell containing only limestone neutralized greater quantities of acidity than the cell containing compost and limestone. On average, the treatment system removed 62% of the influent acidity, 47% of the dissolved iron, 34% of the dissolved aluminum, and 8% of the dissolved manganese. Prior to treatment of the Bell Discharge, the Schuylkill River immediately below its confluence with the discharge had pH as low as 4.1 and supported few, if any, fish. However, within the first year of treatment, the pH was maintained at values of 5.0 or greater and native brook trout were documented immediately below the treatment system, though not above. ?? 2008 Springer-Verlag.
Butera, Stefania; Hyks, Jiri; Christensen, Thomas H; Astrup, Thomas F
2015-09-01
Five samples of construction and demolition waste (C&DW) were investigated in order to quantify leaching of inorganic elements under percolation conditions according to two different experimental setups: standardised up-flow saturated columns (<4mm particle size) and unsaturated, intermittent down-flow lysimeters (<40mm particle size). While standardised column tests are meant primarily to provide basic information on characteristic leaching properties and mechanisms and not to reproduce field conditions, the lysimeters were intended to mimic the actual leaching conditions when C&DW is used in unbound geotechnical layers. In practice, results from standardised percolation tests are often interpreted as estimations of actual release from solid materials in percolation scenarios. In general, the two tests yielded fairly similar results in terms of cumulative release at liquid-to-solid ratio (L/S) 10l·kgTS; however, significant differences were observed for P, Pb, Ba, Mg and Zn. Further differences emerged in terms of concentration in the early eluates (L/S<5l·kg(-1)TS) for Al, As, Ba, Cd, Cu, DOC, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Zn. Observed differences between tests are likely to be due to differences in pH related to crushing and exposure of fresh particle surfaces, as well as in equilibrium conditions. In the case of C&DW, the standardised column tests, which are more practical, are considered to acceptably describe cumulative releases at L/S 10l·kg(-1)TS in percolation scenarios. However, when the focus is on estimation of initial concentrations for (for example) risk assessment, data from standardised column tests may not be fully applicable, and data from lysimeters may be used for validation purposes. Se, Cr and, to a lesser extent, SO4 and Sb were leaching from C&DW in critical amounts compared with existing limit values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fission Surface Power Technology Demonstration Unit Test Results
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.
2016-01-01
The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.
Fission Surface Power Technology Demonstration Unit Test Results
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven; Sanzi, James
2016-01-01
The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7% resulting in a net system power of 8.1 kW and a system level efficiency of 17.2%. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to GRC. The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3%. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 %.
Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity.
Desforges, Jean-Pierre; Levin, Milton; Jasperse, Lindsay; De Guise, Sylvain; Eulaers, Igor; Letcher, Robert J; Acquarone, Mario; Nordøy, Erling; Folkow, Lars P; Hammer Jensen, Trine; Grøndahl, Carsten; Bertelsen, Mads F; St Leger, Judy; Almunia, Javier; Sonne, Christian; Dietz, Rune
2017-10-03
Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 μg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC 50 : 0.94 vs 6.06 μg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.
Ashton, Lee; Williams, Rebecca; Rollo, Megan; Pezdirc, Kristine; Collins, Clare
2017-01-01
Diet quality indices can predict nutritional adequacy of usual intake, but validity should be determined. The aim was to assess the validity of total and sub-scale score within the Australian Recommended Food Score (ARFS), in relation to fasting plasma carotenoid concentrations. Diet quality and fasting plasma carotenoid concentrations were assessed in 99 overweight and obese adults (49.5% female, aged 44.6 ± 9.9 years) at baseline and after three months (198 paired observations). Associations were assessed using Spearman’s correlation coefficients and regression analysis, and agreement using weighted kappa (Kw). Small, significantly positive correlations were found between total ARFS and plasma concentrations of total carotenoids (r = 0.17, p < 0.05), β-cryptoxanthin (r = 0.18, p < 0.05), β-carotene (r = 0.20, p < 0.01), and α-carotene (r = 0.19, p < 0.01). Significant agreement between ARFS categories and plasma carotenoid concentrations was found for total carotenoids (Kw 0.12, p = 0.02), β-carotene (Kw 0.14, p < 0.01), and α-carotene (Kw 0.13, p < 0.01). In fully-adjusted regression models the only signification association with ARFS total score was for α-carotene (β = 0.19, p < 0.01), while ARFS meat and fruit sub-scales demonstrated significant relationships with α-carotene, β-carotene, and total carotenoids (p < 0.05). The weak associations highlight the issues with self-reporting dietary intakes in overweight and obese populations. Further research is required to evaluate the use of the ARFS in more diverse populations. PMID:28817083
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... new ``y'' pipe intake off the existing 10-inch diameter water supply pipeline; (2) a new 12-foot-long... water supply pipeline; and (5) appurtenant facilities. The proposed project would have an estimated... 22 kW Orchard City Water Treatment Plant Hydroelectric Project would utilize Orchard City's water...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... physical changes to the existing cement infrastructure; (2) one reverse-pump turbine generator unit with a rated capacity of 325 kW; (3) the turbine generator unit to be installed within the pipeline using... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13802-000] California Water...
Code of Federal Regulations, 2010 CFR
2010-07-01
... internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline... the D-1 cycle of International Organization of Standardization 8178-4: 1996(E) (incorporated by reference, see 40 CFR 60.17) or the test cycle requirements specified in Table 5 to 40 CFR 1048.505, except...
NASA Technical Reports Server (NTRS)
Vatsky, A.; Chen, H. S.; Dineen, J.
1982-01-01
The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.
NASA Astrophysics Data System (ADS)
Vatsky, A.; Chen, H. S.; Dineen, J.
1982-05-01
The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.
NASA Astrophysics Data System (ADS)
Swenson, Donald A.
A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huetter, J.J. Jr.
The overall feasibility of retrofit for hydroelectric power generation at the Patillas Reservoir, an existing impoundment located near the town of Patillas, Puerto Rico, was studied. The scope of work and project intent is limited to establishing valid acceptance or non-acceptance criteria for this specific site as an example of power generation potential at existing dams of relatively low head (less than or equal to 20 m) in the United States. Information is included on hydrologic conditions at the site, retrofit plant design, economic analysis, environmental, legal, social and institutional aspects, and availability of plant equipment. It is concluded thatmore » generation of hydropower at Patillas is entirely practical and uncomplicated from an engineering viewpoint, has no adverse environmental effects and is economically justifiable for the island of Puerto Rico. The final agency or contractor roles for development are reasonably well-established. There are no prohibitory laws or regulations concerning this development. In fact, according to Puerto Rico legislation, such hydropower developments appear to be mandated. The installed capacity of the site ranges from 665 kW to approximately 1500 kW depending on extent of development of the available options. (LCL)« less
The use of computer models to predict temperature and smoke movement in high bay spaces
NASA Technical Reports Server (NTRS)
Notarianni, Kathy A.; Davis, William D.
1993-01-01
The Building and Fire Research Laboratory (BFRL) was given the opportunity to make measurements during fire calibration tests of the heat detection system in an aircraft hangar with a nominal 30.4 (100 ft) ceiling height near Dallas, TX. Fire gas temperatures resulting from an approximately 8250 kW isopropyl alcohol pool fire were measured above the fire and along the ceiling. The results of the experiments were then compared to predictions from the computer fire models DETACT-QS, FPETOOL, and LAVENT. In section A of the analysis conducted, DETACT-QS AND FPETOOL significantly underpredicted the gas temperature. LAVENT at the position below the ceiling corresponding to maximum temperature and velocity provided better agreement with the data. For large spaces, hot gas transport time and an improved fire plume dynamics model should be incorporated into the computer fire model activation routines. A computational fluid dynamics (CFD) model, HARWELL FLOW3D, was then used to model the hot gas movement in the space. Reasonable agreement was found between the temperatures predicted from the CFD calculations and the temperatures measured in the aircraft hangar. In section B, an existing NASA high bay space was modeled using the CFD model. The NASA space was a clean room, 27.4 m (90 ft) high with forced horizontal laminar flow. The purpose of this analysis is to determine how the existing fire detection devices would respond to various size fires in the space. The analysis was conducted for 32 MW, 400 kW, and 40 kW fires.
Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster
NASA Astrophysics Data System (ADS)
Le, YANG; Tianping, ZHANG; Juanjuan, CHEN; Yanhui, JIA
2018-07-01
A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the low-frequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons, the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.
SPIKE-2: a Practical Stirling Engine for Kilowatt Level Solar Power
NASA Technical Reports Server (NTRS)
Beale, W. T.
1984-01-01
Recent advances in the art of free piston Stirling engine design make possible the production of 1-10kW free piston Stirling linear alternator engine, hermetically sealed, efficient, durable and simple in construction and operation. Power output is in the form of single or three phase 60 Hz. AC, or DC. The three phase capability is available from single machines without need of external conditioning. Engine voltage control regains set voltage within 5 cycles in response to any load change. The existing SPIKE-2 design has an engine alternator efficiency of 25% at 650 C heater wall temperature and a service life of over three years in solar service. The same system can be scaled over a range of at least 100 watts to 25kW.
Active thermal control system evolution
NASA Technical Reports Server (NTRS)
Petete, Patricia A.; Ames, Brian E.
1991-01-01
The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.
Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu
2014-01-29
The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor.more » Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.« less
Combination downflow-upflow vapor-liquid separator
Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.
1987-03-10
An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.
Dynamical Thermal Structure of Super-arcade Downflows in Solar Flares
NASA Astrophysics Data System (ADS)
Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin
2015-04-01
Super-arcade downflows (SADs) have been frequently observed during the gradual phase of flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the bright fan-shape “haze” above the well-defined flare arcade and flow toward the arcade. We carefully studied several selected SADs from two flare events using data observed by Solar Dynamic Observatory / Atmospheric Imaging Assembly and calculated their differential emission measures (DEMs) as well as the DEM-weighted temperature. Our analysis shows that SADs are associated with a substantially decreased DEMs, by 1~3 order of magnitude, compared with the surrounding plasma. None of the SADs indicate DEM solutions above 20 MK, which implies that SADs are indeed density depletion rather than very hot plasma. This depression in DEMs rapidly recovers as SADs pass through, generally in a few minutes. In addition, we found that SADs in one event appear spatio-temporally associated with the formation of postflare loops. These results are examined against models and numerical simulations.
NASA Technical Reports Server (NTRS)
Foukal, Peter
1987-01-01
A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.
Magnetic shuffling of coronal downdrafts
NASA Astrophysics Data System (ADS)
Petralia, A.; Reale, F.; Orlando, S.
2017-02-01
Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption. Aims: We study the possible back-effect of the magnetic field on the propagation of confined flows. Methods: We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker. Results: The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front. Conclusions: Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example. Movies associated to Figs. 2 and 3 are available at http://www.aanda.org
Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi
2016-03-01
A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.
Engelhart, M; Krüger, M; Kopp, J; Dichtl, N
2000-01-01
The effects of mechanical disintegration on anaerobic digestibility of sewage excess sludge in downflow stationary fixed film (DSFF) digesters were investigated on laboratory scale. Mechanical pretreatment using a high pressure homogenizer led to significantly enhanced concentrations of soluble proteins and carbohydrates in the feed sludge. Using DSFF digesters with two different tubular plastic media as support material it was shown that a stable digestion process could be achieved at hydraulic retention times (HRT) down to 5 days. Compared to conventional digesters at 10 d and 15 d HRT respectively, the degradation of volatile solids was enhanced up to 25%, also resulting in a higher specific biogas production. Further investigations on degradation of soluble proteins and carbohydrates showed that a slowly degradable fraction of carbohydrates was released via disintegration. Using the distribution of chain length and the concentrations of volatile fatty acids as process parameters, the dependability on the HRT and the degree of disintegration (the release of soluble COD) predominated the effects of specific surface area of the support media.
47 CFR 80.215 - Transmitter power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 1.67. (b) Coast station frequencies below 27500 kHz. The maximum power must not exceed the values listed below. (1) Public coast stations, except Alaska: (i) Radiotelegraphy: 100-160 kHz—80kW 405-525 kHz—40kW 2035-2065 kHz—6.6kW 4000-8000 kHz—10kW 8000-9000 kHz—20kW 12000-27500 kHz—30kW (ii...
47 CFR 80.215 - Transmitter power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 1.67. (b) Coast station frequencies below 27500 kHz. The maximum power must not exceed the values listed below. (1) Public coast stations, except Alaska: (i) Radiotelegraphy: 100-160 kHz—80kW 405-525 kHz—40kW 2035-2065 kHz—6.6kW 4000-8000 kHz—10kW 8000-9000 kHz—20kW 12000-27500 kHz—30kW (ii...
47 CFR 80.215 - Transmitter power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 1.67. (b) Coast station frequencies below 27500 kHz. The maximum power must not exceed the values listed below. (1) Public coast stations, except Alaska: (i) Radiotelegraphy: 100-160 kHz—80kW 405-525 kHz—40kW 2035-2065 kHz—6.6kW 4000-8000 kHz—10kW 8000-9000 kHz—20kW 12000-27500 kHz—30kW (ii...
47 CFR 80.215 - Transmitter power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 1.67. (b) Coast station frequencies below 27500 kHz. The maximum power must not exceed the values listed below. (1) Public coast stations, except Alaska: (i) Radiotelegraphy: 100-160 kHz—80kW 405-525 kHz—40kW 2035-2065 kHz—6.6kW 4000-8000 kHz—10kW 8000-9000 kHz—20kW 12000-27500 kHz—30kW (ii...
47 CFR 80.215 - Transmitter power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 1.67. (b) Coast station frequencies below 27500 kHz. The maximum power must not exceed the values listed below. (1) Public coast stations, except Alaska: (i) Radiotelegraphy: 100-160 kHz—80kW 405-525 kHz—40kW 2035-2065 kHz—6.6kW 4000-8000 kHz—10kW 8000-9000 kHz—20kW 12000-27500 kHz—30kW (ii...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... 945-kW turbine-generator units for a total installed capacity of 1,890 kW; (9) a 14.5-foot-long... a 600-kW turbine-generator unit and a 1,200-kW turbine-generator unit for a total installed capacity...-wide concrete-brick powerhouse containing a 600-kW turbine-generator unit and a 700-kW turbine...
Wu, Quan-Zhou; Huang, Shu-Ming; Cai, Qi-Xun; Chu, Xu-Feng
2017-01-25
To compare the complications and clinical outcome of titanium elastic nail(TEN) versus K-wire fixation(KW) for the treatment of displaced radial neck fractures in children. From January 2009 to December 2014, 56 children with displaced radial neck fractures were studied retrospectively according to the inclusion criteria. Based on the different methods of internal fixation, patients were divided into two groups: titanium elastic nail (TEN group) and K-wire fixation (KW group). Among 25 patients(15 males and 11 females, aged from 3 to 12 years old with an average of 8.6±2.1) treated with TEN, 16 patients had type III fractures, 19 patients had type IV fractures according to Metaizeau-Judet modified classification; 20 patients were treated with closed reduction and 5 patients were treated with open reduction; the time from injury to treatment ranged from 1 to 8 days with an average of (3.6±1.7) days. Among 31 patients (20 males and 11 females, aged from 3 to 11 years old with an average of 9.1±1.9 years old) treated with KW, 19 patients had type III fractures, 12 patients had type IV fractures; 22 patients were treated with closed reduction, and 9 patients were treated with open reduction; the time from injury to treatment ranged from 2 to 7 days with an average of (3.7±1.5) days. No significant differences between two groups were found in general data. Operative time, hospitalization time, healing time of fracture, internal fixation time, postoperative complications and function recovery of the two groups were compared and evaluated. The average follow-up period of the patients was 22.1 months in TEN group(ranged, 16 to 48 months), and 21.9 months in KW group(ranged, 13 to 48 months). There were no significant differences between these 2 groups in follow-up duration, average hospitalization time and fracture healing time. The operation time, hospital costs and internal fixation time in TEN group were (56.6±11.8) min, (18 000±3 000) Yuan(RMB), (9.1±2.5) weeks respectively; and in KW group were(45.5±10.3) min, (8 000±1 000) Yuan(RMB), (4.8±1.6) weeks respectively, there were significant differences between two groups( P <0.05). Outcome scores according to Metaizeau and Tibone-Stoltz had no significant differences between two groups( P >0.05). There is no significant difference of therapeutic effects between TEN and KW for children with displaced radial neck fractures. Because the removal of TEN fixation requires the secondary anesthesia, and the TEN costs significantly more than KW, TEN still can't replace the traditional KW for the treatment of radial neck fracture in children.
78 FR 52172 - Don W. Gilbert Hydro Power, LLC; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... kilowatts (kW) and would utilize the flow from several unnamed springs that converge into an unnamed channel... to the existing stream channel that flows into the Bear River; (5) a 150-foot-long, 480-volt... Construction Implement industry-standard erosion control measures to minimize erosion and sedimentation; Stop...
Velocity Measurements for a Solar Active Region Fan Loop from Hinode/EIS Observations
NASA Astrophysics Data System (ADS)
Young, P. R.; O'Dwyer, B.; Mason, H. E.
2012-01-01
The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s-1 up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands"—one cooler and downflowing, the other hotter and stationary—is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 × 109 cm-3 at the loop base, to 5.0 × 108 cm-3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s-1 in Fe XII λ195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s-1 at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.
VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P. R.; O'Dwyer, B.; Mason, H. E.
2012-01-01
The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physicallymore » disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.« less
An electromechanical actuation system for an expendable launch vehicle
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen
1992-01-01
A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.
Irradiation caused performance losses of undulators equipped with Sm2Co17 magnets
NASA Astrophysics Data System (ADS)
Heidrich, S.; Aulenbacher, K.; Donders, S.; Nikipelov, A.
2018-06-01
The effects of beam losses on the performance of undulators equipped with Sm2Co17 magnets were investigated at the 855 MeV beamline of the Mainzer Microtron MAMI. Therefore, different cases containing undulator components as well as complete undulator assemblies were irradiated. Different types of shielding were used to distinguish the magnetic field degradation caused by neutrons from the degradation caused by electrons and photons. The results of each case were put in relation with the expected beam losses of a conceptional 10 kW free-electron-laser (FEL) based on an electron beam with 34 MW beam power.
Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro
2001-01-01
This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.
Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature
NASA Technical Reports Server (NTRS)
Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric
2012-01-01
Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.
NASA Technical Reports Server (NTRS)
Mason, Lee; Birchenough, Arthur; Pinero, Luis
2004-01-01
A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
NASA Technical Reports Server (NTRS)
Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis
2004-01-01
A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.
Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor
NASA Astrophysics Data System (ADS)
Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.
2017-12-01
Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.
Development of a high power density 2.5 kW class solid oxide fuel cell stack
NASA Astrophysics Data System (ADS)
Yokoo, M.; Mizuki, K.; Watanabe, K.; Hayashi, K.
2011-10-01
We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.
Considering causal genes in the genetic dissection of kernel traits in common wheat.
Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz
2016-11-01
Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.
Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials
2013-02-01
intermetallic) [13,14], a metal oxide ( thermite ) [13e15], or a fluoropolymer [16,17]. They can be used as additives in explosives to decrease...research on ESD ignition sensitivity of thermites and intermetallics. Because thermites are composed of particulate media and widely used, they pose a... thermites and intermetallics for pyrotechnic applications, in: 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 1996. [15] K.W. Watson, M.L
Mansoori, A; Oryan, S; Nematbakhsh, M
2016-03-01
The vasodilatory effect of angiotensin 1-7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/ KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal circulation.
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Huang, Wensheng; Haag, Thomas W.; Kamhawi, Hani
2013-01-01
NASA is presently developing a high-power, high-efficiency, long-lifetime Hall thruster for the Solar Electric Propulsion Technology Demonstration Mission. In support of this task, studies have been performed on the 20-kW NASA-300M Hall thruster to aid in the overall design process. The ability to incorporate magnetic shielding into a high-power Hall thruster was also investigated with the NASA- 300MS, a modified version of the NASA-300M. The inclusion of magnetic shielding would allow the thruster to push existing state-of-the-art technology in regards to service lifetime, one of the goals of the Technology Demonstration Mission. Langmuir probe measurements were taken within the discharge channels of both thrusters in order to characterize differences at higher power levels, as well as validate ongoing modeling efforts using the axisymmetric code Hall2De. Flush-mounted Langmuir probes were also used within the channel of the NASA-300MS to verify that magnetic shielding was successfully applied. Measurements taken from 300 V, 10 kW to 600 V, 20 kW have shown plasma potentials near anode potential and electron temperatures of 4 to 12 eV at the walls near the thruster exit plane of the NASA-300MS, verifying magnetic shielding and validating the design process at this power level. Channel centerline measurements on the NASA-300M from 300 V, 10 kW to 500 V, 20 kW show the electron temperature peak at approximately 0.1 to 0.2 channel lengths upstream of the exit plane, with magnitudes increasing with discharge voltage. The acceleration profiles appear to be centered about the exit plane with a width of approximately 0.3 to 0.4 channel lengths. Channel centerline measurements on the NASA-300MS were found to be more challenging due to additional probe heating. Ionization and acceleration zones appeared to move downstream on the NASA-300MS compared to the NASA-300M, as expected based on the shift in peak radial magnetic field. Additional measurements or alternative diagnostics will be needed to verify peak electron temperatures in the NASA-300MS and compare them with model predictions.
Process simulations for the LCLS-II cryogenic systems
NASA Astrophysics Data System (ADS)
Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.
2017-12-01
Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Lisa; Lekov, Alex; McKane, Aimee
2010-08-20
This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modulation Maximum rated carrier power Class of amplifier 0.70 Plate 1 kW or less .80 Plate 2.5 kW and over .35 Low level 0.25 kW and over B .65 Low level 0.25 kW and over BC1 .35 Grid 0.25 kW and over 1 All...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the...
Design, performance, and economics of 50-kW and 500-kW vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Schienbein, L. A.; Malcolm, D. J.
1983-11-01
A review of the development and performance of the DAF Indal 50-kW vertical axis Darrieus wind turbine shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. Details are also presented of a 500-kW VAWT that is currently in production. A discussion of the economics of both the 50-kW and 500-kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance, and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, M; Hafner, R
2008-05-05
This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approvedmore » for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.« less
Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium
NASA Astrophysics Data System (ADS)
Li, Peng
2014-12-01
This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.
All-fiber 7x1 signal combiner for incoherent laser beam combining
NASA Astrophysics Data System (ADS)
Noordegraaf, D.; Maack, M. D.; Skovgaard, P. M. W.; Johansen, J.; Becker, F.; Belke, S.; Blomqvist, M.; Laegsgaard, J.
2011-02-01
We demonstrate an all-fiber 7x1 signal combiner for incoherent laser beam combining. This is a potential key component for reaching several kW of stabile laser output power. The combiner couples the output from 7 single-mode (SM) fiber lasers into a single multi-mode (MM) fiber. The input signal fibers have a core diameter of 17 μm and the output MM fiber has a core diameter of 100 μm. In a tapered section light gradually leaks out of the SM fibers and is captured by a surrounding fluorine-doped cladding. The combiner is tested up to 2.5 kW of combined output power and only a minor increase in device temperature is observed. At an intermediate power level of 600 W a beam parameter product (BPP) of 2.22 mm x mrad is measured, corresponding to an M2 value of 6.5. These values are approaching the theoretical limit dictated by brightness conservation.
Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T
2016-01-01
A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.
Onodera, Takashi; Syutsubo, Kazuaki; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Mizuochi, Motoyuki; Harada, Hideki
2015-01-01
This study investigated down-flow hanging sponge (DHS) technology as a promising trickling filter (TF) using sponge media as a biomass carrier with an emphasis on protection of the biomass against macrofauna overgrazing. A pilot-scale DHS reactor fed with low-strength municipal sewage was operated under ambient temperature conditions for 1 year at a sewage treatment plant in Bangkok, Thailand. The results showed that snails (macrofauna) were present on the surface of the sponge media, but could not enter into it, because the sponge media with smaller pores physically protected the biomass from the snails. As a result, the sponge media maintained a dense biomass, with an average value of 22.3 gVSS/L sponge (58.1 gTSS/L sponge) on day 370. The snails could graze biomass on the surface of the sponge media. The DHS reactor process performance was also successful. The DHS reactor requires neither chemical treatments nor specific operations such as flooding for snail control. Overall, the results of this study indicate that the DHS reactor is able to protect biomass from snail overgrazing.
A novel approach for toluene gas treatment using a downflow hanging sponge reactor.
Yamaguchi, Tsuyoshi; Nakamura, Syoichiro; Hatamoto, Masashi; Tamura, Eisuke; Tanikawa, Daisuke; Kawakami, Shuji; Nakamura, Akinobu; Kato, Kaoru; Nagano, Akihiro; Yamaguchi, Takashi
2018-05-01
A novel gas-scrubbing bioreactor based on a downflow hanging sponge (DHS) reactor was developed as a new volatile organic compound (VOC) treatment system. In this study, the effects of varying the space velocity and gas/liquid ratio were investigated to assess the effectiveness of using toluene gas as a model VOC. Under optimal conditions, the toluene removal rate was greater than 80%, and the maximum elimination capacity was observed at approximately 13 g-C m -3 h -1 . The DHS reactor demonstrated slight pressure loss (20 Pa) and a high concentration of suspended solids (up to 30,000 mg/L-sponge). Cloning analysis of the 16S rRNA and functional genes of toluene degradation pathways (tmoA, todC, tbmD, xylA, and bssA) revealed that the clones belonging to the toluene-degrading bacterium Pseudomonas putida constituted the predominant species detected at the bottom of the DHS reactor. The toluene-degrading bacteria Pseudoxanthomonas spadix and Pseudomonas sp. were also detected by tmoA- and todC-targeted cloning analyses, respectively. These results demonstrate the potential for the industrial application of this novel DHS reactor for toluene gas treatment.
Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotta, H.
We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflowmore » is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.« less
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Syngouna, V. I.
2013-12-01
The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.
Study of cluster behavior in the riser of CFB by the DSMC method
NASA Astrophysics Data System (ADS)
Liu, H. P.; Liu, D. Y.; Liu, H.
2010-03-01
The flow behaviors of clusters in the riser of a two-dimensional (2D) circulating fluidized bed was numerically studied based on the Euler-Lagrangian approach. Gas turbulence was modeled by means of Large Eddy Simulation (LES). Particle collision was modeled by means of the direct simulation Monte Carlo (DSMC) method. Clusters' hydrodynamic characteristics are obtained using a cluster identification method proposed by sharrma et al. (2000). The descending clusters near the wall region and the up- and down-flowing clusters in the core were studied separately due to their different flow behaviors. The effects of superficial gas velocity on the cluster behavior were analyzed. Simulated results showed that near wall clusters flow downward and the descent velocity is about -45 cm/s. The occurrence frequency of the up-flowing cluster is higher than that of down-flowing cluster in the core of riser. With the increase of superficial gas velocity, the solid concentration and occurrence frequency of clusters decrease, while the cluster axial velocity increase. Simulated results were in agreement with experimental data. The stochastic method used in present paper is feasible for predicting the cluster flow behavior in CFBs.
Hwang, S H; Yi, T W; Cho, K H; Lee, I M; Yoon, C S
2011-09-01
To test a performance of the microbiological safety cabinets (MSCs) according to the type of MSCs in microbial laboratories. Tests were carried out to assess the performance of 31 MSCs in 14 different facilities, including six different biological test laboratories in six hospitals and eight different laboratories in three universities. The following tests were performed on the MSCs: the downflow test, intake velocity test, high-efficiency particulate air filter leak test and the airflow smoke pattern test. These performance tests were carried out in accordance with the standard procedures. Only 23% of Class II A1 (8), A2 (19) and unknown MSCs (4) passed these performance tests. The main reasons for the failure of MSCs were inappropriate intake velocity (65%), leakage in the HEPA filter sealing (50%), unbalanced airflow smoke pattern in the cabinets (39%) and inappropriate downflow (27%). This study showed that routine checks of MSCs are important to detect and strengthen the weak spots that frequently develop, as observed during the evaluation of the MSCs of various institutions. Routine evaluation and maintenance of MSCs are critical for optimizing performance. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei
2016-09-15
In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tandukar, M; Uemura, S; Machdar, I; Ohashi, A; Harada, H
2005-01-01
This paper presents an evaluation of the process performance of a pilot-scale "fourth generation" downflow hanging sponge (DHS) post-treatment system combined with a UASB pretreatment unit treating municipal wastewater. After the successful operation of the second- and third-generation DHS reactors, the fourth-generation DHS reactor was developed to overcome a few shortcomings of its predecessors. This reactor was designed to further enhance the treatment efficiency and simplify the construction process in real scale, especially for the application in developing countries. Configuration of the reactor was modified to enhance the dissolution of air into the wastewater and to avert the possible clogging of the reactor especially during sudden washout from the UASB reactor. The whole system was operated at a total hydraulic retention time (HRT) of 8 h (UASB: 6 h and DHS: 2 h) for a period of over 600 days. The combined system was able to remove 96% of unfiltered BOD with only 9 mg/L remaining in the final effluent. Likewise, F. coli were removed by 3.45 log with the final count of 10(3) to 10(4) MPN/100 ml. Nutrient removal by the system was also satisfactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp; Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp; Department of Fusion Science, SOKENDAI
2015-10-15
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) andmore » the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.« less
Ye, Qing; Cheng, Jun; Guo, Wangbiao; Xu, Junchen; Li, Ke; Zhou, Junhu
2018-05-01
A novel serial lantern-shaped draft tube (LDT) that generates vortices is proposed to increase radial velocity between dark and light regions for improving CO 2 fixation with microalgae in a gas-lift circumflux column (GCC) photobioreactor. Clockwise vortices are generated in the downflow outerloop of the GCC photobioreactor with LDT. Radial velocity was improved from 1.50 to 4.35 × 10 -2 m/s, thereby decreased liquid cycle period between dark and light regions by 1.9 times. Mixing time decreased by 21%, and mass transfer coefficient increased by 26% with LDT. Liquid radial velocity in the downflow outerloop and mass transfer coefficient in the GCC photobioreactor both first increased and then decreased when single-lantern height was increased. Peak CO 2 fixation rate increased from 0.62 to 0.87 g/L/d, microalgal biomass yield increased by 50%. Removal efficiencies of pollutants (chemical oxygen demand, ammonium, tilmicosin, and ethinylestradiol) in wastewater were 62-90% with microalgae growth in GCC photobioreactor with LDT. Copyright © 2018 Elsevier Ltd. All rights reserved.
Small-Scale Activity Above the Penumbra of a Fast-Rotating Sunspot
NASA Astrophysics Data System (ADS)
Bharti, L.; Quintero Noda, C.; Rakesh, S.; Sobha, B.; Pandya, A.; Joshi, C.
2018-03-01
High-resolution observations of small-scale activity above the filamentary structure of a fast-rotating sunspot of NOAA Active Region 10930 are presented. The penumbral filament that intrudes into the umbra shows a central dark core and substructures. It almost approached another end of the umbra, like a light bridge. The chromospheric Ca ii H images show many jet-like structures with a bright leading edge above it. These bright jets move across the filament tips and show coordinated up and down motions. Transition region images also show brightening at the same location above the intrusion. Coronal 195 Å images suggest that one end of the bright coronal loop footpoints resides in this structure. The intrusion has opposite polarity with respect to the umbra. Strong downflows are observed at the edges along the length of the intrusion where the opposite-polarity field is enhanced. We also observe a counter-Evershed flow in the filamentary structure that also displays brightening and energy dissipation in the upper atmosphere. This scenario suggests that the jets and brightenings are caused by low-altitude reconnection driven by opposite-polarity fields and convective downflows above such structures.
Advanced Photovoltaic Solar Array program status
NASA Technical Reports Server (NTRS)
Kurland, Richard M.; Stella, Paul M.
1989-01-01
The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.
Life analysis of multiroller planetary traction drive
NASA Technical Reports Server (NTRS)
Coy, J. J.; Rohn, D. A.; Loewenthal, S. H.
1981-01-01
A contact fatigue life analysis was performed for a constant ratio, Nasvytis Multiroller Traction Drive. The analysis was based on the Lundberg-Palmgren method for rolling element bearing life prediction. Life adjustment factors for materials, processing, lubrication and traction were included. The 14.7 to 1 ratio drive consisted of a single stage planetary configuration with two rows of stepped planet rollers of five rollers per row, having a roller cluster diameter of approximately 0.21 m, a width of 0.06 m and a weight of 9 kg. Drive system 10 percent life ranged from 18,800 hours at 16.6 kW (22.2 hp) and 25,000 rpm sun roller speed, to 305 hours at maximum operating conditions of 149 kw (200 hp) and 75,000 rpm sun roller speed. The effect of roller diameter and roller center location on life were determined. It was found that an optimum life geometry exists.
GROB G-112: Flight testing fulfills expectations
NASA Technical Reports Server (NTRS)
1984-01-01
The G-112 aircraft built for exhibition exhibited at the ILA '84. The G-2500 engine designed especially for this purpose is economical, requires little maintenance and generates a power of 66 kW (90 Hp). The aircraft achieves a cruising speed of 185 km/h, using a drastically reduced amount of fuel, (only 17 liters aviation fuel or premium gasoline). This small two-seater requires only a very short takeoff and taxi run of about 250 meters.
Novel Epitaxy Between Oxides and Semiconductors - Growth and Interfacial Structures
2007-05-16
observed to be impressively good. 15. SUBJECT TERMS Nanotechnology, Gallium Nitride 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...with precursors or gases, a high-purity sapphire was employed in this work. E-beam evaporation was used due to the high melting point of sapphire, and...were carried out on a four-circle triple -axes diffractometer, using a 12 kW rotating anode Cu K-alpha source. A pair of graphite crystals is used to
DAO Spectroscopic classification of SN 2017iuu = ATLAS17nnf
NASA Astrophysics Data System (ADS)
Balam, D. D.; Observatory, Dominion Astrophysical; Canada, National Research Council of; Thanjavur, K.; Hsiao, E.; Graham, M. L.
2017-12-01
D. D. Balam, Dominion Astrophysical Observatory, National Research Council of Canada, K. Thanjavur (University of Victoria), E. Hsiao, Florida State University and M. L. Graham (University of Washington) report that a spectrogram (range 390-710 nm, resolution 0.3 nm) of 2017iuu = ATLAS17nnf (J. Tonry, B. Stalder, L. Denneau, A. Heinze, H. Weiland (IfA, University of Hawaii), A. Rest (STScI), K.W. Smith, S. J. Smartt, M. Fulton, O. McBrien (Queen's University Belfast), obtained on Dec. 11.33 UT with the 1.82-m Plaskett Telescope of the National Research Council of Canada, shows it to be a normal type Ia supernova near maximum light.
Dish Stirling High Performance Thermal Storage FY14Q4 Quad Chart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, Charles E.
2014-10-01
The goals of this project are to demonstrate the feasibility of significant thermal storage for dish stirling systems to leverage their existing high performance to greater capacity; demonstrate key components of a latent storage and transport system enabling on-dish storage with low energy losses; and provide a technology path to a 25kW e system with 6 hours of storage.
Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.
1992-04-01
A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose ratesmore » were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.« less
Protective clothing for workers with 5-kW and 20-kW short-arc lamps
NASA Technical Reports Server (NTRS)
Argoud, M. J.
1969-01-01
Two suits of protective clothing reduce hazards to personnel working near short-arc lamps. One suit is worn during assembly or servicing of inoperative 5- and 20-kw lamps. The other suit is worn during adjustment or focusing of operating 5-kw lamps.
Research Study Towards a MEFFV Electric Armament System
2004-01-01
CHPSPerf Inputs Parameter Setting Engine Power (kW) 500 per engine Generator Power (kW) 500/generator Traction Motors Power (kW) 500/side # Battery Pack...Cells in Parallel 2 # Motors in Drive Train 2 Max Power of Traction Motors 200 Minimum Engine Power (kW) 50 Optimum Engine Power (kW) 750 Stop... motors . Other options were examined for the energy storage system. Of particular interest in this regard is the use of the CPA flywheel as the load
Low-Maintenance Wind Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasson, Joseph E
2010-09-30
Turbines of 1, 3 and 30 kW were designed, prototyped and evaluated. A 55 kW unit has been preliminarily designed. Two 1 kW alpha units and a 3 kW alpha unit were delivered to the US in 2005 and Empire Magnetics provided custom alternators for the units. After evaluation, the 6 bladed, 3 kW unit was chosen for beta fabrication and 5 units were delivered to the US in December, 2009 while others remained for testing in Russia.
H- Ion Sources for High Intensity Proton Drivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland Paul; Dudnikov, Vadim
2015-02-20
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H + and H - ion generation around 3 to 5 mA/cm 2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm 2 per kW of RF power at 13.56more » MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.« less
Throttling capability of a 30 kW class ammonia arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1991-01-01
The throttling capabilities of a 30 kW class ammonia arcjet and its compatibility with a breadboard power conditioning unit (PCU) were tested in two series of tests. The first series was performed to determine the performance and operating characteristics of the arcjet and the PCU over a range of power levels and propellant flow rates. The power levels for the tests were nominally between 10 and 30 kW, with some operation below 10 kW at the lower flow rates. The ammonia flow rates varied between 0.16 and 0.35 g/s. The second series of tests was an extensive investigation of operation below 12 kW using three cathode spacings. The ammonia flow rates were between 0.115 and 0.335 g/s. Operation of the arcjet from 1.5 kW up to the 30 kW design point was demonstrated with the PCU.
Louisiana | Solar Research | NREL
required to offer net metering for commercial and agricultural systems up to 300 kW. Commercial customers commercial and agricultural, 25 kW residential Aggregate cap: None Credit: Net excess generation is credited requirements are not addressed. System size limit: 300 kW for commercial and agricultural, 25 kW for
Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles - a review
NASA Astrophysics Data System (ADS)
Martin, Sara F.
2018-05-01
Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3-4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or sometimes not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42-75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of large active regions being generated in the same way and close the same depth as small active regions in a shallow zone below the photosphere. All evidence considered together, understanding the origins of the magnetic fields of solar cycles boils down to learning how and where elementary bipoles are generated beneath the photosphere.
Performance and Long Duration Test of a 30 kw Thermal Arcjet Engine.
1987-11-01
Surface ____________________________ 69 50. SEM Close-up of Cathode Crater Surface Completely Covered with Arc Microspots and Splashed Tung- sten ...gaskets, and possibly stretching the bolts and/or nuts. 17 CL 4- C4 ---- 40 as 00 CiC E 18~ le J .Ir e 5 Figure 11 is a composite picture of the... composition . This transducer was zeroed both electronically and with reference to an ion gauge in a second vacuum system pumped by 26 F6 W. 320 a 280- (n, gis
Thermal and Behavioral Effects of Exposure to 30 kW, 95-GHz Millimeter Wave Energy
2017-05-04
methodology (including shot location). 4 The estimate was based both on prior studies using the ADS along with considerations that effective power...SCG, dated 9 Nov 2011; Declassified on 28 Aug 2013 (previously AFRL-RH-BR-TR-2011-0022) 14. ABSTRACT The present research quantified the...unlimited (P.A. Case No. TSRL-PA-2017-0188, 20 Jul 17). LIST OF ACRONYMS 711 HPW/RHDR Air Force Research Laboratory, 711th Human Performance Wing
15 KW Small Turboelectric Power Generation System
2006-08-18
1 hour per response, including the time for reviewing instnlctions, searching existing data sources, gathering and maintaining the data needed, and...pressure rise is consistent with data from the baseline compressor and a large body of published diffuser data . Table 1 LTS22 Compressor Preliminary... data on designs of 150 HP, 60 HP, and 5 HP engine size class, and in subsequent engine testing. The design methodology encompasses basic sizing
Fermilab proton accelerator complex status and improvement plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2017-05-30
Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a n umber of fixed target experiments. Routine operation with a world-record 700kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as the result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power to 900 – 1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2MW beammore » power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40-years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to >2.4MW after replacement of the existing 8 GeV Booster synchrotron. In this article we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.« less
150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin
2017-01-01
The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.
NASA Astrophysics Data System (ADS)
Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.
2016-10-01
The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T). It can generate its highly configurable confining magnetic fields solely with external coils, but typically operates with up to 80 kA of ohmically-generated plasma current for heating. New studies of edge plasma transport in stellarator geometries will benefit from CTH operating as a pure torsatron with a high temperature edge plasma. Accordingly, a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH is being installed to supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
NASA Astrophysics Data System (ADS)
Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.
2017-11-01
With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.
Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli
2017-01-17
Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future.
Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli
2017-01-01
Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future. PMID:28094330
The 5-kW arcjet power electronics
NASA Technical Reports Server (NTRS)
Gruber, R. P.; Gott, R. W.; Haag, T. W.
1989-01-01
The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.
Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Schienbein, L. A.; Malcolm, D. J.
1982-03-01
A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.
Large wind-turbine projects in the United States wind energy program
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Robbins, W. H.
1980-01-01
The technological development of large, horizontal-axis wind turbines (100 kW-2500 kW) is surveyed with attention to prototype projects managed by NASA. Technical feasibility has been demonstrated in utility service for systems with a rated power of up to 200 kW and a rotor diameter of 125 ft (Mod-OA). Current designs of large wind turbines such as the 2500 kW Mod-2 are projected to be cost competitive for utility applications when produced in quantity, with capital costs of 600 to 700 dollars per kW (in 1977 dollars).
Active Region Formation and Subsurface Structure
NASA Astrophysics Data System (ADS)
Stein, F.; Nordlund, Robert A.
2016-10-01
We present results from emerging magnetic flux simulations showing how several different active regions form and their very different subsurface structures. The simulations assumed an infinite sheet of uniform, untwisted, horizontal field advected into the computational domain by inflows at a depth of 20 Mm. Results from two different horizontal field strengths, 1 and 5 kG, will be presented. Convective up and down flows buckle the horizontal field into Omega and U loops. Upflows and magnetic buoyancy carry the field toward the surface, while fast downflows pin down the field. Small (granular) convective motions, near the surface, shred the emerging field into fine filaments that emerge as the observed "pepper and salt" pattern. The large (supergranular) motions, at depth, keep the overall loop structure intact, so that as the overall omega-loop emerges through the surface the opposite polarity fields counter-stream into large unipolar flux concentrations producing first pores which then coalesce into spots. These tend to be located over the supergranular downflow lanes near the bottom of the domain. The pores and spots exhibit a great variety of subsurface field structures - from monolithic but twisted bundles to intertwined separate spaghetti sturctures. We will show movies of the surface evolution of the field and emergent continuum intensity and of the subsurface evolution of the magnetic field lines.
Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi
2015-03-15
A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nowrotek, Monika; Sochacki, Adam; Felis, Ewa; Miksch, Korneliusz
2016-01-01
The objectives of this study were to investigate the start-up removal of pharmaceutical compounds diclofenac and sulfamethoxazole in microcosm downflow constructed wetlands and their effect on the performance of the studied constructed wetlands, and also to assess the effect of plants on the removal of these compounds. The experimental system that was used in this 86-day experiment consisted of 24 columns filled up to 70 cm with predominantly sandy material. Four types of columns were used (six replicates) depending on the presence of plants (Phalaris arundinacea L. var. picta L.) and the presence of pharmaceutical compounds in the influent. The influent was synthetic municipal waste water to which a mixture of 5 mg/L of diclofenac and 5 mg/L of sulfamethoxazole was added. The observed removal of diclofenac was moderate (approx. 50%) and the removal of sulfamethoxazole was relatively low (24-30%). It was found that the removal of diclofenac and sulfamethoxazole was not affected by the vegetation. The presence of diclofenac and sulfamethoxazole in the influent had significant effect on the effluent concentration of N-NO3 and the water loss in the columns, which in both cases were lower than in the control columns. The scope for further research was discussed.
Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-05-01
The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang
2012-10-01
Hierarchically porous carbons (HPCs) have been prepared by sol-gel self-assembly technology with nickel oxide and surfactant as the dual template. The porous carbons are further activated by nitric acid. The electrochemical behaviors of supercapacitors using HPCs as electrode material in different aqueous electrolytes, e.g., (NH4)2SO4, Na2SO4, H2SO4 and KOH are studied by cyclic voltametry, galvanostatic charge/discharge, cyclic life, leakage current, self-discharge and electrochemical impedance spectroscopy. The results demonstrate that the supercapacitors in various electrolytes perform definitely capacitive behaviors; especially in 6 M KOH electrolyte the supercapacitor represents the best electrochemical performance, the shortest relaxation time, and nearly ideal polarisability. The energy density of 8.42 Wh kg-1 and power density of 17.22 kW kg-1 are obtained at the operated voltage window of 1.0 V. Especially, the energy density of 11.54 Wh kg-1 and power density of 10.58 kW kg-1 can be achieved when the voltage is up to 1.2 V.
Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team
2017-10-01
Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.
NASA Technical Reports Server (NTRS)
Shoji, J. M.
1977-01-01
A space vehicle application using 5,000-kw input laser power was conceptually evaluated. A detailed design evaluation of a 10-kw experimental thruster including plasma size, chamber size, cooling, and performance analyses, was performed for 50 psia chamber pressure and using hydrogen as a propellant. The 10-kw hardware fabricated included a water cooled chamber, an uncooled copper chamber, an injector, igniters, and a thrust stand. A 10-kw optical train was designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Codd, Daniel S.; Zhou, Lei; Trumper, David; Calvet, Nicolas; Slocum, Alexander H.
2016-05-01
Currently, the majority of concentrated solar power (CSP) plants built worldwide integrate thermal energy storage (TES) systems which enable dispatchable output and higher global plant efficiencies. TES systems are typically based on two tank molten salt technology which involves inherent drawbacks such as parasitic pumping losses and electric tracing of pipes, risk of solidification and high capital costs. The concept presented in this paper is based on a single tank where the concentrated sunlight is directly focused on the molten salt. Hot and cold volumes of salt (at 565 °C and 280 °C, respectively) are axially separated by an insulated divider plate which helps maintain the thermal gradient. The concept, based on existing technologies, seeks to avoid the listed drawbacks as well as reducing the final cost of the TES system. In order to demonstrate its feasibility, Masdar Institute (MI) and Massachusetts Institute of Technology are developing a 25 kW prototype to be tested in the Masdar Solar Platform beam down facility.
Hydrazine monopropellant reciprocating engine development
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1979-01-01
A hydrazine fueled piston engine for providing 11.2 kW was developed to satisfy the need for an efficient power supply in the range from 3.7 to 74.6 kW where existing nonair-breathing power supplies such as fuel cells or turbines are inappropriate. The engine was developed for an aircraft to fly to 21.3 km and above and cruise for extended periods. A remotely piloted aircraft and the associated flight control techniques for this application were designed. The engine is geared down internally (2:1) to accommodate a 1.8 m diameter propeller. An alternator is included to provide electrical power. The pusher-type engine is mounted onto the aft closure of the fuel tank, which also provides mounting for all other propulsion equipment. About 20 hrs of run time demonstrated good efficiency and adequate life. One flight test to 6.1 km was made using the engine with a small fixed-pitch four-bladed propeller. The test was successful in demonstrating operational characteristics and future potential.
Military markets for solar thermal electric power systems
NASA Technical Reports Server (NTRS)
Hauger, J. S.
1980-01-01
The Department of Defense maintains an inventory of over 1,800 MW of engine-generators 15 KW and larger, with an estimated procurement rate of over 140 MW/year. Nearly the entire requirement could be met by advanced heat engines of the types being developed as point-focussing, distributed receiver power plants. A conceptual system consisting of a heat engine which efficiently burns liquid fossil or synthetic fuels, with a 'solarization kit' for conversion to hybrid solar operation could meet existing DOD requirements for new systems which are quieter, lighter, and multi-fueled. An estimated 24 percent (33 MW/year) or more could operationally benefit from the solar option. Baseline cost projections indicate levelized energy cost goals of 210 to 120 mills/KWh (15 to 1000 KW systems). Fuel cost escalation is the major factor affecting the value of the solar option. A baseline calculation for fuel at $0.59/gal in spring, 1979, escalating at 8 percent above general inflation indicates a value of $2700/KWe for a solarization kit.
And deregulation shall lead me to lie down in green pastures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidinger, G.
1995-06-01
This presentation briefly reviews the history of the IPP industry, the current state of competition, and potential opportunities for IPPs in a deregulated environment. Since the beginning of the PURPA created IPP industry, we have experienced many market phases. These began with {open_quotes}beat avoided cost,{close_quotes} followed by {open_quotes}find a need and fill it,{close_quotes} followed by {open_quotes}the bid fest,{close_quotes} to today`s {open_quotes}anything goes.{close_quotes} During this time, market clearing prices have declined from over 80/KwHr to 2-40/KwHr. Today`s partially deregulated electric market includes fierce competition and several new players in the game. Where surplus capacity exists, IPPs must compete with subsidized power.more » Long-term contracts are no longer widely available. Access to markets is constrained by less than open transmission. Even with these challenges, opportunities remain for the IPP supplier. Opportunities for advanced coal-fired power systems will be explored.« less
TEMPORAL EVOLUTION OF MULTIPLE EVAPORATING RIBBON SOURCES IN A SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, D. R.; Cauzzi, G., E-mail: dgraham@arcetri.astro.it
2015-07-10
We present new results from the Interface Region Imaging Spectrograph (IRIS) showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 s cadence “sit-and-stare” mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal upflows of up to ∼300 km s{sup −1}more » and chromospheric downflows up to 40 km s{sup −1}. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be considered a prototypical, “elementary” flare kernel.« less
NASA Technical Reports Server (NTRS)
1979-01-01
Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineer officer on vessels powered by main propulsion machinery of 750 kW/1,000 HP or more and less than 3,000 kW/4,000 HP propulsion power (management level). 11.331 Section 11.331 Shipping COAST GUARD... officer on vessels powered by main propulsion machinery of 750 kW/1,000 HP or more and less than 3,000 kW...
Room/corner tests of wall linings with 100/300 kW burner
M. A. Dietenberger; O. Grexa; R. H. White; M. S. Sweet; M. Janssens
1995-01-01
Six room/comer tests of common wall linings were conducted with gypsum-lined ceiling exposed to propane burning at 100 kW for 10 min followed by 300 kW for 10 min. This test protocol is an option provided by ISO 9705. The flashover event occurred at 1,000 kW rate of heat release within several seconds of observing flames out the doorway. The time to flashover of the...
Ion Thruster Power Levels Extended by a Factor of 10
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
2004-01-01
In response to two NASA Office of Space Science initiatives, the NASA Glenn Research Center is now developing a 7-kW-class xenon ion thruster system for near-term solar-powered spacecraft and a 25-kW ion engine for nuclear-electric spacecraft. The 7-kW ion thruster and power processor can be throttled down to 1 kW and are applicable to 25-kW flagship missions to the outer planets, asteroids, and comets. This propulsion system was scaled up from the 2.5-kW ion thruster and power processor that was developed successfully by Glenn, Boeing, the Jet Propulsion Laboratory (JPL), and Spectrum Astro for the Deep Space 1 spacecraft. The 7-kW ion thruster system is being developed under NASA's Evolutionary Xenon Thruster (NEXT) project, which includes partners from JPL, Aerojet, Boeing, the University of Michigan, and Colorado State University.
Status of tubular SOFC field unit demonstrations
NASA Astrophysics Data System (ADS)
George, Raymond A.
Siemens Westinghouse is in the final stage of its tubular solid oxide fuel cell (SOFC) development program, and the program emphasis has shifted from basic technology development to cost reduction, scale-up and demonstration of pre-commercial power systems at customer sites. This paper describes our field unit demonstration program including the EDB/ELSAM 100-kW e combined heat and power (CHP) system, the Southern California Edison (SCE) 220-kW e pressurized SOFC/gas turbine (PSOFC/GT) power system, and the planned demonstrations of commercial prototype power systems. In the Spring of 1999, the EDB/ELSAM 100-kW e SOFC-CHP system produced 109 kW e net AC to the utility grid at 46% electrical efficiency and 65 kW t to the hot water district heating system, verifying the analytical predictions. The SCE 220-kW e PSOFC/GT power system will undergo factory startup in the Fall of 1999.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.
NASA Technical Reports Server (NTRS)
1992-01-01
The objective of phase 1 of the LAWS study was to define and perform a preliminary design for the Laser Atmospheric Wind Sounder (LAWS) instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System and subsystem configurations were then developed for the chosen concept. The concept and subsequent configurations were to be compatible with two prospective platforms--the Japanese Polar Orbiting Platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, we chose a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron solid state system. The choice of the CO2 approach over solid-state reflects the advanced state of development of CO2 lasers, its maturity in ground-based systems and the eased subsystem requirements associated with the longer wavelength. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. Our approach throughout the configuration design was to take a systems perspective and trade requirements between subsystems, wherever possible, to arrive at configurations which made maximum use of existing, proven technology or relatively straightforward extensions to existing technology to reduce risk and cost. At the conclusion of Phase 1 we arrived at a configuration for LAWS which meets the performance requirements, yet which is less complex than previous designs of space-based wind sensors (e.g. Windsat), employs lightweight technologies to meet its weight goals (less than 800kg) and sufficiently flexible to offer various operational scenarios with power requirements from about 2 kW to 3 kW. The Phase 1 Final Report was released in March 1990. The 21-month Phase 2 began in October 1990. The requirement to accommodate LAWS as an attached payload on Space Station Freedom was deleted and the orbit altitude for the Japanese polar orbiting platform was changed from 824 km to 705 km. The power allocated to LAWS was reduced to 2.2 kW from 3 kW. Subsequently the availability of a Japanese Polar Orbiting Platform was called into question and LAWS accommodation studies were continued using a conceptual, ATLAS-launched platform supplied by MSFC. In March 1991 a modification to the original contracts was funded to provide a LAWS laser breadboard which could demonstrate all the performance requirements of the LAWS laser. Also funded as part of the same contract extension was a lifetest demonstration using an existing laser at STI. The breadboard extension was an eighteen month effort and the period of performance was therefore extended to September 30, 1992.
A non-invasive Hall current distribution measurement system for Hall Effect thrusters
NASA Astrophysics Data System (ADS)
Mullins, Carl Raymond
A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A.C.; Sanders, C.; Tennet, M.G.
""Jason"" reactors are described in which the power level is increased from the original 10 kw to 100 kw. The problems encountered in making this ten- fold increase in power arise not only in connection with the removal of the extra heat produced but also with a number of effects which, although negligible at 10 kw, become significant at 100 kw. These effects are examined and the steps taken, where necessary, to prevent them from becoming troublesome are described. Attention is paid to the safety of the system. A program of work carried out on the Langley ""Jason,"" which throwsmore » considerable light on the behavior of a 100 kw reactor under severe fault conditions, is described here for the first time. (auth)« less
Experimental Demonstration of a Photonic-Crystal-Fiber Optical Diode
2004-01-01
M. Scalora , A.M. Zheltikov: Appl. Opt. 43, 11 (2004) 16 D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gal- lagher, M.G. Thomas, J...Silcox, K.W. Koch, A.L. Gaeta: Science 301, 1702 (2003) 17 D.A. Sidorov-Biryukov, S.O. Konorov, V.P. Mitrokhin, A.B. Fedotov, M. Scalora , A.M. Zheltikov...Laser Phys. 14, 5 (2004) 18 M.D. Tocci, M.J. Bloemer, M. Scalora , J.P. Dowling, C.M. Bowden: Appl. Phys. Lett. 66, 2324 (1995) 19 S.O. Konorov, A.B
Epi-Side-Down Mounting of Interband Cascade Lasers for Army Applications
2006-11-01
retain the principal advantage of electron recycling . However, unlike the QCL, the ICL relies on the cascading of interband optical transitions as...9.0 Cu 393 17 SiC 120 4 AlN 230 (high grade –Tsekoun 2006) 4.5, 4.3 Indium 83.7 24.8@ 20C 2 device ridge and an effective heat spreader ...65.3 K/W M271 epi-side down 8-μm x 1-mm mesa TmaxCW= 212K 4 were vital and survived multiple cryogenic to room temperature recyclings . Fig. 4
Establishment of a Continuous Wave Laser Welding Process
1976-10-01
gas channel . A stiff bridge clamp with threaded force points was used on half inch plate welds to iron out waviness in the test coupons. Several...34 back up channel * 10.5kW on work 11-17 ^^^^^^^ ■ u u mi u.üiijüuiiiii IK««,,.! umm j,- u.jipiHi^iMii.ijii.ijiji j! J u„„, On each of four days...welded at 40 ipm using maximum available power on the surface (12.6 KV7 for the F/7 optical system) . Contours improved but porosity formed in the
A Summary of Closed Brayton Cycle Development Activities at NASA
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2009-01-01
NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.
Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments
Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.
2000-01-01
The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.
Superconducting wind turbine generators
NASA Astrophysics Data System (ADS)
Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.
2010-03-01
We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.
Phosphoric acid electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1991-04-01
The major objective of this effort was the advancement of cell and stack technology required to meet performance and cost criteria for fabrication and operation of a prototype large area, full height phosphoric acid fuel cell stack. The performance goal for the cell stack corresponded to a power density of 150 wsf, and the manufactured cost goal was a 510 $/kW reduction (in 1981 dollars) compared to existing 3.7 ft.(exp 2) active area cell stacks.
Commercialization of an Advanced Gearless Midsize Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, Chris; Ellis, Kyle
The objective of this project was the development and eventual commercialization of a Gearless Wind Turbine of rated power 450 kW. While the product was to be based on existing technology, a significant amount of new engineering effort was expected to be required to ensure maximum efficiency and realistic placement within the market. Expected benefits included positive impact on green job creation in over 15 states as well as strengthen the U.S. domestic capacity for turbine engineering.
A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle
NASA Astrophysics Data System (ADS)
Tan, Hongbo; Shan, Siyu; Nie, Yang; Zhao, Qingxuan
2018-06-01
A new boil-off gas (BOG) re-liquefaction system for LNG carriers has been proposed to improve the system energy efficiency. Two cascade mixed refrigerant cycles (or dual mixed refrigerant cycle, DMR) are used to provide the cooling capacity for the re-liquefaction of BOG. The performance of the new system is analysed on the basis of the thermodynamic data obtained in the process simulation in Aspen HYSYS software. The results show that the power consumed in the BOG compressor and the high-temperature mixed refrigerant compressor could be saved greatly due to the reduced mass flow rates of the processed fluids. Assuming the re-liquefaction capacity of the investigated system is 4557.6 kg/h, it is found that the total power consumption can be reduced by 25%, from 3444 kW in the existing system to 2585.8 kW in the proposed system. The coefficient of performance (COP) of 0.25, exergy efficiency of 41.3% and the specific energy consumption (SEC) of 0.589 kWh/kg(LNG) could be achieved in the new system. It exhibits 33% of improvement in the COP and exergy efficiency in comparison with the corresponding values of the existing system. It indicates that employing the DMR based BOG re-liquefaction system could improve the system energy efficiency of LNG carriers substantially.
Research on industrial 10kW CO2 laser achieves major breakthrough
NASA Astrophysics Data System (ADS)
1991-01-01
The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.
Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility
NASA Technical Reports Server (NTRS)
Moore, S. H.; Voecks, G. E.
1997-01-01
Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.
NASA Technical Reports Server (NTRS)
1979-01-01
Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.
2-kW single-mode fiber laser employing bidirectional-pump scheme
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai
2018-01-01
2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.
Virginia | Midmarket Solar Policies in the United States | Solar Research |
rates. System size limit: Residential 20 kW, non-residential 1 MW, agricultural 500 kW. New agricultural : Agricultural customers can aggregate electric meters into a single account up to 500 kW; not addressed for
A 10kW photovoltaic/hybrid system for Pinnacles National Monument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, T.J.; DeNio, D.
1997-12-31
Visitors to the Chaparral area of the Pinnacles National Monument now can enjoy this beautiful section of the park without the constant drone of diesel generators, thanks to a recently installed photovoltaic/hybrid system. Electrical power had been supplied by two 100 KW diesel generators operating 24 hours per day. The diesels were running lightly loaded resulting in poor efficiency and high operating cost. Applied Power Corporation under contract with the National Park Service designed and supplied a 10 KW photovoltaic array, 200 KW hr battery bank and 24 KW of inverters to power the maintenance facility, visitor center and rangermore » residences. A new 20 KW propane generator was installed to provide supplemental power, totally eliminating the storage and transport of diesel fuel at this site. The Pinnacles PV/Hybrid system was brought on line in early 1996 and the park is now benefiting from the cost savings associated with the system.« less
PV system field experience and reliability
NASA Astrophysics Data System (ADS)
Durand, Steven; Rosenthal, Andrew; Thomas, Mike
1997-02-01
Hybrid power systems consisting of battery inverters coupled with diesel, propane, or gasoline engine-driven electrical generators, and photovoltaic arrays are being used in many remote locations. The potential cost advantages of hybrid systems over simple engine-driven generator systems are causing hybrid systems to be considered for numerous applications including single-family residential, communications, and village power. This paper discusses the various design constraints of such systems and presents one technique for reducing hybrid system losses. The Southwest Technology Development Institute under contract to the National Renewable Energy Laboratory and Sandia National Laboratories has been installing data acquisition systems (DAS) on a number of small and large hybrid PV systems. These systems range from small residential systems (1 kW PV - 7 kW generator), to medium sized systems (10 kW PV - 20 kW generator), to larger systems (100 kW PV - 200 kW generator). Even larger systems are being installed with hundreds of kilowatts of PV modules, multiple wind machines, and larger diesel generators.
NASA Technical Reports Server (NTRS)
1976-01-01
All possible overall system configurations, operating modes, and subsystem concepts for a wind turbine configuration for cost effective generation of electrical power were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The various design features and components evaluated are described, and the rationale employed to select the final design configuration is given. All pertinent technical performance data and component cost data is included. The costs of all major subassemblies are estimated and the resultant energy costs for both the 500 kW and 1500 kW units are calculated.
New 5 Kilowatt Free-Piston Stirling Space Converter Developments
NASA Astrophysics Data System (ADS)
Brandhorst, Henry W.
2007-01-01
NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW converter allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the converter level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling converter assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Converter Power System. Assumed requirements for this new converter for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.
New 5 Kilowatt Free-Piston Stirling Space Convertor Developments
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W.
2007-01-01
NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW convertor allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling convertor assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Convertor Power System. Assumed requirements for this new convertor for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.
Lu, Shaoming; Liu, Jincui; Li, Shaowen; Biney, Elizabeth
2013-01-01
Problems have been found in the traditional post-positioned down-flow biological activated carbon filter (DBACF), such as microorganism leakage and low biodegradability. A pilot test was carried out to place a BACF between the sediment tank and the sand filter; a new technology of dual media up-flow aerated biological activated carbon filter (UBACF) was developed. Results showed that in terms of the new process, the up-flow mode was better than the down-flow. Compared with the DBACF, the problem of microorganism leakage could be well resolved with the UBACF process by adding disinfectant before the sand filtration, and a similar adsorption effect could be obtained. For the tested raw water, the COD(Mn) and NH3-N removal rate was 54.6% and 85.0%, respectively, similar to the waterworks with the DBACF process. The UBACF greatly enhanced oxygen supply capability and mass transfer rate via aeration, and the NH3-N removal ability was significantly improved from 1.5 mg/L to more than 3 mg/L. Influent to the UBACF with higher turbidity could be coped with through the primary filtration of the ceramisite layer combined with fluid-bed technology, which gave the carbon bed a low-turbidity environment of less than 1.0 NTU. The backwashing parameters and carbon abrasion rate of the two processes were almost the same.
Tandukar, M; Uemura, S; Ohashi, A; Harada, H
2006-01-01
A "fourth generation" down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100-125 d. Removal of coliforms obtained was 3-4 log10 with the final count of 10(3) to 10(4) MPN/100 ml in DHS effluent.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... turbine runners and replacing the generator frame, stator core and windings. Each of the project's turbine... capacity would increase by 5,000 kW from 27,000 kW to 32,000 kW. The total maximum hydraulic capacity of...
40 CFR Appendix I to Part 1042 - Summary of Previous Emission Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (a) Engines below 37 kW. Tier 1 and Tier 2 standards for engines below 37 kW apply as specified in 40... Engines Below 37 kW (g/kW-hr) Rated power (kW) Tier Model year NMHC + NOX CO PM kWTier 1 2000 10.5 8.0 1.0 Tier 2 2005 7.5 8.0 0.80 8≤kWTier 1 2000 9.5 6.6 0.80 Tier 2 2005 7.5 6.6 0.80 19≤kWTier...
150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin
2017-01-01
The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission (SEP TDM), in conjunction with PC Krause and Associates, has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power capability to 150 kW is an intermediate step to the anticipated power requirements for Mars and other deep space applications. The high-power solar electric propulsion capability has been identified as a critical part of NASA’s future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents four versions of a 150 kW architecture, simulation results, and a discussion of their merits.
Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron.
Peeples, Johanna L; Stokely, Matthew H; Poorman, Michael C; Bida, Gerald T; Wieland, Bruce W
2015-03-01
A high power [F-18] fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of the Italian Version of the Near-Death Experience Scale
Pistoia, Francesca; Mattiacci, Giulia; Sarà, Marco; Padua, Luca; Macchi, Claudio; Sacco, Simona
2018-01-01
Near-death experiences (NDEs) have been defined as any conscious perceptual experience occurring in individuals pronounced clinically dead or who came very close to physical death. They are frequently reported by patients surviving a critical injury and, intriguingly, they show common features across different populations. The tool traditionally used to assess NDEs is the NDE Scale, which is available in the original English version. The aim of this study was to develop the Italian version of the NDE Scale and to assess its reliability in a specific clinical setting. A process of translation of the original scale was performed in different stages in order to obtain a fully comprehensible and accurate Italian translation. Later, the scale was administered to a convenience sample of patients who had experienced a condition of coma and were, at the time of assessment, fully conscious and able to provide information as requested by the scale. Inter-rater and test–retest reliability, assessed by the weighted Cohen’s kappa (Kw), were estimated. A convenience sample of 20 subjects [mean age ± standard deviation (SD) 51.6 ± 17.1, median time from injury 3.5 months, interquartile range (IQR) 2–10] was included in the study. Inter-rater [Kw 0.77 (95% CI 0.67–0.87)] and test–retest reliability [Kw 0.96 (95% CI 0.91–1.00)] showed good to excellent values for the total scores of the Italian NDE Scale and for subanalyses of each single cluster of the scale. An Italian Version of the NDE Scale is now available to investigate the frequency of NDE, the causes for NDE heterogeneity across different life-threatening conditions, and the possible neural mechanisms underlying NDE phenomenology. PMID:29479314
Song, Won-Jae; Kang, Dong-Hyun
2016-12-01
This study evaluated the efficacy of a 915 MHz microwave with 3 different electric power levels to inactivate three pathogens in peanut butter with different aw. Peanut butter inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Listeria monocytogenes (0.3, 0.4, and 0.5 aw) were treated with a 915 MHz microwave with 2, 4, and 6 kW for up to 5 min. Six kW 915 MHz microwave treatment for 5 min reduced these three pathogens by 1.97 to >5.17 log CFU/g. Four kW 915 MHz microwave processing for 5 min reduced these pathogens by 0.41-1.98 log CFU/g. Two kW microwave heating did not inactivate pathogens in peanut butter. Weibull and Log-Linear + Shoulder models were used to describe the survival curves of three pathogens because they exhibited shouldering behavior. Td and T5d values were calculated based on the Weibull and Log-Linear + Shoulder models. Td values of the three pathogens were similar to D-values of Salmonella subjected to conventional heating at 90 °C but T5d values were much shorter than those of conventional heating at 90 °C. Generally, increased aw resulted in shorter T5d values of pathogens, but not shorter Td values. The results of this study can be used to optimize microwave heating pasteurization system of peanut butter. Copyright © 2016. Published by Elsevier Ltd.
Code of Federal Regulations, 2012 CFR
2012-07-01
... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...
Code of Federal Regulations, 2013 CFR
2013-07-01
... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...
Code of Federal Regulations, 2011 CFR
2011-07-01
... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...
Code of Federal Regulations, 2014 CFR
2014-07-01
... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...
Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén
2010-09-22
The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.
The X3: A 200 kW Class Nested Channel Hall Thruster
NASA Astrophysics Data System (ADS)
Sheehan, J. P.
2016-10-01
Electric propulsion has seen rapid adoption in recent years for commercial, scientific, and exploratory space missions. The X3 is a three channel nested channel Hall thruster, designed to push the boundaries of high power electric propulsion for cargo transfer to Mars and large military assets. It has been operated at thermal steady state up to 30 kW of power. Thrust measurements were made on an inverted pendulum thrust stand, indicating over 2000 s specific impulse and 65 mN/kW thrust to power ratio. Detailed plume measurements were made with Faraday and Langmuir probes. The multiple concentric channels provide better performance than the sum of the individual channel operations due to superior propellant utilization from its compact design. Using a high speed camera, the breathing and spoke mode instabilities were captured in all three channels. Spoke and breathing instabilities couple between the channels, indicating that complex plasma and neutral interactions are at play. Electron transport, both cross field and in the cathode plume, are well suited to be explored in a thruster of this size. Supported under NASA contract No. NNH16CP17C.
L-SAT - Europe's large satellite for the eighties
NASA Astrophysics Data System (ADS)
Biggs, P. D.; Blonstein, J. L.
1980-09-01
The ESA market evaluation of telecommunications over the next 20 years suggests needs that range from thin-route rural telephony to multi-national videoconferencing and direct TV broadcast, with EUTELSAT's forecasts of ECS traffic indicating saturation by 1987. L-SAT, with as many as 50 transponders with a total capacity of 90,000 half-circuits, has a capacity of five times greater than that of the ECS-sized spacecraft and will be capable of covering those needs to the end of the century. As a result of the market surveys and of the subsequent technical requirement considerations, the L-SAT 1 first-flight model will be designed to meet the 2300 kg in transfer orbit case, but a design-for-growth approach for all subsystems will also be specified. L-SAT 1, to be launched in 1984, will provide high-density communications for business services in 14/12 GHz and direct broadcast TV in 17/12 GHz with fixed and steerable antennas. Four kW of power are to be provided in sunlight and one kW in eclipse. Details on launch vehicle (Ariane/Shuttle), liquid boost motor selection, array configuration, and the three-axis stabilization system are given.
47 CFR 17.17 - Existing structures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Existing structures. 17.17 Section 17.17... STRUCTURES Federal Aviation Administration Notification Criteria § 17.17 Existing structures. (a) The requirements found in § 17.23 relating to painting and lighting of antenna structures shall not apply to those...
La réfrigération des grandes machines supraconductrices
NASA Astrophysics Data System (ADS)
Gistau, Guy
1991-02-01
The large scale superconducting devices which are now in operation for deviation of heavy particles, acceleration of light particles or plasma confinement need very large powers of refrigeration. After a short survewing of the different functions of refrigerators and the special requirements for large units, the paper describes some existing or envisaged cooling systems which have an equivalent cooling power in the range of 5 kW at 4.5 K. Les grands appareils de physique utilisant les supraconducteurs demandent des puissances cryogéniques de plus en plus importantes. Après un examen des fonctions élémentaires assurées par un réfrigérateur liées au cahier des charges spécifique à chaque utilisation, les spécificités des grosses unités de réfrigération (fiabilité, efficacité, flexibilité, automatisme) sont mises en évidence. Les solutions proposées dans plusieurs grands projets nécessitant des puissances froides supérieures à 5 kW à 4,5 K sont discutées.
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel; ...
2016-09-01
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi
2008-09-01
Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.
Alignment and Initial Operation of an Advanced Solar Simulator
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Jefferies, Kent S.; Mason, Lee S.
1996-01-01
A solar simulator utilizing nine 30-kW xenon arc lamps was built to provide radiant power for testing a solar dynamic space power system in a thermal vacuum environment. The advanced solar simulator achieved the following values specific to the solar dynamic system: (1) a subtense angle of 1 deg; (2) the ability to vary solar simulator intensity up to 1.7 kW/sq m; (3) a beam diameter of 4.8 m; and (4) uniformity of illumination on the order of +/-10%. The flexibility of the solar simulator design allows for other potential uses of the facility.
X-Wing 25 Foot Diameter Lockheed Model Whirl Test Report.
1983-01-17
REPORT ( U) UNITED TECHNOLOGIES CORP STRATFORD CT SIKORSKY AIRCRAFT DIV J P PERSCHBACHER 17 JAN 83 UNCLASSIFIED SER-5i872 MDA93-8i-C-28i F/G 13 N E ...4Approved kw, ptahhc wml~ e I efti bution Unlimited C.E~ ET Eq ’ - ’~JUNZ. 1 9 8 3 k ’ ~3 06 01 100 SA3RE ,.i. ’ ,’ ’- ". -’ " .. ,. -- . -. -- s...close proximity fuselage This report will comment on the first four items; item ( e )-ll be addressed by Boeing Vertol. 1.2 Background C This rotor design
Sokaogon Chippewa Community Emission-Free and Treaty Resource Protection Clean Energy Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quade, Ron
Final Report for DOE project DE-IE0000036 The Sokaogon Chippewa Community received a tribal clean energy initiative grant and installed a community wide solar system estimated to produce 606 kw of carbon free clean energy on seventeen (17) tribal buildings and three (3) residential homes significantly reducing the tribes’ energy bills over the life of the system, potentially saving the tribe up to $2.7 million in energy savings over a thirty (30) year time span. Fifteen (15) solar installations utilized aluminum roof-top mounting systems while two (2) installations utilized a ground mount aluminum racking system.
Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser
NASA Astrophysics Data System (ADS)
Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi
2017-04-01
A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.
NASA Astrophysics Data System (ADS)
Csernica, Stephen N.
The demand for renewable forms of energy has increased tremendously over the past two decades. Of all the different forms of renewable energy, biodiesel, a liquid fuel, has emerged as one of the more viable possibilities. This is in large part due to the fact that biodiesel can readily be used in modern day diesel engines with nearly no engine modifications. It is commonly blended with conventional petroleum-derived diesel but it can also be used neat. As a result of the continued growth of the industry, there has been a correspondingly large increase in the scientific and technical research conducted on the subject. Much of the research has been conducted on the feasibility of using different types of feedstocks, which generally vary with respect to geographic locale, as well as different types of catalysts. Much of the work of the present study was involved with the investigation of the binary liquid-liquid nature of the system and its effects on the reaction kinetics. Initially, the development of an analytical method for the analysis of the compounds present in transesterification reaction mixtures using high performance liquid chromatography (HPLC) was developed. The use of UV(205 nm) as well as refractive index detection (RID) were shown capable to detect the various different types of components associated with transesterification reactions. Reversed-phase chromatography with isocratic elution was primarily used. Using a unique experimental apparatus enabling the simultaneous analysis of both liquid phases throughout the reaction, an experimental method was developed for measuring the reaction rate under both mass transfer control and reaction control. The transesterification reaction rate under each controlling mechanism was subsequently evaluated and compared. It was determined that the reaction rate is directly proportional to the concentration of triglycerides in the methanol phase. Furthermore, the reaction rate accelerates rapidly as the system transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style plug flow reactors (PFR). Despite this fact, the use of CSTRs is more common than the use of PFRs. This is mostly due to the fact that the two initial reactant phases are relatively immiscible and significant agitation is generally supplied to initiate the reaction. Based on the theoretical results, however, the use of a packed-bed tubular flow reactor was investigated experimentally. A series of two tubular flow reactors was built in the laboratory. The first reactor was of the shell and tube variety and also functioned as a preheater. The second reactor was larger and contained a packed-bed. Two different flow configurations were invested, upflow-upflow and downflow-downflow. It was determined that the downflow-downflow configuration provided significantly better triglyceride conversions that the upflow-upflow configuration.
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
The Environmental Technology Verification report discusses the technology and performance of the IR PowerWorks 70kW Microturbine System manufactured by Ingersoll-Rand Energy Systems. This system is a 70 kW electrical generator that puts out 480 v AC at 60 Hz and that is driven by...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Provisions § 89.204 Averaging. (a) Requirements for Tier 1 engines rated at or above 37 kW. A manufacturer... credits obtained through trading. (b) Requirements for Tier 2 and later engines rated at or above 37 kW and Tier 1 and later engines rated under 37 kW. A manufacturer may use averaging to offset an emission...
47 CFR 73.702 - Assignment and use of frequencies.
Code of Federal Regulations, 2014 CFR
2014-10-01
... where a transmitter power of less than 100 kW is used. In this case, antenna gain on restricted azimuths... these restrictions. Permitted gain for transmitter powers less than 100 kW: ER10au05.065 Where: Gi = maximum gain permitted with reference to an isotropic radiator. Pa = Transmitter power employed in kW. (i...
47 CFR 73.702 - Assignment and use of frequencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... where a transmitter power of less than 100 kW is used. In this case, antenna gain on restricted azimuths... these restrictions. Permitted gain for transmitter powers less than 100 kW: ER10au05.065 Where: Gi = maximum gain permitted with reference to an isotropic radiator. Pa = Transmitter power employed in kW. (i...
47 CFR 73.702 - Assignment and use of frequencies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... where a transmitter power of less than 100 kW is used. In this case, antenna gain on restricted azimuths... these restrictions. Permitted gain for transmitter powers less than 100 kW: ER10au05.065 Where: Gi = maximum gain permitted with reference to an isotropic radiator. Pa = Transmitter power employed in kW. (i...
47 CFR 73.702 - Assignment and use of frequencies.
Code of Federal Regulations, 2013 CFR
2013-10-01
... where a transmitter power of less than 100 kW is used. In this case, antenna gain on restricted azimuths... these restrictions. Permitted gain for transmitter powers less than 100 kW: ER10au05.065 Where: Gi = maximum gain permitted with reference to an isotropic radiator. Pa = Transmitter power employed in kW. (i...
Buffering PV output during cloud transients with energy storage
NASA Astrophysics Data System (ADS)
Moumouni, Yacouba
Consideration of the use of the major types of energy storage is attempted in this thesis in order to mitigate the effects of power output transients associated with grid-tied CPV systems due to fast-moving cloud coverage. The approach presented here is to buffer intermittency of CPV output power with an energy storage device (used batteries) purchased cheaply from EV owners or battery leasers. When the CPV is connected to the grid with the proper energy storage, the main goal is to smooth out the intermittent solar power and fluctuant load of the grid with a convenient control strategy. This thesis provides a detailed analysis with appropriate Matlab codes to put onto the grid during the day time a constant amount of power on one hand and on the other, shift the less valuable off-peak electricity to the on-peak time, i.e. between 1pm to 7pm, where the electricity price is much better. In this study, a range of base constant power levels were assumed including 15kW, 20kW, 21kW, 22kW, 23kW, 24kW and 25kW. The hypothesis based on an iterative solution was that the capacity of the battery was increased by steps of 5 while the base supply was decreased by the same step size until satisfactorily results were achieved. Hence, it turned out with the chosen battery capacity of 54kWh coupled to the data from the Amonix CPV 7700 unit for Las Vegas for a 3-month period, it was found that 20kW was the largest constant load the system can supply uninterruptedly to the utility company. Simulated results are presented to show the feasibility of the proposed scheme.
Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios.
Tian, Hailin; Duan, Na; Lin, Cong; Li, Xue; Zhong, Mingzhu
2015-07-01
Anaerobic co-digestion of kitchen waste (KW) and pig manure (PM) with seven different PM to KW total solids (TS) ratios of 1:0, 5:1, 3:1, 1:1, 1:3, 1:5 and 0:1 was conducted at mesophilic temperature (35 ± 1 °C) to investigate the feasibility and process performance. The co-digestion of PM and KW was found to be an available way to enhance methane production compared with solo-digestion of PM or KW. The ratio of PM to KW of 1:1 got the highest biodegradability (BDA) of 85.03% and a methane yield of 409.5 mL/gVS. For the co-digestion of KW and PM, there was no obvious inhibition of ammonia nitrogen because it was in an acceptable range from 1380 mg/L to 2020 mg/L in the whole process. However, severe methane inhibition and long lag phase due to the accumulation of volatile fatty acids (VFAs) was observed while the KW content was over 50%, and in the lag phase, propionic acid and butyric acid made up the major constituents of the total VFAs. The technical digestion time (T80: the time it takes to produce 80% of the digester's maximum gas production) of the above 7 ratios was 15, 21, 22, 27, 49, 62 and 61 days, respectively. In this study, a mixing ratio of 1:1 for PM and KW was found to maximize BDA and methane yield, provided a short digestion time and stable digestion performance and was therefore recommended for further study and engineering application. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Design and implementation of current fed DC-DC converter for PHEV application using renewable source
NASA Astrophysics Data System (ADS)
Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.
2017-11-01
As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shortlidge, C.C.
SatCon technology Corporation has completed design, fabrication, and the first round of test of a 373 kW (500 hp), two-spool, intercooled gas turbine engine with integral induction type alternators. This turbine alternator is the prime mover for a World Sports Car class hybrid electric vehicle under development by Chrysler Corporation. The complete hybrid electric vehicle propulsion system features the 373 kW (500 hp) turbine alternator unit, a 373 kW (500 hp) 3.25 kW-h (4.36 hp-h) flywheel, a 559 kW (750 hp) traction motor, and the propulsion system control system. This paper presents and discusses the major attributes of the controlmore » system associated with the turbine alternator unit. Also discussed is the role and operational requirements of the turbine unit as part of the complete hybrid electric vehicle propulsion system.« less
Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes
NASA Astrophysics Data System (ADS)
Tiliakos, Nicholas
A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.
Energy saving system with high effluent quality for municipal sewage treatment by UASB-DHS.
Tanaka, H; Takahashi, M; Yoneyama, Y; Syutsubo, K; Kato, K; Nagano, A; Yamaguchi, T; Harada, H
2012-01-01
An up-flow anaerobic sludge blanket (UASB) - down-flow hanging sponge (DHS) was applied to Japanese municipal sewage treatment, and its treatability, energy consumption, and sludge production were evaluated. The designed sewage load was 50 m(3)/d. The sewage typically had a chemical oxygen demand (COD) of 402 mg/L, a suspended solids (SS) content of 167 mg/L, and a temperature of 17-29 °C. The UASB and DHS exhibited theoretical hydraulic retention times of 9.7 and 2.5 h, respectively. The entire system was operated without temperature control. Operation was started with mesophilic anaerobic digested sludge for the UASB and various sponge media for the DHS. Continuous operational data suggest that although the cellulose decomposition and methanogenic process in the UASB are temperature sensitive, stable operation can be obtained by maintaining a satisfactory sludge volume index and sludge concentration. For the DHS, the cube-type medium G3-2 offers superior filling rates, biological preservation and operational execution. The SS derived from the DHS contaminated the effluent but could be removed by optional sand filtration. A comparison with conventional activated sludge (CAS) treatment confirmed that this system is adequate for municipal sewage treatment, with an estimated energy requirement and excess sludge production approximately 75 and 85% less than those of CAS, respectively.
Advanced, phase-locked, 100 kW, 1.3 GHz magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, R. Lawrence; Bui, Thuc
Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... the purchase of a foreign manufactured 50 kW wind turbine generator that meets the Borough's design... manufactured 50 kW wind turbines available in sufficient and reasonable quantity and of a satisfactory quality... action permits the purchase of a foreign manufactured 50 kW wind turbine generator by the Borough, as...
Advanced, phase-locked, 100 kW, 1.3 GHz magnetron
Read, Michael; Ives, R. Lawrence; Bui, Thuc; ...
2017-03-06
Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.
Engineering and erection of a 300kW high-flux solar simulator
NASA Astrophysics Data System (ADS)
Wieghardt, Kai; Laaber, Dmitrij; Hilger, Patrick; Dohmen, Volkmar; Funken, Karl-Heinz; Hoffschmidt, Bernhard
2017-06-01
German Aerospace Center (DLR) is currently constructing a new high-flux solar simulator synlight which shall be commissioned in late 2016. The new facility will provide three separately operated experimental spaces with expected radiant powers of about 300kW / 240kW / 240kW respectively. synlight was presented to the public for the first time at SolarPACES 2015 [1]. Its engineering and erection is running according to plan. The current presentation reports about the engineering and the ongoing erection of the novel facility, and gives an outlook on its new level of possibilities for solar testing and qualification.
Lightweight diesel engine designs for commuter type aircraft
NASA Technical Reports Server (NTRS)
Brouwers, A. P.
1981-01-01
Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).
Kobayashi, T; Mizumoto, H; Karasawa, A
1993-12-01
The diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, were determined and compared with those of trichlormethiazide (TCM) and furosemide in saline-loaded conscious dogs. KW-3902, at doses higher than 0.1 mg/kg (p.o.), produced dose-dependent increases of urine volume and sodium excretion and these effects were statistically significant at doses of 1-100 mg/kg. The increase in potassium excretion was lower than that of sodium, and the ratio of sodium to potassium excretion (Na/K) tended to be elevated. TCM (0.3 mg/kg) and furosemide (3 mg/kg) also induced increases in urine volume and sodium excretion. The diuretic effects of KW-3902 lasted for 4 h after administration, whereas TCM and furosemide caused significant natriuresis for 2 h after administration. Thus, KW-3902 exhibited a longer lasting natriuresis than TCM and furosemide. These results indicate that adenosine A1 receptor blockade by KW-3902 causes consistent diuresis and natriuresis in dogs and suggest that adenosine A1 receptor blockade is a promising approach to diuretic therapy.
NASA Astrophysics Data System (ADS)
Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.
2017-03-01
Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.
Genome sequence analysis of dengue virus 1 isolated in Key West, Florida.
Shin, Dongyoung; Richards, Stephanie L; Alto, Barry W; Bettinardi, David J; Smartt, Chelsea T
2013-01-01
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.
NASA Astrophysics Data System (ADS)
Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.
2017-02-01
A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.
High-power converters for space applications
NASA Technical Reports Server (NTRS)
Park, J. N.; Cooper, Randy
1991-01-01
Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.
Reconnection Outflows in the Extended Corona and Magnetotail
NASA Astrophysics Data System (ADS)
Savage, Sabrina; Kobelski, Adam
2017-08-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-arcade downflows (SADs) and downflowing loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been observed for days beyond the passage of corona mass ejections through the SOHO/LASCO field of view and for nearly a week after an eruption on 14 October 2014. The association of these features with magnetic reconnection increases the significance of understanding their genesis. SADs have been interpreted as wakes behind newly reconnected and outflowing loops (SADLs). Models have shown the plausibility of this interpretation, though this interpretation has not yet been fully accepted. We will present a preliminary study of complementary observations of magnetic reconnection detected via in situ instruments in the magnetosphere. These observations, provided by five THEMIS spacecraft, reveal similar structures and conditions to those related to SADs. We compare data from multiple SADs and dipolarization fronts to test the similarity between these plasma regimes, strongly favoring the interpretation of SADs as instabilities trailing retracting loops. We will also use these observations to strengthen the case for the development of an EUV wide-field coronal imager.
Onodera, Takashi; Takayama, Daisuke; Ohashi, Akiyoshi; Yamaguchi, Takashi; Uemura, Shigeki; Harada, Hideki
2016-10-01
Resilience to process outages is an essential requirement for sustainable wastewater treatment systems in developing countries. In this study, we evaluated the ability of a full-scale down-flow hanging sponge (DHS) reactor to recover after a 10-day outage. The DHS tested in this study uses polyurethane sponge as packing material. This full-scale DHS reactor has been tested over a period of about 4 years in India with a flow rate of 500 m(3)/day. Water was not supplied to the DHS reactor that was subjected to the 10-day outage; however, the biomass did not dry out because the sponge was able to retain enough water. Soon after the reactor was restarted, a small quantity of biomass, amounting to only 0.1% of the total retained biomass, was eluted. The DHS effluent achieved satisfactory removal of suspended solids, chemical oxygen demand, and ammonium nitrogen within 90, 45, and 90 min, respectively. Conversely, fecal coliforms in the DHS effluent did not reach satisfactory levels within 540 min; instead, the normal levels of fecal coliforms were achieved within 3 days. Overall, the tests demonstrated that the DHS reactor was sufficiently robust to withstand long-term outages and achieved steady state soon after restart. This reinforces the suitability of this technology for developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wilkinson, A; Kennedy, K J
2012-01-01
Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.
New York | Midmarket Solar Policies in the United States | Solar Research |
solar within the state. The statewide solar incentives program, NY-Sun, offers loans and grants for non viability. System size limit: Solar: 25 kW for residential; 100 kW for farms; 2 MW for non-residential. PSEG Long Island: 25 kW for residential solar, 2 MW for non-residential solar Aggregate cap: None PSEG Long
Oregon | Midmarket Solar Policies in the United States | Solar Research |
Utilities Commission. System size limit: PGE and PacifiCorp customers: 2 MW for non-residential, 25 kW for residential; municipal, electric cooperative, and public utility district customers: 25 kW for non-residential , >25 kW and â¤2MW, non-exporting systems â¤10 MW, and all systems. System size limit: 10 MW
47 CFR 73.207 - Minimum distance separation between stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... kW ERP and 100 meters antenna HAAT (or equivalent lower ERP and higher antenna HAAT based on a class... which have been notified internationally as Class A are limited to a maximum of 3.0 kW ERP at 100 meters... internationally as Class AA are limited to a maximum of 6.0 kW ERP at 100 meters HAAT, or the equivalent; (iii) U...
47 CFR 73.215 - Contour protection for short-spaced assignments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class B1 50 kW ERP/472 meters HAAT—Class B (b) Applicants requesting short-spaced assignments pursuant to... achieved: (1) The ERP and antenna HAAT of the proposed station in the direction of the contours of other...
47 CFR 73.215 - Contour protection for short-spaced assignments.
Code of Federal Regulations, 2011 CFR
2011-10-01
... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class B1 50 kW ERP/472 meters HAAT—Class B (b) Applicants requesting short-spaced assignments pursuant to... achieved: (1) The ERP and antenna HAAT of the proposed station in the direction of the contours of other...
NASA Technical Reports Server (NTRS)
1979-01-01
Candidate power module confugurations which will directly support an evolutionary scenario allowing growth from 25 kW to 100 kW are described. The growth rationale is structured to support a nominal scenario for sortie mission support to the POrbiter and to free-flying payloads during the 1983 to 1990 era.
Rhode Island | Midmarket Solar Policies in the United States | Solar
. The cost of the impact study fee ranges from $500 to $10,000 for midsized systems. Eligible Systems Type of Interconnection Residential systems â¤25 kW No impact study fee Residential systems >25 kW $100 impact study fee Nonresidential systems â¤100 kW $500 impact study fee Nonresidential systems 100
Electrochemical energy storage subsystems study, volume 1
NASA Technical Reports Server (NTRS)
Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.
1981-01-01
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.
Electrochemical Energy Storage Subsystems Study, Volume 2
NASA Technical Reports Server (NTRS)
Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.
1981-01-01
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.
A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Ruxi; Wang, Fei
It is well known that there exist second-order harmonic current and corresponding ripple voltage on dc bus for single phase PWM rectifiers. The low frequency harmonic current is normally filtered using a bulk capacitor in the bus which results in low power density. This paper proposed an active ripple energy storage method that can effectively reduce the energy storage capacitance. The feed-forward control method and design considerations are provided. Simulation and 15 kW experimental results are provided for verification purposes.
NASA Technical Reports Server (NTRS)
Kaufman, A.
1981-01-01
An integrated 5 kW power system based upon methanol fuel and a phosphoric acid fuel cell operating at about 473 K is described. Description includes test results of advanced fuel cell catalysts, a semiautomatic acid replenishment system and a completed 5 kW methanol/system reformer. The results of a preliminary system test on a reformer/stack/inverter combination are reported. An initial design for a 25 kW stack is presented. Experimental plans are outlined for data acquisition necessary for design of a 50 kW methanol/steam reformer. Activities related to complete mathematical modelling of the integrated power system, including wasteheat utilization, are described.
Low concentration ratio solar array for low Earth orbit multi-100kW application. Volume 2: Drawings
NASA Technical Reports Server (NTRS)
Nalbandian, S. J.; French, E. P.
1982-01-01
A preliminary design effort directed toward a low concentration ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 100 kW range) in low Earth orbit. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. Drawings for the preliminary design configuration and for the test hardware that was fabricated for design evaluation and test are provided.
Efficient pump module coupling >1kW from a compact detachable fiber
NASA Astrophysics Data System (ADS)
Dogan, M.; Chin, R. H.; Fulghum, S.; Jacob, J. H.; Chin, A. K.
2018-02-01
In the most developed fiber amplifiers, optical pump power is introduced into the 400μm-diameter, 0.46NA first cladding of the double-clad, Yb-doped, gain fiber, using a (6+1):1 multi-mode fiber combiner. For this configuration, the core diameter and numerical aperture of the pump delivery fibers have maximum values of 225μm and 0.22, respectively. This paper presents the first fiber-coupled laser-diode pump module emitting more than 1kW of claddingmode- stripped power from a detachable 225μm, 0.22NA delivery fiber at 976nm. The electrical-to-optical power conversion efficiency at 1kW is 50%. The FWHM spectral width at 1kW output is 4nm and has an excellent overlap with the narrow absorption spectrum of ytterbium in glass. Six of these pump modules attached to a (6+1):1 multimode combiner enable a 5-6kW, single-mode, Yb-doped fiber amplifier.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineer officer on vessels powered by main propulsion machinery of 3,000 kW/4,000 HP propulsion power or... main propulsion machinery of 3,000 kW/4,000 HP propulsion power or more (management level). (a) To... less than 36 months of service as OICEW on ships powered by main propulsion machinery of 750 kW/1,000...
Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.
1985-11-27
report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No
Code of Federal Regulations, 2011 CFR
2011-07-01
... (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the... ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10... 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the... ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10... 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the... ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10... 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the... ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10... 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the... ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10... 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... wood-framed powerhouse housing a 3-kilowatt (kW) generating unit run by a water wheel and a 5-kW generating unit run by a 24-inch vertical-shaft propeller turbine for a total installed capacity of 8 kW; and... Edison generator that operates via the water wheel and is operated once a year. The applicant operates...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2012 CFR
2012-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2014 CFR
2014-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2011 CFR
2011-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2013 CFR
2013-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
Electric propulsion options for 10 kW class earth space missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.
Yang, Ziyi; Wang, Wen; Zhang, Shuyu; Ma, Zonghu; Anwar, Naveed; Liu, Guangqing; Zhang, Ruihong
2017-04-01
The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMY org and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.
Addendum to NuMI shielding assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaziri, Kamran; /Fermilab
2007-10-01
The original safety assessment and the Safety Envelope for the NuMI beam line corresponds to 400 kW of beam power. The Main Injector is currently capable of and approved for producing 500 kW of beam power2. However, operation of the NuMI beam line at 400 kW of power brings up the possibility of an occasional excursion above 400 kW due to better than usual tuning in one of the machines upstream of the NuMI beam line. An excursion above the DOE approved Safety Envelope will constitute a safety violation. The purpose of this addendum is to evaluate the radiological issuesmore » and modifications required to operate the NuMI beam line at 500 kW. This upgrade will allow 400 kW operations with a reasonable safety margin. Configuration of the NuMI beam line, boundaries, safety system and the methodologies used for the calculations are as described in the original NuMI SAD. While most of the calculations presented in the original shielding assessment were based on Monte Carlo simulations, which were based on the design geometries, most of the results presented in this addendum are based on the measurements conducted by the AD ES&H radiation safety group.« less
Morris, Roisin; MacNeela, Padraig; Scott, Anne; Treacy, Pearl; Hyde, Abbey; O'Brien, Julian; Lehwaldt, Daniella; Byrne, Anne; Drennan, Jonathan
2008-04-01
In a study to establish the interrater reliability of the Irish Nursing Minimum Data Set (I-NMDS) for mental health difficulties relating to the choice of reliability test statistic were encountered. The objective of this paper is to highlight the difficulties associated with testing interrater reliability for an ordinal scale using a relatively homogenous sample and the recommended kw statistic. One pair of mental health nurses completed the I-NMDS for mental health for a total of 30 clients attending a mental health day centre over a two-week period. Data was analysed using the kw and percentage agreement statistics. A total of 34 of the 38 I-NMDS for mental health variables with lower than acceptable levels of kw reliability scores achieved acceptable levels of reliability according to their percentage agreement scores. The study findings implied that, due to the homogeneity of the sample, low variability within the data resulted in the 'base rate problem' associated with the use of kw statistic. Conclusions point to the interpretation of kw in tandem with percentage agreement scores. Suggestions that kw scores were low due to chance agreement and that one should strive to use a study sample with known variability are queried.
Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2
NASA Astrophysics Data System (ADS)
Kusuma, Yuriadi; Permana, Dadang S.
2018-03-01
The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.
Ebw Assisted Plasma Current Startup in Mast
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir; Saveliev, Alexander
2009-04-01
EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.
NASA Astrophysics Data System (ADS)
Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal
2018-04-01
Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.
kW-class direct diode laser for sheet metal cutting based on commercial pump modules
NASA Astrophysics Data System (ADS)
Witte, U.; Schneider, F.; Holly, C.; Di Meo, A.; Rubel, D.; Boergmann, F.; Traub, M.; Hoffmann, D.; Drovs, S.; Brand, T.; Unger, A.
2017-02-01
We present a direct diode laser with an optical output power of more than 800 W ex 100 μm with an NA of 0.17. The system is based on 6 commercial pump modules that are wavelength stabilized by use of VBGs. Dielectric filters are used for coarse and dense wavelength multiplexing. Metal sheet cutting tests were performed in order to prove system performance and reliability. Based on a detailed analysis of loss mechanisms, we show that the design can be easily scaled to output powers in the range of 2 kW and to an optical efficiency of 80%.
Kinetics of resid hydrodesulfurization reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, A.H.A.K.; Abbas, A.A.A.; Al'-Maiya, A.S.K.
1987-07-01
In this article the authors examine the results obtained in hydrodesulfurizing an atmospheric resis from Bai-Hassan crude on Ni-Mo/Al/sub 2/O/sub 3/ catalyst at 320-420/sup 0/C, feedstock space velocity 0.37-2.6 h/sup -1/, pressure 6.1 MPa, and hydrogen/feed ratio 300 liters/liter, in a single-pass downflow reactor with a stationary bed of catalyst. Also, they give certain thermodynamic characteristics for desulfurization, demetalization, and deasphalting of this resid. The kinetic model describing most accurately the kinetics of the different reactions will be examined.
Code of Federal Regulations, 2014 CFR
2014-10-01
... second engineer officer on vessels powered by main propulsion machinery of 750kW/1,000 HP or more and less than 3,000 kW/4,000 HP propulsion power (management level). 11.333 Section 11.333 Shipping COAST... engineer officer on vessels powered by main propulsion machinery of 750kW/1,000 HP or more and less than 3...
Distributed Generation Renewable Energy Estimate of Costs | Energy Analysis
viability. Table 1 Costs for Electric Generating Technologies Technology Type Mean installed cost ($/kW ) Installed cost Std. Dev. (+/- $/kW) Fixed O&M ($/kW-yr) Fixed O&M Std. Dev. (+/- $/kW-yr) Variable O cost ($/kWh) Fuel and/or water Std. Dev. ($/kWh) PV <10 kW $3,897 $889 $21 $20 n/a n/a 33 11 n/a n/a
Distributed Generation Renewable Energy Estimate of Costs | Energy Analysis
viability. Table 1 Costs for Electric Generating Technologies Technology Type Mean installed cost ($/kW ) Installed cost Std. Dev. (+/- $/kW) Fixed O&M ($/kW-yr) Fixed O&M Std. Dev. (+/- $/kW-yr) Variable O cost ($/kWh) Fuel and/or water Std. Dev. ($/kWh) PV <10 kW $3,910 $921 $21 $20 n/a n/a 33 11 n/a n/a
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
1983-01-01
Test results are given for a 5 kW stack and initial results for an integrated, grid connected system operating from methanol fuel. Site selection criteria are presented for future demonstration of a 50 or 100 kW OS/IES. Preliminary results are also given with approximate internal rates of return to the building owner. Progress in development and construction of a 50 kW modular methanol/steam reformer is reported.
Design study: A 186 kW lightweight diesel aircraft engine
NASA Technical Reports Server (NTRS)
Brouwers, A. P.
1980-01-01
The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.
The kW power module evolution study: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
Using the Marshall Space Flight Center 25 kW Power Module (PM) reference design as a point of departure, the study defined evolutionary growth paths to 100 kW and above. A recommended development approach and initial configurations were described. Specific hardware changes from the reference design are recommended for the initial PM configuration to ensure evolutionary growth, improved replicability, and reduced cost. Certain functional changes are also recommended to enhance system capabilities.
A compact 10 kW solid-state RF power amplifier at 352 MHz
NASA Astrophysics Data System (ADS)
Dancila, Dragos; Hoang Duc, Long; Jobs, Magnus; Holmberg, Måns; Hjort, Adam; Rydberg, Anders; Ruber, Roger
2017-07-01
A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a singleended architecture. During the final tests, a total output peak power of 10.5 kW was measured.
NASA Astrophysics Data System (ADS)
Zervas, Michalis N.
2018-02-01
We introduced a simple formula providing the mode-field diameter shrinkage, due to heat load in fiber amplifiers, and used it to compare the traditional thermal-lensing power limit (PTL) to a newly developed transverse-mode instability (TMI) power limit (PTMI), giving a fixed ratio of PTMI/PTL≍0.6, in very good agreement with experiment. Using a failure-in-time analysis we also introduced a new power limiting factor due to mechanical reliability of bent fibers. For diode (tandem) pumping power limits of 28kW (52kW) are predicted. Setting a practical limit of maximum core diameter to 35μm, the limits reduce to 15kW (25kW).
NASA Astrophysics Data System (ADS)
Alhamid, M. Idrus; Nasruddin, Aisyah, Nyayu; Sholahudin
2017-03-01
This paper discussed the use of solar thermal collector as an input energy for cooling system. The experimental investigation was undertaken to characterize solar collectors that have been integrated with an absorption chiller. About 62 modules of solar collectors connected in series and parallel are placed on the roof top of MRC building. Thermistors were used to measure the fluid temperature at inlet, inside and outlet of each collector, inside the water tank and ambient temperature. Water flow that circulated from the storage was measured by flow meter, while solar radiation was measured by a pyranometer that was mounted parallel to the collector. Experimental data for a data set was collected in March 2016, during the day time hours of 08:00 - 17:00. This data set was used to calculate solar collector efficiency. The results showed that in the maximum solar radiation, the outlet temperature that can be reached is about 78°C, the utilized energy is about 70 kW and solar collector has an efficiency of 64%. While in the minimum solar radiation, the outlet temperature that can be reached is about 53°C, the utilized energy is about 28 kW and solar collector has an efficiency of 43%.
Physiological response of Zebu and taurine oxen to draught work.
Zanzinger, J; Becker, K; Rometsch, M
1993-07-15
Four Zebu and four Simmental oxen were submitted to continuous and to graded draught work. Venous blood samples were taken before, during, and after exercise at intervals of 2-5 min. Anaerobic threshold was reached at a draught power of 1.6 +/- 0.06 kW for Zebu and 0.7 +/- 0.07 kW for Simmental. Corresponding plasma lactate concentrations were 1.7 +/- 0.2 mmol/liter and 1.6 +/- 0.3 mmol/liter, respectively. Partial pressure of oxygen (pvO2), carbon dioxide (pvCO2), and plasma free fatty acids (FFA) during and after work differed between breeds (P approximately .001) and individuals (P approximately .05). After work, an up to 8-fold increase in FFA was found. Highest plasma lactate concentrations during continuous maximal draught were 3.75 +/- 1.76 (Zebu) and 6.01 +/- 0.88 mmol/liter (Simmental). Acid-base-state during and after exhaustive work remained stable. Heart rate in both breeds did not exceed 190 min-1. It is concluded that 1) even during heavy draught work, anaerobic energy formation plays a minor role for cattle, 2) fatigue in working oxen may be related to cardiovascular limitations, and 3) the physical fitness of European beef-breed oxen is lower compared to multipurpose African Zebu oxen.
Solar power plant performance evaluation: simulation and experimental validation
NASA Astrophysics Data System (ADS)
Natsheh, E. M.; Albarbar, A.
2012-05-01
In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.
Rf system for the NSLS coherent infrared radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, W.; Biscardi, R.; Keane, J.
1995-05-01
The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less
Colorado State University: A Midscale Market Solar Customer Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, Alison; Chernyakhovskiy, Ilya
Despite substantial increases in solar photovoltaic (PV) deployment between 2005 and 2015, a large untapped market for solar PV deployment still exists in midscale market investments by universities. Recent estimates show that if all universities in the United States installed enough solar PV to meet 25% of their annual electricity consumption, this would cumulatively result in just over 16 gigawatts (GW) of additional installed PV capacity. Within this context, midscale market projects - loosely defined as solar PV installations ranging from 100 kilowatts (kW) to 2 megawatts (MW), but more broadly representing installations not captured in the residential or utility-scalemore » sectors - could be an attractive option for universities. This case study focuses on one university solar customer, Colorado State University (CSU), to provide a detailed example of the challenges, solutions, and opportunities associated with university solar power procurement. Between 2009 and 2015, a combined 6,754 kW of both ground-mounted and rooftop solar PV was installed across multiple CSU campuses in Fort Collins, Colorado. This case study highlights CSU's decision-making process, campus engagement strategies, and relationships with state, local, and utility partners, which have culminated in significant on-campus PV deployment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David L. Barnes
2007-09-28
An international industry-government consortium is developing a fuelcell hybrid switcher locomotive for commercial railway applications and power-to-grid generation applications. The current phase of this on-going project addresses the practicalities of on-board hydrogen storage, fuelcell technology, and hybridity, all with an emphasis on commercially available products. Through practical evaluation using designs from Vehicle Projects’ Fuelcell-Powered Underground Mine Loader Project, the configuration of the fuelcell switcher locomotive changed from using metal-hydride hydrogen storage and a pure fuelcell power plant to using compressed hydrogen storage, a fuelcell-battery hybrid power plant, and fuelcell stack modules from Ballard Power Systems that have been extensively usedmore » in the Citaro bus program in Europe. The new overall design will now use a RailPower battery hybrid Green Goat™ as the locomotive platform. Keeping the existing lead-acid batteries, we will replace the 205 kW diesel gen-set with 225 kW of net fuelcell power, remove the diesel fuel tank, and place 14 compressed hydrogen cylinders, capable of storing 70 kg of hydrogen at 350 bar, on the roof. A detailed design with associated CAD models will allow a complete build of the fuelcell-battery hybrid switcher locomotive in the next funded phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathis, Mark J.
2010-04-01
This dissertation describes the measurement of the top pair production cross section, using data from proton–antiproton collisions at a center-of-mass energy of 1.96 TeV, with 2.7 ± 0.2 fb -1 of data collected by the Collider Detector at Fermilab. Background contributions are measured concurrently with the top cross section in the b-tagged lepton-plus-jets sample using a kinematic fit, which simultaneously determines the cross sections and normalizations of tmore » $$\\bar{t}$$, W + jets, QCD, and electroweak processes. This is the first application of a procedure of this kind. The top cross section is measured to be σ t$$\\bar{t}$$ = 7.64±0.57(stat + syst)±0.45(lumi) pb and the Monte Carlo simulation scale factors KW b$$\\bar{b}$$ = 1.57±0.25, K W$$\\bar{c}$$ = 0.94±0.79, KWc = 1.9 ± 0.3, and KW q$$\\bar{q}$$ = 1.1 ± 0.3. These results are consistent with existing measurements using other procedures. More data will reduce the systematic uncertainties and will lead to the most precise of any single analysis to date.« less
Single Active Switch PV Inverter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, V. R.; Pan, Zhiguo
This report presents a new PV inverter topology that uses only one active switch instead of 7 active switches in a conventional PV inverter. It has a buck boost converter and operates at discontinuous current control mode, which can reduce the output stage from an active switch bridge to a thyristor bridge. This concept, if successfully demonstrated, may have great cost and size/weight benefits over conventional solutions. Since the proposed topology is completely different from the traditional boost converter plus voltage source inverter approach, there is no existing control/modulation scheme available. A new modulation scheme for both the main switchmore » and the thyristors has been developed. An active clamping circuit has also been proposed to reduce switching losses and voltage spike during the switching transient. A simulation model has been set up to validate the control algorithm and clamping circuit. Simulated results show that a proposed 10 kW PV inverter can reach 5% total harmonic distortion (THD), 98.8% peak efficiency with only one main active switch, and an inductor weighing less than 3 kg. Based on that, a 10 kW prototype converter has been designed and built.« less
Description of photovoltaic village power systems in the United States and Africa
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Bifano, W. J.
1979-01-01
Photovoltaic power systems in remote villages in the United States and Africa are described. These projects were undertaken to demonstrate that existing photovoltaic system technology is capable of providing electrical power for basic domestic services for the millions of small, remote communities in both developed and developing countries. One system is located in the Papago Indian Village of Schuchuli in southwest Arizona (U. S.) and became operational 16 December 1978. The other system is located in Tangaye, a rural village in Upper Volta, Africa. It became operational 1 March 1979. The Schuchuli system has a 3.5 kW (peak) solar array which provides electric power for village water pumping, a refrigerator for each family, lights in the village buildings, and a community washing machine and sewing machine. The 1.8 kW (peak) Tangaye system provides power for community water pumping, flour milling and lights in the milling building. These are both stand-alone systems (i.e., no back-up power source) which are being operated and maintained by local personnel. Both systems are instrumented. Systems operations are being monitored by NASA to measure design adequacy and to refine designs for future systems.
Design, modeling, simulation and evaluation of a distributed energy system
NASA Astrophysics Data System (ADS)
Cultura, Ambrosio B., II
This dissertation presents the design, modeling, simulation and evaluation of distributed energy resources (DER) consisting of photovoltaics (PV), wind turbines, batteries, a PEM fuel cell and supercapacitors. The distributed energy resources installed at UMass Lowell consist of the following: 2.5kW PV, 44kWhr lead acid batteries and 1500W, 500W & 300W wind turbines, which were installed before year 2000. Recently added to that are the following: 10.56 kW PV array, 2.4 kW wind turbine, 29 kWhr Lead acid batteries, a 1.2 kW PEM fuel cell and 4-140F supercapacitors. Each newly added energy resource has been designed, modeled, simulated and evaluated before its integration into the existing PV/Wind grid-connected system. The Mathematical and Simulink model of each system was derived and validated by comparing the simulated and experimental results. The Simulated results of energy generated from a 10.56kW PV system are in good agreement with the experimental results. A detailed electrical model of a 2.4kW wind turbine system equipped with a permanent magnet generator, diode rectifier, boost converter and inverter is presented. The analysis of the results demonstrates the effectiveness of the constructed simulink model, and can be used to predict the performance of the wind turbine. It was observed that a PEM fuel cell has a very fast response to load changes. Moreover, the model has validated the actual operation of the PEM fuel cell, showing that the simulated results in Matlab Simulink are consistent with the experimental results. The equivalent mathematical equation, derived from an electrical model of the supercapacitor, is used to simulate its voltage response. The model is completely capable of simulating its voltage behavior, and can predict the charge time and discharge time of voltages on the supercapacitor. The bi-directional dc-dc converter was designed in order to connect the 48V battery bank storage to the 24V battery bank storage. This connection was needed in order to increase the reliability of the DER system. Furthermore, the new computer-based Data Acquisition (DAQ) system for the DER has been designed and installed. The DAQ system is an important component in PC-based measurement, which is used in acquiring and storing data. The design and installation of signal conditioning improve the accuracy, effectiveness and safety of measurements, because of capabilities such as amplifications, isolation, and filtering. A Labview program was the software used to interface and communicate between the DAQ devices and the personal computer. The overall simulink model of the DER system is presented in the last chapter. The simulink model is discussed, and the discussion explains the operation of a grid connected DER. This model can be used as the basis or future reference for designs and installations of DER projects. This model can also be used in converting the DER grid connected system into a Smart Grid system, and that will be the next potential research work to explore.
First Firing of a 100-kW Nested-Channel Hall Thruster
2013-09-01
Technical Paper 3. DATES COVERED (From - To) September 2013- December 2013 4. TITLE AND SUBTITLE First Firing of a 100-kW Nested-Channel Hall Thruster 5a...STATEMENT A: Approved for public release; distribution unlimited. 1 First Firing of a 100-kW Nested-channel Hall Thruster IEPC-2013-394...converting electrical power to directed kinetic power I. Introduction ESTING the channels of Hall thrusters has proven to be a viable method to increase
47 CFR 73.215 - Contour protection for short-spaced assignments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class B1 50 kW ERP/472 meters HAAT—Class B (b) Applicants requesting short-spaced assignments pursuant to...) C3 to C1 200 (124) 133 (83) 70 (43) C3to C0 215 (134) 152 (94) 81 (50) C3 to C 226 (140) 165 (103) 90...
47 CFR 73.215 - Contour protection for short-spaced assignments.
Code of Federal Regulations, 2012 CFR
2012-10-01
... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class B1 50 kW ERP/472 meters HAAT—Class B (b) Applicants requesting short-spaced assignments pursuant to...) C3 to C1 200 (124) 133 (83) 70 (43) C3to C0 215 (134) 152 (94) 81 (50) C3 to C 226 (140) 165 (103) 90...
Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2006-01-01
In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.
Electric Propulsion Options for 10 kW Class Earth-Space Missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.
NASA Astrophysics Data System (ADS)
Nikiforow, K.; Pennanen, J.; Ihonen, J.; Uski, S.; Koski, P.
2018-03-01
The power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell (PEMFC) system are studied theoretically and experimentally for grid support service applications. The fuel supply is implemented with a fixed-geometry ejector and a discrete control solution without any anode-side pressure fluctuation suppression methods. We show that the stack power can be ramped up from 2.0 kW to 4.0 kW with adequate fuel supply and low anode pressure fluctuations within only 0.1 s. The air supply is implemented with a centrifugal blower. Air supply ramp rates are studied with a power increase executed within 1 and 0.2 s after the request, the time dictated by grid support service requirements in Finland and the UK. We show that a power ramp-up from 2.0 kW to 3.7 kW is achieved within 1 s with an initial air stoichiometry of 2.5 and within 0.2 s with an initial air stoichiometry of 7.0. We also show that the timing of the power ramp-up affects the achieved ancillary power capacity. This work demonstrates that hydrogen fueled and ejector-based PEMFC systems can provide a significant amount of power in less than 1 s and provide valuable ancillary power capacity for grid support services.
New 5 kW free-piston Stirling space convertor developments
NASA Astrophysics Data System (ADS)
Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.
2008-07-01
The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.
NASA Technical Reports Server (NTRS)
1983-01-01
A preliminary design effort directed toward a low concentration ratio photovoltaic array system capable of delivering multihundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of .25 sq. m. The structural analysis and design trades leading to the baseline design are discussed. It describes the configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.
50 kW laser weapon demonstrator of Rheinmetall Waffe munition
NASA Astrophysics Data System (ADS)
Ludewigt, K.; Riesbeck, Th.; Graf, A.; Jung, M.
2013-10-01
We will present the setup of a 50 kW Laser Weapon Demonstrator (LWD) and results achieved with this system. The LWD is a ground based Air Defence system consisting of a Skyguard sensor unit for target acquisition and two laser equipped weapon turrets. The weapon turrets used are standard air defence turrets of Rheinmetall Air Defence which were equipped with several 10 kW Laser Weapon Modules (LWM). Each LWM consists of one 10 kW fiber laser and a beam forming unit (BFU). Commercial of the shelf fiber laser were modified for our defence applications. The BFU providing diffraction limited beam focusing, target imaging and fine tracking of the target was developed. The LWD was tested in a firing campaign at Rheinmetall test ground in Switzerland. All laser beams of both weapon turrets were superimposed on stationary and dynamic targets. Test results of the LWD for the scenarios Air Defence and C-RAMM (counter rockets, artillery, mortar and missiles) will be presented. An outlook for the next development stage towards a 100 kW class laser weapon on RWM will be given.
Low concentration ratio solar array for low Earth orbit multi-100 kW application
NASA Technical Reports Server (NTRS)
Nalbandian, S. J.
1982-01-01
An ongoing preliminary design effort directed toward a low-concentration-ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 80 kW to 172 kW using silicon solar cells or gallium arsenide solar cells respectively. The array module deployed area is 1320 square meters and consists of 4356 pryamidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. The structural analysis and design trades leading to the baseline design are discussed. The configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.
High Power Light Gas Helicon Plasma Source for VASIMR
NASA Technical Reports Server (NTRS)
Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.
2004-01-01
In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.
NASA Technical Reports Server (NTRS)
1976-01-01
Wind turbine configurations that would lead to generation of electrical power in a cost effective manner were considered. All possible overall system configurationss, operating modes, and sybsystem concepts were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The rationale employed and the key findings are summarized.
High Performance Power Module for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.
2002-01-01
Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.
Striation and convection in penumbral filaments
NASA Astrophysics Data System (ADS)
Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.
2010-10-01
Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org
Advanced spacecraft fuel cell systems
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1972-01-01
The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.
Coherent combining of a 4 kW, eight-element fiber amplifier array.
Yu, C X; Augst, S J; Redmond, S M; Goldizen, K C; Murphy, D V; Sanchez, A; Fan, T Y
2011-07-15
Commercial 0.5 kW Yb-doped fiber amplifiers have been characterized and found to be suitable for coherent beam combining. Eight such fiber amplifiers have been coherently combined in a tiled-aperture configuration with 78% combining efficiency and total output power of 4 kW. The power-in-the-bucket vertical beam quality of the combined output is 1.25 times diffraction limited at full power. The beam-combining performance is independent of output power. © 2011 Optical Society of America
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Feigenbaum, H.; Wang, C. L.; Werth, J.; Whelan, J. A.
1983-01-01
Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated.
NASA Astrophysics Data System (ADS)
Dulǎu, Lucian Ioan
2015-12-01
This paper describes the simulation of a microgrid system with storage technologies. The microgrid comprises 6 distributed generators (DGs), 3 loads and a 150 kW storage unit. The installed capacity of the generators is 1100 kW, while the total load demand is 900 kW. The simulation is performed by using a SCADA software, considering the power generation costs, the loads demand and the system's power losses. The generators access the system in order of their power generation cost. The simulation is performed for the entire day.
ON THE CAUSE OF SUPRA-ARCADE DOWNFLOWS IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassak, P. A.; Shepherd, L. S.; Drake, J. F.
2013-09-20
A model of supra-arcade downflows (SADs), dark low density regions also known as tadpoles that propagate sunward during solar flares, is presented. It is argued that the regions of low density are flow channels carved by sunward-directed outflow jets from reconnection. The solar corona is stratified, so the flare site is populated by a lower density plasma than that in the underlying arcade. As the jets penetrate the arcade, they carve out regions of depleted plasma density which appear as SADs. The present interpretation differs from previous models in that reconnection is localized in space but not in time. Reconnectionmore » is continuous in time to explain why SADs are not filled in from behind as they would if they were caused by isolated descending flux tubes or the wakes behind them due to temporally bursty reconnection. Reconnection is localized in space because outflow jets in standard two-dimensional reconnection models expand in the normal (inflow) direction with distance from the reconnection site, which would not produce thin SADs as seen in observations. On the contrary, outflow jets in spatially localized three-dimensional reconnection with an out-of-plane (guide) magnetic field expand primarily in the out-of-plane direction and remain collimated in the normal direction, which is consistent with observed SADs being thin. Two-dimensional proof-of-principle simulations of reconnection with an out-of-plane (guide) magnetic field confirm the creation of SAD-like depletion regions and the necessity of density stratification. Three-dimensional simulations confirm that localized reconnection remains collimated.« less
RE-INTERPRETATION OF SUPRA-ARCADE DOWNFLOWS IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Sabrina L.; McKenzie, David E.; Reeves, Katharine K.
Following the eruption of a filament from a flaring active region, sunward-flowing voids are often seen above developing post-eruption arcades. First discovered using the soft X-ray telescope aboard Yohkoh, these supra-arcade downflows (SADs) are now an expected observation of extreme ultra-violet and soft X-ray coronal imagers and spectrographs (e.g, TRACE, SOHO/SUMER, Hinode/XRT, SDO/AIA). Observations made prior to the operation of AIA suggested that these plasma voids (which are seen in contrast to bright, high-temperature plasma associated with current sheets) are the cross-sections of evacuated flux tubes retracting from reconnection sites high in the corona. The high temperature imaging afforded bymore » AIA's 131, 94, and 193 Angstrom-Sign channels coupled with the fast temporal cadence allows for unprecedented scrutiny of the voids. For a flare occurring on 2011 October 22, we provide evidence suggesting that SADs, instead of being the cross-sections of relatively large, evacuated flux tubes, are actually wakes (i.e., trailing regions of low density) created by the retraction of much thinner tubes. This re-interpretation is a significant shift in the fundamental understanding of SADs, as the features once thought to be identifiable as the shrinking loops themselves now appear to be 'side effects' of the passage of the loops through the supra-arcade plasma. In light of the fact that previous measurements have attributed to the shrinking loops characteristics that may instead belong to their wakes, we discuss the implications of this new interpretation on previous parameter estimations and on reconnection theory.« less
An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053
NASA Astrophysics Data System (ADS)
Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.
2016-06-01
In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.
THE NAKED EMERGENCE OF SOLAR ACTIVE REGIONS OBSERVED WITH SDO/HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, Rebecca
We take advantage of the HMI/SDO instrument to study the naked emergence of active regions (ARs) from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hr in the life of two rather isolated ARs that appeared on the surface when they were about to cross the central meridian. We analyze the correlations between Doppler velocities and the orientation of the vector magnetic field, consistent finding that the horizontal fields connecting the main polarities are dragged to the surface by relatively strong upflows and are associated with elongated granulation thatmore » is, on average, brighter than its surroundings. The main magnetic footpoints, on the other hand, are dominated by vertical fields and downflowing plasma. The appearance of moving dipolar features (MDFs, of opposite polarity to that of the AR) in between the main footpoints is a rather common occurrence once the AR reaches a certain size. The buoyancy of the fields is insufficient to lift up the magnetic arcade as a whole. Instead, weighted by the plasma that it carries, the field is pinned down to the photosphere at several places in between the main footpoints, giving life to the MDFs and enabling channels of downflowing plasma. MDF poles tend to drift toward each other, merge and disappear. This is likely to be the signature of a reconnection process in the dipped field lines, which relieves some of the weight allowing the magnetic arcade to finally rise beyond the detection layer of the Helioseismic and Magnetic Imager spectral line.« less
Piña-Salazar, E Z; Cervantes, F J; Meraz, M; Celis, L B
2011-01-01
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.
NASA Astrophysics Data System (ADS)
Liu, Wei; Berger, Thomas; Antolin, Patrick; Schrijver, Karel
2014-06-01
It has recently been recognized that a mass cycle (e.g., Berger et al. 2011; McIntosh et al. 2012) between the hot, tenuous solar corona and the cool, dense chromosphere underneath it plays an important role in the mass budget and dynamic evolution of the solar atmosphere. Although the corona ultimately loses mass through the solar wind and coronal mass ejections, a fraction of its mass returns to the chromosphere in coronal rain, downflows of prominences, and other as-yet unidentified processes. We present here analysis of joint observations of IRIS, SDO/AIA, and Hinode/SOT of such phenomena. By utilizing the wide temperature coverage (logT: 4 - 7) provided by these instruments combined, we track the coronal cooling sequence (e.g., Schrijver 2001; Liu et al. 2012; Berger et al. 2012) leading to the formation of such material at transition region or chromospheric temperatures (logT: 4 - 5) in the million-degree corona. We compare the cooling times with those expected from the radiative cooling instability. We also measure the kinematics and densities of such downflows and infer their mass fluxes, which are compared to the upward mass fluxes into the corona, e.g., those associated with spicules and flux emergence. Special attention is paid to coronal rain formed near cusp-shaped portions of coronal loops, funnel-shaped prominences at dips of coronal loops, and their respective magnetic environments. With the information about where and when such catastrophic cooling events take place, we discuss the implications for the enigmatic coronal heating mechanisms (e.g., Antolin et al. 2010).
Thermodynamic Properties of the Inverse Evershed Flow at Its Downflow Points
NASA Astrophysics Data System (ADS)
Choudhary, D. P.; Beck, C.
2018-06-01
We used spectropolarimetric observations of a sunspot in the active region NOAA 11809 in the Ca II line at 854.2 nm taken with the SpectroPolarimeter for Optical and Infrared Regions at the Dunn Solar Telescope to infer thermodynamic parameters along 100 super-penumbral fibrils that harbor the inverse Evershed flow. The fibrils were identified in line-of-sight (LOS) velocity and line–core intensity maps. The chromospheric LOS velocity abruptly decreases from 3 to 15 km s‑1 to zero at the inner footpoints of the fibrils that are located from the mid penumbra to about 1.4 spot radii. The spectra often show multiple absorption components, indicating spatially or vertically unresolved structures. Synthetic spectra with a 100% fill factor of a flow channel in the upper atmosphere yield strongly asymmetric profiles but no multiple separate components. The line–core intensity always peaks slightly closer to the umbra than the LOS velocity. Using the CAlcium Inversion using a Spectral ARchive code, we find that the fibrils make an angle of 30°–60° to the local vertical away from the umbra. The temperature near the downflow points is enhanced by 200 K at log τ ∼ -2 and up to 2000 K at log τ ∼ (‑6) compared to the quiet Sun, without any signature in the low photosphere. Our results are consistent with a critical, i.e., sonic, or supersonic siphon flow along super-penumbral flux tubes in which accelerating plasma abruptly attains subcritical velocity through a standing shock in or near the penumbra.
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...
2017-05-06
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.
1981-04-30
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.
1982-01-01
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions
NASA Technical Reports Server (NTRS)
Brophy, John R.; Larson, Tim
2013-01-01
The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape from Earth and then the heliocentric transfer to the science target.
NASA Technical Reports Server (NTRS)
Roman, W. C.; Jaminet, J. F.
1972-01-01
Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.
Genetics Home Reference: Timothy syndrome
... on PubMed Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating ... Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph ...
NASA Technical Reports Server (NTRS)
1980-01-01
A simple, efficient and very lightweight preliminary design for a 5 KW and 20 KW BOL output concentrated array evolved and is described by drawings. The relative effectiveness of this design, as compared to an unconcentrated planar array of equal power output, was measured by comparing power to mass performance of and the solar cell area required by each. Improvements in power to mass performance as high as 42% together with array area size reduction of 57% are possible in GaAs systems. By contrast, when the same concentrator design is applied to silicon systems, no improvement in power to mass can be obtained although array area reductions as high as 35% are obtainable.
1000 Hours of Testing Completed on 10-kW Hall Thruster
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2001-01-01
Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.
NASA Astrophysics Data System (ADS)
Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.
2015-11-01
The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.
Pei, Haiyan; Jiang, Liqun; Hou, Qingjie; Yu, Ze
2017-01-01
Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in effluent from anaerobic digestion of kitchen waste (ADE-KW), the agricultural phytohormones gibberellin, indole-3-acetic acid, and brassinolide (GIB) were applied to Chlorella SDEC-11 and Scenedesmus SDEC-13 at different stages of algal growth. Previous studies have demonstrated a promotion of phytohormones on algal growth in standard media, but attempts have been scarce, focusing on wastewater cultivation system. In addition, the effects of wastewater on algal morphology and ultrastructure have not been revealed so far, much less on the mechanism of the role of phytohormones on algae. ADE-KW disrupted the membranes of nuclear and chloroplast in ultrastructural cell of SDEC-11, and reduced the room between chloroplast and cell membrane and increased the starch size of SDEC-13. This reduced algal growth and biocompound accumulation, but SDEC-13 had greater adaptation to ADE-KW than SDEC-11. Moreover, inoculation with an algal seed pretreated with GIB aided the adaptability and viability of algae in ADE-KW, which for SDEC-13 was even promoted to the level in BG11. GIB mitigated the inhibition of ADE-KW on algal cell division and photosynthetic pigments and apparatus, and increased lipid droplets, which might result from the change in the synthesis and the fate of nicotinamide adenine dinucleotide phosphate. GIB addition significantly promoted lipid productivity of the two algal species, following 13 mg L -1 d -1 of SDEC-11 in B + ADE-KW and especially 13 mg L -1 d -1 of SDEC-13 achieved during the priming of algal seed with the hormones, which is 139% higher than 5 mg L -1 d -1 achieved in ADE-KW control. Agricultural phytohormones could be applied as a strategy for promoting biomass and biocompound accumulation of algae in ADE-KW, in which pretreatment of the algal inoculum with hormones is a unique way to help algae survive under stress. Considering our results and treatment technology for kitchen waste, a more feasible and economic plant can be built incorporating anaerobic digestion, algae cultivation with ADE-KW assisted with phytohormones, and biodiesel production.
Ikemura, T; Okarmura, K; Sasaki, Y; Ishi, H; Ohmori, K
1996-03-01
1. Sensory mechanisms play an important role in the vagal regulation of tracheobronchial smooth muscle tone. We examined the effect of KW-4679, an anti-allergic drug, on guinea-pig tachykinin-mediated contractile responses induced by electrical field stimulation (EFS) in guinea-pig bronchial muscles. 2. EFS (8 Hz, 0.5 ms, 15 V, for 15 s) evoked biphasic contractile responses in the guinea-pig isolated main bronchus in the presence of 5 microM indomethacin. The contractions consisted of a fast phase of an atropine-sensitive transient contraction and a slow phase of a sustained contraction which was inhibited by a combination of the tachykinin NK1 receptor antagonist, (+/-)-CP-96,345 (1 microM) and the NK2 receptor antagonist, SR 48969 (0.1 microM). 3. KW-4679 preferentially inhibited the slow phase in a concentration-dependent manner by 43.2 +/- 7.7% at 10 microM, whereas the drug had no effect on the fast phase at concentrations up to 10 microM. KW-4679, at a concentration of 100 microM, inhibited not only the slow phase by 49.2 +/- 11.4%, but also the fast phase by 36.8 +/- 9.3% [corrected]. 4. KW-4679 (10 microM and 100 microM) did not affect the substance P-induced or neurokinin A-induced contraction. Against the acetylcholine-induced contractile responses, 100 microM KW-4679 had a marked effect producing a 10.2 fold shift to the right in the curve. 5. The inhibitory effect of KW-4679 (10 microM) on the slow phase contraction was not influenced by treatment with naloxone (100 nM), propranolol (1 microM), thioperamide (1 microM), saclofen (50 microM), yohimbine (1 microM), methiothepin (1 microM) or methysergide (1 microM). 6. The inhibitory effect of KW-4679 (10 microM) on the slow phase contraction was not influenced by treatment with intermediate or large conductance Ca(2+)-activated K+ channel blockers (charybdotoxin (10 nM) or iberiotoxin (10 nM)), but suppressed by treatment with small conductance Ca(2+)-activated K+ channel blockers, apamin (500 nM) or scyllatoxin (300 nM). Apamin or scyllatoxin per se did not influence the slow phase contractions. 7. The results suggest that KW-4679 preferentially inhibits the release of tachykinins from the bronchial sensory nerves through activation of small conductance Ca(2+)-activated K+ channels.
Life and Operating Range Extension of the BPT-4000 Qualification Model Hall Thruster
NASA Technical Reports Server (NTRS)
Welander, Ben; Carpenter, Christian; deGrys, Kristi; Hofer, Richard R.; Randolph, Thomas M.; Manzella, David H.
2006-01-01
Following completion of the 5,600 hr qualification life test of the BPT-4000 4.5 kW Hall Thruster Propulsion System, NASA and Aerojet have undertaken efforts to extend the qualified operating range and lifetime of the thruster to support a wider range of NASA missions. The system was originally designed for orbit raising and stationkeeping applications on military and commercial geostationary satellites. As such, it was designed to operate over a range of power levels from 3 to 4.5 kW. Studies of robotic exploration applications have shown that the cost savings provided by utilizing commercial technology that can operate over a wider range of power levels provides significant mission benefits. The testing reported on here shows that the 4.5 kW thruster as designed has the capability to operate efficiently down to power levels as low as 1 kW. At the time of writing, the BPT-4000 qualification thruster and cathode have accumulated over 400 hr of operation between 1 to 2 kW with an additional 600 hr currently planned. The thruster has demonstrated no issues with longer duration operation at low power.
Low-Power Ion Thruster Development Status
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
1999-01-01
An effort is on-going to examine scaling relationships and design criteria for ion propulsion systems, and to address the need for a light weight, low power, high specific impulse propulsion option for small spacecraft. An element of this activity is the development of a low-power (sub-0.5 kW) ion thruster. This development effort has led to the fabrication and preliminary performance assessment of an 8 cm prototype xenon ion thruster operating over an input power envelope of 0.1-0.3 kW. Efficiencies for the thruster vary from 0.31 at 1750 seconds specific impulse at 0.1 kW, to about 0.48 at 2700 seconds specific impulse and 0.3 kW input power. Discharge losses for the thruster over this power range varied from about 320-380 W/A down to about 220-250 W/A. Ion optics performance compare favorably to that obtained with 30 cm ion optics, when scaled for the difference in beam area. The neutralizer, fabricated using 3 mm hollow cathode technology, operated at keeper currents of about 0.2-0.3 A, at a xenon flow rate of about 0.06 mg/s, over the 0.1-0.3 kW thruster input power envelope.
NASA Astrophysics Data System (ADS)
Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun
2017-08-01
We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.
Comparison of solar photospheric bright points between Sunrise observations and MHD simulations
NASA Astrophysics Data System (ADS)
Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.
2014-08-01
Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the center of the mean BP in both observations and simulations, consistent with the classical picture of a production of the asymmetry in the canopy. This is the first time that this has been found also in the internetwork. More or less vertical kilogauss magnetic fields are found for 98% of the synthetic BPs underlining that basically every BP is associated with kilogauss fields. At the continuum formation height, the simulated BPs are on average 190 K hotter than the mean quiet Sun, the mean BP field strength is found to be 1750 G, and the mean inclination is 17°, supporting the physical flux-tube paradigm to describe BPs. On average, the synthetic BPs harbor downflows increasing with depth. The origin of these downflows is not yet understood very well and needs further investigation.
Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier
NASA Astrophysics Data System (ADS)
Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.
2018-02-01
An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.
Preliminary design of a 100 kW turbine generator
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Sirocky, P. J.
1974-01-01
The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level.
NASA Technical Reports Server (NTRS)
Heilmann, W.
1985-01-01
Small- and medium-capacity gas turbines under development for turboprop aircraft and helicopter, as well as for armored and commercial vehicle propulsion, are discussed. Design problems related to axial turbines, ceramic components, regenerative gas turbines, and the optimal expansion ratios for turbines with capacities from 250 to greater than 800 kW are considered; in addition, combustion chamber technology is mentioned. Prototype gas turbines with capacities of 500 to 600 kW or 800 to 1800 kW are described.
Current status of Kumgang laser system
NASA Astrophysics Data System (ADS)
Kong, Hong Jin; Park, Sangwoo; Ahn, HeeKyung; Lee, Hwihyeong; Oh, Jungsuk; Kim, Jom Sool
2015-02-01
In KAIST, Kumgang laser is being developed for demonstration of the kW level coherent beam combination using stimulated Brillouin scattering phase conjugation mirrors. It will combine 4 modules of DPSSL rod amplifier which produces 1 kW output power. It is composed of the single frequency front-end, pre-amplifier module, and main amplifier. The output powers of the pre-amp and main amplifier module are 200 W (20 mJ @ 10 kHz / 10 ns) and 1.07kW (107 mJ @ 10 kHz / 10 ns), respectively.
Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements
NASA Astrophysics Data System (ADS)
Williams, P. A.; Hadler, J. A.; Cromer, C.; West, J.; Li, X.; Lehman, J. H.
2018-06-01
A primary-standard flowing-water optical power meter for measuring multi-kilowatt laser emission has been built and operated. The design and operational details of this primary standard are described, and a full uncertainty analysis is provided covering the measurement range from 1–10 kW with an expanded uncertainty of 1.2%. Validating measurements at 5 kW and 10 kW show agreement with other measurement techniques to within the measurement uncertainty. This work of the U.S. Government is not subject to U.S. copyright.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1986-01-01
The testing of two 25-cell stacks of the 13 inch x 23 inch cell size (about 4kW) was carried out for 7000 and 8400 hours, respectively. A 25kW stack containing 175 cells of the same size and based on the same technology was constructed and is on test. A third 4kW stack, which will contain 24 cells, will comprise several new technology features; these will be assesed for performance and durability in long-term testing.
SUMER observations detecting downward propagating waves in the solar transition region
NASA Technical Reports Server (NTRS)
Wikstol, O.; Judge, P. G.; Hansteen, V.; Wilhelm, K.; Schuehle, U.; Moran, T.
1997-01-01
The O IV density sensitive emission lines around 1400 A, using the solar ultraviolet measurement of emitted radiation (SUMER) instrument onboard the Solar and Heliospheric Observatory (SOHO), are reported on. The data for the quiet sun, obtained close to the disk center and the solar limb were acquired. A systematic correlation between a density sensitive emission line ratio and Doppler shift across the same emission profiles was obtained. The correlation is such that the density is higher in the downflowing than in the upflowing plasma. The results are in good agreement with the simulations of downward propagating waves.
Outer Planet Science Missions enabled by Solar Power
NASA Astrophysics Data System (ADS)
Kaplan, M.; Klaus, K.; Smith, D. B.
2009-12-01
Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered space craft. These spacecraft are flight proven with more than 60 years of in-space operation and are equipped with highly efficient solar arrays capable of up to 25kW in low earth orbit. Such a vehicle could generate nearly 1kW in the Jovian System. Our analysis shows substantially greater power at the end of mission with this solar array system than the system that is planned for use in the Europa Jupiter System Flagship mission study. In the next few years, a new solar array technology will be developed and demonstrated by DARPA that will provide even higher power. DARPA’s Fast Access Space Testbed (FAST) program objective is to develop a revolutionary approach to spacecraft high power generation. This high power generation Subsystem, when combined with electric propulsion, will form the technological basis for a light weight, high power, highly mobile spacecraft platform. The FAST program will demonstrate the implementation of solar concentrators and high flux solar cells in conjunction with high specific impulse electric propulsion, to produce a high performance, lightweight power and propulsion system. A basic FAST spacecraft design provides about 60 kW in LEO, which scales to > 2 kW at 5 AU, or a little less than 1 kW at 10 AU. In principle, higher power levels (120 kW or even 180kW at 1 AU) could be accommodated with this technology. We envision missions using this FAST array and NASA’s NEXT engines for solar electric propulsion (SEP) Jovian and Saturn system maneuvers. We envision FAST arrays to cost in the tens of millions, making this an affordable, plutonium-free way to do outer planets science. Continued funding will mean flight experiments conducted in the 2012 timeframe that could make this technology flight proven for the New Frontiers 4 opportunity.
Impact of Climate Change on Energy Production, Distribution, and Consumption in Russia
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.; Fedotova, E. V.
2018-05-01
An assessment of the overall impact of the observed and expected climatic changes on energy production, distribution, and consumption in Russia is presented. Climate model results of various complexity and evaluation data on the vulnerability of various energy production sectors to climate change are presented. It is shown that, due to the increase of air temperature, the efficiency of electricity production at thermal and nuclear power plants declines. According to the climate model results, the production of electricity at TPPs and NPPs by 2050 could be reduced by 6 billion kW h due to the temperature increase. At the same time, as a result of simulation, the expected increase in the rainfall amount and river runoff in Russia by 2050 could lead to an increase in the output of HPP by 4-6% as compared with the current level, i.e., by 8 billion kW h. For energy transmission and distribution, the climate warming will mean an increase in transmission losses, which, according to estimates, may amount to approximately 1 billion kW h by 2050. The increase of air temperature in summer will require higher energy consumption for air conditioning, which will increase by approximately 6 billion kW h by 2050. However, in total, the optimal energy consumption in Russia, corresponding to the postindustrial level, will decrease by 2050 by approximately 150 billion kW h as a result of climate- induced changes. The maximum global warming impact is focused on the heat demand sector. As a result of a decrease in the heating degree-days by 2050, the need for space heating is expected to fall by 10-15%, which will cause a fuel conservation sufficient for generating approximately 140 billion kW h of electricity. Hence, a conclusion about the positive direct impact of climate change on the Russia's energy sector follows, which is constituted in the additional available energy resource of approximately 300 billion kW h per year.
Lei, Chengmin; Gu, Yanran; Chen, Zilun; Wang, Zengfeng; Zhou, Pu; Ma, Yanxing; Xiao, Hu; Leng, Jinyong; Wang, Xiaolin; Hou, Jing; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin
2018-04-16
We demonstrate an all-fiber 7 × 1 signal combiner with an output core diameter of 50 μm for high power incoherent beam combining of seven self-made Yb-doped single-mode fiber lasers around a wavelength of 1080 nm and output power of 2 kW. 14.1 kW combined output power is achieved with a total transmission efficiency of higher than 98.5% and a beam quality of M 2 = 5.37, which is close to the theoretical results based on finite-difference beam propagation technique. To the best of our knowledge, this is the highest output power ever reported for all-fiber structure beam combining generation, which indicates the feasibility and potential of >10 kW high brightness incoherent beam combining based on an all-fiber signal combiner.
Preliminary Evaluation of a 10 kW Hall Thruster
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; McLean, Chris; McVey, John
1999-01-01
A 10 kW Hall thruster was characterized over a range of discharge voltages from 300-500 V and a range of discharge currents from 15-23 A. This corresponds to power levels from a low of 4.6 kW to a high of 10.7 kW. Over this range of discharge powers, thrust varied from 278 mN to 524 mN, specific impulse ranged from 1644 to 2392 seconds, and efficiency peaked at approximately 59%. A continuous 40 hour test was also undertaken in an attempt to gain insight with regard to long term operation of the engine. For this portion of the testing the thruster was operated at a discharge voltage of 500 V and a discharge current of 20 A. Steady-state temperatures were achieved after 3-5 hrs and very little variation in performance was detected.
Design study of wind turbines, 50 kW to 3000 kW for electric utility applications: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Preliminary designs of low power (50 to 500 kW) and high power (500 to 3000 kW) wind generator systems (WGS) for electric utility applications were developed. These designs provide the bases for detail design, fabrication, and experimental demonstration testing of these units at selected utility sites. Several feasible WGS configurations were evaluated, and the concept offering the lowest energy cost potential and minimum technical risk for utility applications was selected. The selected concept was optimized utilizing a parametric computer program prepared for this purpose. The utility requirements evaluation task examined the economic, operational and institutional factors affecting the WGS in a utility environment, and provided additional guidance for the preliminary design effort. Results of the conceptual design task indicated that a rotor operating at constant speed, driving an AC generator through a gear transmission is the most cost effective WGS configuration.
Performance of large area xenon ion thrusters for orbit transfer missions
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K.
1989-01-01
Studies have indicated that xenon ion propulsion systems can enable the use of smaller Earth-launch vehicles for satellite placement which results in significant cost savings. These analyses have assumed the availability of advanced, high power ion thrusters operating at about 10 kW or higher. A program was initiated to explore the viability of operating 50 cm diameter ion thrusters at this power level. Operation with several discharge chamber and ion extraction grid set combinations has been demonstrated and data were obtained at power levels to 16 kW. Fifty cm diameter thrusters using state of the art 30 cm diameter grids or advanced technology 50 cm diameter grids allow discharge power and beam current densities commensurate with long life at power levels up to 10 kW. In addition, 50 cm diameter thrusters are shown to have the potential for growth in thrust and power levels beyond 10 KW.
Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve
2002-01-01
NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.
Efficient 10 kW diode-pumped Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto
2003-03-01
As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker
The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and communitymore » outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.« less
Acousto-optic modulation in diode pumped solid state lasers
NASA Astrophysics Data System (ADS)
Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek
2007-02-01
The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.
Thermal modeling of tanks 241-AW-101 and 241-AN-104 with the TEMPEST code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Recknagle, K.P.
The TEMPEST code was exercised in a preliminary study of double-shell Tanks 241 -AW-101 and 241-AN-104 thermal behavior. The two-dimensional model used is derived from our earlier studies on heat transfer from Tank 241-SY-101. Several changes were made to the model to simulate the waste and conditions in 241-AW-101 and 241-AN-104. The nonconvective waste layer was assumed to be 254 cm (100 in.) thick for Tank 241-AW-101, and 381 cm (150 in.) in Tank 241-AN-104. The remaining waste was assumed, for each tank, to consist of a convective layer with a 7.6-cm (3-inch) crust on top. The waste heat loadsmore » for 241-AW-101 and 241-AN-104 were taken to be 10 kW (3.4E4 Btu/hr) and 12 kW (4.0E4 Btu/hr), respectively. Present model predictions of maximum and convecting waste temperatures are within 1.7{degrees}C (3{degrees}F) of those measured in Tanks 241-AW-101 and 241-AN-104. The difference between the predicted and measured temperature is comparable to the uncertainty of the measurement equipment. These models, therefore, are suitable for estimating the temperatures within the tanks in the event of changing air flows, waste levels, and/or waste configurations.« less
An automated gas exchange tank for determining gas transfer velocities in natural seawater samples
NASA Astrophysics Data System (ADS)
Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.
2014-07-01
In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.
An automated gas exchange tank for determining gas transfer velocities in natural seawater samples
NASA Astrophysics Data System (ADS)
Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.
2014-02-01
In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.
Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve
2001-01-01
The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.
A simulation for predicting potential cooling effect on LPG-fuelled vehicles
NASA Astrophysics Data System (ADS)
Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.
2016-03-01
Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.
NASA Technical Reports Server (NTRS)
Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani
2012-01-01
In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.
Liu, Shude; Sankar, Kalimuthu Vijaya; Kundu, Aniruddha; Ma, Ming; Kwon, Jang-Yeon; Jun, Seong Chan
2017-07-05
Transition-metal-based heteronanoparticles are attracting extensive attention in electrode material design for supercapacitors owing to their large surface-to-volume ratios and inherent synergies of individual components; however, they still suffer from limited interior capacity and cycling stability due to simple geometric configurations, low electrochemical activity of the surface, and poor structural integrity. Developing an elaborate architecture that endows a larger surface area, high conductivity, and mechanically robust structure is a pressing need to tackle the existing challenges of electrode materials. This work presents a supercapacitor electrode consisting of honeycomb-like biphasic Ni 5 P 4 -Ni 2 P (Ni x P y ) nanosheets, which are interleaved by large quantities of nanoparticles. The optimized Ni x P y delivers an ultrahigh specific capacity of 1272 C g -1 at a current density of 2 A g -1 , high rate capability, and stability. An asymmetric supercapacitor employing as-synthesized Ni x P y as the positive electrode and activated carbon as the negative electrode exhibits significantly high power and energy densities (67.2 W h kg -1 at 0.75 kW kg -1 ; 20.4 W h kg -1 at 15 kW kg -1 ). These results demonstrate that the novel nanostructured Ni x P y can be potentially applied in high-performance supercapacitors.
Diffraction and pulse slippage in the Boeing 1 kW FEL oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, J.; Wong, R.K.; Colson, W.B.
1995-12-31
A four-dimensional simulation in x, y, z, and t, including betatron motion of the electrons, is used to study the combined effects of diffraction, pulse slippage and desynchronism in the Boeing 1 kW FEL oscillator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang Pham
A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.
NASA Technical Reports Server (NTRS)
Martinelli, R. M.
1977-01-01
A 1-kW capacitor-diode voltage multiplier (CDVM) was designed, fabricated and tested to demonstrate the power of feasibility of high power CDVM's and to verify the analytical techniques that had been used to predict the performance characteristics of a 6-kw CDVM. High efficiency (96.2%), a low ratio of component weight to power (0.55 kg/kW), and low output ripple voltage (less than 1%, peak to peak) were obtained during the operation of a 1-kW CDVM various input line, load current, and load fault conditions.
Design of 28 GHz, 200 kW Gyrotron for ECRH Applications
NASA Astrophysics Data System (ADS)
Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.
2013-01-01
This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.
Performance of a 100 kW class applied field MPD thruster
NASA Technical Reports Server (NTRS)
Mantenieks, Maris A.; Sovey, James S.; Myers, Roger M.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.
1989-01-01
Performance of a 100 kW, applied field magnetoplasmadynamic (MPD) thruster was evaluated and sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. Thermal efficiencies as high as 60 percent, thrust efficiencies up to 21 percent, and specific impulses of up to 1150 s were attained with argon propellant. Thrust levels up to 2.5 N were directly measured with an inverted pendulum thrust stand at discharge input powers up to 57 kW. It was observed that thrust increased monotonically with the product of arc current and magnet current.
DGIC Interconnection Insights | Distributed Generation Interconnection
Up to 2 MW 5 15 20 NJ 3 Up to 10 kW 3 10 13 Up to 2 MW 3 15 18 CO 4 Up to 10 kW 10 15 25 Up to 2 MW Screens) Total Days for Application Review and Aproval CA 4 Up tp 2 MW 10 15 25 NY 3 Up to 50 kW 5 10 15 10 15 30 AZ N/A. As of the writing of this report, Arizona has no standard timeframe requirements in
Omega Navigation System Course Book. Volume 2
1994-07-01
STATION ID LOCATION LATITUDE LONGITUDE FREQUENCY RADIATED (kHz) POWER (kW) GBR§ Rugby , U.K. 52022’N 1011’W 16.0 45 JxZ§ Noviken, Norway 66058’N 13053’E...FREQUENCY RADIATEDIDENTIFICATION LOCATION (o)dg)kz)POWER(dog) (dog) (kHz) (kW) GBR Rugby , England 52.37N 1.19W 16.0 45 JXZ Noviken, Norway 66.97N 13.89E...IDENTIFICATION FREQUENCY RADIATED LOCATION LATITUDE LONGITUDE (kHz) POWER (kW) (deg) (deg) GBR 16.0 45 Rugby , England 52.37 N 1.19W JHZ 16.4 45 Noviken
Inverter design for high frequency power distribution
NASA Technical Reports Server (NTRS)
King, R. J.
1985-01-01
A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.
Cold Weather Wind Turbines: A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization
NASA Technical Reports Server (NTRS)
Flynn, Michael; Bubenheim, David; Chiang, Erick; Goldman, Peter; Kohout, Lisa; Norton, Gary; Kliss, Mark (Technical Monitor)
1997-01-01
Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The National Science Foundation (NSF), NASA, and the Department of Energy (DOE) have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIRs independently managed by each agency but coordinated by NASA. The NSF grant addressed issues associated with the South Pole application and a 3 kW direct drive unit is being tested there in anticipation of the 100 kW unit operation. The DOE-NREL contract focused on development of the 100 kW direct drive generator. The NASA SBIR focused on the development of the 100 kW direct drive wind turbine. The success of this effort has required coordination and team involvement of federal agencies and the industrial partners. Designs of the wind turbine and component performance testing results will be presented. Plans for field testing of wind turbines, based on this design, in village energy systems in Alaska and in energy production at the South Pole Station will be discussed. Also included will be a discussion of terrestrial and space use of hybrid energy systems, including renewable energy sources, such as the wind turbine, to support remote communities.
13kW Advanced Electric Propulsion Flight System Development and Qualification
NASA Technical Reports Server (NTRS)
Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris;
2017-01-01
The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Larry Chick
2003-05-20
The objective of Phase I under this project is to develop a 5 kW SOFC power system for a range of fuels and applications. During Phase I, the following will be accomplished: 1. Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A). 2. Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate catalytic partial oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. Thismore » topical report covers work performed by Delphi Automotive Systems from January through June 2002 under DOE Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: 1. System Design and Integration 2. SOFC Stack Development 3. Reformer Development The next anticipated Technical Progress Report will be submitted January 30, 2003 and will include tasks contained within the cooperative agreement including development work on the Demonstration System A, if available.« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-06-09
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less
Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Akanksha, E-mail: bhuaks29@gmail.com; Jain, Akansha, E-mail: akansha007@rediffmail.com; Sarma, Birinchi K., E-mail: birinchi_ks@yahoo.com
2013-05-15
Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW andmore » FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC.« less
Integral inverter/battery charger for use in electric vehicles
NASA Technical Reports Server (NTRS)
Thimmesch, D.
1983-01-01
The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).
NASA Astrophysics Data System (ADS)
Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf
2011-10-01
In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.
Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; ...
2016-01-25
Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E →xB → convection away from the arcmore » (poleward) and downflows of hundreds of m s -1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s -1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less
Thermodynamics of supra-arcade downflows in solar flares
NASA Astrophysics Data System (ADS)
Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin
2017-10-01
Context. Supra-arcade downflows (SADs) have been frequently observed during the gradual phase of solar flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the diffuse fan-shaped "haze" above, flowing toward the well-defined flare arcade. Aims: We aim to investigate the evolution of SADs' thermal properties, and to shed light on the formation mechanism and physical processes of SADs. Methods: We carefully studied several selected SADs from two flare events and calculated their differential emission measures (DEMs) as well as DEM-weighted temperatures using data obtained by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Results: Our analysis shows that SADs are associated with a substantial decrease in DEM above 4 MK, which is 1-3 orders of magnitude smaller than the surrounding haze as well as the region before or after the passage of SADs, but comparable to the quiet corona. There is no evidence for the presence of the SAD-associated hot plasma (>20 MK) in the AIA data, and this decrease in DEM does not cause any significant change in the DEM distribution as well as the DEM-weighted temperature, which supports this idea that SADs are density depletion. This depression in DEM rapidly recovers in the wake of the SADs studied, generally within a few minutes, suggesting that they are discrete features. In addition, we found that SADs in one event are spatio-temporally associated with the successive formation of post-flare loops along the flare arcade. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org
Contagious Coronal Heating from Recurring Emergence of Magnetic Flux
NASA Astrophysics Data System (ADS)
Moore, R. L.; Falconer, D. A.; Sterling, A. C.
2002-01-01
For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emergence within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We Also Note That The Reason For The recurrence of flux emergence in old active regions may be that active-region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.
Supra Arcade Downflows in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Kobelski, A.; Savage, S. L.; Malaspina, D.
2017-12-01
Pinpointing the location of a single reconnection event in the corona is difficult due to observational constraints, although features directly resulting from this rapid reconfiguration of the field lines can be observed beyond the reconnection site. One set of such features are outflows in the form of post-reconnection loops, which have been linked to observations of supra-arcade downflows (SADs). SADs appear as sunward-traveling, density-depleted regions above flare arcades that develop during long duration eruptions. The limitations of remote sensing methods inherently results in ambiguities regarding the interpretation of SAD formation. Of particular interest is how these features are related to post-reconnection retracting magnetic field lines. In planetary magnetospheres, similar events to solar flares occur in the form of substorms, where reconnection in the anti-sunward tail of the magnetosphere causes field lines to retract toward the planet. Using data from the Time History of Events and Macroscopic Interactions during Substorms (THEMIS), we compare one particular aspect of substorms, dipolarization fronts, to SADs. Dipolarization fronts are observed as rapid but temporary changes in the magnetic field of the magnetotail plasma sheet into a more potential-like dipolar shape. These dipolarization fronts are believed to be retracting post-reconnection field lines. We combine data sets to show that the while the densities and magnetic fields involved vary greatly between the regimes, the plasma βs and Alfvén speeds are similar. These similarities allow direct comparison between the retracting field lines and their accompanying wakes of rarified plasma observed with THEMIS around the Earth to the observed morphological density depletions visible with XRT and AIA on the Sun. These results are an important source of feedback for models of coronal current sheets.
Pribnow, D.F.C.; Schutze, C.; Hurter, S.J.; Flechsig, C.; Sass, J.H.
2003-01-01
Temperatures of 100??C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800??C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Pecle??t-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a-1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 100 to >103 ??m down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber. ?? 2003 Elsevier B.V. All rights reserved.
Contagious Coronal Heating from Recurring Emergence of Magnetic Flux
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Falconer, David; Sterling, Alphonse; Whitaker, Ann F. (Technical Monitor)
2001-01-01
For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emerge= within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We also note that the reason for the recurrence of flux emergence in old active regions may be that active region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program.
Traversari, A A L; Bottenheft, C; van Heumen, S P M; Goedhart, C A; Vos, M C
2017-02-01
Switching off air handling systems in operating theaters during periods of prolonged inactivity (eg, nights, weekends) can produce a substantial reduction of energy expenditure. However, little evidence is available regarding the effect of switching off the air handling system during periods of prolonged inactivity on the air quality in operating theaters during operational periods. The aim of this study is to determine the amount of time needed after restarting the ventilation system to return to a stable situation, with air quality at least equal to the situation before switching off the system. Measurements were performed in 3 operating theaters, all of them equipped with a unidirectional downflow (UDF) system. Measurements (particle counts of emitted particles with a particle size ≥0.5 µm) were taken during the start-up of the ventilation system to determine when prespecified degrees of protection were achieved. Temperature readings were taken to determine when a stable temperature difference between the periphery and the protected area was reached, signifying achievement of a stable condition. After starting up the system, the protected area achieved the required degrees of protection within 20 minutes (95% upper confidence limit). A stable temperature difference was achieved within 23 minutes (95% upper confidence limit). Both findings lie well within the period of 25 minutes normally required for preparations before the start of surgical procedures. Switching off the ventilation system during prolonged inactivity (during the night and weekend) has no negative effect on the air quality in UDF operating theaters during normal operational hours. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pribnow, Daniel F. C.; Schütze, Claudia; Hurter, Suzanne J.; Flechsig, Christina; Sass, John H.
2003-10-01
Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclét-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a -1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 10 0 to >10 3 Ωm down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber.
Magnetic structure of an activated filament in a flaring active region
NASA Astrophysics Data System (ADS)
Sasso, C.; Lagg, A.; Solanki, S. K.
2014-01-01
Aims: While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We report observational results on the magnetic field structure of an activated filament in a flaring active region. In particular, we studied its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displayed signs of rotation. Methods: We inverted the Stokes profiles of the chromospheric He i 10 830 Å triplet and the photospheric Si i 10 827 Å line observed in this filament by the Vacuum Tower Telescope on Tenerife. Using these inversion results, we present and interpret the first maps of the velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Results: Up to five different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of the filament, while the downflows are concentrated along its periphery. Moreover, the upflowing gas is associated with an opposite-polarity magnetic configuration with respect to the photosphere, while the downflowing gas is associated with a same-polarity configuration. Conclusions: The activated filament has a very complex structure. Nonetheless, it is compatible with a flux rope, albeit a distorted one, in the normal configuration. The observations are best explained by a rising flux rope in which part of the filament material is still stably stored (upflowing material, rising with the field), while the rest is no longer stably stored and flows down along the field lines. The movie is available in electronic form at http://www.aanda.org
Supra Arcade Downflows in the Earth's Magnetotail
NASA Technical Reports Server (NTRS)
Kobelski, Adam; Savage, Sabrina L.; Malaspina, David M.
2017-01-01
Pinpointing the location of a single reconnection event in the corona is difficult due to observational constraints, although features directly resulting from this rapid reconfiguration of the field lines can be observed beyond the reconnection site. One set of such features are outflows in the form of post-reconnection loops, which have been linked to observations of supra-arcade downflows (SADs). SADs appear as sunward-traveling, density-depleted regions above flare arcades that develop during long duration eruptions. The limitations of remote sensing methods inherently results in ambiguities regarding the interpretation of SAD formation. Of particular interest is how these features are related to post-reconnection retracting magnetic field lines. In planetary magnetospheres, similar events to solar flares occur in the form of substorms, where reconnection in the anti-sunward tail of the magnetosphere causes field lines to retract toward the planet. Using data from the Time History of Events and Macroscopic Interactions during Substorms (THEMIS), we compare one particular aspect of substorms, dipolarization fronts, to SADs. Dipolarization fronts are observed as rapid but temporary changes in the magnetic field of the magnetotail plasma sheet into a more potential-like dipolar shape. These dipolarization fronts are believed to be retracting post-reconnection field lines. We combine data sets to show that the while the densities and magnetic fields involved vary greatly between the regimes, the plasma betas and Alfvén speeds are similar. These similarities allow direct comparison between the retracting field lines and their accompanying wakes of rarified plasma observed with THEMIS around the Earth to the observed morphological density depletions visible with XRT and AIA on the Sun. These results are an important source of feedback for models of coronal current sheets.
Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi; Syutsubo, Kazuaki
2017-05-01
In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m -3 day -1 , COD and NH 4 + -N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2-8 % to 51-65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m -3 day -1 ), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15-46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29-56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, P. A.; Lynch, K. A.; Zettergren, M.
Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E →xB → convection away from the arcmore » (poleward) and downflows of hundreds of m s -1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s -1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less
Design of hydraulic output Stirling engine
NASA Technical Reports Server (NTRS)
Toscano, W. M.; Harvey, A. C.; Lee, K.
1983-01-01
A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.
Benefits of 20 kHz PMAD in a nuclear space station
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1987-01-01
Compared to existing systems, high frequency ac power provides higher efficiency, lower cost, and improved safety benefits. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources; photovoltaic, solar dynamic, rotating machines and nuclear. A 25 kW, 20 kHz ac power distribution system testbed was recently (1986) developed. The testbed possesses maximum flexibility, versatility, and transparency to user technology while maintaining high efficiency, low mass, and reduced volume. Several aspects of the 20 kHz power management and distribution (PMAD) system that have particular benefits for a nuclear power Space Station are discussed.
Performance Characterization of the Air Force Transformational Satellite 12 kW Hall Thruster
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas W.; Smith, Timothy; Herman, Daniel; Huang, Wensheng; Shastry, Rohit; Peterson, Peter; Mathers, Alex
2013-01-01
The STMD GCD ISP project is tasked with developing, maturing, and testing enabling human exploration propulsion requirements and potential designs for advanced high-energy, in-space propulsion systems to support deep-space human exploration and reduce travel time between Earth's orbit and future destinations for human activity. High-power Hall propulsion systems have been identified as enabling technologies and have been the focus of the activities at NASA Glenn-In-house effort to evaluate performance and interrogate operation of NASA designed and manufactured Hall thrusters. Evaluate existing high TRL EP devices that may be suitable for implementation in SEP TDM.
Methodology of shell structure reinforcement layout optimization
NASA Astrophysics Data System (ADS)
Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof
2018-01-01
This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.
Test results of a 40-kW Stirling engine and comparison with the NASA Lewis computer code predictions
NASA Technical Reports Server (NTRS)
Allen, David J.; Cairelli, James E.
1988-01-01
A Stirling engine was tested without auxiliaries at Nasa-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were: (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations from those predicted by the code. The silicon carbide foam generators appear to be structurally suitable, but the foam matrix showed severely reduced performance.
NASA Astrophysics Data System (ADS)
Xie, Y. J.; Ho, Y. K.; Cao, N.; Shao, L.; Pang, J.; Chen, Z.; Zhang, S. Y.; Liu, J. R.
2003-11-01
By taking account of the high-order corrections to the paraxial approximation of a Gaussian beam, it has been verified that for a focused laser beam propagating in vacuum, there indeed exists a subluminous wave phase velocity region surrounding the laser beam axis. The magnitude of the phase velocity scales as Vϕm∼ c(1+ b/( kw0) 2), where Vϕm is the phase velocity of the wave, c is the speed of light in vacuum, w0 is the beam width at focus. This feature gives a reasonable explanation for the mechanism of capture and acceleration scenario.
NASA Astrophysics Data System (ADS)
Gu, Fei; Brouwer, Jack; Samuelsen, Scott
2013-09-01
Recent advances in inverter technology have enabled ancillary services such as volt/VAR regulation, SCADA communications, and active power filtering. Smart inverters can not only provide real power, but can be controlled to use excess capacity to provide reactive power compensation, power flow control, and active power filtering without supplementary inverter hardware. A transient level inverter model based on the Solectria 7700 inverter is developed and used to assess these control strategies using field data from an existing branch circuit containing two Amonix 68kW CPV-7700 systems installed at the University of California, Irvine.
Staging laparoscopy improves treatment decision-making for advanced gastric cancer.
Hu, Yan-Feng; Deng, Zhen-Wei; Liu, Hao; Mou, Ting-Yu; Chen, Tao; Lu, Xin; Wang, Da; Yu, Jiang; Li, Guo-Xin
2016-02-07
To evaluate the clinical value of staging laparoscopy in treatment decision-making for advanced gastric cancer (GC). Clinical data of 582 patients with advanced GC were retrospectively analyzed. All patients underwent staging laparoscopy. The strength of agreement between computed tomography (CT) stage, endoscopic ultrasound (EUS) stage, laparoscopic stage, and final stage were determined by weighted Kappa statistic (Kw). The number of patients with treatment decision-changes was counted. A χ(2) test was used to analyze the correlation between peritoneal metastasis or positive cytology and clinical characteristics. Among the 582 patients, the distributions of pathological T classifications were T2/3 (153, 26.3%), T4a (262, 45.0%), and T4b (167, 28.7%). Treatment plans for 211 (36.3%) patients were changed after staging laparoscopy was performed. Two (10.5%) of 19 patients in M1 regained the opportunity for potential radical resection by staging laparoscopy. Unnecessary laparotomy was avoided in 71 (12.2%) patients. The strength of agreement between preoperative T stage and final T stage was in almost perfect agreement (Kw = 0.838; 95% confidence interval (CI): 0.803-0.872; P < 0.05) for staging laparoscopy; compared with CT and EUS, which was in fair agreement. The strength of agreement between preoperative M stage and final M stage was in almost perfect agreement (Kw = 0.990; 95% CI: 0.977-1.000; P < 0.05) for staging laparoscopy; compared with CT, which was in slight agreement. Multivariate analysis revealed that tumor size (≥ 40 mm), depth of tumor invasion (T4b), and Borrmann type (III or IV) were significantly correlated with either peritoneal metastasis or positive cytology. The best performance in diagnosing P-positive was obtained when two or three risk factors existed. Staging laparoscopy can improve treatment decision-making for advanced GC and decrease unnecessary exploratory laparotomy.
Han, Shu-ying; Liang, Chao; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan
2012-02-03
The retention factor corresponding to pure water in reversed-phase high performance liquid chromatography (RP-HPLC), k(w), was commonly obtained by extrapolation of retention factor (k) in a mixture of organic modifier and water as mobile phase in tedious experiments. In this paper, a relationship between logk(w) and logk for directly determining k(w) has been proposed for the first time. With a satisfactory validation, the approach was confirmed to enable easy and accurate evaluation of k(w) for compounds in question with similar structure to model compounds. Eight PCB congeners with different degree of chlorination were selected as a training set for modeling the logk(w)-logk correlation on both silica-based C(8) and C(18) stationary phases to evaluate logk(w) of sample compounds including seven PCB, six PBB and eight PBDE congeners. These eight model PCBs were subsequently combined with seven structure-similar benzene derivatives possessing reliable experimental K(ow) values as a whole training set for logK(ow)-logk(w) regressions on the two stationary phases. Consequently, the evaluated logk(w) values of sample compounds were used to determine their logK(ow) by the derived logK(ow)-logk(w) models. The logK(ow) values obtained by these evaluated logk(w) were well comparable with those obtained by experimental-extrapolated logk(w), demonstrating that the proposed method for logk(w) evaluation in this present study could be an effective means in lipophilicity study of environmental contaminants with numerous congeners. As a result, logK(ow) data of many PCBs, PBBs and PBDEs could be offered. These contaminants are considered to widely exist in the environment, but there have been no reliable experimental K(ow) data available yet. Copyright © 2011 Elsevier B.V. All rights reserved.
Usage, Utility, and Usability of the Knowledge Wall During the Global 2000 War Game
2001-08-01
evaluation during the Global 2000 War Game. The prototype KW was designed to meet 14 user requirements identified in a previous cognitive task analysis of potential KW users. This report presents the results of the evaluation.
13. VIEW OF WESTINGHOUSE STEAM TURBINE. 1500 kilowatt (max kw ...
13. VIEW OF WESTINGHOUSE STEAM TURBINE. 1500 kilowatt (max kw 1875). AC Westinghouse generator (1875 KVA, 2400 volts, 450 amps, 3 phase, 60 cycles). - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
..., 5.5-acre impoundment with a normal water surface elevation of 1140.4 feet National Geodetic Vertical... (kW) turbine-generating unit and 260-kW turbine-generating unit for a total installed capacity of 400...
Solar Array Structures for 300 kW-Class Spacecraft
NASA Technical Reports Server (NTRS)
Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy
2013-01-01
State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.
NASA Astrophysics Data System (ADS)
Tang, C. J.; Fernandes, A. J. S.; Girão, A. V.; Pereira, S.; Shi, Fa-Nian; Soares, M. R.; Costa, F.; Neves, A. J.; Pinto, J. L.
2014-03-01
In this work, we study the growth habit of nanocrystalline diamond (NCD) films by exploring the very high power regime, up to 4 kW, in a 5 kW microwave plasma chemical vapour deposition (MPCVD) reactor, through addition of a small amount of nitrogen and oxygen (0.24%) into 4% CH4 in H2 plasma. The coupled effect of high microwave power and substrate temperature on NCD growth behaviour is systematically investigated by varying only power, while fixing the remaining operating parameters. When the power increases from 2 kW to 4 kW, resulting also in rise of the Si substrate temperature higher than 150 °C, the diamond films obtained maintain the NCD habit, while the growth rate increases significantly. The highest growth rate of 4.6 μm/h is achieved for the film grown at 4 kW, which represents a growth rate enhancement of about 15 times compared with that obtained when using 2 kW power. Possible factors responsible for such remarkable growth rate enhancement of the NCD films are discussed. The evolution of NCD growth characteristics such as morphology, microstructure and texture is studied by growing thick films and comparing it with that of large grain polycrystalline (PCD) films. One important characteristic of the NCD films obtained, in contrast to PCD films, is that irrespective of deposition time (i.e. film thickness), their grain size and surface roughness remain in the nanometer range throughout the growth. Finally, based on our present and previous experimental results, a potential parameter window is established for fast growth of NCD films under high power conditions.
Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.
Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang
2017-07-01
Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
NASA Technical Reports Server (NTRS)
Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge
2015-01-01
Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... design change that includes two horizontal Francis turbines and a single horizontal generator on a common shaft. The nameplate capacity of the project would increase from 650 kW to 1,100 kW, and the hydraulic...
The Greenhouse Gas Technology Center (GHG Center), one of six verification organizations under the Environmental Technology Verification (ETV) program, evaluated the performance of the Parallon 75 kW Turbogenerator (Turbogenerator) with carbon monoxide (CO) emissions control syst...
The 25 kW power module evolution study. Part 2: Payload supports system evolution
NASA Technical Reports Server (NTRS)
1978-01-01
The addition of system elements for the 25 kW power module and logical evolutionary paths, by discrete growth stages, to provide capability for accommodating the increasing mission requirements through the early 1990's within reasonable resources are conceptualized.
23. AC GENERATOR, ALLISCHALMERS SN #1246797, MFG. MILWAUKEE, KW 1600 ...
23. AC GENERATOR, ALLIS-CHALMERS SN #1246797, MFG. MILWAUKEE, KW 1600 PF 80 C/O VOLTS 2300 AMPS 503 CY 60 PH 3 RMP 164 EXC VOLTS 125 AMPS MAN 300 - Columbia Canal & Power Plant, Waterfront of Broad River, Columbia, Richland County, SC
Noninductive RF startup in CDX-U
NASA Astrophysics Data System (ADS)
Jones, B.; Majeski, R.; Efthimion, P.; Kaita, R.; Menard, J.; Munsat, T.; Takase, Y.
1998-11-01
For the spherical torus (ST) to prove viable as a reactor, it will be necessary to devise techniques for noninductive plasma startup. Initial studies of noninductive plasma initiation have been performed on CDX-U, using the 100 kW high harmonic fast wave (HHFW) system in combination with the 1 kW 2.45 GHz electron cyclotron heating system used for breakdown. Modest density (ne ~ 10^12 cm-3), low temperature (5 eV) plasmas were formed, but the density profile was peaked far off-axis, very near the HHFW antenna. High neutral fill pressures were also required. In upcoming experiments, up to 500 kW of low frequency RF power will utilized for heating and noninductive current drive in the mode conversion regime in a target noninductive plasma formed by a combination of 5.6 and 14 GHz ECH (40 kW total). Modeling will be presented which indicates that startup to plasma currents of 60 kA is feasible with this system.
Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida.
Singh, Akanksha; Jain, Akansha; Sarma, Birinchi K; Abhilash, P C; Singh, Harikesh B
2013-05-01
Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC-water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC-soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1976-01-01
In the conceptual design task, several feasible wind generator systems (WGS) configurations were evaluated, and the concept offering the lowest energy cost potential and minimum technical risk for utility applications was selected. In the optimization task, the selected concept was optimized utilizing a parametric computer program prepared for this purpose. In the preliminary design task, the optimized selected concept was designed and analyzed in detail. The utility requirements evaluation task examined the economic, operational, and institutional factors affecting the WGS in a utility environment, and provided additional guidance for the preliminary design effort. Results of the conceptual design task indicated that a rotor operating at constant speed, driving an AC generator through a gear transmission is the most cost effective WGS configuration. The optimization task results led to the selection of a 500 kW rating for the low power WGS and a 1500 kW rating for the high power WGS.
1 MeV, 10 kW DC electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.
2016-03-01
Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.
Evolutionary growth for Space Station Freedom electrical power system
NASA Technical Reports Server (NTRS)
Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike
1989-01-01
Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.