Sample records for existing atf extraction

  1. ATF neutral beam injection: optimization of beam alignment and aperturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.N.; Fowler, R.H.; Rome, J.A.

    1985-12-01

    The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less

  2. A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; /slac; Sugahara, Ryuhei

    2011-02-07

    In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus systemmore » to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.« less

  3. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element.

    PubMed

    Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R

    1994-10-01

    We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the ATF/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60v-src induction. E-box mutation has no effect on the fold induction in response to pp60v-src. In contrast, ATF/CRE mutation attenuates the pp60v-src response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. Our data suggest that Ras mediates pp60v-src activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element.

  4. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan

    2013-02-01

    Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

  5. Vitex rotundifolia Fruit Extract Induces Apoptosis Through the Downregulation of ATF3-Mediated Bcl-2 Expression in Human Colorectal Cancer Cells.

    PubMed

    Song, Hun Min; Park, Gwang Hun; Koo, Jin Suk; Jeong, Hyung Jin; Jeong, Jin Boo

    2017-01-01

    Fruit from Vitex rotundifolia L. (VF) has been reported to initiate apoptosis in human colorectal cancer cells through the accumulation of reactive oxygen species. Since various regulatory factors are involved in the apoptotic pathway, further study of the potential mechanisms of VF associated with the induction of apoptosis may be important despite the fact that the molecular target of VF for apoptosis has already been elucidated. In this study, we showed a new potential mechanism for the relationship between VF-mediated ATF3 expression and apoptosis to better understand the apoptotic mechanism of VF in human colorectal cancer cells. VF reduced the cell viability and induced apoptosis in human colorectal cancer cells. VF treatment increased both the protein and mRNA level of ATF3 and upregulated ATF3 promoter activity. The cis-element responsible for ATF3 transcriptional activation by VF was CREB which is located between [Formula: see text]147 to [Formula: see text]85 of ATF3 promoter. Inhibitions of ERK1/2, p38, JNK and GSK3[Formula: see text] blocked VF-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of PARP by VF, while ATF3 overexpression increased VF-mediated cleaved PARP. ATF3 knockdown also attenuated VF-mediated cell viability and cell death. In addition, VF downregulated Bcl-2 expression at both protein and mRNA level. ATF3 knockdown by ATF3 siRNA blocked VF-mediated downregulation of Bcl-2. In conclusion, VF may activate ATF3 expression through transcriptional regulation and subsequently suppress Bcl-2 expression as an anti-apoptotic protein, which may result in the induction of apoptosis in human colorectal cancer cells.

  6. XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response

    PubMed Central

    Lee, Ann-Hwee; Iwakoshi, Neal N.; Glimcher, Laurie H.

    2003-01-01

    The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER). We have investigated here the contribution of the UPR transcription factors XBP-1, ATF6α, and ATF6β to UPR target gene expression. Gene profiling of cell lines lacking these factors yielded several XBP-1-dependent UPR target genes, all of which appear to act in the ER. These included the DnaJ/Hsp40-like genes, p58IPK, ERdj4, and HEDJ, as well as EDEM, protein disulfide isomerase-P5, and ribosome-associated membrane protein 4 (RAMP4), whereas expression of BiP was only modestly dependent on XBP-1. Surprisingly, given previous reports that enforced expression of ATF6α induced a subset of UPR target genes, cells deficient in ATF6α, ATF6β, or both had minimal defects in upregulating UPR target genes by gene profiling analysis, suggesting the presence of compensatory mechanism(s) for ATF6 in the UPR. Since cells lacking both XBP-1 and ATF6α had significantly impaired induction of select UPR target genes and ERSE reporter activation, XBP-1 and ATF6α may serve partially redundant functions. No UPR target genes that required ATF6β were identified, nor, in contrast to XBP-1 and ATF6α, did the activity of the UPRE or ERSE promoters require ATF6β, suggesting a minor role for it during the UPR. Collectively, these results suggest that the IRE1/XBP-1 pathway is required for efficient protein folding, maturation, and degradation in the ER and imply the existence of subsets of UPR target genes as defined by their dependence on XBP-1. Further, our observations suggest the existence of additional, as-yet-unknown, key regulators of the UPR. PMID:14559994

  7. Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters

    PubMed Central

    Verstrepen, Kevin J.; Van Laere, Stijn D. M.; Vanderhaegen, Bart M. P.; Derdelinckx, Guy; Dufour, Jean-Pierre; Pretorius, Isak S.; Winderickx, Joris; Thevelein, Johan M.; Delvaux, Freddy R.

    2003-01-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes. PMID:12957907

  8. A TAD further: exogenous control of gene activation.

    PubMed

    Mapp, Anna K; Ansari, Aseem Z

    2007-01-23

    Designer molecules that can be used to impose exogenous control on gene transcription, artificial transcription factors (ATFs), are highly desirable as mechanistic probes of gene regulation, as potential therapeutic agents, and as components of cell-based devices. Recently, several advances have been made in the design of ATFs that activate gene transcription (activator ATFs), including reports of small-molecule-based systems and ATFs that exhibit potent activity. However, the many open mechanistic questions about transcriptional activators, in particular, the structure and function of the transcriptional activation domain (TAD), have hindered rapid development of synthetic ATFs. A compelling need thus exists for chemical tools and insights toward a more detailed portrait of the dynamic process of gene activation.

  9. Anti-inflammatory effect of the extracts from the branch of Taxillus yadoriki being parasitic in Neolitsea sericea in LPS-stimulated RAW264.7 cells.

    PubMed

    Park, Su Bin; Park, Gwang Hun; Kim, Ha Na; Son, Ho-Jun; Song, Hun Min; Kim, Hyun-Seok; Jeong, Hyung Jin; Jeong, Jin Boo

    2018-05-11

    Mistletoe has been used as the herbal medicine to treat hypertension, diabetes mellitus, inflammation, arthritis and viral infection. In this study, we evaluated the anti-inflammatory effect of extracts of branch from Taxillus yadoriki being parasitic in Neolitsea sericea (TY-NS-B) using in vitro model. TY-NS-B significantly inhibited LPS-induced secretion of NO and PGE 2 in RAW264.7 cells. TY-NS-B was also observed to inhibit LPS-mediated iNOS COX-2 expression. In addition, TY-NS-B attenuated production of inflammatory cytokines such as TNF-α and IL-1β induced by LPS. TY-NS-B blocked LPS-mediated inhibitor of IκB-α, and inhibited p65 translocation to the nucleus and NF-κB activation. Furthermore, TY-NS-B reduced the phosphorylation of MAPKs such as p38 and JNK, but not ERK1/2. In addition, TY-NS-B increased ATF3 expression and ATF3 knockdown by ATF3 siRNA attenuated TY-NS-B-mediated inhibition of pro-inflammatory mediator expression. Collectively, our results suggest that TY-NS-B exerts potential anti-inflammatory effects by suppressing NF-κB and MAPK signaling activation, and increasing ATF3 expression. These findings indicate that TY-NS-B could be further developed as an anti-inflammatory drug. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    PubMed

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  11. Genetic analysis of geraniol metabolism during fermentation.

    PubMed

    Steyer, Damien; Erny, Claude; Claudel, Patricia; Riveill, Geneviève; Karst, Francis; Legras, Jean-Luc

    2013-04-01

    Geraniol produced by grape is the main precursor of terpenols which play a key role in the floral aroma of white wines. We investigated the fate of geraniol during wine fermentation by Saccharomyces cerevisiae. The volatile compounds produced during fermentation of a medium enriched with geraniol were extracted by Stir-bar sorptive extraction and analysed by GC-MS. We were able to detect and quantify geranyl acetate but also citronellyl- and neryl-acetate. The presence of these compounds partly explains the disparition of geraniol. The amounts of terpenyl esters are strain dependant. We demonstrated both by gene overexpression and gene-deletion the involvement of ATF1 enzyme but not ATF2 in the acetylation of terpenols. The affinity of ATF1 enzyme for several terpenols and for isoamyl alcohol was compared. We also demonstrated that OYE2 is the enzyme involved in geraniol to citronellol reduction. Fermenting strain deleted from OYE2 gene produces far less citronellol than wild type strain. Moreover lab strain over-expressing OYE2 allows 87% geraniol to citronellol reduction in bioconversion experiment compared to about 50% conversion with control strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Taraxacum mongolicum extract induced endoplasmic reticulum stress associated-apoptosis in triple-negative breast cancer cells.

    PubMed

    Li, Xiao-Hong; He, Xi-Ran; Zhou, Yan-Yan; Zhao, Hai-Yu; Zheng, Wen-Xian; Jiang, Shan-Tong; Zhou, Qun; Li, Ping-Ping; Han, Shu-Yan

    2017-07-12

    Triple-negative breast cancer (TNBC) is an aggressive and deadly breast cancer subtype with limited treatment options. It is necessary to seek complementary strategies for TNBC management. Taraxacum mongolicum, commonly named as dandelion, is a herb medicine with anti-cancer activity and has been utilized to treat mammary abscess, hyperplasia of mammary glands from ancient time in China, but the scientific evidence and action mechanisms still need to be studied. This study was intended to investigate the therapeutic effect and molecular mechanisms of dandelion extract in TNBC cell line. Dandelion extract was prepared and purified, and then its chemical composition was determined. Cell viability was evaluated by MTT assay. Analysis of cell apoptosis and cell cycle was assessed by flow cytometry. The expression levels of mRNA and proteins were determined by real-time PCR and Western blotting, respectively. Caspase inhibitor Z-VAD-FMK and CHOP siRNA were used to confirm the cell apoptosis induced by dandelion extract. Dandelion extract significantly decreased MDA-MB-231cell viability, triggered G2/M phase arrest and cell apoptosis. Concurrently, it caused a markedly increase of cleaved caspase-3 and PARP proteins. Caspase inhibitor Z-VAD-FMK abolished the apoptosis triggered by dandelion extract. The three ER stress-related signals were strongly induced after dandelion treatment, including increased mRNA expressions of ATF4, ATF6, XBP1s, GRP78 and CHOP genes, elevated protein levels of phosphorylated PERK, eIF-2α, IRE1, as well as the downstream molecules of CHOP and GRP78. MDA-MB-231 cells transfected with CHOP siRNA significantly reduced apoptosis induced by dandelion extract. The underlying mechanisms at least partially ascribe to the strong activation of PERK/p-eIF2α/ATF4/CHOP axis. ER stress related cell apoptosis accounted for the anti-cancer effect of dandelion extract, and these findings support dandelion extract might be a potential therapeutic approach to treat TNBC. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania

    Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less

  14. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice

    DOE PAGES

    Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania; ...

    2016-05-26

    Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less

  15. Development of a high-resolution cavity-beam position monitor

    NASA Astrophysics Data System (ADS)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  16. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3more » in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated inhibition of PPARγ expression may contribute to inhibition of adipocyte differentiation during cellular stress including ER stress.« less

  17. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    PubMed Central

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205

  18. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    PubMed

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  19. Auxiliary Salvage Tow and Rescue: T-STAR

    DTIC Science & Technology

    2011-08-01

    These agencies also operate four ships of the T-ATF class (Fleet Ocean Tug): Catawba (T-ATF 168), Navajo (T-ATF 169), Sioux (T-ATF 171), and Apache (T...Ocean Tug): CATAWBA (T-ATF 168), NAVAJO (T-ATF 169), SIOUX (T-ATF 171), and APACHE (T-ATF 172). These ships were commissioned during the 1980’s and...Bottles 1 0.6 Portable HP Air Plant 10’x18’x10’ 1 40.2 200 Amp Welder 2 0.4 Power Pack Unit 1 8.4 Salvage Equipment 400 Amp

  20. 27 CFR 41.193 - Corporate documents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... existence or incorporation executed by the appropriate officer of the State in which incorporated. The... duplicate, will be sufficient for the purpose of this section. [T.D. ATF-422, 64 FR 71951, Dec. 22, 1999...

  1. 27 CFR 41.193 - Corporate documents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... existence or incorporation executed by the appropriate officer of the State in which incorporated. The... duplicate, will be sufficient for the purpose of this section. [T.D. ATF-422, 64 FR 71951, Dec. 22, 1999...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas; Burns, Joseph R.

    The aftermath of the Tōhoku earthquake and the Fukushima accident has led to a global push to improve the safety of existing light water reactors. A key component of this initiative is the development of nuclear fuel and cladding materials with potentially enhanced accident tolerance, also known as accident-tolerant fuels (ATF). These materials are intended to improve core fuel and cladding integrity under beyond design basis accident conditions while maintaining or enhancing reactor performance and safety characteristics during normal operation. To complement research that has already been carried out to characterize ATF neutronics, the present study provides an initial investigationmore » of the sensitivity and uncertainty of ATF systems responses to nuclear cross section data. ATF concepts incorporate novel materials, including SiC and FeCrAl cladding and high density uranium silicide composite fuels, in turn introducing new cross section sensitivities and uncertainties which may behave differently from traditional fuel and cladding materials. In this paper, we conducted sensitivity and uncertainty analysis using the TSUNAMI-2D sequence of SCALE with infinite lattice models of ATF assemblies. Of all the ATF materials considered, it is found that radiative capture in 56Fe in FeCrAl cladding is the most significant contributor to eigenvalue uncertainty. 56Fe yields significant potential eigenvalue uncertainty associated with its radiative capture cross section; this is by far the largest ATF-specific uncertainty found in these cases, exceeding even those of uranium. We found that while significant new sensitivities indeed arise, the general sensitivity behavior of ATF assemblies does not markedly differ from traditional UO2/zirconium-based fuel/cladding systems, especially with regard to uncertainties associated with uranium. We assessed the similarity of the IPEN/MB-01 reactor benchmark model to application models with FeCrAl cladding. We used TSUNAMI-IP to calculate similarity indices of the application model and IPEN/MB-01 reactor benchmark model. This benchmark was selected for its use of SS304 as a cladding and structural material, with significant 56Fe content. The similarity indices suggest that while many differences in reactor physics arise from differences in design, sensitivity to and behavior of 56Fe absorption is comparable between systems, thus indicating the potential for this benchmark to reduce uncertainties in 56Fe radiative capture cross sections.« less

  3. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells.

    PubMed

    Park, Gwang Hun; Song, Hun Min; Park, Su Bin; Son, Ho-Jun; Um, Yurry; Kim, Hyun-Seok; Jeong, Jin Boo

    2018-01-25

    Because twigs of Cinnamomum cassia (TC) have been reported to exert anti-cancer activity, the mechanistic study for TC's anti-cancer activity is required. Thus, we elucidated the potential molecular mechanism of TC's anti-proliferative effect and the induction of apoptosis in human colorectal cancer cells. How water extracts form TC (TC-HW) was used in this study. Anti-cell proliferative effect of TC-HW was evaluated by MTT assay. The change of protein or mRNA level by TC-HW was evaluated by Western blot and RT-RCR, respectively. The promoter construct for ATF3, NF-κB, TOP-FLASH or FOP-FLASH was used for the investigation of the transcriptional activity for ATF3, NF-κB or Wnt. siRNA for ATF3 or p65 was used for the knockdown of ATF3 and p65. TC-HW reduced the cell viability in human colorectal cancer cells. TC-HW decreased cyclin D1 protein level through cyclin D1 degradation via GSK3β-dependent threonine-286 (T286) phosphorylation of cyclin D1, indicating that cyclin D1 degradation may contribute to TC-HW-mediated decrease of cyclin D1 protein level. TC-HW downregulated the expression of cyclin D1 mRNA level and inhibited Wnt activation through the downregulation of β-catenin and TCF4 expression, indicating that inhibition of cyclin D1 transcription may also result in TC-HW-mediated decrease of cyclin D1 protein level. In addition, TC-HW was observed to induce apoptosis through ROS-dependent DNA damage. TC-HW-induced ROS increased NF-κB and ATF3 activation, and inhibition of NF-κB and ATF3 activation attenuated TC-HW-mediated apoptosis. Our results suggest that TC-HW may suppress cell proliferation through the downregulation of cyclin D1 via proteasomal degradation and transcriptional inhibition, and may induce apoptosis through ROS-dependent NF-κB and ATF3 activation. These effects of TC-HW may contribute to the reduction of cell viability in human colorectal cancer cells. From these findings, TC-HW has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  4. 27 CFR 17.1 - Scope of regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacture of medicines, medicinal preparations, food products, flavors, flavoring extracts, and perfume that... following topics: obtaining drawback of internal revenue tax on distilled spirits used in the manufacture of... the manufacture of nonbeverage products. [T.D. ATF-379, 61 FR 31412, June 20, 1996, as amended by T.D...

  5. 27 CFR 17.1 - Scope of regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacture of medicines, medicinal preparations, food products, flavors, flavoring extracts, and perfume that... following topics: obtaining drawback of internal revenue tax on distilled spirits used in the manufacture of... the manufacture of nonbeverage products. [T.D. ATF-379, 61 FR 31412, June 20, 1996, as amended by T.D...

  6. 27 CFR 17.1 - Scope of regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacture of medicines, medicinal preparations, food products, flavors, flavoring extracts, and perfume that... following topics: obtaining drawback of internal revenue tax on distilled spirits used in the manufacture of... the manufacture of nonbeverage products. [T.D. ATF-379, 61 FR 31412, June 20, 1996, as amended by T.D...

  7. 27 CFR 17.1 - Scope of regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacture of medicines, medicinal preparations, food products, flavors, flavoring extracts, and perfume that... following topics: obtaining drawback of internal revenue tax on distilled spirits used in the manufacture of... the manufacture of nonbeverage products. [T.D. ATF-379, 61 FR 31412, June 20, 1996, as amended by T.D...

  8. EWS/ATF1 expression induces sarcomas from neural crest–derived cells in mice

    PubMed Central

    Yamada, Kazunari; Ohno, Takatoshi; Aoki, Hitomi; Semi, Katsunori; Watanabe, Akira; Moritake, Hiroshi; Shiozawa, Shunichi; Kunisada, Takahiro; Kobayashi, Yukiko; Toguchida, Junya; Shimizu, Katsuji; Hara, Akira; Yamada, Yasuhiro

    2013-01-01

    Clear cell sarcoma (CCS) is an aggressive soft tissue malignant tumor characterized by a unique t(12;22) translocation that leads to the expression of a chimeric EWS/ATF1 fusion gene. However, little is known about the mechanisms underlying the involvement of EWS/ATF1 in CCS development. In addition, the cellular origins of CCS have not been determined. Here, we generated EWS/ATF1-inducible mice and examined the effects of EWS/ATF1 expression in adult somatic cells. We found that forced expression of EWS/ATF1 resulted in the development of EWS/ATF1-dependent sarcomas in mice. The histology of EWS/ATF1-induced sarcomas resembled that of CCS, and EWS/ATF1-induced tumor cells expressed CCS markers, including S100, SOX10, and MITF. Lineage-tracing experiments indicated that neural crest–derived cells were subject to EWS/ATF1-driven transformation. EWS/ATF1 directly induced Fos in an ERK-independent manner. Treatment of human and EWS/ATF1-induced CCS tumor cells with FOS-targeted siRNA attenuated proliferation. These findings demonstrated that FOS mediates the growth of EWS/ATF1-associated sarcomas and suggest that FOS is a potential therapeutic target in human CCS. PMID:23281395

  9. ATF5 regulates β-cell survival during stress.

    PubMed

    Juliana, Christine A; Yang, Juxiang; Rozo, Andrea V; Good, Austin; Groff, David N; Wang, Shu-Zong; Green, Michael R; Stoffers, Doris A

    2017-02-07

    The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress.

  10. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish

    PubMed Central

    Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L.; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi

    2013-01-01

    ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra. PMID:23447699

  11. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish.

    PubMed

    Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi

    2013-05-01

    ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.

  12. New paleomagnetic constraints on middle Miocene strike-slip faulting along the middle Altyn Tagh Fault

    NASA Astrophysics Data System (ADS)

    Li, Bingshuai; Yan, Maodu; Zhang, Weilin; Fang, Xiaomin; Meng, Qingquan; Zan, Jinbo; Chen, Yi; Zhang, Dawen; Yang, Yongpeng; Guan, Chong

    2017-06-01

    Knowledge of the evolution of the Altyn Tagh Fault (ATF) has significant implications for our understanding of the tectonic deformation of the Tibetan Plateau. Controversy exists regarding the formation of the orocline-like arcuate structures or curved thrust faults south of the ATF. In this paper, we conducted a paleomagnetic rotation study of the Akatengnengshan (AK) and Youshashan (YSS) anticlines to determine whether the changes in the anticlines' axes were caused by frictional drag associated with sinistral strike-slip faulting along the ATF. No significant paleomagnetic rotations during the last 20 Ma were observed at the Xichagou and Laomangai localities, which are situated along the YSS anticline, whereas significant counterclockwise (CCW) rotations of 50° that occurred between 16.2 and 11.1 Ma were noted at the Yitunbulake locality, which lies along the western edge of the AK anticline. This amount of CCW rotation is consistent with the difference in axes between the AK and YSS anticlines. Combined with other geological evidence, we believe that the middle ATF was active between 16 and 11 Ma. Frictional drag associated with sinistral strike-slip motion likely resulted in the 50° CCW rotation of the AK anticline, which was originally straight or parallel to the YSS anticline. There was concentrated or insignificant strike-slip faulting along the middle ATF before 16 Ma, but rapid and distributed (< 40 km) strike-slip faulting occurred between 16 and 11 Ma at a rate of ≥10 mm/yr, and the minimum displacement was 50 km.

  13. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors.

    PubMed

    Christiaens, Joaquin F; Franco, Luis M; Cools, Tanne L; De Meester, Luc; Michiels, Jan; Wenseleers, Tom; Hassan, Bassem A; Yaksi, Emre; Verstrepen, Kevin J

    2014-10-23

    Yeast cells produce various volatile metabolites that are key contributors to the pleasing fruity and flowery aroma of fermented beverages. Several of these fruity metabolites, including isoamyl acetate and ethyl acetate, are produced by a dedicated enzyme, the alcohol acetyl transferase Atf1. However, despite much research, the physiological role of acetate ester formation in yeast remains unknown. Using a combination of molecular biology, neurobiology, and behavioral tests, we demonstrate that deletion of ATF1 alters the olfactory response in the antennal lobe of fruit flies that feed on yeast cells. The flies are much less attracted to the mutant yeast cells, and this in turn results in reduced dispersal of the mutant yeast cells by the flies. Together, our results uncover the molecular details of an intriguing aroma-based communication and mutualism between microbes and their insect vectors. Similar mechanisms may exist in other microbes, including microbes on flowering plants and pathogens. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Astrometric Telescope Facility preliminary systems definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie

    1987-01-01

    The Astrometric Telescope Facility (ATF) is a spaceborne observatory proposed for use on the Space Station (SS) as an Initial Operating Capability (IOC) payload. The primary objective of the ATF will be the search for extrasolar planetary systems and a detailed investigation of any discovered systems. In addition, it will have the capability of conducting other astrophysics investigations; e.g., measuring precise distances and motions of stars within our galaxy. The purposes of the study were to: (1) define mission and system requirements; (2) define a strawman system concept for the facility at the Prephase A level; (3) define the need for additional trade studies or technology development; and (4) estimate program cost for the strawman concept. It has been assumed for the study that the ATF will be a SS payload, will use a SS-provided Coarse Pointing System (CPS), will meet SS constraints, and will make maximum use of existing flight qualified designs or designs to be qualified by the SS program for general SS use.

  15. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  16. ATF5 regulates β-cell survival during stress

    PubMed Central

    Juliana, Christine A.; Yang, Juxiang; Rozo, Andrea V.; Good, Austin; Groff, David N.; Wang, Shu-Zong; Stoffers, Doris A.

    2017-01-01

    The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress. PMID:28115692

  17. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    PubMed

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  18. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation.

    PubMed

    Salat-Canela, Clàudia; Paulo, Esther; Sánchez-Mir, Laura; Carmona, Mercè; Ayté, José; Oliva, Baldo; Hidalgo, Elena

    2017-08-18

    Adaptation to stress triggers the most dramatic shift in gene expression in fission yeast ( Schizosaccharomyces pombe ), and this response is driven by signaling via the MAPK Sty1. Upon activation, Sty1 accumulates in the nucleus and stimulates expression of hundreds of genes via the nuclear transcription factor Atf1, including expression of atf1 itself. However, the role of stress-induced, Sty1-mediated Atf1 phosphorylation in transcriptional activation is unclear. To this end, we expressed Atf1 phosphorylation mutants from a constitutive promoter to uncouple Atf1 activity from endogenous, stress-activated Atf1 expression. We found that cells expressing a nonphosphorylatable Atf1 variant are sensitive to oxidative stress because of impaired transcription of a subset of stress genes whose expression is also controlled by another transcription factor, Pap1. Furthermore, cells expressing a phospho-mimicking Atf1 mutant display enhanced stress resistance, and although expression of the Pap1-dependent genes still relied on stress induction, another subset of stress-responsive genes was constitutively expressed in these cells. We also observed that, in cells expressing the phospho-mimicking Atf1 mutant, the presence of Sty1 was completely dispensable, with all stress defects of Sty1-deficient cells being suppressed by expression of the Atf1 mutant. We further demonstrated that Sty1-mediated Atf1 phosphorylation does not stimulate binding of Atf1 to DNA but, rather, establishes a platform of interactions with the basal transcriptional machinery to facilitate transcription initiation. In summary, our results provide evidence that Atf1 phosphorylation by the MAPK Sty1 is required for oxidative stress responses in fission yeast cells by promoting transcription initiation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Fuel Cycle Research and Development Accident Tolerant Fuels Series 1 (ATF-1) Irradiation Testing FY 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Core, Gregory Matthew

    This report contains a summary of irradiation testing of Fuel Cycle Research and Development (FCRD) Accident Tolerant Fuels Series 1 (ATF 1) experiments performed at Idaho National Laboratory (INL) in FY 2016. ATF 1 irradiation testing work performed in FY 2016 included design, analysis, and fabrication of ATF-1B drop in capsule ATF 1 series experiments and irradiation testing of ATF-1 capsules in the ATR.

  20. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.

    PubMed

    Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie

    2017-05-23

    Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling. © 2017 American Heart Association, Inc.

  1. Bim and VDAC1 are hierarchically essential for mitochondrial ATF2 mediated cell death.

    PubMed

    Liu, Zhaoyun; Luo, Qianfu; Guo, Chunbao

    2015-01-01

    ATF2 mediated cytochrome c release is the formation of a channel with some unknown factors larger than that of the individual proteins. BHS-only proteins (BH3s), such as Bim, could induce BAX and VDAC, forming a new channel. According to this facts, we can speculated that there is possible signal relationship with BH3s and ATF2, which is associated with mitochondrial-based death programs. The growth inhibitory effects of mitochondrial ATF2 were tested in cancer cell lines B16F10, A549, EG7, and LL2. Apoptosis was measured by flow cytometry. The effects of ATF2 and levels of apoptosis regulatory proteins were measured by Western blotting. The interaction of proteins were evaluated by immunoprecipitation analysis. The in vivo antitumor activity of mitochondrial ATF2 were tested in xenograft B16F10 models. Genotoxic stress enabled mitochondrial ATF2 accumulation, perturbing the HK1-VDAC1 complex, increasing mitochondrial permeability, and promoting apoptosis. ATF2 inhibition strongly reduced the conformational activation of Bim, suggesting that Bim acts downstream of ATF2. Although Bim downregulation had no effect on ATF2 activation, Bim knockdown abolished VDAC1 activation; the failure of VDAC1 activation in Bim-depleted cells could be reversed by the BH3-only protein mimic ABT-737. We also demonstrate that silencing of ATF2 in B16F10 cells increases both the incidence and prevalence of tumor xenografts in vivo, whereas stably mitochondrial ATF2 transfection inhibited B16F10 tumor xenografts growth. Altogether, these results show that ATF2 is a component of the apoptosis machinery that involves a hierarchical contribution of ATF2, Bim, and VDAC1. Our data offer new insight into the mechanism of mitochondrial ATF2 in mitochondrial apoptosis.

  2. ATF3 Protects Pulmonary Resident Cells from Acute and Ventilator-Induced Lung Injury by Preventing Nrf2 Degradation

    PubMed Central

    Shan, Yuexin; Akram, Ali; Amatullah, Hajera; Zhou, Dun Yuan; Gali, Patricia L.; Maron-Gutierrez, Tatiana; González-López, Adrian; Zhou, Louis; Rocco, Patricia R.M.; Hwang, David; Albaiceta, Guillermo M.; Haitsma, Jack J.

    2015-01-01

    Abstract Aims: Ventilator-induced lung injury (VILI) contributes to mortality in patients with acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). Absence of activating transcription factor 3 (ATF3) confers susceptibility to ALI/VILI. To identify cell-specific ATF3-dependent mechanisms of susceptibility to ALI/VILI, we generated ATF3 chimera by adoptive bone marrow (BM) transfer and randomized to inhaled saline or lipopolysacharide (LPS) in the presence of mechanical ventilation (MV). Adenovirus vectors to silence or overexpress ATF3 were used in primary human bronchial epithelial cells and murine BM-derived macrophages from wild-type or ATF3-deficient mice. Results: Absence of ATF3 in myeloid-derived cells caused increased pulmonary cellular infiltration. In contrast, absence of ATF3 in parenchymal cells resulted in loss of alveolar-capillary membrane integrity and increased exudative edema. ATF3-deficient macrophages were unable to limit the expression of pro-inflammatory mediators. Knockdown of ATF3 in resident cells resulted in decreased junctional protein expression and increased paracellular leak. ATF3 overexpression abrogated LPS induced membrane permeability. Despite release of ATF3-dependent Nrf2 transcriptional inhibition, mice that lacked ATF3 expression in resident cells had increased Nrf2 protein degradation. Innovation: In our model, in the absence of ATF3 in parenchymal cells increased Nrf2 degradation is the result of increased Keap-1 expression and loss of DJ-1 (Parkinson disease [autosomal recessive, early onset] 7), previously not known to play a role in lung injury. Conclusion: Results suggest that ATF3 confers protection to lung injury by preventing inflammatory cell recruitment and barrier disruption in a cell-specific manner, opening novel opportunities for cell specific therapy for ALI/VILI. Antioxid. Redox Signal. 22, 651–668. PMID:25401197

  3. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy.

    PubMed

    Li, Mu; Wu, Xingda; Liu, Ning; Li, Xiaoying; Meng, Fanbin; Song, Shaowei

    2017-06-01

    Pancreatic cancer is one of the leading causes of cancer-related death worldwide. Activating transcription factor 2 (ATF2) is a multifunctional transcription factor, and is implicated in tumor progress, yet its role in pancreatic cancer remains unclear. In the present study, the level of ATF2 in pancreatic cancer tissues and the adjacent non-tumorous tissues was detected by quantitative real-time PCR and Western blot. The roles of ATF2 in the proliferation, cell cycle, and apoptosis of pancreatic cancer cells were investigated through ATF2 silencing, and the effect of ATF2 shRNA on the sensitivity of pancreatic cancer cells to gemcitabine, an anti-tumor drug, was explored. The results of our study showed that the ATF2 level in the pancreatic cancer tissues was higher than that in the adjacent non-tumorous tissues. Silencing of ATF2 was found to inhibit proliferation, arrest cell cycle at G1 phase and induce apoptosis in pancreatic cancer cells. Moreover, ATF2 silencing enhanced gemcitabine-induced growth-inhibition and apoptosis-induction effects in pancreatic cancer cells. In summary, silencing of ATF2 inhibited the growth of pancreatic cancer cells and enhanced the anti-tumor effects of gemcitabine, suggesting that ATF2 plays a pro-survival role in pancreatic cancer. Our results also propose that a high level of ATF2 may serve as a potential biomarker of pancreatic cancer, and that ATF2 may become a potential target for anti-tumor therapy. © 2017 International Federation for Cell Biology.

  4. Post-translational regulation of gene expression using the ATF4 oxygen-dependent degradation domain for hypoxia-specific gene therapy.

    PubMed

    Cho, Su Hee; Oh, Binna; Kim, Hyun Ah; Park, Jeong Hyun; Lee, Minhyung

    2013-11-01

    Solid tumors have hypoxic regions in their cores, due to low blood supply levels. Therefore, hypoxia-specific gene regulation systems have been developed for tumor-specific gene therapy. In this study, the oxygen-dependent degradation (ODD) domain on activating transcription factor-4 (ATF4) was evaluated for post-translational regulation of proteins. The ATF4 ODD cDNA was amplified by RT-PCR, and a luciferase plasmid containing the ATF4 ODD domain, pSV-Luc-ATF4-ODD, was constructed. Luciferase expression was induced under hypoxia by the ATF4 ODD domain in transfection assays into N2A neuroblastoma cells, C6 glioblastoma cells, and U87 glioblastoma cells. In the transfection assay with pSV-Luc-ATF4-ODD, RT-PCR results showed that the mRNA level did not change under hypoxia. This suggests that the induction of luciferase under hypoxia was mediated by post-translational regulation. A plasmid expressing thymidine kinase from herpes simplex virus (HSV-tk), pSV-HSVtk-ATF4-ODD, was constructed with the ATF4 ODD cDNA. The transfection assay with pSV-TK-ATF4-ODD showed that the ATF4 ODD domain induced HSV-tk expression under hypoxia and facilitated the death of C6 cells in the presence of ganciclovir (GCV). Furthermore, pSV-HSVtk-ATF4-ODD induced caspase-3 activity in the hypoxic cells. In conclusion, the ATF4 ODD may be useful for hypoxia-specific gene therapy by post-translational regulation of gene expression.

  5. 75 FR 80845 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... of Information Collection Under Review: ATF F 5630.5R, NFA Special Tax Renewal Registration and Return, ATF F 5630.5RC, NFA Special Tax Location Registration Listing, ATF F 5630.7, NFA Special Tax.../Collection: ATF F 5630.5R, NFA Special Tax Renewal Registration and Return, ATF F 5630.5RC, NFA Special Tax...

  6. The CDK inhibitor p21 is a novel target gene of ATF4 and contributes to cell survival under ER stress.

    PubMed

    Inoue, Yasumichi; Kawachi, Shiori; Ohkubo, Tsubasa; Nagasaka, Mai; Ito, Shogo; Fukuura, Keishi; Itoh, Yuka; Ohoka, Nobumichi; Morishita, Daisuke; Hayashi, Hidetoshi

    2017-11-01

    Activating transcription factor 4 (ATF4) is well known for its role in the endoplasmic reticulum (ER) stress response. ATF4 also transcriptionally induces multiple effectors that determine cell fate depending on cellular context. In addition, ATF4 can communicate both pro-apoptotic and pro-survival signals. How ATF4 mediates its prosurvival roles, however, requires further investigation. Here, we report that the CDK inhibitor p21 is a novel target gene of ATF4. We identified two ATF4-responsive elements, one of which directly binds ATF4, within the first intron of the p21 gene. Importantly, overexpression of p21 enhances cell survival following ER stress induction, while p21 knockdown increases cell death. These results suggest that p21 induction plays a vital role in the cellular response to ER stress and indicate that p21 is a prosurvival effector of ATF4. © 2017 Federation of European Biochemical Societies.

  7. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was identified to be ATF4 interaction protein. Under microgravity, HDAC4 levels were also increased. However, the increased HDAC4 could suppress the activity of ATF4. Conclusions: These results indicated that microgravity could induce both ER stress and oxidative stress. ATF4 is involved in the regulation of these processes by activating both pro-apoptosis and pro-survival signaling. The dual role of ATF4 could be coordinated by increased HDAC4 levels under microgravity through their direct interaction.

  8. Transcriptional Repression of ATF4 Gene by CCAAT/Enhancer-binding Protein β (C/EBPβ) Differentially Regulates Integrated Stress Response*

    PubMed Central

    Dey, Souvik; Savant, Sudha; Teske, Brian F.; Hatzoglou, Maria; Calkhoven, Cornelis F.; Wek, Ronald C.

    2012-01-01

    Different environmental stresses induce the phosphorylation of eIF2 (eIF2∼P), repressing global protein synthesis coincident with preferential translation of ATF4. ATF4 is a transcriptional activator of genes involved in metabolism and nutrient uptake, antioxidation, and regulation of apoptosis. Because ATF4 is a common downstream target that integrates signaling from different eIF2 kinases and their respective stress signals, the eIF2∼P/ATF4 pathway is collectively referred to as the integrated stress response. Although eIF2∼P elicits translational control in response to many different stresses, there are selected stresses, such as exposure to UV irradiation, that do not increase ATF4 expression despite robust eIF2∼P. The rationale for this discordant induction of ATF4 expression and eIF2∼P in response to UV irradiation is that transcription of ATF4 is repressed, and therefore ATF4 mRNA is not available for preferential translation. In this study, we show that C/EBPβ is a transcriptional repressor of ATF4 during UV stress. C/EBPβ binds to critical elements in the ATF4 promoter, resulting in its transcriptional repression. Expression of C/EBPβ increases in response to UV stress, and the liver-enriched inhibitory protein (LIP) isoform of C/EBPβ, but not the liver-enriched activating protein (LAP) version, represses ATF4 transcription. Loss of the liver-enriched inhibitory protein isoform results in increased ATF4 mRNA levels in response to UV irradiation and subsequent recovery of ATF4 translation, leading to enhanced expression of its target genes. Together these results illustrate how eIF2∼P and translational control combined with transcription factors regulated by alternative signaling pathways can direct programs of gene expression that are specifically tailored to each environmental stress. PMID:22556424

  9. The Stress-responsive Gene ATF3 Mediates Dichotomous UV Responses by Regulating the Tip60 and p53 Proteins*

    PubMed Central

    Cui, Hongmei; Li, Xingyao; Han, Chunhua; Wang, Qi-En; Wang, Hongbo; Ding, Han-Fei; Zhang, Junran; Yan, Chunhong

    2016-01-01

    The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner. PMID:26994140

  10. ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation through the JNK signaling pathway.

    PubMed

    Jeong, Byung-Chul

    2018-05-15

    Tumor necrosis factor (TNF)-α, which is a proinflammatory cytokine, inhibits osteoblast differentiation under diverse inflammatory conditions. Activating transcription factor 3 (ATF3), which is a member of the ATF/cAMP response element-binding protein family of transcription factors, has been implicated in the regulation of cell proliferation and differentiation. However, the precise interactions between ATF3 and the TNF-α signaling pathway in the regulation of osteoblast differentiation remain unclear. In this study, we examined the role of ATF3 in the TNF-α-mediated inhibition of osteoblast differentiation and investigated the signaling pathways involved. The treatment of cells with TNF-α downregulated osteogenic markers, but significantly upregulated the expression of Atf3. The inhibition of Atf3 by small interfering RNAs rescued osteogenesis, which was inhibited by TNF-α. Conversely, the enforced expression of Atf3 enhanced the TNF-α-mediated inhibition of osteoblast differentiation, as revealed by the measurement of osteogenic markers and alkaline phosphatase staining. Mechanistically, TNF-α-induced Atf3 expression was significantly suppressed by the inhibition of the c-Jun N-terminal kinase (JNK) pathway. Furthermore, the overexpression of Atf3 did not affect the rescue effect that inhibiting TNF-α expression using a JNK inhibitor had on alkaline phosphatase activity and mineralization. Taken together, these results indicate that ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation and that the TNF-α-activated JNK pathway is responsible for the induction of Atf3 expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Inheritance of stress-induced, ATF-2-dependent epigenetic change.

    PubMed

    Seong, Ki-Hyeon; Li, Dong; Shimizu, Hideyuki; Nakamura, Ryoichi; Ishii, Shunsuke

    2011-06-24

    Atf1, the fission yeast homolog of activation transcription factor-2 (ATF-2), contributes to heterochromatin formation. However, the role of ATF-2 in chromatin assembly in higher organisms remains unknown. This study reveals that Drosophila ATF-2 (dATF-2) is required for heterochromatin assembly, whereas the stress-induced phosphorylation of dATF-2, via Mekk1-p38, disrupts heterochromatin. The dATF-2 protein colocalized with HP1, not only on heterochromatin but also at specific loci in euchromatin. Heat shock or osmotic stress induced phosphorylation of dATF-2 and resulted in its release from heterochromatin. This heterochromatic disruption was an epigenetic event that was transmitted to the next generation in a non-Mendelian fashion. When embryos were exposed to heat stress over multiple generations, the defective chromatin state was maintained over multiple successive generations, though it gradually returned to the normal state. The results suggest a mechanism by which the effects of stress are inherited epigenetically via the regulation of a tight chromatin structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. 76 FR 80404 - Agency Information Collection Activities; Proposed Collection: Emergency Request for Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... concluded that two existing applications of the Gun Control Act (GCA) by ATF impose restrictions upon the... Collection The form is used to determine the eligibility, under the Gun Control Act, of a person to receive a...

  13. 27 CFR 555.23 - List of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Explosive Materials” (ATF Publication 5400.8) is available at no cost upon request from the ATF Distribution Center (See § 555.21). [T.D. ATF-290, 54 FR 53054, Dec. 27, 1989, as amended by T.D. ATF-446, 66 FR 16602...

  14. Functional Contribution of the Transcription Factor ATF4 to the Pathogenesis of Amyotrophic Lateral Sclerosis

    PubMed Central

    Matus, Soledad; Lopez, Estefanía; Valenzuela, Vicente; Nassif, Melissa; Hetz, Claudio

    2013-01-01

    Endoplasmic reticulum (ER) stress represents an early pathological event in amyotrophic lateral sclerosis (ALS). ATF4 is a key ER stress transcription factor that plays a role in both adaptation to stress and the activation of apoptosis. Here we investigated the contribution of ATF4 to ALS. ATF4 deficiency reduced the rate of birth of SOD1G86R transgenic mice. The fraction of ATF4−/−-SOD1G85R transgenic mice that were born are more resistant to develop ALS, leading to delayed disease onset and prolonged life span. ATF4 deficiency completely attenuated the induction of pro-apoptotic genes, including BIM and CHOP, and also led to quantitative changes in the ER protein homeostasis network. Unexpectedly, ATF4 deficiency enhanced mutant SOD1 aggregation at the end stage of the disease. Studies in the motoneuron cell line NSC34 demonstrated that knocking down ATF4 enhances mutant SOD1 aggregation possibly due to alteration in the redox status of the cell. Our results support a functional role of ATF4 in ALS, offering a novel target for disease intervention. PMID:23874395

  15. Elevated ATF4 Expression, in the Absence of Other Signals, Is Sufficient for Transcriptional Induction via CCAAT Enhancer-binding Protein-activating Transcription Factor Response Elements*

    PubMed Central

    Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.

    2009-01-01

    Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279

  16. 28 CFR 25.9 - Retention and destruction of records in the system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in accordance with established policy. (b) The FBI will maintain an automated NICS Audit Log of all... may be accessed directly only by the FBI and only for the purpose of conducting audits of the use and... license number of the FFL and the proposed date of inspection of the named FFL by ATF, the FBI may extract...

  17. 28 CFR 25.9 - Retention and destruction of records in the system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in accordance with established policy. (b) The FBI will maintain an automated NICS Audit Log of all... may be accessed directly only by the FBI and only for the purpose of conducting audits of the use and... license number of the FFL and the proposed date of inspection of the named FFL by ATF, the FBI may extract...

  18. 28 CFR 25.9 - Retention and destruction of records in the system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in accordance with established policy. (b) The FBI will maintain an automated NICS Audit Log of all... may be accessed directly only by the FBI and only for the purpose of conducting audits of the use and... license number of the FFL and the proposed date of inspection of the named FFL by ATF, the FBI may extract...

  19. 28 CFR 25.9 - Retention and destruction of records in the system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in accordance with established policy. (b) The FBI will maintain an automated NICS Audit Log of all... may be accessed directly only by the FBI and only for the purpose of conducting audits of the use and... license number of the FFL and the proposed date of inspection of the named FFL by ATF, the FBI may extract...

  20. Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway

    PubMed Central

    Ninagawa, Satoshi; Okada, Tetsuya; Sumitomo, Yoshiki; Horimoto, Satoshi; Sugimoto, Takehiro; Ishikawa, Tokiro; Takeda, Shunichi; Yamamoto, Takashi; Suzuki, Tadashi; Kamiya, Yukiko

    2015-01-01

    Glycoproteins and non-glycoproteins possessing unfolded/misfolded parts in their luminal regions are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L with distinct mechanisms. Two-step mannose trimming from Man9GlcNAc2 is crucial in the ERAD-L of glycoproteins. We recently showed that this process is initiated by EDEM2 and completed by EDEM3/EDEM1. Here, we constructed chicken and human cells simultaneously deficient in EDEM1/2/3 and analyzed the fates of four ERAD-L substrates containing three potential N-glycosylation sites. We found that native but unstable or somewhat unfolded glycoproteins, such as ATF6α, ATF6α(C), CD3-δ–ΔTM, and EMC1, were stabilized in EDEM1/2/3 triple knockout cells. In marked contrast, degradation of severely misfolded glycoproteins, such as null Hong Kong (NHK) and deletion or insertion mutants of ATF6α(C), CD3-δ–ΔTM, and EMC1, was delayed only at early chase periods, but they were eventually degraded as in wild-type cells. Thus, higher eukaryotes are able to extract severely misfolded glycoproteins from glycoprotein ERAD and target them to the non-glycoprotein ERAD pathway to maintain the homeostasis of the ER. PMID:26572623

  1. Protective upregulation of activating transcription factor-3 against glutamate neurotoxicity in neuronal cells under ischemia.

    PubMed

    Takarada, Takeshi; Kou, Miki; Hida, Miho; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Kuramoto, Nobuyuki; Hinoi, Eiichi; Yoneda, Yukio

    2016-05-01

    This study evaluates the pathological role of the stress sensor activating transcription factor-3 (ATF3) in ischemic neurotoxicity. Upregulation of the transcript and protein for ATF3 was seen 2-10 hr after reperfusion in the ipsilateral cerebral hemisphere of mice with transient middle cerebral artery occlusion for 2 hr. Immunohistochemical analysis confirmed the expression of ATF3 by cells immunoreactive for a neuronal marker in neocortex, hippocampus, and striatum within 2 hr after reperfusion. In murine neocortical neurons previously cultured under ischemic conditions for 2 hr, transient upregulation of both Atf3 and ATF3 expression was similarly found during subsequent culture for 2-24 hr under normoxia. Lentiviral overexpression of ATF3 ameliorated the neurotoxicity of glutamate (Glu) in cultured murine neurons along with a slight but statistically significant inhibition of both Fluo-3 and rhodamine-2 fluorescence increases by N-methyl-D-aspartate. Similarly, transient upregulation was seen in Atf3 and ATF3 expression during the culture for 48 hr in neuronal Neuro2A cells previously cultured under ischemic conditions for 2 hr. Luciferase reporter analysis with ATF3 promoter together with immunoblotting revealed the possible involvement of several transcription factors responsive to extracellular and intracellular stressors in the transactivation of the Atf3 gene in Neuro2A cells. ATF3 could be upregulated to play a role in mechanisms underlying mitigation of the neurotoxicity mediated by the endogenous neurotoxin Glu at an early stage after ischemic signal inputs. © 2016 Wiley Periodicals, Inc.

  2. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter.

    PubMed

    Darlyuk-Saadon, Ilona; Weidenfeld-Baranboim, Keren; Yokoyama, Kazunari K; Hai, Tsonwin; Aronheim, Ami

    2012-01-01

    JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. 77 FR 57590 - Agency Information Collection Activities; Proposed Collection; Comments Requested: ATF...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... form is used to evaluate the ATF Distribution Center and the services it provides to the users of ATF...] Agency Information Collection Activities; Proposed Collection; Comments Requested: ATF Distribution Center Survey ACTION: 60-Day notice of information collection under review. The Department of Justice...

  4. ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.

    PubMed

    Timms, Richard T; Tchasovnikarova, Iva A; Antrobus, Robin; Dougan, Gordon; Lehner, Paul J

    2016-10-11

    The histone methyltransferase SETDB1 plays a central role in repressive chromatin processes, but the functional requirement for its binding partner ATF7IP has remained enigmatic. Here, we show that ATF7IP is essential for SETDB1 stability: nuclear SETDB1 protein is degraded by the proteasome upon ablation of ATF7IP. As a result, ATF7IP is critical for repression that requires H3K9 trimethylation by SETDB1, including transgene silencing by the HUSH complex. Furthermore, we show that loss of ATF7IP phenocopies loss of SETDB1 in genome-wide assays. ATF7IP and SETDB1 knockout cells exhibit near-identical defects in the global deposition of H3K9me3, which results in similar dysregulation of the transcriptome. Overall, these data identify a critical functional role for ATF7IP in heterochromatin formation by regulating SETDB1 abundance in the nucleus. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Single-molecule quantification of lipotoxic expression of activating transcription factor 3

    PubMed Central

    Wilson, Dennis W.; Rutledge, John C.

    2014-01-01

    Activating transcription factor 3 (ATF3) is a member of the mammalian activation transcription factor/cAMP, physiologically important in the regulation of pro- and anti-inflammatory target genes. We compared the induction of ATF3 protein as measured by Western blot analysis with single-molecule localization microscopy dSTORM to quantify the dynamics of accumulation of intranuclear ATF3 of triglyceride-rich (TGRL) lipolysis product-treated HAEC (Human Aortic Endothelial Cells). The ATF3 expression rate within the first three hours after treatment with TGRL lipolysis products is about 3500/h. After three hours we detected 33,090 ± 3,491 single-molecule localizations of ATF3. This was accompanied by significant structural changes in the F-actin network of the cells at ~3-fold increased localization precision compared to widefield microscopy after treatment. Additionally, we discovered a cluster size of approximately 384 nanometers of ATF3 molecules. We show for the first time the time course of ATF3 accumulation in the nucleus undergoing lipotoxic injury. Furthermore, we demonstrate ATF3 accumulation associated with increased concentrations of TGRL lipolysis products occurs in large aggregates. PMID:25189785

  6. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

    PubMed

    Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R

    2004-07-01

    The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.

  7. ATF3 Expression in the Corpus Luteum: Possible Role in Luteal Regression†

    PubMed Central

    Mao, Dagan; Hou, Xiaoying; Talbott, Heather; Cushman, Robert; Cupp, Andrea

    2013-01-01

    The present study investigated the induction and possible role of activating transcription factor 3 (ATF3) in the corpus luteum. Postpubertal cattle were treated at midcycle with prostaglandin F2α(PGF) for 0–4 hours. Luteal tissue was processed for immunohistochemistry, in situ hybridization, and isolation of protein and RNA. Ovaries were also collected from midluteal phase and first-trimester pregnant cows. Luteal cells were prepared and sorted by centrifugal elutriation to obtain purified small (SLCs) and large luteal cells (LLCs). Real-time PCR and in situ hybridization showed that ATF3 mRNA increased within 1 hour of PGF treatment in vivo. Western blot and immunohistochemistry demonstrated that ATF3 protein was expressed in the nuclei of LLC within 1 hour and was maintained for at least 4 hours. PGF treatment in vitro increased ATF3 expression only in LLC, whereas TNF induced ATF3 in both SLCs and LLCs. PGF stimulated concentration- and time-dependent increases in ATF3 and phosphorylation of MAPKs in LLCs. Combinations of MAPK inhibitors suppressed ATF3 expression in LLCs. Adenoviral-mediated expression of ATF3 inhibited LH-stimulated cAMP response element reporter luciferase activity and progesterone production in LLCs and SLCs but did not alter cell viability or change the expression or activity of key regulators of progesterone synthesis. In conclusion, the action of PGF in LLCs is associated with the rapid activation of stress-activated protein kinases and the induction of ATF3, which may contribute to the reduction in steroid synthesis during luteal regression. ATF3 appears to affect gonadotropin-stimulated progesterone secretion at a step or steps downstream of PKA signaling and before cholesterol conversion to progesterone. PMID:24196350

  8. PcToll2 positively regulates the expression of antimicrobial peptides by promoting PcATF4 translocation into the nucleus.

    PubMed

    Lan, Jiang-Feng; Zhao, Li-Juan; Wei, Shun; Wang, Yuan; Lin, Li; Li, Xin-Cang

    2016-11-01

    Drosophila Toll and mammalian Toll-like receptors (TLRs) are a family of evolutionarily conserved immune receptors that play a crucial role in the first-line defense against intruded pathogens. Activating transcription factor 4 (ATF4), a member of the ATF/CREB transcription factor family, is an important factor that participates in TLR signaling and other physiological processes. However, in crustaceans, whether ATF4 homologs were involved in TLR signaling remains unclear. In the current study, we identified a Toll homolog PcToll2 and a novel ATF4 homolog PcATF4 from Procambarus clarkii, and analyzed the likely regulatory activity of PcATF4 in PcToll2 signaling. The complete cDNA sequence of PcToll2 was 4175 bp long containing an open reading frame of 2820 bp encoding a 939-amino acid protein, and the cDNA sequence of PcATF4 was 2027 bp long with an open reading frame of 1296 bp encoding a 431-amino acid protein. PcToll2 and human TLR4 shared the high identity and they were grouped into a cluster. Furthermore, PcToll2 had a close relationship with other shrimp TLRs that possessed potential antibacterial activity. PcToll2 was highly expressed in the hemocytes, heart and gills, while PcATF4 mainly distributed in gills. Upon challenge with Vibrio parahemolyticus, PcToll2 and PcATF4 together with the antimicrobial peptides of ALF1 and ALF2 were significantly up-regulated in the hemocytes, and the PcATF4 was translocated into the nucleus. After PcToll2 silencing and challenge with Vibrio, the translocation of PcATF4 into the nucleus was inhibited and the expression of ALF1 and ALF2 was reduced, but the expression of PcDorsal and PcSTAT was not affected. Furthermore, after PcATF4 knockdown and challenge with or without Vibrio, the expression of ALF1 and ALF2 was also decreased while the expression of PcToll2 was upregulated. These results suggested that PcToll2 might regulate the expression of ALF1 and ALF2 by promoting the import of PcATF4, instead of the routine transcription factor PcDorsal, into the nucleus participating in the immune defense against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 75 FR 64354 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... of Information Collection Under Review: ATF F 5630.5R, NFA Special Tax Renewal Registration and Return; ATF F 5630.5RC, NFA Special Tax Location Registration Listing; ATF F 5630.7, NFA Special Tax... collection. (2) Title of the Form/Collection: ATF F 5630.5R, NFA Special Tax Renewal Registration and Return...

  10. Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression

    USDA-ARS?s Scientific Manuscript database

    Translational control of ATF4 through upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While ATF4 translation is typically induced by inhibitory phosphorylation of eIF2, ATF4 translation can be also induced by expression of a new translational inhibitor protein, eIF5-mimi...

  11. Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene

    PubMed Central

    Maekawa, Toshio; Kim, Seungjoon; Nakai, Daisuke; Makino, Chieko; Takagi, Tsuyoshi; Ogura, Hiroo; Yamada, Kazuyuki; Chatton, Bruno; Ishii, Shunsuke

    2010-01-01

    Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5′-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress. PMID:19893493

  12. Activating transcription factor 4 regulates stearate-induced vascular calcification.

    PubMed

    Masuda, Masashi; Ting, Tabitha C; Levi, Moshe; Saunders, Sommer J; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto

    2012-08-01

    Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate.

  13. Activating transcription factor 4 regulates stearate-induced vascular calcification

    PubMed Central

    Masuda, Masashi; Ting, Tabitha C.; Levi, Moshe; Saunders, Sommer J.; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto

    2012-01-01

    Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate. PMID:22628618

  14. Reprogramming cell fate with a genome-scale library of artificial transcription factors.

    PubMed

    Eguchi, Asuka; Wleklinski, Matthew J; Spurgat, Mackenzie C; Heiderscheit, Evan A; Kropornicka, Anna S; Vu, Catherine K; Bhimsaria, Devesh; Swanson, Scott A; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J; Slukvin, Igor; Thomson, James A; Dutton, James R; Ansari, Aseem Z

    2016-12-20

    Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.

  15. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae.

    PubMed

    Elefteriou, Florent; Benson, M Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F; Karsenty, Gerard

    2006-12-01

    The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1(ob)(-/-) mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1(ob)(-/-) mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1(ob)(-/-) mice without affecting other organ weight, while a high-protein diet overcame Atf4(-/-) and Rsk2(-/-) mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development.

  16. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    PubMed Central

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  17. Reprogramming cell fate with a genome-scale library of artificial transcription factors

    PubMed Central

    Eguchi, Asuka; Wleklinski, Matthew J.; Spurgat, Mackenzie C.; Heiderscheit, Evan A.; Kropornicka, Anna S.; Vu, Catherine K.; Bhimsaria, Devesh; Swanson, Scott A.; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J.; Slukvin, Igor; Thomson, James A.; Dutton, James R.; Ansari, Aseem Z.

    2016-01-01

    Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices. PMID:27930301

  18. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis.

    PubMed

    Kim, Ji Yeon; Park, Keon Jae; Hwang, Joo-Yeon; Kim, Gyu Hee; Lee, DaeYeon; Lee, Yoo Jeong; Song, Eun Hyun; Yoo, Min-Gyu; Kim, Bong-Jo; Suh, Young Ho; Roh, Gu Seob; Gao, Bin; Kim, Won; Kim, Won-Ho

    2017-08-01

    Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with β-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for predicting the progression of NAFLD and the development of T2D. Furthermore, given the significant association between hepatic ATF3 expression and both hepatic steatosis and impaired glucose homeostasis, in vivo ATF3 silencing may be a potential central strategy for preventing and managing NAFLD and T2D. Copyright © 2017 European Association for the Study of the Liver. All rights reserved.

  19. Cigarette smoke-induced cell cycle arrest in spermatocytes [GC-2spd(ts)] is mediated through crosstalk between Ahr-Nrf2 pathway and MAPK signaling.

    PubMed

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Moley, Kelle H

    2015-02-01

    Our earlier studies have demonstrated that the cigarette smoke in the form of cigarette smoke condensate (CSC) causes growth arrest of a mouse spermatocyte cell line [GC-2spd(ts)] through activation of the AHR-NRF2 pathway. The present study demonstrates the CSC-activated p38 and ERK MAPK signaling in GC-2spd(ts) via arylhydrocarbon receptor (AHR). Pharmacological inhibition by using AHR-antagonist, or p38 MAPK and ERK (MEK1) inhibitors significantly abrogates CSC-induced growth arrest by AHR and MAPK inactivation. QRT-PCR, western blot, and immunofluorescence of Ahr-target of Nrf2, and stress-inducible growth suppressive Atf3 and E2f4 following treatments indicate a crosstalk among these pathways. Regulation of Atf3 by Nrf2 and Ahr through RNA interference suggests the existence of a cross-regulatory loop between the targets. CSC induction of E2f4 via Atf3 and its regulation by pharmacological inhibitors reveal a possible regulatory mechanism of growth inhibitory CSC. SiRNA silencing of Ahr, Nrf2, Atf3, and E2f4 genes and downregulation of cyclins by CSC corroborate the growth inhibitory effect of cigarette smoke. Thus, the data obtained suggest that the CSC-mediated MAPKs and AHR-NRF2 crosstalks lay the molecular basis for the growth arrest and cell death of spermatocytes. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  20. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    PubMed Central

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  1. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    PubMed

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  2. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    PubMed

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  3. miR-141-3p functions as a tumor suppressor modulating activating transcription factor 5 in glioma.

    PubMed

    Wang, Mengyuan; Hu, Ming; Li, Zhaohua; Qian, Dongmeng; Wang, Bin; Liu, David X

    2017-09-02

    Glioma is the most common malignant primary brain tumor which arises from the central nervous system. Our studies reported that an anti-apoptotic factor, activating transcription factor 5 (ATF5), is highly expressed in malignant glioma specimens and cell lines. Downregulation by dominant-negetive ATF5 could repress glioma cell proliferation and accelerate apoptosis. Here, we further investigate the upstream factor which regulates ATF5 expression. Bioinformatic analysis showed that ATF5 was a potential target of miR-141-3p. Luciferase reporter assay verified that miR-141-3p specifically targeted the ATF5 3'-UTR in glioma cells. Functional studied suggested that miR-141-3p overexpression inhibited proliferation and promoted apoptosis of glioma cells (U87MG and U251). Xenograft experiments proved the inhibition of miR-141-3p on glioma growth in vivo. Moreover, exogenous ATF5 without 3'-UTR restored the cell proliferation inhibition triggered by miR-141-3p. Taken together, we put forward that miR-141-3p is a new upstream target towards ATF5. It can serve as a crucial tumor suppressor in regulating the ATF5-regulated growth of malignant glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch

    PubMed Central

    Gallagher, Ciara M; Garri, Carolina; Cain, Erica L; Ang, Kenny Kean-Hooi; Wilson, Christopher G; Chen, Steven; Hearn, Brian R; Jaishankar, Priyadarshini; Aranda-Diaz, Andres; Arkin, Michelle R; Renslo, Adam R; Walter, Peter

    2016-01-01

    The membrane-bound transcription factor ATF6α plays a cytoprotective role in the unfolded protein response (UPR), required for cells to survive ER stress. Activation of ATF6α promotes cell survival in cancer models. We used cell-based screens to discover and develop Ceapins, a class of pyrazole amides, that block ATF6α signaling in response to ER stress. Ceapins sensitize cells to ER stress without impacting viability of unstressed cells. Ceapins are highly specific inhibitors of ATF6α signaling, not affecting signaling through the other branches of the UPR, or proteolytic processing of its close homolog ATF6β or SREBP (a cholesterol-regulated transcription factor), both activated by the same proteases. Ceapins are first-in-class inhibitors that can be used to explore both the mechanism of activation of ATF6α and its role in pathological settings. The discovery of Ceapins now enables pharmacological modulation all three UPR branches either singly or in combination. DOI: http://dx.doi.org/10.7554/eLife.11878.001 PMID:27435960

  5. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae

    PubMed Central

    Elefteriou, Florent; Benson, M. Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F.; Karsenty, Gerard

    2009-01-01

    Summary The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1ob−/− mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1ob−/− mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1ob−/− mice without affecting other organ weight, while a high-protein diet overcame Atf4−/− and Rsk2−/− mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development. PMID:17141628

  6. Astrometric Telescope Facility isolation and pointing study

    NASA Technical Reports Server (NTRS)

    Hibble, William; Allen, Terry; Jackson, Louis; Medbery, James; Self, Richard

    1988-01-01

    The Astrometric Telescope Facility (ATF), an optical telescope designed to detect extrasolar planetary systems, is scheduled to be a major user of the Space Station's Payload Pointing System (PPS). However, because the ATF has such a stringent pointing stability specification and requires + or - 180 deg roll about its line of sight, mechanisms to enhance the basic PPS capability are required. The ATF pointing performance achievable by the addition of a magnetic isolation and pointing system (MIPS) between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base was investigated. The candidate MIPS can meet the ATF requirements in the presence of a 0.01 g disturbance. It fits within the available annular region between the PPS and the ATF while meeting power and weight limitations and providing the required roll motion, payload data and power services. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes to meet ATF pointing requirements and does not provide roll about the line of sight.

  7. Upregulation of Endogenous HMOX1 Expression by a Computer-Designed Artificial Transcription Factor

    PubMed Central

    Guo, Hongfeng; Tian, Yi; Lu, Hai; Wei, Yong; Ying, Dajun

    2010-01-01

    Heme oxygenase-1 (HO-1) is well known as a cytoprotective factor. Research has revealed that it is a promising therapeutic target for cardiovascular diseases. In the current study, an HMOX1 (HO-1 gene) enhancer-specific artificial zinc-finger protein (AZP) was designed using bioinformatical methods. Then, an artificial transcription factor (ATF) was constructed based on the AZP. In the ATF, the p65 functional domain was used as the effector domain (ED), and a nuclear localization sequence (NLS) was also included. We next analyzed the affinity of the ATF to the HMOX1 enhancer and the effect of the ATF on endogenous HMOX1 expression. The results suggest that the ATF could effectively upregulate endogenous HMOX1 expression in ECV304 cells. With further research, the ATF could be developed as a potential drug for cardiovascular diseases. PMID:20706680

  8. Mitochondrial ATF2 translocation contributes to apoptosis induction and BRAF inhibitor resistance in melanoma through the interaction of Bim with VDAC1.

    PubMed

    Gao, Zongwei; Shang, Qingjuan; Liu, Zhaoyun; Deng, Chun; Guo, Chunbao

    2015-11-03

    The mitochondrial accumulation of ATF2 is involved in tumor suppressor activities via cytochrome c release in melanoma cells. However, the signaling pathways that connect mitochondrial ATF2 accumulation and cytochrome c release are not well documented. Several melanoma cell lines, B16F10, K1735M2, A375 and A375-R1, were treated with paclitaxel and vemurafenib to test the function of mitochondrial ATF2 and its connection to Bim and voltage-dependent anion channel 1 (VDAC1). Immunoprecipitation analysis was performed to investigate the functional interaction between the involved proteins. VDAC1 oligomerization was evaluated using an EGS-based crosslinking assay. The expression and migration of ATF2 to the mitochondria accounted for paclitaxel stimuli and acquired resistance to BRAF inhibitors. Mitochondrial ATF2 facilitated Bim stabilization through the inhibition of its degradation by the proteasome, thereby promoting cytochrome c release and inducing apoptosis in B16F10 and A375 cells. Studies using B16F10 and A375 cells genetically modified for ATF2 indicated that mitochondrial ATF2 was able to dissociate Bim from the Mcl-1/Bim complex to trigger VDAC1 oligomerization. Immunoprecipitation analysis revealed that Bim interacts with VDAC1, and this interaction was remarkably enhanced during apoptosis. These results reveal that mitochondrial ATF2 is associated with the induction of apoptosis and BRAF inhibitor resistance through Bim activation, which might suggest potential novel therapies for the targeted induction of apoptosis in melanoma therapy.

  9. Mitochondrial ATF2 translocation contributes to apoptosis induction and BRAF inhibitor resistance in melanoma through the interaction of Bim with VDAC1

    PubMed Central

    Deng, Chun; Guo, Chunbao

    2015-01-01

    Background The mitochondrial accumulation of ATF2 is involved in tumor suppressor activities via cytochrome c release in melanoma cells. However, the signaling pathways that connect mitochondrial ATF2 accumulation and cytochrome c release are not well documented. Methods Several melanoma cell lines, B16F10, K1735M2, A375 and A375-R1, were treated with paclitaxel and vemurafenib to test the function of mitochondrial ATF2 and its connection to Bim and voltage-dependent anion channel 1 (VDAC1). Immunoprecipitation analysis was performed to investigate the functional interaction between the involved proteins. VDAC1 oligomerization was evaluated using an EGS-based crosslinking assay. Results The expression and migration of ATF2 to the mitochondria accounted for paclitaxel stimuli and acquired resistance to BRAF inhibitors. Mitochondrial ATF2 facilitated Bim stabilization through the inhibition of its degradation by the proteasome, thereby promoting cytochrome c release and inducing apoptosis in B16F10 and A375 cells. Studies using B16F10 and A375 cells genetically modified for ATF2 indicated that mitochondrial ATF2 was able to dissociate Bim from the Mcl-1/Bim complex to trigger VDAC1 oligomerization. Immunoprecipitation analysis revealed that Bim interacts with VDAC1, and this interaction was remarkably enhanced during apoptosis. Conclusion These results reveal that mitochondrial ATF2 is associated with the induction of apoptosis and BRAF inhibitor resistance through Bim activation, which might suggest potential novel therapies for the targeted induction of apoptosis in melanoma therapy. PMID:26462148

  10. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells

    PubMed Central

    Piyanuch, Rojsanga; Sukhthankar, Mugdha; Baek, Seung Joon

    2007-01-01

    Berberine is known to possess a wide variety of pharmacological activities, including pro-apoptotic activity. However, its molecular targets are not elucidated at present. NAG-1 and ATF3 are induced by several dietary compounds associated with pro-apoptotic activity. Berberine induces cell growth arrest, apoptosis, NAG-1, and ATF3 in human colorectal cancer cells. ATF3 induction by berberine is mediated in a p53-dependent manner, whereas NAG-1 induction by berberine is mediated by multiple signaling pathways. Our results suggest that berberine facilitates apoptosis and that NAG-1 and ATF3 expression plays an important role in berberine-induced apoptosis. PMID:17964072

  11. Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs.

    PubMed

    Kim, Hye Jin; Yi, Se Won; Oh, Hyun Jyung; Lee, Jung Sun; Park, Ji Sun; Park, Keun-Hong

    2018-05-29

    Overexpression and knockdown of specific proteins can control stem cell differentiation for therapeutic purposes. In this study, we fabricated RUNX2, SOX9, and C/EBPα plasmid DNAs (pDNAs) and ATF4-targeting shRNA (shATF4) to induce osteogenesis, chondrogenesis, and adipogenesis of human mesenchymal stem cells (hMSCs). The pDNAs and shATF4 were complexed with TRITC-gene regulation nanoparticles (GRN). Osteogenesis-related gene expression was reduced at early (12 h) and late (36 h) time points after co-delivery of shATF4 and SOX9 or C/EBPα pDNA, respectively, and osteogenesis was inhibited in these hMSCs. By contrast, osteogenesis-related genes were highly expressed upon co-delivery of RUNX2 and ATF4 pDNAs. DEX in GRN enhanced chondrogenic differentiation. Expression of osteogenesis-, chondrogenesis-, and adipogenesis-related genes was higher in hMSCs transfected with NPs complexed with RUNX2 and ATF4 pDNAs, shATF4 and SOX9 pDNA, and shATF4 and C/EBPα pDNA for 72 h than in control hMSCs, respectively. Moreover, delivery of these NPs also increased expression of osteogenesis-, chondrogenesis-, and adipogenesis-related proteins. These alterations in expression led to morphological changes, indicating that hMSCs differentiated into osteoblasts, chondrocytes, and adipose cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Receptor-Targeted Nanoparticles for In Vivo Imaging of Breast Cancer

    PubMed Central

    Yang, Lily; Peng, Xiang-Hong; Wang, Y. Andrew; Wang, Xiaoxia; Cao, Zehong; Ni, Chunchun; Karna, Prasanthi; Zhang, Xinjian; Wood, William C.; Gao, Xiaohu; Nie, Shuming; Mao, Hui

    2009-01-01

    Purpose Cell surface receptor-targeted magnetic iron oxide (IO) nanoparticles provide molecular magnetic resonance imaging (MRI) contrast agents for improving specificity of the detection of human cancer. Experimental design The present study reports the development of a novel targeted IO nanoparticle using a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator conjugated to IO nanoparticles (ATF-IO). This nanoparticle targets urokinase plasminogen activator receptor (uPAR), which is overexpressed in breast cancer tissues. Results ATF-IO nanoparticles are able to specifically bind to and be internalized by uPAR-expressing tumor cells. Systemic delivery of ATF-IO nanoparticles into mice bearing subcutaneous and intraperitoneal mammary tumors leads to the accumulation of the particles in tumors, generating a strong MRI contrast detectable by a clinical MRI scanner at a field strength of 3 Tesla. Target specificity of ATF-IO nanoparticles demonstrated by in vivo MRI is further confirmed by near infrared (NIR) fluorescence imaging of the mammary tumors using NIR dye-labeled ATF peptides conjugated to IO nanoparticles. Furthermore, mice administered ATF-IO nanoparticles exhibit lower uptake of the particles in the liver and spleen compared to those receiving non-targeted IO nanoparticles. Conclusions Our results suggest that uPAR-targeted ATF-IO nanoparticles have potential as molecularly-targeted, dual modality imaging agents for in vivo imaging of breast cancer. PMID:19584158

  13. Mixed-Mode Slip Behavior of the Altotiberina Low-Angle Normal Fault System (Northern Apennines, Italy) through High-Resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo

    2017-12-01

    We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.

  14. An ATF4-ATG5 signaling in hypothalamic POMC neurons regulates obesity.

    PubMed

    Xiao, Yuzhong; Deng, Yalan; Yuan, Feixiang; Xia, Tingting; Liu, Hao; Li, Zhigang; Chen, Shanghai; Liu, Zhixue; Ying, Hao; Liu, Yi; Zhai, Qiwei; Guo, Feifan

    2017-06-03

    ATF4 (activating transcription factor 4) is an important transcription factor that has many biological functions, while its role in hypothalamic POMC (pro-opiomelanocortin-α) neurons in the regulation of energy homeostasis has not been explored. We recently discovered that mice with an Atf4 deletion specific to POMC neurons (PAKO mice) are lean and have higher energy expenditure. Furthermore, these mice are resistant to high-fat diet (HFD)-induced obesity and obesity-related metabolic disorders. Mechanistically, we found the expression of ATG5 (autophagy-related 5) is upregulated in POMC neurons of PAKO mice, and ATF4 regulates ATG5 expression by binding directly to its promoter. Mice with Atf4 and Atg5 double knockout in POMC neurons have reduced energy expenditure and gain more fat mass compared with PAKO mice under a HFD. Finally, the effect of Atf4 knockout in POMC neurons is possibly mediated by enhanced ATG5-dependent macroautophagy/autophagy and α-melanocyte-stimulating hormone (α-MSH) production in the hypothalamus. Together, this work not only identifies a beneficial role for ATF4 in hypothalamic POMC neurons in the regulation of obesity, but also provides a new potential therapeutic target for obesity and obesity-related metabolic diseases.

  15. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation.

    PubMed

    Li, Wei; Wang, Jian-Hui; Zhang, Cui-Ying; Ma, Hong-Xia; Xiao, Dong-Guang

    2017-06-01

    Acetate esters and higher alcohols greatly influence the quality and flavor profiles of Chinese Baijiu (Chinese liquor). Various mutants have been constructed to investigate the interactions of ATF1 overexpression, IAH1 deletion, and BAT2 deletion on the production of acetate esters and higher alcohols. The results showed that the overexpression of ATF1 under the control of the PGK1 promoter with BAT2 and IAH1 double-gene deletion led to a higher production of acetate esters and a lower production of higher alcohols than the overexpression of ATF1 with IAH1 deletion or overexpression of ATF1 with BAT2 deletion. Moreover, deletion of IAH1 in ATF1 overexpression strains effectively increased the production of isobutyl acetate and isoamyl acetate by reducing the hydrolysis of acetate esters. The decline in the production of higher alcohol by the ATF1 overexpression strains with BAT2 deletion is due to the interaction of ATF1 overexpression and BAT2 deletion. Mutants with varying abilities of producing acetate esters and higher alcohols were developed by genetic engineering. These strains have great potential for industrial application.

  16. The FONT5 Bunch-by-Bunch Position and Angle Feedback System at ATF2

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Burrows, P. N.; Christian, G. B.; Constance, B.; Davis, M. R.; Gerbershagen, A.; Perry, C.; Resta-Lopez, J.

    The FONT5 upstream beam-based feedback system at ATF2 is designed to correct the position and angle jitter at the entrance to the ATF2 final-focus system, and also to demonstrate a prototype intra-train feedback system for the International Linear Collider interaction point. We discuss the hardware, from stripline BPMs to kickers, and RF and digital signal processing, as well as presenting results from the latest beam tests at ATF2.

  17. Skinfold thickness at 8 common cryotherapy sites in various athletic populations.

    PubMed

    Jutte, Lisa S; Hawkins, Jeremy; Miller, Kevin C; Long, Blaine C; Knight, Kenneth L

    2012-01-01

    Researchers have observed slower cooling rates in thigh muscle with greater overlying adipose tissue, suggesting that cryotherapy duration should be based on the adipose thickness of the treatment site. Skinfold data do not exist for other common cryotherapy sites, and no one has reported how those skinfolds might vary because of physical activity level or sex. To determine the variability in skinfold thickness among common cryotherapy sites relative to sex and activity level (National Collegiate Athletic Association Division I athletes, recreationally active college athletes). Descriptive laboratory study. Field. Three hundred eighty-nine college students participated; 196 Division I athletes (157 men, 39 women) were recruited during preseason physicals, and 193 recreationally active college athletes (108 men, 85 women) were recruited from physical education classes. Three skinfold measurements to within 1 mm were taken at 8 sites (inferior angle of the scapula, middle deltoid, ulnar groove, midforearm, midthigh, medial collateral ligament, midcalf, and anterior talofibular ligament [ATF]) using Lange skinfold calipers. Skinfold thickness in millimeters. We noted interactions among sex, activity level, and skinfold site. Male athletes had smaller skinfold measurements than female athletes at all sites except the ATF, scapula, and ulnar groove (F₇,₂₇₀₂ = 69.85, P < .001). Skinfold measurements were greater for recreationally active athletes than their Division I counterparts at all sites except the ATF, deltoid, and ulnar groove (F₇,₂₇₀₂ = 30.79, P < .001). Thigh skinfold measurements of recreationally active female athletes were the largest, and their ATF skinfolds were the smallest. Skinfold thickness at common cryotherapy treatment sites varied based on level of physical activity and sex. Therefore, clinicians should measure skinfold thickness to determine an appropriate cryotherapy duration.

  18. Skinfold Thickness at 8 Common Cryotherapy Sites in Various Athletic Populations

    PubMed Central

    Jutte, Lisa S.; Hawkins, Jeremy; Miller, Kevin C.; Long, Blaine C.; Knight, Kenneth L.

    2012-01-01

    Context: Researchers have observed slower cooling rates in thigh muscle with greater overlying adipose tissue, suggesting that cryotherapy duration should be based on the adipose thickness of the treatment site. Skinfold data do not exist for other common cryotherapy sites, and no one has reported how those skinfolds might vary because of physical activity level or sex. Objective: To determine the variability in skinfold thickness among common cryotherapy sites relative to sex and activity level (National Collegiate Athletic Association Division I athletes, recreationally active college athletes). Design: Descriptive laboratory study. Setting: Field. Patients or Other Participants: Three hundred eighty-nine college students participated; 196 Division I athletes (157 men, 39 women) were recruited during preseason physicals, and 193 recreationally active college athletes (108 men, 85 women) were recruited from physical education classes. Intervention(s): Three skinfold measurements to within 1 mm were taken at 8 sites (inferior angle of the scapula, middle deltoid, ulnar groove, midforearm, midthigh, medial collateral ligament, midcalf, and anterior talofibular ligament [ATF]) using Lange skinfold calipers. Main Outcome Measure(s): Skinfold thickness in millimeters. Results: We noted interactions among sex, activity level, and skinfold site. Male athletes had smaller skinfold measurements than female athletes at all sites except the ATF, scapula, and ulnar groove (F7,2702 = 69.85, P < .001). Skinfold measurements were greater for recreationally active athletes than their Division I counterparts at all sites except the ATF, deltoid, and ulnar groove (F7,2702 = 30.79, P < .001). Thigh skinfold measurements of recreationally active female athletes were the largest, and their ATF skinfolds were the smallest. Conclusions: Skinfold thickness at common cryotherapy treatment sites varied based on level of physical activity and sex. Therefore, clinicians should measure skinfold thickness to determine an appropriate cryotherapy duration. PMID:22488282

  19. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia

    PubMed Central

    Kohl, Susanne; Zobor, Ditta; Chiang, Wei-Chieh; Weisschuh, Nicole; Staller, Jennifer; Menendez, Irene Gonzalez; Chang, Stanley; Beck, Susanne C; Garrido, Marina Garcia; Sothilingam, Vithiyanjali; Seeliger, Mathias W; Stanzial, Franco; Benedicenti, Francesco; Inzana, Francesca; Héon, Elise; Vincent, Ajoy; Beis, Jill; Strom, Tim M; Rudolph, Günther; Roosing, Susanne; den Hollander, Anneke I; Cremers, Frans P M; Lopez, Irma; Ren, Huanan; Moore, Anthony T; Webster, Andrew R; Michaelides, Michel; Koenekoop, Robert K; Zrenner, Eberhart; Kaufman, Randal J; Tsang, Stephen H; Wissinger, Bernd; Lin, Jonathan H

    2015-01-01

    Achromatopsia (ACHM) is an autosomal recessive disorder characterized by color blindness, photophobia, nystagmus and severely reduced visual acuity. Using homozygosity mapping and whole-exome and candidate gene sequencing, we identified ten families carrying six homozygous and two compound-heterozygous mutations in the ATF6 gene (encoding activating transcription factor 6A), a key regulator of the unfolded protein response (UPR) and cellular endoplasmic reticulum (ER) homeostasis. Patients had evidence of foveal hypoplasia and disruption of the cone photoreceptor layer. The ACHM-associated ATF6 mutations attenuate ATF6 transcriptional activity in response to ER stress. Atf6−/− mice have normal retinal morphology and function at a young age but develop rod and cone dysfunction with increasing age. This new ACHM-related gene suggests a crucial and unexpected role for ATF6A in human foveal development and cone function and adds to the list of genes that, despite ubiquitous expression, when mutated can result in an isolated retinal photoreceptor phenotype. PMID:26029869

  20. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.

    PubMed

    Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier

    2013-10-01

    Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Expression of ATF4 and VEGF in chorionic villus tissue in early spontaneous abortion.

    PubMed

    Chai, Luwei; Ling, Kang; He, Xiaoxi; Yang, Rong

    2013-10-01

    To explore the relationship between early spontaneous abortion (SA) and the expression of activating transcription factor 4 (ATF4) and vascular endothelial growth factor (VEGF). The expression of ATF4 and VEGF protein and mRNA in villi from first trimester spontaneous abortion (SA, n=30) and normal pregnancy (NP, n=30) were detected by immunohistochemistry and fluorescent quantitative polymerase chain reaction (FQ-PCR). Both protein and mRNA expressions of ATF4 and VEGF in the SA group were significantly lower than in the NP group (P<0.01). Their proteins are expressed mainly in syncytiotrophoblast, cytotrophoblast and villous stromal cells. Correlation analysis showed that the expression of ATF4 was positively correlated with that of VEGF in the SA group (r=0.717, P<0.01). Lower expression of ATF4 and VEGF genes in chorionic villus tissue may participate in the pathogenesis of spontaneous abortion. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. ATF3 plays a protective role against toxicity by N-terminal fragment of mutant huntingtin in stable PC12 cell line

    PubMed Central

    Liang, Yideng; Jiang, Haibing; Ratovitski, Tamara; Jie, Chunfa; Nakamura, Masayuki; Hirschhorn, Ricky R.; Wang, Xiaofang; Smith, Wanli W.; Hai, Tsonwin; Poirier, Michelle A.; Ross, Christopher A.

    2009-01-01

    Huntington's disease is a progressive neurodegenerative disorder caused by a polyglutamine expansion near the N-terminus of huntingtin. The mechanisms of polyglutamine neurotoxicity, and cellular responses are not fully understood. We have studied gene expression profiles by cDNA array using an inducible PC12 cell model expressing an N-terminal huntingtin fragment with expanded polyglutamine (Htt-N63-148Q). Mutant huntingtin Htt-N63 induced cell death and increased the mRNA and protein levels of activating transcription factor 3 (ATF3). Mutant Htt-N63 also significantly enhanced ATF3 transcriptional activity by a promoter-based reporter assay. Overexpression of ATF3 protects against mutant Htt-N63 toxicity and knocking down ATF3 expression reduced Htt-N63 toxicity in a stable PC12 cell line. These results indicated that ATF3 plays a critical role in toxicity induced by mutant Htt-N63 and may lead to a useful therapeutic target. PMID:19559011

  3. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo.

    PubMed

    Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho

    2014-09-26

    Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    PubMed Central

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  5. Holocene slip rate for the central Altyn Tagh Fault: Preliminary results from the Tuzidun site based on 14C and 10Be dating of a displaced fluvial terrace riser.

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Cowgill, E. S.; Arrowsmith, R.; Muretta, M.; Gosse, J.; Chen, X.; Wang, X.

    2007-12-01

    The active, left-slip Altyn Tagh Fault (ATF) defines the northern boundary of the Tibetan Plateau and is among the world's longest intracontinental strike-slip faults. Despite a decade of concentrated work, the Holocene slip rate for the central ATF is still disputed, with millennial slip rates derived from faulted landforms ranging from 9 to 27 mm/yr. To address this factor-of-three difference, we are investigating a new slip-rate site near Tuzidun (37.73N, 86.72E) along the Cherchen He reach of the fault. The new site is situated where a south-flowing, ephemeral stream channel crosses the N70E-striking, active trace of the ATF. This channel is flanked by a set of inset fluvial terraces along its eastern bank. North of the ATF, these terraces include both a younger/lower T1 tread and an older/higher T2 terrace, which are vertically separated by an intervening T2/T1 riser. South of the fault, the stream is inset into an alluvial fan, F1. The F1 fan is separated from the higher, T2 fluvial terrace tread to the east, by the T2/F1 riser. Our neotectonic mapping and survey data indicate that the T2/F1 riser on the south/downstream side of the ATF and the T2/T1 riser on the north/upstream side have been displaced from one another by left slip along the ATF. The present separation between these riser segments is ~56 m, though lateral erosion of the riser may have diminished the true offset. To account for this possibility, we have developed three end-member reconstructions that yield offsets ranging from 56 to105 m. Ongoing geochronologic and geomorphic analyses are designed further limit the range of possible displacements. Preliminary age analyses from the Tuzidun site include 22 new radiocarbon dates from buried organic materials and 7 analyses of 10Be concentration in quartz extracted from amalgamated samples of terrace conglomerates. The 14C analyses are from samples collected from within the T2 tread on both sides of the ATF and from loess deposits that cap the downstream T2/F1 riser face. The 10Be analyses are from samples collected in two depth profiles, north and south of the ATF, dug into the T2 deposit at the crest of the displaced riser. The calibrated 14C dates and 10Be surface-exposure ages are compatible, and indicate that the surfaces at the crest and toe of the riser were abandoned at ~6 ka and ~4.4 ka, respectively. To bracket the millennial slip rate at this site, we consider three end-member reconstructions. The first is an upper-terrace reconstruction, in which the riser started recording displacement as soon as the upper-terrace, T2, was abandoned, providing a minimum constraint on the slip rate of ~9 mm/yr since ~6 ka. An intermediate interpretation is a lower-terrace reconstruction, in which the riser accumulated no displacement until the lower surface, F1, was abandoned, yielding a slip rate of ~13 mm/yr since ~4.4 ka. The final reconstruction is one in which erosion of the upstream T2 surface, prior to T1/F1 deposition, diminished the present-day observed offset. In this case, up to 105 m of displacement has occurred since abandonment of the T2 surface, which permits a slip rate as high as ~18 mm/yr since ~6 ka. The new slip rate of 9-18 mm/yr for the Tuzidun site is consistent with our preliminary results from three additional slip-rate sites along the central ATF, and taken together, provides an upper limit of 18 mm/yr for the Holocene slip rate along this reach of the fault.

  6. 78 FR 77494 - Agency Information Collection Activities; Proposed Collection; Comments Requested: ATF Adjunct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... collection. (2) Title of the Form/Collection: ATF Adjunct Instructor Data Form. (3) Agency form number, if...] Agency Information Collection Activities; Proposed Collection; Comments Requested: ATF Adjunct Instructor Data Form ACTION: 60-Day Notice. The Department of Justice (DOJ), Bureau of Alcohol, Tobacco, Firearms...

  7. 27 CFR 646.153 - Authority of appropriate ATF officers to enter business premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... REGULATIONS RELATING TO ALCOHOL AND TOBACCO CONTRABAND CIGARETTES Other Provisions Relating to the Distribution of Cigarettes § 646.153 Authority of appropriate ATF officers to enter business premises. Any appropriate ATF officer may enter the business premises of any distributor of cigarettes to inspect the...

  8. 27 CFR 646.153 - Authority of appropriate ATF officers to enter business premises.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... REGULATIONS RELATING TO ALCOHOL AND TOBACCO CONTRABAND CIGARETTES Other Provisions Relating to the Distribution of Cigarettes § 646.153 Authority of appropriate ATF officers to enter business premises. Any appropriate ATF officer may enter the business premises of any distributor of cigarettes to inspect the...

  9. 27 CFR 646.153 - Authority of appropriate ATF officers to enter business premises.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... REGULATIONS RELATING TO ALCOHOL AND TOBACCO CONTRABAND CIGARETTES Other Provisions Relating to the Distribution of Cigarettes § 646.153 Authority of appropriate ATF officers to enter business premises. Any appropriate ATF officer may enter the business premises of any distributor of cigarettes to inspect the...

  10. 27 CFR 646.153 - Authority of appropriate ATF officers to enter business premises.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... REGULATIONS RELATING TO ALCOHOL AND TOBACCO CONTRABAND CIGARETTES Other Provisions Relating to the Distribution of Cigarettes § 646.153 Authority of appropriate ATF officers to enter business premises. Any appropriate ATF officer may enter the business premises of any distributor of cigarettes to inspect the...

  11. Identification of ATF5-Interacting, SH3-Containing Proteins in Breast Cancer Cells

    DTIC Science & Technology

    2010-08-01

    CRE-dependent gene repression on R-Ras, HSP27 , and 14-3-3eta, which contribute to ATF5- mediated cell proliferation in Hep3B cell. (Fig. 5) Page 6...transfected with indicated constructs and mRNA level for R-Ras, HSP27 , and YWHAH(14-3-3eta) was determined by RT-PCR. β-actin was used as control...B23-dependent regulation of ATF5 stability impacts on expression of ATF5 downstream targets R-Ras, HSP27 , and 14-3-3eta, and cell proliferation of

  12. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation

    PubMed Central

    Grimmer, Matthew R.; Stolzenburg, Sabine; Ford, Ethan; Lister, Ryan; Blancafort, Pilar; Farnham, Peggy J.

    2014-01-01

    Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications. PMID:25122745

  13. 27 CFR 555.202 - Classes of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., except for bulk salutes). (c) Blasting agents. (For example, ammonium nitrate-fuel oil and certain water-gels (see also § 555.11). [T.D. ATF-87, 46 FR 40384, Aug. 7, 1981, as amended by T.D. ATF-293, 55 FR 3722, Feb. 5, 1990; T.D. ATF-400, 63 FR 45003, Aug. 24, 1998] ...

  14. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures weremore » varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.« less

  15. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  16. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Ritesh K.; Li, Changzhao

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm thesemore » observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/−} mice. • Changes in macrophage functions can be attenuated by Ca{sup ++} homeostasis regulators.« less

  17. Atf6 plays protective and pathologic roles in fatty liver disease due to endoplasmic reticulum stress

    PubMed Central

    Cinaroglu, Ayca; Gao, Chuan; Imrie, Dru; Sadler, Kirsten C.

    2011-01-01

    Many etiologies of fatty liver disease (FLD) are associated with hyper-activation of one of the three pathways that comprise the unfolded protein response (UPR), a harbinger of endoplasmic reticulum (ER) stress. The UPR is mediated by pathways initiated by PERK, IRE1a/XBP1and ATF6, and each of these pathways have been implicated as either protective or pathological in FLD. We use zebrafish with FLD and hepatic ER stress to explore the relationship between Atf6 and steatosis. Mutation of the foie gras (foigr) gene causes FLD and hepatic ER stress. Prolonged treatment of wild-type larvae with a dose of tunicamycin that causes chronic ER stress phenocopies foigr. In contrast, acute exposure to a high dose of tunicamycin robustly activates the UPR but is less effective at inducing steatosis. The Srebp transcription factors are not required for steatosis in any of these models. Instead, depleting larvae of active Atf6 either through mbtps1 mutation or atf6 morpholino injection protects against steatosis caused by chronic ER stress whereas it exacerbates steatosis caused by acute tunicamycin treatment. Conclusion ER stress causes FLD. Loss of Atf6 prevents steatosis caused by chronic ER stress but can also potentiate steatosis caused by acute ER stress. This demonstrates that Atf6 can play both protective and pathological roles in FLD. PMID:21538441

  18. Human cytomegalovirus inhibits apoptosis by regulating the activating transcription factor 5 signaling pathway in human malignant glioma cells

    PubMed Central

    WANG, TONGMEI; QIAN, DONGMENG; HU, MING; LI, LING; ZHANG, LI; CHEN, HAO; YANG, RUI; WANG, BIN

    2014-01-01

    The activating transcription factor 5 (ATF5), also termed ATFx, is a member of the ATF/cAMP response element-binding protein (CREB) family of basic zipper proteins. ATF5 is an anti-apoptotic protein that is highly expressed in malignant glioma and is essential for glioma cell survival. Accumulating evidence indicates that human malignant gliomas are universally infected with human cytomegalovirus (HCMV). Recent studies have shown that HCMV may be resistant to the induction of apoptosis by disrupting cellular pathways in glioblastoma. To investigate the potential anti-apoptotic function of HCMV in glioma, malignant U87 glioma cells were infected with HCMV. The present study showed that HCMV infection suppressed apoptosis in glioblastoma U87 cells by regulating the expression of ATF5. Furthermore, in glioblastoma U87 cells, HCMV infection induced cellular proliferation in parallel with an increase in the expression level of ATF5 and B-cell lymphoma/leukemia-2 to Bcl-2-associated X protein ratio. Loss of ATF5 function was achieved using a dominant-negative form of ATF5 in U87 cells, whereby cells appeared to grow marginally following HCMV infection when compared with the control. However, the anti-apoptotic ability was appeared to decline in the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. These results indicate that ATF5 signaling pathways may be important in the anti-apoptotic activity of HCMV-infected glioblastoma cells; therefore, the anti-apoptotic molecular mechanisms of HCMV in human glioblastoma cells were investigated in the current study. Prevention of HCMV infection may present a potential and promising approach for the treatment of malignant gliomas. PMID:25120656

  19. Antibiotic treatment failure when consulting patients with respiratory tract infections in general practice. A qualitative study to explore Danish general practitioners' perspectives.

    PubMed

    Bordado Sköld, Margrethe; Aabenhus, Rune; Guassora, Ann Dorrit; Mäkelä, Marjukka

    2017-12-01

    Prescribing antibiotics for acute respiratory tract infections (RTIs) is common in primary healthcare although most of these infections are of viral origin and antibiotics may not be helpful. Some of these prescriptions will not be associated with a quick recovery, and might be regarded as cases of antibiotic treatment failure (ATF). We studied antibiotic treatment failure in patients with acute RTIs from a general practitioner (GP) perspective, aiming to explore (i) GPs' views of ATF in primary care; (ii) how ATF influences the doctor-patient relationship; and (iii) GPs' understanding of patients' views of ATF. Qualitative study based on semi-structured, recorded interviews of 18 GPs between August and October 2012. The interviews started with discussion of a unique case of acute RTI involving ATF, followed by a more general reflection of the topic. Interviews were analysed using qualitative content analysis. In patients with acute RTIs, GPs proposed and agreed to a medical definition of antibiotic treatment failure but believed patients' views to differ significantly from this medical definition. GPs thought ATF affected their daily work only marginally. GPs used many communicative tools to maintain trust with patients in cases of ATF, but they did not consider such incidents to affect the doctor-patient relationship adversely. These findings suggest a possible communication gap between doctors and patients, partly due to a narrow medical definition of ATF. Studies describing patients' views are still missing. General practitioners' experiences and views on antibiotic treatment failure in acute respiratory infections or its effects on the doctor-patient relationship have not been studied previously.

  20. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells.

    PubMed

    Jeong, Kwon; Kim, Kiyoon; Kim, Hunsung; Oh, Yoojung; Kim, Seong-Jin; Jo, Yunhee; Choe, Wonchae

    2015-06-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.

  1. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells

    PubMed Central

    JEONG, KWON; KIM, KIYOON; KIM, HUNSUNG; OH, YOOJUNG; KIM, SEONG-JIN; JO, YUNHEE; CHOE, WONCHAE

    2015-01-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions. PMID:26137159

  2. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells.

    PubMed

    Henderson, Kimberly A; Kobylewski, Sarah E; Yamada, Kristin E; Eckhert, Curtis D

    2015-02-01

    Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca(+2)) channel, and lowers endoplasmic reticulum (ER) [Ca(2+)]. Low ER [Ca(2+)] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron.

  3. Seismic and Aseismic Behavior of the Altotiberina Low-angle Normal Fault System (Northern Apennines, Italy) through High-resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.

    2017-12-01

    Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.

  4. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract.

    PubMed

    Yang, Yanyan; Yang, Woo Seok; Yu, Tao; Sung, Gi-Ho; Park, Kye Won; Yoon, Keejung; Son, Young-Jin; Hwang, Hyunsik; Kwak, Yi-Seong; Lee, Chang-Muk; Rhee, Man Hee; Kim, Jong-Hoon; Cho, Jae Youl

    2014-05-28

    Korean Red Ginseng (KRG) is one of the representative traditional herbal medicines prepared from Panax ginseng Meyer (Araliaceae) in Korea. It has been reported that KRG exhibits a lot of different biological actions such as anti-aging, anti-fatigue, anti-stress, anti-atherosclerosis, anti-diabetic, anti-cancer, and anti-inflammatory activities. Although systematic studies have investigated how KRG is able to ameliorate various inflammatory diseases, its molecular inhibitory mechanisms had not been carried out prior to this study. In order to investigate these mechanisms, we evaluated the effects of a water extract of Korean Red Ginseng (KRG-WE) on the in vitro inflammatory responses of activated RAW264.7 cells, and on in vivo gastritis and peritonitis models by analyzing the activation events of inflammation-inducing transcription factors and their upstream kinases. KRG-WE reduced the production of nitric oxide (NO), protected cells against NO-induced apoptosis, suppressed mRNA levels of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and interferon (IFN)-β, ameliorated EtOH/HCl-induced gastritis, and downregulated peritoneal exudate-derived NO production from lipopolysaccharide (LPS)-injected mice. The inhibition of these inflammatory responses by KRG-WE was regulated through the suppression of p38, c-Jun N-terminal kinase (JNK), and TANK-binding kinase 1 (TBK1) and by subsequent inhibition of activating transcription factor (ATF)-2, cAMP response element-binding protein (CREB), and IRF-3 activation. Of ginsensides included in this extract, interestingly, G-Rc showed the highest inhibitory potency on IRF-3-mediated luciferase activity. These results strongly suggest that the anti-inflammatory activities of KRG-WE could be due to its inhibition of the p38/JNK/TBK1 activation pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro.

    PubMed

    Nancolas, Bethany; Bull, Ian D; Stenner, Richard; Dufour, Virginie; Curnow, Paul

    2017-06-01

    The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  6. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress.

    PubMed

    Kristensen, Ulrik; Epanchintsev, Alexey; Rauschendorf, Marc-Alexander; Laugel, Vincent; Stevnsner, Tinna; Bohr, Vilhelm A; Coin, Frédéric; Egly, Jean-Marc

    2013-06-18

    Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.

  7. Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus.

    PubMed

    Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P

    2015-01-01

    The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  9. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark.

    PubMed

    Eo, Hyun Ji; Park, Jae Ho; Park, Gwang Hun; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2014-06-25

    Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity.

  10. 49 CFR 40.225 - What form is used for an alcohol test?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What form is used for an alcohol test? 40.225... Testing § 40.225 What form is used for an alcohol test? (a) The DOT Alcohol Testing Form (ATF) must be used for every DOT alcohol test. The ATF must be a three-part carbonless manifold form. The ATF is...

  11. 49 CFR 40.225 - What form is used for an alcohol test?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What form is used for an alcohol test? 40.225... Testing § 40.225 What form is used for an alcohol test? (a) The DOT Alcohol Testing Form (ATF) must be used for every DOT alcohol test. The ATF must be a three-part carbonless manifold form. The ATF is...

  12. 49 CFR 40.225 - What form is used for an alcohol test?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What form is used for an alcohol test? 40.225... Testing § 40.225 What form is used for an alcohol test? (a) The DOT Alcohol Testing Form (ATF) must be used for every DOT alcohol test. The ATF must be a three-part carbonless manifold form. The ATF is...

  13. 49 CFR 40.225 - What form is used for an alcohol test?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What form is used for an alcohol test? 40.225... Testing § 40.225 What form is used for an alcohol test? (a) The DOT Alcohol Testing Form (ATF) must be used for every DOT alcohol test. The ATF must be a three-part carbonless manifold form. The ATF is...

  14. 49 CFR 40.225 - What form is used for an alcohol test?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What form is used for an alcohol test? 40.225... Testing § 40.225 What form is used for an alcohol test? (a) The DOT Alcohol Testing Form (ATF) must be used for every DOT alcohol test. The ATF must be a three-part carbonless manifold form. The ATF is...

  15. Strength variation along the Altyn Tagh and the Kunlun fault, northern Tibetan plateau, inferred from 3D mechanical modeling

    NASA Astrophysics Data System (ADS)

    Zhu, X.; He, J.; Xiao, J.

    2017-12-01

    The Altyn Tagh (ATF) and the Kunlun (KLF) fault distribute around the northern Tibetan plateau from west to east about 2000 km and 1200 km in length, and deform predominately with left-lateral strike-slip motion. Previous geological and geodetic observations suggested that over at least 800-km length of the faults, the slip rate averaged on active deformation period is quite uniform, for the ATF being about 9-10 mm/yr and the KLF about 10-12mm/yr. Strike-slip deformation of these faults is undoubtedly result from regional loading by ongoing collision between the India and the Eurasia continent. Whereas, dense GPS measurements show that along the central Tibetan plateau from west to east, the GPS velocity field changes greatly both on magnitude and on direction, suggesting that tectonic loading to the ATF and the KLF could be changed along their strike directions. To investigate how a non-uniform tectonic loading condition as documented by the GPS velocity field could cause a relatively uniform slip rate of the two active faults, we built a three-dimensional viscoelastic finite element model, in which motion of the strike-slip fault is governed by frictional strength. Given a reasonable bound of model parameters, we at first test the numerical calculation with uniform frictional coefficient of the faults. At this condition, the predicted slip rate is inevitably largest near center of the faults and gradually decreasing to the fault ends. To better fitting the observed uniform slip rate along the faults over 1000km length, variation of fault strength along the ATF and the KLF must be invoked. By testing numerous models, an optimum result was obtained, among which the frictional coefficient for the ATF is varied from 0.02 to 0.12 between 820E and 1000E with its maximum at 840E, and for the KLF from 0.02 to 0.10 with its maximum between 950E and 970E. This means that the strength of the two large-scale strike-slip faults exists significant difference along their strikes. We believe that the predicted fault pattern could play an important role on partitioning strain aside the fault, together on determination of potential rupture during an earthquake.

  16. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    PubMed

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  17. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells

    PubMed Central

    Dong, Lixue; Krewson, Elizabeth A.; Yang, Li V.

    2017-01-01

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the “Warburg effect”), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4-induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment. PMID:28134810

  18. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells.

    PubMed

    Dong, Lixue; Krewson, Elizabeth A; Yang, Li V

    2017-01-27

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the "Warburg effect"), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment.

  19. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    PubMed

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  20. Joint Doctrine for Amphibious Embarkation

    DTIC Science & Technology

    1993-04-16

    remain unopposed through the arrival and assembly phase. 6. Greater Dispersion of Shipping a. The vulnerability of the amphibious task force ( ATF ... ATF to seaward of the landing beach from which assault shipping is phased into the transport area for selective or general offloading by...depends in large measure on the manner in which the ships have been loaded. Proper loading increases the inherent flexibility of the ATF and is a key

  1. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  2. Role for Human Mediator Subunit MED25 in Recruitment of Mediator to Promoters by Endoplasmic Reticulum Stress-responsive Transcription Factor ATF6α*

    PubMed Central

    Sela, Dotan; Conkright, Juliana J.; Chen, Lu; Gilmore, Joshua; Washburn, Michael P.; Florens, Laurence; Conaway, Ronald C.; Conaway, Joan Weliky

    2013-01-01

    Transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. In response to ER stress, ATF6α translocates from its site of latency in the ER membrane to the nucleus, where it activates RNA polymerase II transcription of ER stress response genes upon binding sequence-specifically to ER stress response enhancer elements (ERSEs) in their promoter-regulatory regions. In a recent study, we demonstrated that ATF6α activates transcription of ER stress response genes by a mechanism involving recruitment to ERSEs of the multisubunit Mediator and several histone acetyltransferase (HAT) complexes, including Spt-Ada-Gcn5 (SAGA) and Ada-Two-A-containing (ATAC) (Sela, D., Chen, L., Martin-Brown, S., Washburn, M.P., Florens, L., Conaway, J.W., and Conaway, R.C. (2012) J. Biol. Chem. 287, 23035–23045). In this study, we extend our investigation of the mechanism by which ATF6α supports recruitment of Mediator to ER stress response genes. We present findings arguing that Mediator subunit MED25 plays a critical role in this process and identify a MED25 domain that serves as a docking site on Mediator for the ATF6α transcription activation domain. PMID:23864652

  3. Down-regulation of ATF2 in the inhibition of T-2-toxin-induced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles

    NASA Astrophysics Data System (ADS)

    Han, Jing; Guo, Xiong

    2013-12-01

    Selenium chondroitin sulfate nanoparticles (SeCS) with a size range of 30-200 nm were obtained in our previous study. Meanwhile, the up-regulated expression of ATF2 mRNA and protein levels could be observed in the cartilage from Kashin-Beck disease (KBD) patients. In this paper, we investigated the inhibition effect of SeCS on T-2-toxin-induced apoptosis of chondrocyte from KBD patients. Here, we found that when the chondrocytes were treated with T-2 toxin, the chondrocyte apoptosis performed in a concentration-dependent manner. The apoptosis of chondrocyte induced by T-2 toxin involved the increased levels of ATF2, JNK and p38 mRNAs and related protein expression. SeCS could partly block the T-2-toxin-induced chondrocyte apoptosis by decreasing the expression of ATF2, JNK and p38 mRNAs and p-JNK, p-38, ATF2 and p-ATF2 proteins. JNK and p38 pathways involved in the apoptosis of chondrocyte induced by T-2 toxin, and SeCS was efficient in the inhibition of chondrocyte apoptosis by T-2 toxin. These results suggested that SeCS had a potential for further prevention and treatment for KBD as well as other selenium deficiency disease.

  4. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    PubMed

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  5. Role of ATF4 in skeletal muscle atrophy.

    PubMed

    Adams, Christopher M; Ebert, Scott M; Dyle, Michael C

    2017-05-01

    Here, we discuss recent work focused on the role of activating transcription factor 4 (ATF4) in skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression; however, the transcriptional regulatory proteins responsible for those changes are not yet well defined. Recent work indicates that some forms of muscle atrophy require ATF4, a stress-inducible bZIP transcription factor subunit that helps to mediate a broad range of stress responses in mammalian cells. ATF4 expression in skeletal muscle fibers is sufficient to induce muscle fiber atrophy and required for muscle atrophy during several stress conditions, including aging, fasting, and limb immobilization. By helping to activate specific genes in muscle fibers, ATF4 contributes to the expression of numerous mRNAs, including at least two mRNAs (Gadd45a and p21) that encode mediators of muscle fiber atrophy. Gadd45a promotes muscle fiber atrophy by activating the protein kinase MEKK4. p21 promotes atrophy by reducing expression of spermine oxidase, a metabolic enzyme that helps to maintain muscle fiber size under nonstressed conditions. In skeletal muscle fibers, ATF4 is critical component of a complex and incompletely understood molecular signaling network that causes muscle atrophy during aging, fasting, and immobilization.

  6. A magnetic isolation and pointing system for the astrometric telescope facility

    NASA Technical Reports Server (NTRS)

    Smith, Marcie; Hibble, William; Wolke, Patrick J.

    1993-01-01

    The astrometric telescope facility (ATF), a 20-meter telescope designed for long-term detection and observation of planetary systems outside of the solar system, is scheduled to be a major user of the Space Station's payload pointing system (PPS) capabilities. However, because the ATF has such a stringent pointing stability specification (as low as 0.01 arcsec error over the frequency range from 5 to 200 hertz) and requires +/- 180-degree roll rotation around the telescope's line of sight, the ATF's utilization of the PPS requires the addition of a mechanism or mechanisms to enhance the basic PPS capabilities. The results of a study conducted to investigate the ATF pointing performance achievable by the addition of a magnetic isolation and pointing (MIPS) system between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base are presented. In addition, the study produced requirements on magnetic force and gap motion as a function of the level of Space Station disturbance. These results were used to support the definition of a candidate MIPS. Pointing performance results from the study indicate that a MIPS can meet the ATF pointing requirements in the presence of a PPS base transitional acceleration of up to 0.018g, with reasonable restrictions placed on the isolation and pointing bandwidths. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes (less than 0.1 hertz) to meet ATF pointing requirements. The candidate MIPS is based on an assumed base translational disturbance of 0.01g. The system fits within the available annular region between the PPS and ATF while meeting power and weight limitations and providing the required payload roll motion. Payload data and power services are provided by noncontacting transfer devices.

  7. Sensing new chemicals with bacterial transcription factors.

    PubMed

    Libis, Vincent; Delépine, Baudoin; Faulon, Jean-Loup

    2016-10-01

    Bacteria rely on allosteric transcription factors (aTFs) to sense a wide range of chemicals. The variety of effectors has contributed in making aTFs the most used input system in synthetic biological circuits. Considering their enabling role in biotechnology, an important question concerns the size of the chemical space that can potentially be detected by these biosensors. From digging into the ever changing repertoire of natural regulatory circuits, to advances in aTF engineering, we review here different strategies that are pushing the boundaries of this chemical space. We also review natural and synthetic cases of indirect sensing, where aTFs work in combination with metabolism to enable detection of new molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Activation of the unfolded protein response during anoxia exposure in the turtle Trachemys scripta elegans.

    PubMed

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-02-01

    Red-eared slider turtles, Trachemys scripta elegans, can survive for several weeks without oxygen when submerged in cold water. We hypothesized that anaerobiosis is aided by adaptive up-regulation of the unfolded protein response (UPR), a stress-responsive pathway that is activated by accumulation of unfolded proteins in the endoplasmic reticulum (ER) and functions to restore ER homeostasis. RT-PCR, western immunoblotting and DNA-binding assays were used to quantify the responses and/or activation status of UPR-responsive genes and proteins in turtle tissues after animal exposure to 5 or 20 h of anoxic submergence at 4 °C. The phosphorylation state of protein kinase-like ER kinase (PERK) (a UPR-regulated kinase) and eukaryotic initiation factor 2 (eIF2α) increased by 1.43-2.50 fold in response to anoxia in turtle heart, kidney, and liver. Activation of the PERK-regulated transcription factor, activating transcription factor 4 (ATF4), during anoxia was documented by elevated atf4 transcripts and total ATF4 protein (1.60-2.43 fold), increased nuclear ATF4 content, and increased DNA-binding activity (1.44-2.32 fold). ATF3 and GADD34 (downstream targets of ATF4) also increased by 1.38-3.32 fold in heart and liver under anoxia, and atf3 transcripts were also elevated in heart. Two characteristic chaperones of the UPR, GRP78, and GRP94, also responded positively to anoxia with strong increases in both the transcript and protein levels. The data demonstrate that the UPR is activated in turtle heart, kidney, and liver in response to anoxia, suggesting that this pathway mediates an integrated stress response to protect tissues during oxygen deprivation.

  9. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  10. Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian

    The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less

  11. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    PubMed Central

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  12. BNL ATF II beamlines design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedurin, M.; Jing, Y.; Stratakis, D.

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO 2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO 2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, willmore » be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.« less

  13. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    NASA Astrophysics Data System (ADS)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity Hci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H2 gas. Expansion of the NdFeB crystal lattice in both ATF and H2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets.

  14. Phospho-mimicking Atf1 mutants bypass the transcription activating function of the MAP kinase Sty1 of fission yeast.

    PubMed

    Sánchez-Mir, Laura; Salat-Canela, Clàudia; Paulo, Esther; Carmona, Mercè; Ayté, José; Oliva, Baldo; Hidalgo, Elena

    2018-02-01

    Stress-dependent activation of signaling cascades is often mediated by phosphorylation events, but the exact nature and role of these phosphorelays are frequently poorly understood. Here, we review which are the consequences of the stress-dependent phosphorylation of a transcription factor on gene activation. In fission yeast, the MAP kinase Sty1 is activated upon several environmental hazards and promotes cell adaptation and survival, greatly through activation of a gene program mediated by the transcription factor Atf1. Although described decades ago, the role of the phosphorylation of Atf1 by Sty1 is still a matter of debate. We present here a brief review of recent data, obtained through the characterization of several phosphorylation mutant derivatives of Atf1, demonstrating that Atf1 phosphorylation does not stabilize the factor nor stimulates its binding to DNA. Rather, it provides a structural platform of interaction with the transcriptional machinery. Based on these findings, future work will establish how this phosphorylated trans-activation domain promotes the massive gene expression shift allowing cellular adaptation to stress.

  15. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors

    PubMed Central

    Iurlaro, Raffaella; Püschel, Franziska; León-Annicchiarico, Clara Lucía; O'Connor, Hazel; Martin, Seamus J.; Palou-Gramón, Daniel; Lucendo, Estefanía

    2017-01-01

    ABSTRACT Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death. PMID:28242652

  16. Simulation prediction and experiment setup of vacuum laser acceleration at Brookhaven National Lab-Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Shao, L.; Cline, D.; Ding, X.; Ho, Y. K.; Kong, Q.; Xu, J. J.; Pogorelsky, I.; Yakimenko, V.; Kusche, K.

    2013-02-01

    This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15 MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.

  17. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramicmore » microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, FeCrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.« less

  18. Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor beta-activated kinase 1/activating transcription factor 2 signaling: a potential clinical implication for osteoarthritis.

    PubMed

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R; Flick, Lisa M; Konttinen, Yrjö T; Chen, Di; Schwarz, Edward M; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2010-08-01

    To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor beta (TGFbeta) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Joint disease in Smad3-knockout (Smad3(-/-)) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3(-/-) mice. In Smad3(-/-) mice, an end-stage OA phenotype gradually developed. TGFbeta-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3(-/-) mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3(-/-) cells restored the normal p38 response to TGFbeta. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3(-/-) chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms alpha, beta, and gamma, but not delta. Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3-phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA.

  19. 75 FR 54183 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... other technological collection techniques or other forms of information technology, e.g., permitting... teach ATF courses. The information is necessary in order for ATF training programs to verify and defend...

  20. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    PubMed

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  1. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  2. ATF6α regulates morphological changes associated with senescence in human fibroblasts

    PubMed Central

    Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier

    2016-01-01

    Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts. PMID:27563820

  3. ATF6α regulates morphological changes associated with senescence in human fibroblasts.

    PubMed

    Druelle, Clémentine; Drullion, Claire; Deslé, Julie; Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier

    2016-10-18

    Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.

  4. 4E-BP is a target of the GCN2–ATF4 pathway during Drosophila development and aging

    PubMed Central

    Park, Jung-Eun; Zeng, Xiaomei

    2017-01-01

    Reduced amino acid availability attenuates mRNA translation in cells and helps to extend lifespan in model organisms. The amino acid deprivation–activated kinase GCN2 mediates this response in part by phosphorylating eIF2α. In addition, the cap-dependent translational inhibitor 4E-BP is transcriptionally induced to extend lifespan in Drosophila melanogaster, but through an unclear mechanism. Here, we show that GCN2 and its downstream transcription factor, ATF4, mediate 4E-BP induction, and GCN2 is required for lifespan extension in response to dietary restriction of amino acids. The 4E-BP intron contains ATF4-binding sites that not only respond to stress but also show inherent ATF4 activity during normal development. Analysis of the newly synthesized proteome through metabolic labeling combined with click chemistry shows that certain stress-responsive proteins are resistant to inhibition by 4E-BP, and gcn2 mutant flies have reduced levels of stress-responsive protein synthesis. These results indicate that GCN2 and ATF4 are important regulators of 4E-BP transcription during normal development and aging. PMID:27979906

  5. 27 CFR 21.33 - Formula No. 2-B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... crude drugs. 342.Processing glandular products, vitamins, hormones, and yeasts. 343.Processing... the appropriate TTB officer. [T.D. ATF-133, 48 FR 24673, June 2, 1983, as amended by T.D. ATF-442, 66...

  6. Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease.

    PubMed

    Sun, Xiaotian; Aimé, Pascaline; Dai, David; Ramalingam, Nagendran; Crary, John F; Burke, Robert E; Greene, Lloyd A; Levy, Oren A

    2018-05-01

    Reduced function of parkin appears to be a central pathogenic event in Parkinson disease (PD). Increasing parkin levels enhances survival in models of PD-related neuronal death and is a promising therapeutic objective. Previously, we demonstrated that the transcription factor ATF4 promotes survival in response to PD-mimetic stressors by maintaining parkin levels. ATF4 translation is up-regulated by phosphorylation of the translation initiation factor eIF2α. The small molecule guanabenz enhances eIF2α phosphorylation by blocking the function of GADD34, a regulatory protein that promotes eIF2α dephosphorylation. We tested the hypothesis that guanabenz, by inhibiting GADD34 and consequently increasing eIF2α phosphorylation and elevating ATF4, would improve survival in models of PD by up-regulating parkin. We found that GADD34 is strongly induced by 6-OHDA, and that GADD34 localization is dramatically altered in dopaminergic substantia nigra neurons in PD cases. We further demonstrated that guanabenz attenuates 6-hydroxydopamine (6-OHDA) induced cell death of differentiated PC12 cells and primary ventral midbrain dopaminergic neurons in culture, and of dopaminergic neurons in the substantia nigra of mice. In culture models, guanabenz also increases eIF2α phosphorylation and ATF4 and parkin levels in response to 6-OHDA. Furthermore, if either ATF4 or parkin is silenced, then the protective effect of guanabenz is lost. We also found similar results in a distinct model of neuronal death: primary cultures of cortical neurons treated with the topoisomerase I inhibitor camptothecin, in which guanabenz limited camptothecin-induced neuronal death in an ATF4- and parkin-dependent manner. In summary, our data suggest that guanabenz and other GADD34 inhibitors could be used as therapeutic agents to boost parkin levels and thereby slow neurodegeneration in PD and other neurodegenerative conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Curcumin inhibits the invasion of lung cancer cells by modulating the PKCα/Nox-2/ROS/ATF-2/MMP-9 signaling pathway.

    PubMed

    Fan, Zhigang; Duan, Xiaoyi; Cai, Hui; Wang, Li; Li, Min; Qu, Jingkun; Li, Wanjun; Wang, Yongheng; Wang, Jiansheng

    2015-08-01

    Invasion and metastasis are the major causes of tumor-related mortality in lung cancer. It is believed that curcumin is an effective drug possessing anti-invasive and anti-metastatic activities in the treatment of cancer. However, the specific mechanisms remain unclear. In the present study, we investigated whether the PKCα/Nox-2/ATF-2/MMP-9 signaling pathway is involved in the invasive behavior of lung cancer and whether curcumin could inhibit invasion by modulating this pathway. The cytotoxic effect of curcumin was evaluated by MTT assay and the capacity of invasion was assessed by Transwell assay. siRNA and plasmid transfection techniques were used to study the function of targeted genes. Real-time PCR and western blot analysis were used to evaluate the expression levels of PKCα, Nox-2, MMP-9 and the phosphorylation of ATF-2. The results showed that curcumin inhibited the proliferation and invasion of A549 cells in a dose-dependent manner. Overexpression of MMP-9 enhanced the invasion of A549 cells. However, inhibition of MMP-9 by siRNA or curcumin suppressed cell invasion. Moreover, we also demonstrated the catalytic role of PKCα in expression of MMP-9 and cellular invasion in A549 cells, which was dependent on the expression of Nox-2 and phosphorylation of ATF-2. Finally, we also showed that curcumin dose-dependently reduced the expression of PKCα, P47phox, Nox-2 and phosphorylated ATF-2, as well as intracellular ROS generation, suggesting the inhibitory effect of curcumin on the activation of the PKCα/Nox-2/ROS/ATF-2 pathway. In conclusion, the PKCα/Nox-2/ROS/ATF-2/MMP-9 signaling pathway is activated in lung cancer A549 cells, which could be modulated by curcumin to inhibit cell invasiveness.

  8. Effects of lateral variations of crustal rheology on the occurrence of post-orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy)

    NASA Astrophysics Data System (ADS)

    Pauselli, Cristina; Ranalli, Giorgio

    2017-11-01

    The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.

  9. The detection of planetary systems from Space Station - A star observation strategy

    NASA Technical Reports Server (NTRS)

    Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.

    1987-01-01

    A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.

  10. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  11. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  12. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells

    PubMed Central

    Eiselein, Larissa; Nyunt, Tun; Lamé, Michael W.; Ng, Kit F.; Wilson, Dennis W.; Rutledge, John C.; Aung, Hnin H.

    2015-01-01

    Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses. PMID:26709509

  13. Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors*

    PubMed Central

    Lara, Haydee; Wang, Yuhua; Beltran, Adriana S.; Juárez-Moreno, Karla; Yuan, Xinni; Kato, Sumie; Leisewitz, Andrea V.; Cuello Fredes, Mauricio; Licea, Alexei F.; Connolly, Denise C.; Huang, Leaf; Blancafort, Pilar

    2012-01-01

    Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers. PMID:22782891

  14. 27 CFR 479.104 - Registration of firearms by certain governmental entities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS... by T.D. ATF-241, 51 FR 39633, Oct. 29, 1986; T.D. ATF-270, 53 FR 10510, Mar. 31, 1988] Machine Guns ...

  15. 27 CFR 479.104 - Registration of firearms by certain governmental entities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS... by T.D. ATF-241, 51 FR 39633, Oct. 29, 1986; T.D. ATF-270, 53 FR 10510, Mar. 31, 1988] Machine Guns ...

  16. Distinct Residues Contribute to Motility Repression and Autoregulation in the Proteus mirabilis Fimbria-Associated Transcriptional Regulator AtfJ.

    PubMed

    Bode, Nadine J; Chan, Kun-Wei; Kong, Xiang-Peng; Pearson, Melanie M

    2016-08-01

    Proteus mirabilis contributes to a significant number of catheter-associated urinary tract infections, where coordinated regulation of adherence and motility is critical for ascending disease progression. Previously, the mannose-resistant Proteus-like (MR/P) fimbria-associated transcriptional regulator MrpJ has been shown to both repress motility and directly induce the transcription of its own operon; in addition, it affects the expression of a wide range of cellular processes. Interestingly, 14 additional mrpJ paralogs are included in the P. mirabilis genome. Looking at a selection of MrpJ paralogs, we discovered that these proteins, which consistently repress motility, also have nonidentical functions that include cross-regulation of fimbrial operons. A subset of paralogs, including AtfJ (encoded by the ambient temperature fimbrial operon), Fim8J, and MrpJ, are capable of autoinduction. We identified an element of the atf promoter extending from 487 to 655 nucleotides upstream of the transcriptional start site that is responsive to AtfJ, and we found that AtfJ directly binds this fragment. Mutational analysis of AtfJ revealed that its two identified functions, autoregulation and motility repression, are not invariably linked. Residues within the DNA-binding helix-turn-helix domain are required for motility repression but not necessarily autoregulation. Likewise, the C-terminal domain is dispensable for motility repression but is essential for autoregulation. Supported by a three-dimensional (3D) structural model, we hypothesize that the C-terminal domain confers unique regulatory capacities on the AtfJ family of regulators. Balancing adherence with motility is essential for uropathogens to successfully establish a foothold in their host. Proteus mirabilis uses a fimbria-associated transcriptional regulator to switch between these antagonistic processes by increasing fimbrial adherence while simultaneously downregulating flagella. The discovery of multiple related proteins, many of which also function as motility repressors, encoded in the P. mirabilis genome has raised considerable interest as to their functionality and potential redundancy in this organism. This study provides an important advance in this field by elucidating the nonidentical effects of these paralogs on a molecular level. Our mechanistic studies of one member of this group, AtfJ, shed light on how these differing functions may be conferred despite the limited sequence variety exhibited by the paralogous proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  18. 77 FR 70467 - Agency Information Collection Activities: Proposed Collection; Comments Requested; ATF...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives [OMB Number 1140-0001] Agency Information Collection Activities: Proposed Collection; Comments Requested; ATF Distribution Center Contractor Survey ACTION: 30-day notice. The Department of Justice (DOJ), Bureau of Alcohol...

  19. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats.

    PubMed

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-03-22

    Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.

  20. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice.

    PubMed

    Fazio, Elena N; Young, Claire C; Toma, Jelena; Levy, Michael; Berger, Kurt R; Johnson, Charis L; Mehmood, Rashid; Swan, Patrick; Chu, Alphonse; Cregan, Sean P; Dilworth, F Jeffrey; Howlett, Christopher J; Pin, Christopher L

    2017-09-01

    Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3 -/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC. © 2017 Fazio et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865

  2. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy*

    PubMed Central

    Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Murry, Daryl J.; Fox, Daniel K.; Bongers, Kale S.; Lira, Vitor A.; Meyerholz, David K.; Talley, John J.; Adams, Christopher M.

    2015-01-01

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle. PMID:26338703

  3. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy.

    PubMed

    Ebert, Scott M; Dyle, Michael C; Bullard, Steven A; Dierdorff, Jason M; Murry, Daryl J; Fox, Daniel K; Bongers, Kale S; Lira, Vitor A; Meyerholz, David K; Talley, John J; Adams, Christopher M

    2015-10-16

    Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Mutation of ATF6 causes autosomal recessive achromatopsia.

    PubMed

    Ansar, Muhammad; Santos-Cortez, Regie Lyn P; Saqib, Muhammad Arif Nadeem; Zulfiqar, Fareeha; Lee, Kwanghyuk; Ashraf, Naeem Mahmood; Ullah, Ehsan; Wang, Xin; Sajid, Sundus; Khan, Falak Sher; Amin-ud-Din, Muhammad; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Hameed, Abdul; Riazuddin, Saima; Ahmed, Zubair M; Ahmad, Wasim; Leal, Suzanne M

    2015-09-01

    Achromatopsia (ACHM) is an early-onset retinal dystrophy characterized by photophobia, nystagmus, color blindness and severely reduced visual acuity. Currently mutations in five genes CNGA3, CNGB3, GNAT2, PDE6C and PDE6H have been implicated in ACHM. We performed homozygosity mapping and linkage analysis in a consanguineous Pakistani ACHM family and mapped the locus to a 15.12-Mb region on chromosome 1q23.1-q24.3 with a maximum LOD score of 3.6. A DNA sample from an affected family member underwent exome sequencing. Within the ATF6 gene, a single-base insertion variant c.355_356dupG (p.Glu119Glyfs*8) was identified, which completely segregates with the ACHM phenotype within the family. The frameshift variant was absent in public variant databases, in 130 exomes from unrelated Pakistani individuals, and in 235 ethnically matched controls. The variant is predicted to result in a truncated protein that lacks the DNA binding and transmembrane domains and therefore affects the function of ATF6 as a transcription factor that initiates the unfolded protein response during endoplasmic reticulum (ER) stress. Immunolabeling with anti-ATF6 antibodies showed localization throughout the mouse neuronal retina, including retinal pigment epithelium, photoreceptor cells, inner nuclear layer, inner and outer plexiform layers, with a more prominent signal in retinal ganglion cells. In contrast to cytoplasmic expression of wild-type protein, in heterologous cells ATF6 protein with the p.Glu119Glyfs*8 variant is mainly confined to the nucleus. Our results imply that response to ER stress as mediated by the ATF6 pathway is essential for color vision in humans.

  5. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice.

    PubMed

    Di Certo, Maria Grazia; Corbi, Nicoletta; Strimpakos, Georgios; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Guglielmotti, Angelo; Batassa, Enrico Maria; Pisani, Cinzia; Floridi, Aristide; Benassi, Barbara; Fanciulli, Maurizio; Magrelli, Armando; Mattei, Elisabetta; Passananti, Claudio

    2010-03-01

    The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.

  6. Engineering an allosteric transcription factor to respond to new ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Noah D.; Garruss, Alexander S.; Moretti, Rocco

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. In this paper, we engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along withmore » multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). Finally, the ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.« less

  7. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress

    PubMed Central

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-01-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications. PMID:26030745

  8. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard; Teague, Michael

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items tomore » form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.« less

  9. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress.

    PubMed

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-06-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications.

  10. Engineering an allosteric transcription factor to respond to new ligands

    DOE PAGES

    Taylor, Noah D.; Garruss, Alexander S.; Moretti, Rocco; ...

    2015-12-21

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. In this paper, we engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along withmore » multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). Finally, the ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.« less

  11. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heatmore » and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.« less

  12. Activation of the EIF2α/ATF4 and ATF6 Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron Intake.

    PubMed

    Kobylewski, Sarah E; Henderson, Kimberly A; Yamada, Kristin E; Eckhert, Curtis D

    2017-04-01

    Fruits, nuts, legumes, and vegetables are rich sources of boron (B), an essential plant nutrient with chemopreventive properties. Blood boric acid (BA) levels reflect recent B intake, and men at the US mean intake have a reported non-fasting level of 10 μM. Treatment of DU-145 prostate cancer cells with physiological concentrations of BA inhibits cell proliferation without causing apoptosis and activates eukaryotic initiation factor 2 (eIF2α). EIF2α induces cell differentiation and protects cells by redirecting gene expression to manage endoplasmic reticulum stress. Our objective was to determine the temporal expression of endoplasmic reticulum (ER) stress-activated genes in DU-145 prostate cells treated with 10 μM BA. Immunoblots showed post-treatment increases in eIF2α protein at 30 min and ATF4 and ATF6 proteins at 1 h and 30 min, respectively. The increase in ATF4 was accompanied by an increase in the expression of its downstream genes growth arrest and DNA damage-induced protein 34 (GADD34) and homocysteine-induced ER protein (Herp), but a decrease in GADD153/CCAAT/enhancer-binding protein homologous protein (CHOP), a pro-apoptotic gene. The increase in ATF6 was accompanied by an increase in expression of its downstream genes GRP78/BiP, calreticulin, Grp94, and EDEM. BA did not activate IRE1 or induce cleavage of XBP1 mRNA, a target of IRE1. Low boron status has been associated with increased cancer risk, low bone mineralization, and retinal degeneration. ATF4 and BiP/GRP78 function in osteogenesis and bone remodeling, calreticulin is required for tumor suppressor p53 function and mineralization of teeth, and BiP/GRP78 and EDEM prevent the aggregation of misfolded opsins which leads to retinal degeneration. The identification of BA-activated genes that regulate its phenotypic effects provides a molecular underpinning for boron nutrition and biology.

  13. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy.

    PubMed

    Hagiwara, Daisuke; Takahashi, Hiroki; Kusuya, Yoko; Kawamoto, Susumu; Kamei, Katsuhiko; Gonoi, Tohru

    2016-05-17

    Fungal conidia are usually dormant unless the extracellular conditions are right for germination. Despite the importance of dormancy, little is known about the molecular mechanism underlying entry to, maintenance of, and exit from dormancy. To gain comprehensive and inter-species insights, transcriptome analyses were conducted across Aspergillus fumigatus, Aspergillus niger, and Aspergillus oryzae. We found transcripts of 687, 694, and 812 genes were enriched in the resting conidia compared with hyphae in A. fumigatus, A. niger, and A. oryzae, respectively (conidia-associated genes). Similarly, transcripts of 766, 1,241, and 749 genes were increased in the 1 h-cultured conidia compared with the resting conidia (germination-associated genes). Among the three Aspergillus species, we identified orthologous 6,172 genes, 91 and 391 of which are common conidia- and germination-associated genes, respectively. A variety of stress-related genes, including the catalase genes, were found in the common conidia-associated gene set, and ribosome-related genes were significantly enriched among the germination-associated genes. Among the germination-associated genes, we found that calA-family genes encoding a thaumatin-like protein were extraordinary expressed in early germination stage in all Aspergillus species tested here. In A. fumigatus 63 % of the common conidia-associated genes were expressed in a bZIP-type transcriptional regulator AtfA-dependent manner, indicating that AtfA plays a pivotal role in the maintenance of resting conidial physiology. Unexpectedly, the precocious expression of the germination-associated calA and an abnormal metabolic activity were detected in the resting conidia of the atfA mutant, suggesting that AtfA was involved in the retention of conidial dormancy. A comparison among transcriptomes of hyphae, resting conidia, and 1 h-grown conidia in the three Aspergillus species revealed likely common factors involved in conidial dormancy. AtfA positively regulates conidial stress-related genes and negatively mediates the gene expressions related to germination, suggesting a major role for AtfA in Aspergillus conidial dormancy.

  14. 27 CFR 555.165 - Failure to report theft or loss.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... report a theft of explosive materials in accordance with § 555.30 will be fined under title 18 U.S.C., imprisoned not more than 5 years, or both. [T.D. ATF-87, 46 FR 40384, Aug. 7, 1981, as amended by ATF No. 1...

  15. 27 CFR 555.165 - Failure to report theft or loss.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... report a theft of explosive materials in accordance with § 555.30 will be fined under title 18 U.S.C., imprisoned not more than 5 years, or both. [T.D. ATF-87, 46 FR 40384, Aug. 7, 1981, as amended by ATF No. 1...

  16. 27 CFR 555.165 - Failure to report theft or loss.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... report a theft of explosive materials in accordance with § 555.30 will be fined under title 18 U.S.C., imprisoned not more than 5 years, or both. [T.D. ATF-87, 46 FR 40384, Aug. 7, 1981, as amended by ATF No. 1...

  17. Determination of genetic effects of ATF3 and CDKN1A genes on milk yield and compositions in Chinese Holstein population.

    PubMed

    Han, Bo; Liang, Weijun; Liu, Lin; Li, Yanhua; Sun, Dongxiao

    2017-05-19

    Our previous RNA-sequencing study revealed that the ATF3 and CDKN1A genes were remarkably differentially expressed between the mammary glands of lactating Holstein cows with extremely high and low milk protein and fat percentage so that both of them were considered as candidates for milk composition. Herein, we further verified whether these genes have genetic effects on milk production traits in a Chinese Holstein cow population. By re-sequencing the entire coding and regulatory regions, we identified four SNPs in 5'promoter region, two in exons, seven in 3' un-translated region (UTR), and six in 3'flanking region of ATF3 gene, and one SNP in exon 5, two in 3'UTR, and two in 3'flanking region of CDKN1A gene. Of these, only the SNP, c.271C > T (rs442346530), in exon 5 of CDKN1A gene was predicted to result in an amino acid replacement from arginine to tryptophan. Subsequent genotype-phenotype association analysis revealed that 19 SNPs in ATF3 and 5 SNPs in CDKN1A were evidently associated with 305-days milk yield, fat yield, protein yield, or protein percentage (P = < 0.0001 ~ 0.0494). Whilst, no significant SNPs in ATF3 gene were associated with fat percentage in both first and second lactations (P > 0.05), and only two SNPs of CDKN1A gene, c.271C > T (P = 0.0377) and c.*654C > T (P = 0.0144), were markedly associated with fat percentage in the first lactation. Further, linkage disequilibrium (LD) analyses were conducted among the identified SNPs in ATF3 and/or CDKN1A genes to further confirm the association results. We also observed that the four SNPs, g.72834301C > A, g.72834229C > A, g.72833969A > G, and g.72833562G > T altered the specific transcription factor (TF) binding sites in ATF3 promoter, and one SNP, c.271C > T, changed the CDKN1A protein secondary structure, suggesting they might be the promising potential functional mutations. Our findings first profiled the genetic effects of ATF3 and CDKN1A genes for milk production traits in dairy cattle and will be available for marker-assisted breeding in dairy cattle.

  18. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  19. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE PAGES

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi; ...

    2016-04-29

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  20. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  1. ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer.

    PubMed

    Shi, Yanhua; Wang, Wei; Yang, Baozhi; Tian, Hongge

    2017-10-01

    Cervical cancer is one of the most common cancers among women worldwide. It is highly lethal yet can be treated when found in early stage. Thus, early detection is of significant important for early diagnosis of cervical cancer. Exosomes have been used as biomarkers in clinical diagnosis. It is unknown that whether blood exosomes associated with cervical cancer can be detected and if these exosomes can accurately represent the developmental stage of cervical cancer. Mouse models were made out of a relapsed cervical cancer patient's tumour sample for original and recurrent cervical cancer, and gene analysis in both tumours and exosomes in these mouse models were performed. We found that activating transcription factor 1 (ATF1) and RAS genes were significantly up-regulated in tumours of both primary and recurrent cervical cancer mouse model, and they can also be detected in the blood exosomes of the mouse model. Our results indicated that ATF1 and RAS could be potential candidate biomarkers for cervical cancer in early diagnosis. ATF1 and RAS genes were found significantly elevated in tumours of primary and recurrent cervical cancer mouse model, and they were also detected in the blood exosomes. Therefore, ATF1 and RAS could be used as a diagnostic marker for cervical cancer in the future. Copyright © 2017 John Wiley & Sons, Ltd.

  2. ATF4, A Novel Mediator of the Anabolic Actions of PTH on Bone

    DTIC Science & Technology

    2009-07-01

    formation rate and bone mineral density (severe osteoporosis) that persists throughout life. The expression of both osteocalcin (Ocn) and bone sialoprotein ...established that ATF4 is critical for osteoblast differentiation as demonstrated by dramatically reduced expression of osteocalcin and bone sialoprotein mRNA

  3. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, B. J.; Miller, D. T.

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  4. 78 FR 57415 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms and Explosives [OMB Number 1140-NEW] Agency Information Collection Activities; Proposed Collection; Comments Requested: Request for ATF Background Investigation Information ACTION: 60-Day Notice. The Department of Justice (DOJ), Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF),...

  5. Audiometric Predictions Using SFOAE and Middle-Ear Measurements

    PubMed Central

    Ellison, John C.; Keefe, Douglas H.

    2006-01-01

    Objective The goals of the study are to determine how well stimulus-frequency otoacoustic emissions (SFOAEs) identify hearing loss, classify hearing loss as mild or moderate-severe, and correlate with pure-tone thresholds in a population of adults with normal middle-ear function. Other goals are to determine if middle-ear function as assessed by wideband acoustic transfer function (ATF) measurements in the ear canal account for the variability in normal thresholds, and if the inclusion of ATFs improves the ability of SFOAEs to identify hearing loss and predict pure-tone thresholds. Design The total suppressed SFOAE signal and its corresponding noise were recorded in 85 ears (22 normal ears and 63 ears with sensorineural hearing loss) at octave frequencies from 0.5 – 8 kHz using a nonlinear residual method. SFOAEs were recorded a second time in three impaired ears to assess repeatability. Ambient-pressure ATFs were obtained in all but one of these 85 ears, and were also obtained from an additional 31 normal-hearing subjects in whom SFOAE data were not obtained. Pure-tone air-and bone-conduction thresholds and 226-Hz tympanograms were obtained on all subjects. Normal tympanometry and the absence of air-bone gaps were used to screen subjects for normal middle-ear function. Clinical decision theory was used to assess the performance of SFOAE and ATF predictors in classifying ears as normal or impaired, and linear regression analysis was used to test the ability of SFOAE and ATF variables to predict the air-conduction audiogram. Results The ability of SFOAEs to classify ears as normal or hearing impaired was significant at all test frequencies. The ability of SFOAEs to classify impaired ears as either mild or moderate-severe was significant at test frequencies from 0.5 to 4 kHz. SFOAEs were present in cases of severe hearing loss. SFOAEs were also significantly correlated with air-conduction thresholds from 0.5 to 8 kHz. The best performance occurred using the SFOAE signal-to-noise ratio (S/N) as the predictor, and the overall best performance was at 2 kHz. The SFOAE S/N measures were repeatable to within 3.5 dB in impaired ears. The ATF measures explained up to 25% of the variance in the normal audiogram; however, ATF measures did not improve SFOAEs predictors of hearing loss except at 4 kHz. Conclusions In common with other OAE types, SFOAEs are capable of identifying the presence of hearing loss. In particular, SFOAEs performed better than distortion-product and click-evoked OAEs in predicting auditory status at 0.5 kHz; SFOAE performance was similar to that of other OAE types at higher frequencies except for a slight performance reduction at 4 kHz. Because SFOAEs were detected in ears with mild to severe cases of hearing loss they may also provide an estimate of the classification of hearing loss. Although SFOAEs were significantly correlated with hearing threshold, they do not appear to have clinical utility in predicting a specific behavioral threshold. Information on middle-ear status as assessed by ATF measures offered minimal improvement in SFOAE predictions of auditory status in a population of normal and impaired ears with normal middle-ear function. However, ATF variables did explain a significant fraction of the variability in the audiograms of normal ears, suggesting that audiometric thresholds in normal ears are partially constrained by middle-ear function as assessed by ATF tests. PMID:16230898

  6. Performance of a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  7. The Business Benefits of Apprenticeships: The English Employers' Perspective

    ERIC Educational Resources Information Center

    Kenyon, Rod

    2005-01-01

    Purpose - This paper seeks to present the Apprenticeships Task Forces ATFs evaluation of the business case for recruiting and training apprentices. The focus is on whether they provide employers in the UK with a positive return on investment in key performance areas. Design/methodology/approach - The ATF asked nine members, senior executives of…

  8. 75 FR 8528 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... updated U.S. DOT Alcohol Testing Form (ATF) and the Management Information System (MIS) Data Collection... included a revised U.S. DOT Alcohol Testing Form (ATF) and the Management Information System (MIS) Data...) and Management Information System (MIS) form Federal Register [73 FR 14300] and [73 FR 33140]. There...

  9. 27 CFR 478.99 - Certain prohibited sales or deliveries.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; (6) Has been discharged from the Armed Forces under dishonorable conditions; (7) Who, having been a... explicitly prohibits the use, attempted use, or threatened use of physical force against such intimate... such ammunition. [T.D. ATF-270, 53 FR 10497, Mar. 31, 1988, as amended by T.D. ATF-363, 60 FR 17454...

  10. 78 FR 2363 - Notification of Deletion of a System of Records; Automated Trust Funds Database

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Database AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of deletion of a system... establishing the Automated Trust Funds (ATF) database system of records. The Federal Information Security... Integrity Act of 1982, Public Law 97-255, provided authority for the system. The ATF database has been...

  11. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 158B/159A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Larry Don; Miller, David Torbet; Walker, Billy Justin

    2016-11-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 158B/159A which were measured by the Radiation Measurements Laboratory (RML).

  12. 77 FR 67026 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Report of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... Lost ATF Form 5400.30, Intrastate Purchase of Explosives Coupon ACTION: 60-day notice. The Department... the following four points: --Evaluate whether the proposed collection of information is necessary for... or Lost ATF F 5400.30, Intrastate Purchase Explosives Coupon. (3) Agency form number, if any, and the...

  13. 27 CFR 24.32 - Records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Records. 24.32 Section 24.32 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... control number 1512-0298) [T.D. ATF-299, 55 FR 24989, June 19, 1990, as amended by T.D. ATF-409, 64 FR...

  14. 27 CFR 18.17 - Retention of documents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Retention of documents. 18.17 Section 18.17 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921, June 2, 1982, as amended by T.D. ATF...

  15. 27 CFR 24.32 - Records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Records. 24.32 Section 24.32 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... control number 1512-0298) [T.D. ATF-299, 55 FR 24989, June 19, 1990, as amended by T.D. ATF-409, 64 FR...

  16. 27 CFR 24.60 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false General. 24.60 Section 24.60 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... Budget under control number 1512-0492) [T.D. ATF-299, 55 FR 24989, June 19, 1990, as amended by T.D. ATF...

  17. 27 CFR 24.60 - General.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false General. 24.60 Section 24.60 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... Budget under control number 1512-0492) [T.D. ATF-299, 55 FR 24989, June 19, 1990, as amended by T.D. ATF...

  18. 78 FR 59720 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Training...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... Request for Non-ATF Employees ACTION: 30-Day notice. The Department of Justice (DOJ), Bureau of Alcohol... information is necessary for the proper performance of the functions of the agency, including whether the... Form/Collection: Training Registration Request for Non-ATF Employees. (3) Agency form number, if any...

  19. 78 FR 45275 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Training...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Request for Non-ATF Employees ACTION: 60-Day notice. The Department of Justice (DOJ), Bureau of Alcohol... performance of the functions of the agency, including whether the information will have practical utility... Request for Non-ATF Employees (3) Agency form number, if any, and the applicable component of the...

  20. Increased Amino Acid Uptake Supports Autophagy-Deficient Cell Survival upon Glutamine Deprivation.

    PubMed

    Zhang, Nan; Yang, Xin; Yuan, Fengjie; Zhang, Luyao; Wang, Yanan; Wang, Lina; Mao, Zebin; Luo, Jianyuan; Zhang, Hongquan; Zhu, Wei-Guo; Zhao, Ying

    2018-06-05

    Autophagy is a protein degradation process by which intracellular materials are recycled for energy homeostasis. However, the metabolic status and energy source of autophagy-defective tumor cells are poorly understood. Here, our data show that amino acid uptake from the extracellular environment is increased in autophagy-deficient cells upon glutamine deprivation. This elevated amino acid uptake results from activating transcription factor 4 (ATF4)-dependent upregulation of AAT (amino acid transporter) gene expression. Furthermore, we identify SIRT6, a NAD + -dependent histone deacetylase, as a corepressor of ATF4 transcriptional activity. In autophagy-deficient cells, activated NRF2 enhances ATF4 transcriptional activity by disrupting the interaction between SIRT6 and ATF4. In this way, autophagy-deficient cells exhibit increased AAT expression and show increased amino acid uptake. Notably, inhibition of amino acid uptake reduces the viability of glutamine-deprived autophagy-deficient cells, but not significantly in wild-type cells, suggesting reliance of autophagy-deficient tumor cells on extracellular amino acid uptake. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  2. Interseismic Deformation across the Eastern Altyn Tagh Fault from Insar Measurements

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Zhao, C. Y.; Ji, L. Y.; Zhang, Z. R.; Sun, H.

    2018-04-01

    As a new type of earth observation technique, InSAR has a lot of advantages, such as all-weather, all-time, high precision, high density, wide coverage and low cost. It has been widely used in deformation monitoring. Taking the eastern segment of Altyn Tagh fault (ATF) as the object of the research, this paper discussed the application of multi-temporal InSAR technology in the field of interseismic deformation monitoring. We measured the interseismic deformation along the eastern section of ATF using three neighboring descending tracks SAR data from the ERS and Envisat missions. The results show that, first, the validation of InSAR results is better than 2.5 mm/yr, the calibration of InSAR results is about 1.06 mm/yr. Second, the fault slip rate in this segment is about 4-7 mm/yr, and is in the locked condition. Third, The InSAR velocity profile across the fault is the clear asymmetry with respect to ATF, it may be the combined effect of northern (NATF) and southern (SATF) branches of ATF.

  3. Role of Atf1 and Pap1 in the induction of the catalase gene of fission yeast schizosaccharomyces pombe.

    PubMed

    Nakagawa, C W; Yamada, K; Mutoh, N

    2000-02-01

    We examined the induction of the catalase gene (ctt1(+)) of fission yeast Schizosaccharomyces pombe in response to several stresses by using mutants of transcription factors (Atf1 and Pap1) and a series of deletion mutants of the ctt1(+) promoter region. A transcription factor, Atf1, and its binding site are necessary for the induction of ctt1(+) by osmotic stress, UV irradiation, and heat shock. Induction by menadione treatment, which produces superoxide anion, required element A, the region from -111 to -90 (numbered with the transcription start site as +1). The factor responsible for the induction of the gene by oxidative stress via element A was identified as the transcription factor Pap1. We also found that Atf1 is activated by menadione treatment in pap1 mutant cells, although it is not activated by menadione treatment in pap1(+) cells. The activity of catalase is not increased in pap1 cells by several stresses, despite mRNA induction, suggesting that Pap1 plays some role in the expression of catalase activity.

  4. Urinary exosomal transcription factors, a new class of biomarkers for renal disease

    PubMed Central

    Zhou, Hua; Cheruvanky, Anita; Hu, Xuzhen; Matsumoto, Takayuki; Hiramatsu, Noriyuki; Cho, Monique E.; Berger, Alexandra; Leelahavanichkul, Asada; Doi, Kent; Chawla, Lakhmir S.; Illei, Gabor G.; Kopp, Jeffrey B.; Balow, James E.; Austin, Howard A.; Yuen, Peter S.T.; Star, Robert A.

    2008-01-01

    Urinary exosomes are excreted from all nephron segments and are a rich source of kidney injury biomarkers. Because exosomes contain intracellular proteins, we asked if transcription factors (TF) can be measured in urinary exosomes. We collected urine from two acute kidney injury (AKI) models (cisplatin or ischemia/reperfusion) and two podocyte injury models (puromycin-treated rats and podocin/Vpr transgenic mice). Human urine was obtained from patients with AKI, focal segmental glomerulosclerosis (FSGS), and matched controls. After isolating urine exosomes by differential centrifugation, activating transcription factor 3 (ATF3) and Wilms Tumor 1 (WT-1) were detected by western blot. ATF3 was continuously detected in urine exosomes 2–24 hr after ischemia/reperfusion and in a biphasic pattern after cisplatin. In both models, urinary ATF3 was detected earlier than serum creatinine. Urinary ATF3 was detected in AKI patients but not in normal subjects or patients with chronic kidney disease (CKD). Urinary WT-1 was detected in animal models before significant glomerular sclerosis. Urinary WT-1 was detected in 9/10 FSGS patients, but not in 8 controls. Transcription factors can be detected in urine exosomes, but not in whole urine. Urinary ATF3 may be a novel renal tubular cell injury biomarker for detecting early AKI, whereas urinary WT-1 may detect early podocyte injury. Urinary exosomal TFs represent a new class of biomarkers for acute and chronic renal diseases and may offer insight into cellular regulatory pathways. PMID:18509321

  5. Coffee Polyphenols Change the Expression of STAT5B and ATF-2 Modifying Cyclin D1 Levels in Cancer Cells

    PubMed Central

    Oleaga, Carlota; Ciudad, Carlos J.; Noé, Véronique; Izquierdo-Pulido, Maria

    2012-01-01

    Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2. PMID:22919439

  6. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    PubMed Central

    Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  7. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    PubMed Central

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  8. Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway

    PubMed Central

    Carraro, Valérie; Maurin, Anne-Catherine; Lambert-Langlais, Sarah; Averous, Julien; Chaveroux, Cédric; Parry, Laurent; Jousse, Céline; Örd, Daima; Örd, Tõnis; Fafournoux, Pierre; Bruhat, Alain

    2010-01-01

    In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver. PMID:21203563

  9. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice.

    PubMed

    Nikonorova, Inna A; Al-Baghdadi, Rana J T; Mirek, Emily T; Wang, Yongping; Goudie, Michael P; Wetstein, Berish B; Dixon, Joseph L; Hine, Christopher; Mitchell, James R; Adams, Christopher M; Wek, Ronald C; Anthony, Tracy G

    2017-04-21

    Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 ( Atf4 ) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Apomorphine prevents LPS-induced IL-23 p19 mRNA expression via inhibition of JNK and ATF4 in HAPI cells.

    PubMed

    Hara, Hirokazu; Kimoto, Dai; Kajita, Miho; Takada, Chisato; Kamiya, Tetsuro; Adachi, Tetsuo

    2017-01-15

    Inflammation has been reported to be closely related to exaggeration of cerebral ischemia and neurodegenerative diseases. Microglia, resident immune cells in the central nervous system, can be activated in response to neuronal injury and produce proinflammatory cytokines, resulting in further aggravation of neuronal injury. Interleukin (IL)-23, which consists of p19 and IL-12 p40 subunits, has been shown to be involved in brain injury associated with neuroinflammation. Apomorphine (Apo), a nonselective dopamine receptor agonist, has been used for clinical therapy of Parkinson's disease. Besides the pharmacological effect, Apo is known to have pleiotropic biological functions. In this study, to elucidate the effect of Apo on lipopolysaccharide (LPS)-induced IL-23 p19 mRNA expression in microglial cell line HAPI cells, we pretreated cells with various concentrations of Apo (10 - 30μM) for 8, 16, and 24h, followed by exposure to LPS (100ng/ml). Pretreatment with Apo dose- and time-dependently suppressed the induction of IL-23 p19 mRNA. However, this effect of Apo was exerted independently of dopamine receptors. JNK and ATF4, an endoplasmic reticulum (ER) stress-inducible transcription factor, were involved in expression of LPS-induced IL-23 p19 mRNA. Pretreatment with Apo (30μM) for 24h inhibited LPS-induced activation of JNK and the nuclear accumulation of ATF4. Thapsigargin (Tg), an ER stress inducer, stimulated IL-23 p19 mRNA expression via an ATF4 dependent mechanism. We also found that Apo inhibited Tg-induced ATF4 accumulation and IL-23 p19 mRNA expression. Taken together, our findings suggest that Apo exerts anti-inflammatory effects through inhibition of JNK and ATF4 signaling pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  12. Blockade of anoctamin-1 in injured and uninjured nerves reduces neuropathic pain.

    PubMed

    García, Guadalupe; Martínez-Rojas, Vladimir A; Oviedo, Norma; Murbartián, Janet

    2018-06-02

    The aim of this study was to determine the participation of anoctamin-1 in 2 models of neuropathic pain in rats (L5/L6 spinal nerve ligation [SNL] and L5 spinal nerve transection [SNT]). SNL and SNT diminished withdrawal threshold in rats. Moreover, SNL up-regulated anoctamin-1 protein expression in injured L5 and uninjured L4 DRG whereas that it enhanced activating transcription factor 3 (ATF-3) and caspase-3 expression only in injured L5 DRG. In marked contrast, SNT enhanced ATF-3 and caspase-3, but not anoctamin-1, expression in injured L5 DRG but it did not modify anoctamin-1, ATF-3 nor caspase-3 expression in uninjured L4 DRG. Accordingly, repeated (3 times) intrathecal injection of the anoctamin-1 blocker T16A inh-A01 (0.1-1 µg) or MONNA (1-10 µg) partially reverted SNL-induced mechanical allodynia in a dose-dependent manner. In contrast, anoctamin-1 blockers only produced a modest effect in SNT-induced mechanical allodynia. Interestingly, intrathecal injection of T16A inh-A01 (1 µg) or MONNA (10 µg) prevented SNL-induced up-regulation of anoctamin-1, ATF-3 and caspase-3 in injured L5 DRG. Repeated intrathecal injection of T16A inh-A01 or MONNA also reduced SNT-induced up-regulation of ATF-3 in injured L5 DRG. In contrast, T16A inh-A01 and MONNA did not affect SNT-induced up-regulation of caspase-3 expression in L5 DRG. Likewise, gabapentin (100 µg) diminished SNL-induced up-regulation of anoctamin-1, ATF-3 and caspase-3 expression in injured L5 DRG. These data suggest that spinal anoctamin-1 in injured and uninjured DRG participates in the maintenance of neuropathic pain in rats. Our data also indicate that expression of anoctamin-1 in DRG is differentially regulated depending on the neuropathic pain model. Copyright © 2018. Published by Elsevier B.V.

  13. Active tectonic extension across the Alto Tiberina normal fault system from GPS data modeling and InSAR velocity maps: new perspectives within TABOO Near Fault Observatory

    NASA Astrophysics Data System (ADS)

    Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore

    2014-05-01

    The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions of the ATF. Future perspectives within this study is to validate these models using velocity maps and temporal series provided by Differential Interferometric SAR (DInSAR) technique applied to a datasets of ERS 1-2 and ENVISAT SAR images. These data cover a time interval spanning from 1992 to 2010 and have been acquired along both ascending and descending orbit. In addition we will deploy a network of SAR passive Corner Reflectors (CRs) in the proximity of GPS monuments in order to calibrate the results of processing a set of COSMO-SkyMed SAR data and derive velocity maps. Thus the availability of high-resolution data will contribute to understand the mechanics of the LANFs and to evaluate the seismic potential associated to these geologic structures.

  14. 75 FR 48362 - Hearing Procedures Relating to Federal Firearms Licenses (2010R-2T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Attorney General and the Deputy Attorney General. 28 CFR 0.130(a). ATF has promulgated regulations that... ATF by 28 U.S.C. 599A and 28 CFR 0.130-0.133, the authority to issue notices, conduct licensing... unlicensed person without providing a secure gun storage or safety device. [[Page 48363

  15. 27 CFR 9.49 - Central Delaware Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...

  16. 27 CFR 9.49 - Central Delaware Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...

  17. 27 CFR 9.49 - Central Delaware Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...

  18. 27 CFR 9.49 - Central Delaware Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...

  19. 27 CFR 9.3 - Relation to parts 4 and 70 of this chapter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Evidence relating to the geographical features (climate, soil, elevation, physical features, etc.) which... of the viticultural area, based on features which can be found on United States Geological Survey (U... index by State.) [T.D. ATF-60, 44 FR 56692, Oct. 2, 1979, as amended by T.D. ATF-92, 46 FR 46913, Sept...

  20. 27 CFR 71.117 - Permit privileges, exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... force and effect except that, in the case of industrial use permits, any time after a citation has been... withdrawal permit. [T.D. 6389, 24 FR 4791, June 12, 1959. Redesignated at 40 FR 16835, Apr. 15, 1975; T.D. ATF-199, 50 FR 9197, Mar. 6, 1985; T.D. ATF-374, 61 FR 29957, June 13, 1996] ...

  1. 27 CFR 71.117 - Permit privileges, exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... force and effect except that, in the case of industrial use permits, any time after a citation has been... withdrawal permit. [T.D. 6389, 24 FR 4791, June 12, 1959. Redesignated at 40 FR 16835, Apr. 15, 1975; T.D. ATF-199, 50 FR 9197, Mar. 6, 1985; T.D. ATF-374, 61 FR 29957, June 13, 1996] ...

  2. 78 FR 2441 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Report of Lost...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Stolen ATF F 5400.30, Intrastate Purchase of Explosives Coupon ACTION: 30-Day notice. The Department of... encouraged. Your comments should address one or more of the following four points: --Evaluate whether the... collection. (2) Title of the Form/Collection: Report of Stolen or Lost ATF F 5400.30, Intrastate Purchase of...

  3. 27 CFR 18.32 - Change in name.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Change in name. 18.32 Section 18.32 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921, June 2, 1982, as amended by T.D. ATF...

  4. 27 CFR 20.62 - Change in location.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Change in location. 20.62 Section 20.62 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... under control number 1512-0336) T.D. ATF-199, 50 FR 9162, Mar. 8, 1985, as amended by T.D. ATF- 435, 66...

  5. 27 CFR 18.32 - Change in name.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Change in name. 18.32 Section 18.32 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921, June 2, 1982, as amended by T.D. ATF...

  6. 27 CFR 9.49 - Central Delaware Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...

  7. 27 CFR 555.206 - Location of magazines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in the table of distances for storage of explosive materials in § 555.218. (2) Ammonium nitrate and... for the separation of ammonium nitrate and blasting agents in § 555.220. However, the minimum... materials in § 555.218. [T.D. ATF-87, 46 FR 40384, Aug. 7, 1981, as amended by T.D. ATF-293, 55 FR 3722, Feb...

  8. TPA can overcome the requirement for EIa and together act synergistically in stimulating expression of the adenovirus EIII promoter.

    PubMed Central

    Buckbinder, L; Miralles, V J; Reinberg, D

    1989-01-01

    We have examined the control of gene expression from the adenovirus early region III (Ad-EIII) promoter, which contains two previously defined elements, the AP1 and ATF sites. We found that the AP1 element is capable of mediating activation by the adenovirus immediate early (EIa) gene products. Consistent with studies demonstrating that the AP1 site mediates signal transduction in response to 12-O-tetradecanoylphorbol 13-acetate (TPA) we have shown that TPA can activate Ad-EIII expression and overcome the requirement for EIa. Together TPA and EIa elicited a synergistic response in expression from the Ad-EIII promoter during both transient expression assays and viral infections. This synergistic effect required the AP1 element. An EIII promoter construct, in which sequences upstream of the TATA box had been replaced with four AP1 sites, was responsive to TPA and EIa and in combination promoted the synergistic effect. The analysis of specific factors involved in transcription from the Ad-EIII indicated that proteins recognizing the ATF and AP1 sites were important in expression from this promoter in vitro. Purification of protein factors that specifically stimulated EIII expression resulted in the isolation of a set of factors of the AP1 family. Affinity purified AP1 recognized and activated transcription through both the AP1 and ATF elements. In addition, a protein fraction was identified with DNA binding activity specific for the ATF element. This fraction was dependent on the ATF site for transcriptional activity. Images PMID:2531661

  9. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases.

    PubMed

    Kline, C Leah B; Van den Heuvel, A Pieter J; Allen, Joshua E; Prabhu, Varun V; Dicker, David T; El-Deiry, Wafik S

    2016-02-16

    ONC201 (also called TIC10) is a small molecule that inactivates the cell proliferation- and cell survival-promoting kinases Akt and ERK and induces cell death through the proapoptotic protein TRAIL. ONC201 is currently in early-phase clinical testing for various malignancies. We found through gene expression and protein analyses that ONC201 triggered an increase in TRAIL abundance and cell death through an integrated stress response (ISR) involving the transcription factor ATF4, the transactivator CHOP, and the TRAIL receptor DR5. ATF4 was not activated in ONC201-resistant cancer cells, and in ONC201-sensitive cells, knockdown of ATF4 or CHOP partially abrogated ONC201-induced cytotoxicity and diminished the ONC201-stimulated increase in DR5 abundance. The activation of ATF4 in response to ONC201 required the kinases HRI and PKR, which phosphorylate and activate the translation initiation factor eIF2α. ONC201 rapidly triggered cell cycle arrest, which was associated with decreased abundance of cyclin D1, decreased activity of the kinase complex mTORC1, and dephosphorylation of the retinoblastoma (Rb) protein. The abundance of X-linked inhibitor of apoptosis protein (XIAP) negatively correlated with the extent of apoptosis in response to ONC201. These effects of ONC201 were independent of whether cancer cells had normal or mutant p53. Thus, ONC201 induces cell death through the coordinated induction of TRAIL by an ISR pathway. Copyright © 2016, American Association for the Advancement of Science.

  10. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases

    PubMed Central

    Kline, C. Leah B.; Van den Heuvel, A. Pieter J.; Allen, Joshua E.; Prabhu, Varun V.; Dicker, David T.; El-Deiry, Wafik S.

    2016-01-01

    ONC201 (also called TIC10) is a small molecule that inactivates the cell proliferation- and cell survival-promoting kinases AKT and ERK and induces cell death through the pro-apoptotic protein TRAIL. ONC201 is currently in early phase clinical testing for various malignancies. Here, we found through gene expression and protein analyses that ONC201 triggered an increase in TRAIL abundance and cell death through an integrated stress response (ISR) involving the transcription factor ATF4, the transactivator CHOP, and the TRAIL receptor DR5. ATF4 was not activated in ONC201-resistant cancer cells, and in ONC201-sensitive cells, knockdown of ATF4 or CHOP partially abrogated ONC201-induced cytotoxicity and diminished the ONC201-stimulated increase in DR5 abundance. The activation of ATF4 in response to ONC201 required the kinases HRI and PKR, which phosphorylate and activate the translation initiation factor eIF2α. ONC201 rapidly triggered cell cycle arrest, which was associated with decreased abundance of cyclin D1, decreased activity of the kinase complex mTORC1, and dephosphorylation of the retinoblastoma (Rb) protein. The abundance of X-linked inhibitor of apoptosis protein (XIAP) negatively correlated with the extent of apoptosis in response to ONC201. These effects of ONC201 were independent of whether cancer cells had normal or mutant p53. Thus, ONC201 induces cell death through the coordinated induction of TRAIL by an ISR pathway. PMID:26884600

  11. Unfolded protein response activation in cataracts.

    PubMed

    Torres-Bernal, Beatriz E; Torres-Bernal, Luis Fernando; Gutiérrez-Campos, Rafael R; Kershenobich Stalnikowitz, David D; Barba-Gallardo, Luis Fernando; Chayet, Arturo A; Ventura-Juárez, Javier

    2014-10-01

    To analyze the expression of 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6), 2 factors in the unfolded protein response (UPR), in age-related and diabetes-associated cataract. Universidad Autónoma de Aguascalientes, Aguascalientes, México. Experimental study. The qualitative and quantitative expression of GRP78 and ATF6 were measured in surgical samples from 11 senile cataracts, 9 diabetic-associated cataracts, and 3 normal lenses. Both proteins were detected by immunofluorescence and immunogold-conjugated antibodies. Quantitative morphometry was used to analyze the differences in GRP78 and ATF6 between samples. The Mann-Whitney test was used for statistical analysis. Scanning electron microscopy showed the characteristic organization of fibers in normal lenses with regular alignment and interdigitation between them. On the other hand, lenses from eyes with senile or diabetic cataract showed the same pattern of misalignment and disorganization of the fibers. Both proteins were detected through immunofluorescence in senile and diabetic cataracts, but not in normal lenses. Immunogold-conjugated antibodies and transmission electron microscopy showed that GRP78 and ATF6 grains were 30% higher and 35% higher, respectively, in diabetic cataracts than in senile cataracts (P<.05). These data show for the first time in humans that GRP78 and ATF6 are present in lens fibers of senile cataracts and diabetic cataracts, establishing that the UPR may be important in the process of cataractogenesis. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells.

    PubMed

    Dietze, Raimund; Konrad, Lutz; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2013-03-01

    Sertoli cells express α1 and α4 isoforms of the catalytic subunit of Na(+),K(+)-ATPase (sodium pump). Our recent findings demonstrated that interactions of the α4 isoform with cardiotonic steroids (CTS) like ouabain induce signaling cascades that resemble the so-called non-classical testosterone pathway characterized by activation of the c-Src/c-Raf/Erk1/2/CREB signaling cascade. Here we investigate a possible physiological significance of the activated cascade. The results obtained in the current investigation show that the ouabain-induced signaling cascade also leads to the activation of the CREB-related activating transcription factor 1 (ATF-1) in the Sertoli cell line 93RS2 in a concentration- and time-dependent manner, as demonstrated by detection of ATF-1 phosphorylated on Ser63 in western blots. The ouabain-activated ATF-1 protein was found to localize to the cell nuclei. The sodium pump α4 isoform mediates this activation, as it is ablated when cells are incubated with siRNA to the α4 isoform. Ouabain also leads to increased expression of steroidogenic acute regulator (StAR) protein, which has been shown to be a downstream consequence of CREB/ATF-1 activation. Taking into consideration that CTS are most likely produced endogenously, the demonstrated induction of StAR expression by ouabain establishes a link between CTS, the α4 isoform of the sodium pump, and steroidogenesis crucial for male fertility and reproduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Upregulation of CCL2 via ATF3/c-Jun interaction mediated the Bortezomib-induced peripheral neuropathy.

    PubMed

    Liu, Cuicui; Luan, Shuo; OuYang, Handong; Huang, Zhenzhen; Wu, Shaoling; Ma, Chao; Wei, Jiayou; Xin, Wenjun

    2016-03-01

    Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In present study, we found that application of BTZ at 0.4 mg/kg for consecutive 5 days significantly increased the expression of CCL2 in DRG, and intrathecal administration of neutralizing antibody against CCL2 inhibited the mechanical allodynia induced by BTZ. We also found an increased expression of c-Jun in DRG, and that inhibition of c-Jun signaling prevented the CCL2 upregulation and mechanical allodynia in the rats treated with BTZ. Furthermore, the results with luciferase assay in vitro and ChIP assay in vivo showed that c-Jun might be essential for BTZ-induced CCL2 upregulation via binding directly to the specific position of the ccl2 promoter. In addition, the present results showed that an upregulated expression of ATF3 was co-expressed with c-Jun in the DRG neurons, and the enhanced interaction between c-Jun and ATF3 was observed in DRG in the rats treated with BTZ. Importantly, pretreatment with ATF3 siRNA significantly inhibited the recruitment of c-Jun to the ccl2 promoter in the rats treated with BTZ. Taken together, these findings suggested that upregulation of CCL2 resulting from the enhanced interaction between c-Jun and ATF3 in DRG contributed to BTZ-induced mechanical allodynia. Copyright © 2015. Published by Elsevier Inc.

  14. Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300.

    PubMed

    Bex, F; Yin, M J; Burny, A; Gaynor, R B

    1998-04-01

    The human T-cell leukemia virus type 1 Tax protein transforms human T lymphocytes, which can lead to the development of adult T-cell leukemia. Tax transformation is related to its ability to activate gene expression via the ATF/CREB and the NF-kappaB pathways. Transcriptional activation of these pathways is mediated by the actions of the related coactivators CREB binding protein (CBP) and p300. In this study, immunocytochemistry and confocal microscopy were used to localize CBP and p300 in cells expressing wild-type Tax or Tax mutants that are able to selectively activate gene expression from either the NF-kappaB or ATF/CREB pathway. Wild-type Tax colocalized with both CBP and p300 in nuclear bodies which also contained ATF-1 and the RelA subunit of NF-kappaB. However, a Tax mutant that selectively activates gene expression from only the ATF/CREB pathway colocalized with CBP but not p300, while a Tax mutant that selectively activates gene expression from only the NF-kappaB pathway colocalized with p300 but not CBP. In vitro and in vivo protein interaction studies indicated that the integrity of two independent domains of Tax delineated by these mutants was involved in the direct interaction of Tax with either CBP or p300. These studies are consistent with a model in which activation of either the NF-kappaB or the ATF/CREB pathway by specific Tax mutants is mediated by distinct interactions with related coactivator proteins.

  15. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway.

    PubMed

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F

    2017-02-16

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  16. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    PubMed Central

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.

    2017-01-01

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323

  17. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    PubMed

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir.more » Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.« less

  19. 27 CFR 16.10 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... State statutes, regulations and principles and rules having the force of law. TTB. The Alcohol and... and used in this part shall have the same meaning as assigned to it by the Act. [T.D. ATF-294, 55 FR 5421, Feb. 14, 1990, as amended by T.D. ATF-425, 65 FR 11892, Mar. 7, 2000; T.D. TTB-44, 71 FR 16925...

  20. 27 CFR 16.10 - Meaning of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... State statutes, regulations and principles and rules having the force of law. TTB. The Alcohol and... and used in this part shall have the same meaning as assigned to it by the Act. [T.D. ATF-294, 55 FR 5421, Feb. 14, 1990, as amended by T.D. ATF-425, 65 FR 11892, Mar. 7, 2000; T.D. TTB-44, 71 FR 16925...

  1. 27 CFR 478.92 - How must licensed manufacturers and licensed importers identify firearms, armor piercing...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dangerous or impracticable. (iii) Machine guns, silencers, and parts. Any part defined as a machine gun... section. The Director may authorize other means of identification of parts defined as machine guns other... control number 1140-0050) [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988, as amended by T.D. ATF-363, 60 FR...

  2. 27 CFR 478.92 - How must licensed manufacturers and licensed importers identify firearms, armor piercing...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dangerous or impracticable. (iii) Machine guns, silencers, and parts. Any part defined as a machine gun... section. The Director may authorize other means of identification of parts defined as machine guns other... control number 1140-0050) [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988, as amended by T.D. ATF-363, 60 FR...

  3. 27 CFR 478.92 - How must licensed manufacturers and licensed importers identify firearms, armor piercing...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dangerous or impracticable. (iii) Machine guns, silencers, and parts. Any part defined as a machine gun... section. The Director may authorize other means of identification of parts defined as machine guns other... control number 1140-0050) [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988, as amended by T.D. ATF-363, 60 FR...

  4. 27 CFR 478.92 - How must licensed manufacturers and licensed importers identify firearms, armor piercing...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dangerous or impracticable. (iii) Machine guns, silencers, and parts. Any part defined as a machine gun... section. The Director may authorize other means of identification of parts defined as machine guns other... control number 1140-0050) [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988, as amended by T.D. ATF-363, 60 FR...

  5. Metastable Intermolecular Composites (MIC) Primers for Small Caliber Cartridges and Cartridge Actuated Devices

    DTIC Science & Technology

    2009-07-01

    24 iii ACRONYMS AND ABBREVIATIONS ATF Armaments Technology Facility ATK Alliant Techsystems, Inc. ARDEC Armament Research...Technology Facility ( ATF ) firings there, and was instrumental in producing the primers and loading the cartridges needed for the supplemental...and CADs known as the percussion primer. The novel properties associated with nanostructure materials have resulted in the development of thermite

  6. 77 FR 63340 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... business or operation is discontinued and succeeded by a new licensee or new permittee to reflect that fact... operation is absolute, deliver records to any ATF office located in the region in which the business or operation was located or to ATF Out of Business Records Center, 244 Needy Road, Martinsburg, WV 25405 within...

  7. De-Icing of Aircraft Turbine Engine Inlets

    DTIC Science & Technology

    1988-06-01

    W0OO Aviona Marcel Dassault TFE731 -3 tirbolan Falcon 50 Avlons Maircel Dsasaau ATF34A Turbolan Falcon 200 Avian* Marcel Dassault ATF3.6 1b.bolan HU25A...Aviana Maemel Dassault TFE731 -4A Turbolan Falcon 900 Avion@ Marcel Dassault J73D 1Ubots 797 Boeing .1110 )Irbotkn 727 Boeing .1750 TUrbolan 737 Boeing

  8. An astrometric facility for planetary detection on the space station

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-01-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  9. Improving the Organoleptic Properties of a Craft Mezcal Beverage by Increasing Fatty Acid Ethyl Ester Contents through ATF1 Expression in an Engineered Kluyveromyces marxianus UMPe-1 Yeast.

    PubMed

    Campos-García, Jesús; Vargas, Alejandra; Farías-Rosales, Lorena; Miranda, Ana L; Meza-Carmen, Víctor; Díaz-Pérez, Alma L

    2018-05-02

    Mezcal, a traditional beverage that originated in Mexico, is produced from species of the Agavaceae family. The esters associated with the yeasts utilized during fermentation are important for improving the organoleptic properties of the beverage. We improved the ester contents in a mezcal beverage by using the yeast Kluyveromyces marxianus, which was engineered with the ATF1 gene. ATF1 expression in the recombinant yeast significantly increased compared with that in the parental yeast, but its fermentative parameters were unchanged. Volatile-organic-compound-content analysis showed that esters had significantly increased in the mezcal produced with the engineered yeast. In a sensory-panel test, 48% of the panelists preferred the mezcal produced from the engineered yeast, 30% preferred the mezcal produced from the wild type, and 15 and 7% preferred the two mezcal types produced following the routine procedure. Correlation analysis showed that the fruitiness/sweetness description of the mezcal produced using the ATF1-engineered K. marxianus yeast correlated with the content of the esters, whose presence improved the organoleptic properties of the craft mezcal beverage.

  10. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae

    PubMed Central

    Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth

    2017-01-01

    The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail. PMID:28205618

  11. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression

    PubMed Central

    Wang, Ji; Kang, Rongyan; Huang, He; Xi, Xueyan; Wang, Bei; Wang, Jianwei; Zhao, Zhendong

    2014-01-01

    HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the –253 to –99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression. PMID:24589849

  12. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2014-10-01 2014-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  13. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2011-10-01 2011-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  14. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2012-10-01 2012-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  15. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2010-10-01 2010-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  16. 49 CFR 40.227 - May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., either by mistake, or as the only means to conduct a test under difficult circumstances (e.g., post... 49 Transportation 1 2013-10-01 2013-10-01 false May employers use the ATF for non-DOT tests, or non-DOT forms for DOT tests? 40.227 Section 40.227 Transportation Office of the Secretary of...

  17. Gun Trafficking and the Southwest Border

    DTIC Science & Technology

    2009-07-29

    the- books in an attempt to escape federal regulation. ATF also reports that Mexican drug trafficking organizations (DTOs) are increasingly sending...investigations. In addition, by inspecting those records, ATF investigators sometimes discover evidence of illegal, off-the- books transfers, straw...possess a firearms through straw purchases or by buying a firearm from a corrupt dealer who sells firearms off-the- books in an attempt to escape

  18. 27 CFR 41.114a - Qualification for extended deferral.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bond or file a strengthening bond to increase the total amount of the bonds then in force to a..., as amended, 907, as amended; 26 U.S.C. 7101, 7652(a); 26 U.S.C. 7805) [T.D. ATF-5, 38 FR 19688, July 23, 1973. Redesignated at 40 FR 16835, Apr. 15, 1975, and amended by T.D. ATF-48, 44 FR 55855, Sept...

  19. 27 CFR 41.114a - Qualification for extended deferral.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... bond or file a strengthening bond to increase the total amount of the bonds then in force to a..., as amended, 907, as amended; 26 U.S.C. 7101, 7652(a); 26 U.S.C. 7805) [T.D. ATF-5, 38 FR 19688, July 23, 1973. Redesignated at 40 FR 16835, Apr. 15, 1975, and amended by T.D. ATF-48, 44 FR 55855, Sept...

  20. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  1. 28 CFR 16.106 - Exemption of the Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF)-Limited Access.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DEPARTMENT OF JUSTICE PRODUCTION OR DISCLOSURE OF MATERIAL OR INFORMATION Exemption of Records Systems Under...)—Limited Access. (a) The following system of records is exempt from 5 U.S.C. 552a(c)(3) and (4), (d)(1), (2... Investigation Report System (JUSTICE/ATF-003). (2) These exemptions apply only to the extent that information in...

  2. Performance Assessment of Passive Hearing Protection Devices

    DTIC Science & Technology

    2014-10-24

    ear ................................................ 9 Figure 11. Schematic of the set-up of the explosive charge for the creation of a shock wave...10 Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations...OF TABLES Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations

  3. hCG-induced endoplasmic reticulum stress triggers apoptosis and reduces steroidogenic enzyme expression through activating transcription factor 6 in Leydig cells of the testis

    PubMed Central

    Park, Sun-Ji; Kim, Tae-Shin; Park, Choon-Keun; Lee, Sang-Hee; Kim, Jin-Man; Lee, Kyu-Sun; Lee, In-kyu; Park, Jeen-Woo; Lawson, Mark A; Lee, Dong-Seok

    2014-01-01

    Endoplasmic reticulum (ER) stress generally occurs in secretory cell types. It has been reported that Leydig cells, which produce testosterone in response to human chorionic gonadotropin (hCG), express key steroidogenic enzymes for the regulation of testosterone synthesis. In this study, we analyzed whether hCG induces ER stress via three unfolded protein response (UPR) pathways in mouse Leydig tumor (mLTC-1) cells and the testis. Treatment with hCG induced ER stress in mLTC-1 cells via the ATF6, IRE1a/XBP1, and eIF2α/GADD34/ATF4 UPR pathways, and transient expression of 50 kDa protein activating transcription factor 6 (p50ATF6) reduced the expression level of steroidogenic 3β-hydroxy-steroid dehydrogenase Δ5-Δ4-isomerase (3β-HSD) enzyme. In an in vivo model, high-level hCG treatment induced expression of p50ATF6 while that of steroidogenic enzymes, especially 3β-HSD, 17α-hydroxylase/C17–20 lyase (CYP17), and 17β-hydrozysteroid dehydrogenase (17β-HSD), was reduced. Expression levels of steroidogenic enzymes were restored by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Furthermore, lentivirus-mediated transient expression of p50ATF6 reduced the expression level of 3β-HSD in the testis. Protein expression levels of phospho-JNK, CHOP, and cleaved caspases-12 and -3 as markers of ER stress-mediated apoptosis markedly increased in response to high-level hCG treatment in mLTC-1 cells and the testis. Based on transmission electron microscopy and H&E staining of the testis, it was shown that abnormal ER morphology and destruction of testicular histology induced by high-level hCG treatment were reversed by the addition of TUDCA. These findings suggest that hCG-induced ER stress plays important roles in steroidogenic enzyme expression via modulation of the ATF6 pathway as well as ER stress-mediated apoptosis in Leydig cells. PMID:23256993

  4. Incorporating elements of social franchising in government health services improves the quality of infant and young child feeding counselling services at commune health centres in Vietnam.

    PubMed

    Nguyen, Phuong H; Kim, Sunny S; Keithly, Sarah C; Hajeebhoy, Nemat; Tran, Lan M; Ruel, Marie T; Rawat, Rahul; Menon, Purnima

    2014-12-01

    Although social franchising has been shown to enhance the quality of reproductive health services in developing countries, its effect on nutrition services remains unexamined. This study assessed the effects of incorporating elements of social franchising on shaping the quality of infant and young child feeding (IYCF) counselling facilities and services in Vietnam. Process-related data collected 12 months after the launch of the first franchises were used to compare randomly assigned Alive & Thrive-supported health facilities (AT-F, n = 20) with standard facilities (SF, n = 12) across three dimensions of service quality: 'structure', 'process' and 'outcome' that capture the quality of facilities, service delivery, and client perceptions and use, respectively. Data collection included facility assessments (n = 32), staff surveys (n = 96), counselling observations (n = 137), client exit interviews (n = 137) and in-depth interviews with mothers (n = 48). Structure: AT-F were more likely to have an unshared, well-equipped room for nutrition counselling than SF (65.0% vs 10.0%). Compared with SF providers, AT-F staff had better IYCF knowledge (mean score 9.9 vs 8.8, range 0-11 for breastfeeding; mean score 3.6 vs 3.2, range 0-4 for complementary feeding). AT-F providers also demonstrated significantly better interpersonal communication skills (score 9.6 vs 5.1, range 0-13) and offered more comprehensive counselling sessions. Overall utilization of franchises was low (10%). A higher proportion of pregnant women utilized franchise services (48.9%), compared with mothers with children 6-23.9 months (1.4%). There was no quantitative difference in client satisfaction with counselling services between AT-F and SF, but franchise users praised the AT-F for problem solving related to child feeding. Incorporating elements of social franchising significantly enhances the quality of IYCF counselling services within government primary healthcare facilities, particularly their structural and process attributes. Provided that service utilization is improved through demand generation, this model has the potential to impact IYCF practices and child nutrition. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.

  5. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  6. Modified radial v/s biatrial maze for atrial fibrillation in rheumatic valvular heart surgery.

    PubMed

    Sayed, Sajid A; Katewa, Ashish; Srivastava, Vivek; Jana, Sujit; Patwardhan, Anil M

    2014-01-01

    Atrial fibrillation (AF) is commonest sustained atrial arrhythmia producing high morbidity. Although Cox's Maze III procedure cures AF in majority, reduced atrial transport function (ATF) is a concern. Radial approach with ablation lines radial from sinus node towards atrioventricular annulii and parallel to atrial coronary arteries, has shown better ATF. Single blind open randomized prospective study of 80 patients was undertaken in two groups (40 each) of modified Cox's maze III and modified radial approach, to evaluate conversion to normal sinus rhythm (NSR) and ATF. Patients undergoing surgery for rheumatic valvular heart disease with continuous AF were prospectively randomized. Ablation lines were created with radiofrequency (RF) bipolar coagulation with cryoablation for the isthmal lesions and coronary sinus. Results were compared at 6 months and ATF was evaluated by atrial filling fraction (AFF) and A/E ratio on echocardiography. The rate of conversion to NSR in both groups was statistically insignificant by Fisher's exact test (p > 0.05). ATF was better in modified radial approach compared to modified Cox's Maze III (A/E compared by unpaired t test:0.52 ± 0.08 v/s 0.36 ± 0.10; p < 0.05. AFF compared using Mann Whitney U test: median AFF for radial group was 23 v/s 20 for biatrial group; p < 0.05). In patients with AF undergoing rheumatic valvular surgery, radiofrequency radial approach is as effective as modified Cox's maze III for conversion to NSR with better atrial transport function. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  7. Amino Alcohol- (NPS-2143) and Quinazolinone-Derived Calcilytics (ATF936 and AXT914) Differentially Mitigate Excessive Signalling of Calcium-Sensing Receptor Mutants Causing Bartter Syndrome Type 5 and Autosomal Dominant Hypocalcemia

    PubMed Central

    Letz, Saskia; Haag, Christine; Schulze, Egbert; Frank-Raue, Karin; Raue, Friedhelm; Hofner, Benjamin; Mayr, Bernhard; Schöfl, Christof

    2014-01-01

    Introduction Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. Methods All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. Results All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. Conclusion The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations. PMID:25506941

  8. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    PubMed

    Cronin, Katherine R; Mangan, Thomas P; Carew, Josephine A

    2012-01-01

    Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  9. Northward expansion of Tibet beyond the Altyn Tagh Fault

    NASA Astrophysics Data System (ADS)

    Cunningham, D.; Zhang, J.; Yanfeng, L.; Vernon, R.

    2017-12-01

    For many tectonicists, the evolution of northern Tibet stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement-cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is essentially a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan perhaps above blind thrust faults which are emergent further west. At the surface, local fault reactivation of basement fabrics is an important control on the kinematics of deformation. Previously published magnetotelluric data for the region suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault array near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be viewed regionally as the most northern, but early-stage expression of Tibetan Plateau growth into a reluctantly deforming, mechanically stiff Archean craton.

  10. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH.

    PubMed

    Kresse, Stine H; Berner, Jeanne-Marie; Meza-Zepeda, Leonardo A; Gregory, Simon G; Kuo, Wen-Lin; Gray, Joe W; Forus, Anne; Myklebost, Ola

    2005-11-07

    Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets.

  11. Late Cenozoic transpressional mountain building directly north of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China

    NASA Astrophysics Data System (ADS)

    Cunningham, Dickson; Zhang, Jin; Li, Yanfeng

    2016-09-01

    For many tectonicists, the structural development of the northern Tibetan Plateau stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan and appear to have formed above blind thrust faults which break the surface further west. Previously published magnetotelluric data suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that are inferred to merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault system near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be regionally viewed as the most northern, but early-stage expression of Tibetan Plateau growth into a slowly deforming, mechanically stiff Archean craton.

  12. Upregulation of the Coagulation Factor VII Gene during Glucose Deprivation Is Mediated by Activating Transcription Factor 4

    PubMed Central

    Cronin, Katherine R.; Mangan, Thomas P.; Carew, Josephine A.

    2012-01-01

    Background Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Methodology/Principal Findings Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/− SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/−15% to 188+/−27% and 100+/−8.8% to 176.3+/−17.3% respectively, p<0.001) at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Conclusions/Significance Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress. PMID:22848420

  13. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    PubMed

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  14. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    PubMed

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  15. 27 CFR 28.65 - Bond, Form 2738 (5110.68).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... as provided in § 28.171(d) and the terms of his bond on Form 2738 (5110.68), then in force, do not..., 5066) [T.D. 7112, 36 FR 8580, May 8, 1971. Redesignated at 40 FR 16835, Apr. 15, 1975, and amended by T.D. ATF-62, 44 FR 71721, Dec. 11, 1979; T.D. ATF-198, 50 FR 8559, Mar. 1, 1985; T.D. TTB-8, 69 FR...

  16. 27 CFR 28.65 - Bond, Form 2738 (5110.68).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as provided in § 28.171(d) and the terms of his bond on Form 2738 (5110.68), then in force, do not..., 5066) [T.D. 7112, 36 FR 8580, May 8, 1971. Redesignated at 40 FR 16835, Apr. 15, 1975, and amended by T.D. ATF-62, 44 FR 71721, Dec. 11, 1979; T.D. ATF-198, 50 FR 8559, Mar. 1, 1985; T.D. TTB-8, 69 FR...

  17. Smokeless Propellants as Vehicle Borne IED Main Charges: An Initial Threat Assessment

    DTIC Science & Technology

    2008-01-01

    uci: • danger clasa : (B) critical detonation height I 45 - 65 em. detonation danger , during fillin. material in mixing trough, in barrels as a in...Appendix A Examples ofMorphology Appendix B ATF List of Explosives Materials Appendix C Cabella Web Page Appendix D ATF Intelligence Report on Explosives...available for exploitation by violent extremist organizations and individuals. Discussion: Conventional explosive materials remain the most probable

  18. Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection

    PubMed Central

    Jeong, Ga Ram; Kim, Hyojung; Jo, Minkyung; Lee, Byoung Dae; Lee, Yun Il; Jo, Areum; Park, ChiHu; Kim, Hyein; Seo, Jeongkon; Paek, Sun Ha; Lee, Yun-Song; Choi, Jeong-Yun; Lee, Yunjong; Shin, Joo-Ho

    2017-01-01

    Progressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown. In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN). Consistent with this data, metformin increased mitochondrial marker proteins in SH-SY5Y neuroblastoma cells. Mitochondrial protein expression by metformin was found to be brain region specific, with metformin increasing mitochondrial proteins in the SN and the striatum, but not the cortex. As a potential upstream regulator of mitochondria gene transcription by metformin, PGC-1α promoter activity was stimulated by metformin via CREB and ATF2 pathways. PGC-1α and phosphorylation of ATF2 and CREB by metformin were selectively increased in the SN and the striatum, but not the cortex. Finally, we showed that metformin protected dopaminergic neurons and improved dopamine-sensitive motor performance in an MPTP-induced PD animal model. Together these results suggest that the metformin-ATF2/CREB-PGC-1α pathway might be promising therapeutic target for PD. PMID:28611284

  19. Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors

    PubMed Central

    Pinas, Johan E.; Henkel, Christiaan V.; Augustijn, Dieuwertje; Hooykaas, Paul J. J.; van der Zaal, Bert J.

    2017-01-01

    The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We describe the construction of two collections of Arabidopsis lines expressing fusions of three zinc fingers (3F) to the transcriptional repressor motif EAR (3F-EAR) or the transcriptional activator VP16 (3F-VP16), and the characterization of their growth characteristics. In total, six different 3F-ATF lines with a consistent increase in rosette surface area (RSA) of up to 55% were isolated. For two lines we demonstrated that 3F-ATF constructs function as dominant in trans acting causative agents for an increase in RSA and biomass, and for five larger plant lines we have investigated 3F-ATF induced transcriptomic changes. Our results indicate that genome interrogation can be used as a powerful tool for the manipulation of plant growth and biomass and that it might supply novel cues for the discovery of genes and pathways involved in these properties. PMID:28358915

  20. Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors.

    PubMed

    Tol, Niels van; Rolloos, Martijn; Pinas, Johan E; Henkel, Christiaan V; Augustijn, Dieuwertje; Hooykaas, Paul J J; van der Zaal, Bert J

    2017-01-01

    The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We describe the construction of two collections of Arabidopsis lines expressing fusions of three zinc fingers (3F) to the transcriptional repressor motif EAR (3F-EAR) or the transcriptional activator VP16 (3F-VP16), and the characterization of their growth characteristics. In total, six different 3F-ATF lines with a consistent increase in rosette surface area (RSA) of up to 55% were isolated. For two lines we demonstrated that 3F-ATF constructs function as dominant in trans acting causative agents for an increase in RSA and biomass, and for five larger plant lines we have investigated 3F-ATF induced transcriptomic changes. Our results indicate that genome interrogation can be used as a powerful tool for the manipulation of plant growth and biomass and that it might supply novel cues for the discovery of genes and pathways involved in these properties.

  1. CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4.

    PubMed

    Tominaga, Hiroyuki; Maeda, Shingo; Hayashi, Makoto; Takeda, Shu; Akira, Shizuo; Komiya, Setsuro; Nakamura, Takashi; Akiyama, Haruhiko; Imamura, Takeshi

    2008-12-01

    Although CCAAT/enhancer-binding protein beta (C/EBPbeta) is involved in osteocalcin gene expression in osteoblast in vitro, the physiological importance of and molecular mechanisms governing C/EBPbeta in bone formation remain to be elucidated. In particular, it remains unclear whether C/EBPbeta acts as a homodimer or a heterodimer with other proteins during osteoblast differentiation. Here, deletion of the C/EBPbeta gene from mice resulted in delayed bone formation with concurrent suppression of chondrocyte maturation and osteoblast differentiation. The expression of type X collagen as well as chondrocyte hypertrophy were suppressed in mutant bone, providing new insight into the possible roles of C/EBPbeta in chondrocyte maturation. In osteoblasts, luciferase reporter, gel shift, DNAP, and ChIP assays demonstrated that C/EBPbeta heterodimerized with activating transcription factor 4 (ATF4), another basic leucine zipper transcription factor crucial for osteoblast maturation. This complex interacted and transactivated osteocalcin-specific element 1 (OSE1) of the osteocalcin promoter. C/EBPbeta also enhanced the synergistic effect of ATF4 and Runx2 on osteocalcin promoter transactivation by enhancing their interaction. Thus, our results provide evidence that C/EBPbeta is a crucial cofactor in the promotion of osteoblast maturation by Runx2 and ATF4.

  2. An observational study on the effects of aviation turbine fuel and lubricants on the skin of Indian Air Force ground crew in flying stations.

    PubMed

    Radhakrishnan, S; Chopra, Ajay; Mitra, Debdeep; Gnanasekaran, R; Kanagaraj, R

    2017-07-01

    Ground crew of the Air Force routinely handle aviation turbine fuel (ATF) and lubricants and a need was felt to study the adverse effects of these substances on their skin so that remedial measures could be taken to prevent these adverse effects. A multi-centric, cross-sectional, observational study was performed at three Air Force flying stations. 109 ground crew members of the Indian Air Force (IAF) who were in direct contact with ATF and lubricants were screened for dermatological manifestations on exposed areas. History of atopy was elicited, systemic and dermatological examination done and occlusive patch testing carried out where indicated. Fungal infections were excluded by a potassium hydroxide mount. 20 out of the 109 personnel (18.34%) were symptomatic in the form of mild irritant contact dermatitis. There was no case of allergic contact dermatitis. Only two cases showed an irritant reaction on patch testing. 65% of the symptomatic personnel were atopic. There was no predisposing trade or age group for adverse effects to ATF. This study revealed that contact with ATF is associated with only mild irritant contact dermatitis in exposed ground crew members of the IAF and atopy was a predisposing factor for susceptibility to the dermatitis.

  3. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  4. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism.

    PubMed

    Shu, Kai; Zhou, Wenguan; Yang, Wenyu

    2018-02-01

    The phytohormones abscisic acid (ABA) and gibberellin (GA) antagonistically mediate diverse plant developmental processes including seed dormancy and germination, root development, and flowering time control, and thus the optimal balance between ABA and GA is essential for plant growth and development. Although more than a half and one century have passed since the initial discoveries of ABA and GA, respectively, the precise mechanisms underlying ABA-GA antagonism still need further investigation. Emerging evidence indicates that two APETALA 2 (AP2)-domain-containing transcription factors (ATFs), ABI4 in Arabidopsis and OsAP2-39 in rice, play key roles in ABA and GA antagonism. These two transcription factors precisely regulate the transcription pattern of ABA and GA biosynthesis or inactivation genes, mediating ABA and GA levels. In this Viewpoint article, we try to shed light on the effects of ATFs on ABA-GA antagonism, and summarize the overlapping but distinct biological functions of these ATFs in the antagonism between ABA and GA. Finally, we strongly propose that further research is needed into the detailed roles of additional numerous ATFs in ABA and GA crosstalk, which will improve our understanding of the antagonism between these two phytohormones. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis

    PubMed Central

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G.; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-01-01

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways. PMID:25730876

  6. Research on Vacuum Laser Accelerator and Proof-of Principle Experiment

    NASA Astrophysics Data System (ADS)

    Shao, Lei

    This thesis discovers a proof-of-principle theory of Vacuum Laser Acceleration (VLA) and proposes a new acceleration mechanism---Capture and Acceleration Scenario (CAS) in our far-field laser acceleration research, which is a promising new scheme in advanced acceleration field. In this thesis, I studied electrons' dynamic behaviors while interacting with intense laser beam. There are two kinds of dynamics trajectories, namely IS (Inelastic Scattering) and CAS. In CAS, electrons can be captured and moving along the laser beam for a long time and receive considerable energy exchange from the laser field, rather than quickly expelled from the intense field region of the laser as predicted by the conventional Ponderomotive Potential Model (PPM). This thesis shows the research on most parameters of both laser beam and electron beam which will affect this VLA scheme. One of the primary factors is the laser intensity. Relatively high laser intensity is critically required for VLA, and there are thresholds of intensity a0( th) for CAS occurrence; the thresholds are different under different laser beam waist widths which is also a very important parameter of laser beam. Laser intensity is still a big obstacle nowadays. In the last decade there are only a few laboratories have the laser power to ˜1019 W/cm2 and above. Our simulation shows that laser intensity threshold of CAS is around a0 = 5˜8, in correspondence to laser power around 1019˜1022 W/cm 2 depending on different wave length and waist width. The interaction is also sensitive to various electron beam parameters, such as the optimal initial electron energy falls in the range of 4--15 MeV, electron incident angle and position, and so on. At last the thesis presents out experimental work on this new VLA scheme. The collaboration is between our UCLA group and Brookhaven National Lab - Accelerator Test Facility (BNL-ATF). At BNL-ATF, they have both intense laser beam and high quality electron beam. The characters of BNL-ATF fit our project very well. The laser system at ATF is a short pulse CO2 laser. Under present ATF condition, the peak power of the CO2 laser is around 5J with pulse duration 5ps. Therefore the maximum laser intensity can reach a 0 ≈ 1.0. Such level of laser intensity is not sufficient to perform violent electron acceleration-CAS according to the threshold we defined. However this level intensity is already high enough to see basic proof-of-principle signal based on our extensive simulations with exact practical ATF experimental conditions. Another important factor is the electron beam condition. ATF uses photoinjector Radio Frequency (RF) gun system for electron beam. The working frequency is at constant level 2856MHz. Generally the electron beam deliver energy around 40MeV˜60MeV to the transport beam line. However as we mentioned before with relatively low laser intensity the electron initial energy is required to be lower as well correspondently. We tried best to tuned ATF electron beam energy down to 15MeV. With laser intensity around a 0 ≈ 1.0 and electron beam 15MeV, our simulation indicates to see energy spread expansion after interaction, and this effect increases while the laser intensity increases (even slightly change from a 0 ≈ 0.9 to 2.2). The experiment design is completed based on ATF beam line condition. The design and layout are presented. All the optical devices are acquired and machined. Installation and alignment have been done a few times for testing. (Abstract shortened by UMI.)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.

    The overall objective of the current work is to carry out a scoping analysis to determine the impact of ATF on late phase accident progression; in particular, the molten core-concrete interaction portion of the sequence that occurs after the core debris fails the reactor vessel and relocates into containment. This additional study augments previous work by including kinetic effects that govern chemical reaction rates during core-concrete interaction. The specific ATF considered as part of this study is SiC-clad UO 2.

  8. Control of Breast Carcinoma Angiogenesis by Nutrient Stress Mechanisms

    DTIC Science & Technology

    2004-08-01

    phosphorylated and degraded in response to ponent of the curry spice turmeric and has been used in traditional NFKB-activating conditions. Overexpression of IKBM...to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE...under nutrient/oxygen deprivation conditions in the presence of ATF6 wt or ATF6 DN proteins. The results shown in Figures 1 and 2 led us to conclude

  9. Impulse Noise: Measurement Techniques and Hearing Protector Performance. Report on Scientific Exchange at the French-German Research Institute of Saint-Louis

    DTIC Science & Technology

    2006-10-01

    jusqu’à 160 dB) ou d’une sonde profilée (au-dessus de 190 dB) et d’un appareil d’essai acoustique (ATF). L’ATF est constitué d’une tête artificielle ...in terms of insertion loss (alone and in combination with other headgear), speech intelligibility and sound localization. However, when using human

  10. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation

    PubMed Central

    Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  11. Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs

    PubMed Central

    Tang, Xiaohu; Lucas, Joseph E.; Chen, Julia Ling-Yu; LaMonte, Gregory; Wu, Jianli; Wang, Michael Changsheng; Koumenis, Constantinos; Chi, Jen-Tsan

    2011-01-01

    Within solid tumor microenvironments, lactic acidosis and hypoxia each have powerful effects on cancer pathophysiology. However, the influence that these processes exert on each other is unknown. Here we report that a significant portion of the transcriptional response to hypoxia elicited in cancer cells is abolished by simultaneous exposure to lactic acidosis. In particular, lactic acidosis abolished stabilization of HIF-1α protein which occurs normally under hypoxic conditions. In contrast, lactic acidosis strongly synergized with hypoxia to activate the unfolded protein response (UPR) and an inflammatory response, displaying a strong similarity to ATF4-driven amino acid deprivation responses (AAR). In certain breast tumors and breast tumor cells examined, an integrative analysis of gene expression and array CGH data revealed DNA copy number alterations at the ATF4 locus, an important activator of the UPR/AAR pathway. In this setting, varying ATF4 levels influenced the survival of cells after exposure to hypoxia and lactic acidosis. Our findings reveal that the condition of lactic acidosis present in solid tumors inhibits canonical hypoxia responses and activates UPR and inflammation responses. Further, they suggest that ATF4 status may be a critical determinant of the ability of cancer cells to adapt to oxygen and acidity fluctuations in the tumor microenvironment, perhaps linking short-term transcriptional responses to long-term selection for copy number alterations in cancer cells. PMID:22135092

  12. Activating Transcription Factor 6 (ATF6) Sequence Polymorphisms in Type 2 Diabetes and Pre-Diabetic Traits

    PubMed Central

    Chu, Winston S.; Das, Swapan Kumar; Wang, Hua; Chan, Juliana C.; Deloukas, Panos; Froguel, Philippe; Baier, Leslie J.; Jia, Weiping; McCarthy, Mark I.; Ng, Maggie C.Y.; Damcott, Coleen; Shuldiner, Alan R.; Zeggini, Eleftheria; Elbein, Steven C.

    2009-01-01

    Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.001-0.04), including the nonsynonymous SNP rs1058405 (M67V) in exon 3 and rs11579627 in the 3′ flanking region. Only rs1159627 remained significant on permutation testing. The associations were not replicated in 353 African-American case subjects and 182 control subjects, nor were ATF6 SNPs associated with altered insulin secretion or insulin sensitivity in nondiabetic Caucasian individuals. No association with type 2 diabetes was found in a subset of 44 SNPs in Caucasian (n = 2,099), Pima Indian (n = 293), and Chinese (n = 287) samples. Allelic expression imbalance was found in transformed lymphocyte cDNA for 3′ untranslated region variants, thus suggesting cis-acting regulatory variants. ATF6 does not appear to play a major role in type 2 diabetes, but further work is required to identify the cause of the allelic expression imbalance. PMID:17327457

  13. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells.

    PubMed

    Liu, Xianfang; Guo, Sen; Liu, Xiangguo; Su, Ling

    2015-11-01

    Epigenetic abnormalities are associated with non-small cell lung cancer (NSCLC) initiation and progression. Epigenetic drugs are being studied and in clinical trials. However, the molecular mechanism underlying the apoptosis by the epigenetic agents remains unclear. SUV39H1 is an important methyl-transferase for lysine 9 on histone H3 and usually related to gene transcriptional suppression, and chaetocin acts as the inhibitor of SUV39H1. We demonstrated here that chaetocin effectively suppressed the growth of multiple lung cancer cells through inducing apoptosis in a death receptor 5 (DR5)-dependent manner. Chaetocin treatment activated endoplasmic reticulum (ER) stress which gave rise to the up-regulation of ATF3 and CHOP. Furthermore, ATF3 and CHOP contributed to the induction of DR5 and subsequent apoptosis. When SUV39H1 was silenced with siRNA, the expression of ATF3, CHOP and DR5 was elevated. Thereafter, knockdown of SUV39H1 induced apoptosis in NSCLC cells. In summary, chaetocin pharmacologically inhibits the activity of SUV39H1 which provokes ER stress and results in up-regulation of ATF3 and CHOP, leading to DR5-dependent apoptosis eventually. These findings provide a novel interpretation on the anti-neoplastic activity of epigenetic drugs as a new therapeutic approach in NSCLC.

  14. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  15. Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway.

    PubMed Central

    Smith, M R; Greene, W C

    1991-01-01

    The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation. Images PMID:1832173

  16. Steam Oxidation Testing in the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.

    After the March 2011 accident at Fukushima Daiichi, Oak Ridge National Laboratory (ORNL) began conducting high temperature steam oxidation testing of candidate materials for accident tolerant fuel (ATF) cladding in August 2011 [1-11]. The ATF concept is to enhance safety margins in light water reactors (LWR) during severe accident scenarios by identifying materials with 100× slower steam oxidation rates compared to current Zr-based alloys. In 2012, the ORNL laboratory equipment was expanded and made available to the entire ATF community as the Severe Accident Test Station (SATS) [4,12]. Compared to the current UO2/Zr-based alloy fuel system, an ATF alternative wouldmore » significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [13-14]. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models [15-17]. However, initial modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. Also, because many accident scenarios include steadily increasing temperatures, the required data are not traditional isothermal exposures but exposures with varying “ramp” rates. In some cases, the steam oxidation behavior has been surprising and difficult to interpret. Thus, more fundamental information continues to be collected. In addition, more work continues to focus on commercially-manufactured tube material. This report summarizes recent work to characterize the behavior of candidate alloys exposed to high temperature steam, evaluate steam oxidation behavior in various ramp scenarios and continue to collect integral data on FeCrAl compared to conventional Zr-based cladding.« less

  17. Dual regulation of HMGB1 by combined JNK1/2-ATF2 axis with miR-200 family in nonalcoholic steatohepatitis in mice.

    PubMed

    Chen, Xin; Ling, Yan; Wei, Yanping; Tang, Jing; Ren, Yibing; Zhang, Baohua; Jiang, Feng; Li, Hengyu; Wang, Ruoyu; Wen, Wen; Lv, Guishuai; Wu, Mengchao; Chen, Lei; Li, Liang; Wang, Hongyang

    2018-05-01

    In the context of diabetes, obesity, and metabolic syndrome, the inflammatory signaling has critical roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), but the underlying mechanisms remain poorly delineated. Herein, early and persistently elevated, proinflammatory cytokine HMGB1 expression was detected in a high-fat diet (HFD)-induced NAFLD model in C57BL/6 mice. The expression and extracellular release of HMGB1 was rapidly and dramatically induced by saturated palmitic acid in vitro. HFD-induced inflammatory response and liver function impairment were both mitigated after the inhibition of endogenous HMGB1 by neutralizing antibody in vivo. The up-regulation of HMGB1 was thought to be modified by dual channels: in the transcriptional level, it was regulated by JNK1/JNK2-ATF2 axis; post-transcriptionally, it was regulated by the microRNA (miR)-200 family, especially miR-429. miR-429 liver conditional knockout mice (miR-429 Δhep ), fed either a normal diet or an HFD, showed severe liver inflammation and dysfunction, accompanied by greater expression of HMGB1. Intriguingly, the up-regulation and release of HMGB1 could in turn self-activate TLR4-JNK1/JNK2-ATF2 signaling, thus forming a positive feedback. Our findings reveal a novel mechanism by which HMGB1 expression was regulated by both the JNK1/2-ATF2 axis and the miR-200 family, which provides a potential new approach for the treatment of NAFLD.-Chen, X., Ling, Y., Wei, Y., Tang, J., Ren, Y., Zhang, B., Jiang, F., Li, H., Wang, R., Wen, W., Lv, G., Wu, M., Chen, L., Li, L., Wang, H. Dual regulation of HMGB1 by combined JNK1/2-ATF2 axis with miR-200 family in nonalcoholic steatohepatitis in mice.

  18. Intravenous Lipid Infusion Induces Endoplasmic Reticulum Stress in Endothelial Cells and Blood Mononuclear Cells of Healthy Adults.

    PubMed

    Tampakakis, Emmanouil; Tabit, Corey E; Holbrook, Monika; Linder, Erika A; Berk, Brittany D; Frame, Alissa A; Bretón-Romero, Rosa; Fetterman, Jessica L; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2016-01-11

    Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response may initially be protective, but when prolonged, have been implicated in atherogenesis in diabetic conditions. Triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to ER stress. We sought to evaluate the effect of acute FFA elevation on ER stress in endothelial and circulating white cells. Twenty-one healthy subjects were treated with intralipid (20%; 45 mL/h) plus heparin (12 U/kg/h) infusion for 5 hours. Along with increased triglyceride and FFA levels, intralipid/heparin infusion reduced the calf reactive hyperemic response without a change in conduit artery flow-mediated dilation consistent with microvascular dysfunction. To investigate the short-term effects of elevated triglycerides and FFA, we measured markers of ER stress in peripheral blood mononuclear cells (PBMCs) and vascular endothelial cells (VECs). In VECs, activating transcription factor 6 (ATF6) and phospho-inositol requiring kinase 1 (pIRE1) proteins were elevated after infusion (both P<0.05). In PBMCs, ATF6 and spliced X-box-binding protein 1 (XBP-1) gene expression increased by 2.0- and 2.5-fold, respectively (both P<0.05), whereas CHOP and GADD34 decreased by ≈67% and 74%, respectively (both P<0.01). ATF6 and pIRE1 protein levels also increased (both P<0.05), and confocal microscopy revealed the nuclear localization of ATF6 after infusion, suggesting activation. Along with microvascular dysfunction, intralipid infusion induced an early protective ER stress response evidenced by activation of ATF6 and IRE1 in both leukocytes and endothelial cells. Our results suggest a potential link between metabolic disturbances and ER stress that may be relevant to vascular disease. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways

    PubMed Central

    Beauvais, Genevieve; Atwell, Kenisha; Jayanthi, Subramaniam; Ladenheim, Bruce; Cadet, Jean Lud

    2011-01-01

    Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D1 receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D1 and D2 receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D1 or D2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors. PMID:22174933

  20. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH

    PubMed Central

    Kresse, Stine H; Berner, Jeanne-Marie; Meza-Zepeda, Leonardo A; Gregory, Simon G; Kuo, Wen-Lin; Gray, Joe W; Forus, Anne; Myklebost, Ola

    2005-01-01

    Background Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. Results We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. Conclusion ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets. PMID:16274472

  1. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    DOE PAGES

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; ...

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase. Special handling, machining, welding, and inspection of materials, if known, should also be communicated to the experiment fabrication and inspection team.« less

  2. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress.

    PubMed

    Takayanagi, Sayuri; Fukuda, Riga; Takeuchi, Yuuki; Tsukada, Sakiko; Yoshida, Kenichi

    2013-01-01

    In the endoplasmic reticulum (ER), secretory and membrane proteins are properly folded and modified, and the failure of these processes leads to ER stress. At the same time, unfolded protein response (UPR) genes are activated to maintain homeostasis. Despite the thorough characterization of the individual gene regulation of UPR genes to date, further investigation of the mutual regulation among UPR genes is required to understand the complex mechanism underlying the ER stress response. In this study, we aimed to reveal a gene regulatory network formed by UPR genes, including immunoglobulin heavy chain-binding protein (BiP), X-box binding protein 1 (XBP1), C/EBP [CCAAT/enhancer-binding protein]-homologous protein (CHOP), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring 1 (IRE1), activating transcription factor 6 (ATF6), and ATF4. For this purpose, we focused on promoter-luciferase reporters for BiP, XBP1, and CHOP genes, which bear an ER stress response element (ERSE), and p5 × ATF6-GL3, which bears an unfolded protein response element (UPRE). We demonstrated that the luciferase activities of the BiP and CHOP promoters were upregulated by all the UPR genes, whereas those of the XBP1 promoter and p5 × ATF6-GL3 were upregulated by all the UPR genes except for BiP, CHOP, and ATF4 in HeLa cells. Therefore, an ERSE- and UPRE-centered gene regulatory network of UPR genes could be responsible for the robustness of the ER stress response. Finally, we revealed that BiP protein was degraded when cells were treated with DNA-damaging reagents, such as etoposide and doxorubicin; this finding suggests that the expression level of BiP is tightly regulated at the post-translational level, rather than at the transcriptional level, in the presence of DNA damage.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kook Hwan; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710; Jeong, Yeon Taek

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found thatmore » metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin.« less

  4. Wideband acoustic reflex test in a test battery to predict middle-ear dysfunction

    PubMed Central

    Keefe, Douglas H.; Fitzpatrick, Denis; Liu, Yi-Wen; Sanford, Chris A.; Gorga, Michael P.

    2013-01-01

    A wideband (WB) aural acoustical test battery of middle-ear status, including acoustic-reflex thresholds (ARTs) and acoustic-transfer functions (ATFs, i.e., absorbance and admittance) was hypothesized to be more accurate than 1-kHz tympanometry in classifying ears that pass or refer on a newborn hearing screening (NHS) protocol based on otoacoustic emissions. Assessment of middle-ear status may improve NHS programs by identifying conductive dysfunction and cases in which auditory neuropathy exists. Ipsilateral ARTs were assessed with a stimulus including four broadband-noise or tonal activator pulses alternating with five clicks presented before, between and after the pulses. The reflex shift was defined as the difference between final and initial click responses. ARTs were measured using maximum likelihood both at low frequencies (0.8–2.8 kHz) and high (2.8–8 kHz). The median low-frequency ART was elevated by 24 dB in NHS refers compared to passes. An optimal combination of ATF and ART tests performed better than either test alone in predicting NHS outcomes, and WB tests performed better than 1-kHz tympanometry. Medial olivocochlear efferent shifts in cochlear function may influence ARs, but their presence would also be consistent with normal conductive function. Baseline clinical and WB ARTs were also compared in ipsilateral and contralateral measurements in adults. PMID:19772907

  5. Regenerative Medicine for Battlefield Injuries

    DTIC Science & Technology

    2012-10-01

    myf5, srf, c-myc, myocardin, sry, myod, stat1, dbp, myog, stat3, ddit3, n-myc, stat5a, tbx3, e2f1, nanog, tbx5, epas1, nfatc1, tbx6, esr1 , nkx2-5...six1, smad1, smad4, smad6, sox2, sox6, sox9, sp1, stat1, tcf1, twist, atf3, atf5, c-fos, c-myc, dbp, esr1 , gcf, gli, gli3, hes1, hif1a, hoxd12, msx2

  6. Validation of Air Traffic Controller Workload Models

    DTIC Science & Technology

    1979-09-01

    15 2.2 ATF Description ................................. 20 2.3 Summary of Changes to RECEP/ATF ............... 22 2.3.1 Definition of Routine...as an exhavistive descrip- tion. Emphasis is placed more on methodology while highlighting areas where changes in the process have oeen made as a... Change 3.7 2.2 Beacon (Discrete) Code 3.3 2.3 Mode C Altitude Report 2.9 2.0 A/C Position Report 3.0 2.6 A/C Altitude Report 2.0 2.6 Heading and Speed

  7. Interplay of CREB and ATF2 in Ionizing Radiation-Induced Neuroendocrine Differentiation of Prostate Cancer Cells

    DTIC Science & Technology

    2011-06-01

    h-actin. Analysis of ATF2 and CREB subcellular localization. LNCaP cells were fixed in ice-cold 3.7% formaldehyde for 20 min, followed by... phenol -free RPMI 1640 supplemented with 10% charcoal-dextran–treated FBS (CD-FBS) for 3 wk and similarly assayed for morphologic changes and the... phenol -free RPMI 1640 supplemented with 10% CD-FBS for the indicated times. Cell viability for IR- and docetaxel-treated cells was determined by a 3

  8. ING4 Loss in Prostate Cancer Progression

    DTIC Science & Technology

    2016-10-01

    proper transitioning from late stage pregnancy to early lactation [12]. ING4 expres- sion is also lost in some breast cancers [13] where it may suppress...differentiation, Pten is elevated early (Fig. 6a), but decreases after ING4 is induced and CREB becomes active (after day 10). In EMP cells, CREB/ATF1 is...constitutive CREB/ATF1 activation (Fig. 6c) as early as 4 days after differentiation, before it is detected in normal PrECs. We observed a

  9. Design, fabrication and testing of a thermal diode

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  10. m6A and eIF2α-ⓟ Team Up to Tackle ATF4 Translation during Stress.

    PubMed

    Powers, Emily Nicole; Brar, Gloria Ann

    2018-02-15

    While m 6 A modification of mRNAs is now known to be widespread, the cellular roles of this modification remain largely mysterious. In this issue of Molecular Cell, Zhou et al. (2018) show that m 6 A modification unexpectedly contributes to the established uORF- and eIF2α-ⓟ-dependent mechanism of ATF4 translational regulation in response to stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells.

    PubMed

    Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun

    2017-09-01

    Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects.

    PubMed

    Hashidume, Tsutomu; Kato, Asuka; Tanaka, Tomohiro; Miyoshi, Shoko; Itoh, Nobuyuki; Nakata, Rieko; Inoue, Hiroyasu; Oikawa, Akira; Nakai, Yuji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-06-17

    Soy protein β-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of β-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced β-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, β-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary β-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.

  14. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  15. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  16. ATF2 impairs glucocorticoid receptor–mediated transactivation in human CD8+ T cells

    PubMed Central

    Li, Ling-bo; Leung, Donald Y. M.; Strand, Matthew J.

    2007-01-01

    Chronic inflammatory diseases often have residual CD8+ T-cell infiltration despite treatment with systemic corticosteroids, which suggests divergent steroid responses between CD4+ and CD8+ cells. To examine steroid sensitivity, dexamethasone (DEX)–induced histone H4 lysine 5 (K5) acetylation and glucocorticoid receptor α (GCRα) translocation were evaluated. DEX treatment for 6 hours significantly induced histone H4 K5 acetylation in normal CD4+ cells (P = .001) but not in CD8+ cells. DEX responses were functionally impaired in CD8+ compared with CD4+ cells when using mitogen-activated protein kinase phosphatase (1 hour; P = .02) and interleukin 10 mRNA (24 hours; P = .004) induction as a readout of steroid-induced transactivation. Normal DEX-induced GCRα nuclear translocation and no significant difference in GCRα and GCRβ mRNA expression were observed in both T-cell types. In addition, no significant difference in SRC-1, p300, or TIP60 expression was found. However, activating transcription factor-2 (ATF2) expression was significantly lower in CD8+ compared with CD4+ cells (P = .009). Importantly, inhibition of ATF2 expression by small interfering RNA in CD4+ cells resulted in inhibition of DEX-induced transactivation in CD4+ cells. The data indicate refractory steroid-induced transactivation but similar steroid-induced transrepression of CD8+ cells compared with CD4+ cells caused by decreased levels of the histone acetyltransferase ATF2. PMID:17525285

  17. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots.

    PubMed

    Yamada, Shintaro; Okamura, Mika; Oda, Arisa; Murakami, Hiroshi; Ohta, Kunihiro; Yamada, Takatomi

    2017-06-01

    Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events. A group of hotspots in fission yeast are associated with sequences similar to the cyclic AMP response element and activated by the ATF/CREB family transcription factor dimer Atf1-Pcr1. We first focused on one of those hotspots, ade6-3049 , and Atf1. Our results showed that multiple transcripts, shorter than the ade6 full-length messenger RNA, emanate from a region surrounding the ade6-3049 hotspot. Interestingly, we found that the previously known recombination-activation region of Atf1 is also a transactivation domain, whose deletion affected DSB formation and short transcript production at ade6-3049 These results point to a possibility that the two events may be related to each other at ade6-3049 In fact, comparison of published maps of meiotic transcripts and hotspots suggested that hotspots are very often located close to meiotically transcribed regions. These observations therefore propose that meiotic DSB formation in fission yeast may be connected to transcription of surrounding regions. Copyright © 2017 by the Genetics Society of America.

  18. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression.

    PubMed

    Hunt, Nicholas J; Waters, Karen A; Machaalani, Rita

    2017-11-01

    We previously demonstrated that sudden infant death syndrome (SIDS) infants have decreased orexin immunoreactivity within the hypothalamus and pons compared to non-SIDS infants. In this study, we examined multiple mechanisms that may promote loss of orexin expression including programmed cell death, impaired maturation/structural stability, neuroinflammation and impaired unfolding protein response (UPR). Immunofluorescent and immunohistochemical staining for a number of markers was performed in the tuberal hypothalamus and pons of infants (1-10 months) who died from SIDS (n = 27) compared to age- and sex-matched non-SIDS infants (n = 19). The markers included orexin A (OxA), dynorphin (Dyn), cleaved caspase 3 (CC3), cleaved caspase 9 (CC9), glial fibrillary acid protein (GFAP), tubulin beta chain 3 (TUBB3), myelin basic protein (MBP), interleukin 1β (IL-1β), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), c-fos and the UPR activation markers: phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (pPERK), and activating transcription factor 4 (ATF4). It was hypothesised that pPERK and ATF4 would be upregulated in Ox neurons in SIDS compared to non-SIDS. Within the hypothalamus, OxA and Dyn co-localised with a 20 % decrease in expression in SIDS infants (P = 0.001). pPERK and ATF4 expression in OxA neurons were increased by 35 % (P = 0.001) and 15 % (P = 0.001) respectively, with linear relationships between the decreased OxA/Dyn expression and the percentages of co-localised pPERK/OxA and ATF4/OxA evident (P = 0.01, P = 0.01). No differences in co-localisation with CC9, CC3, TUNEL or c-fos, nor expression of MBP, TUBB3, IL-1β and GFAP, were observed in the hypothalamus. In the pons, there were 40 % and 20 % increases in pPERK expression in the locus coeruleus (P = 0.001) and dorsal raphe (P = 0.022) respectively; ATF4 expression was not changed. The findings that decreased orexin levels in SIDS infants may be associated with an accumulation of pPERK suggest decreased orexin translation. As pPERK may inhibit multiple neuronal groups in the pons in SIDS infants, it could also indicate that a common pathway promotes loss of protein expression and impaired functionality of multiple brainstem neuronal groups.

  19. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  20. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  1. Elucidation of a novel phenformin derivative on glucose-deprived stress responses in HT-29 cells.

    PubMed

    Oh-Hashi, Kentaro; Irie, Nao; Sakai, Takayuki; Okuda, Kensuke; Nagasawa, Hideko; Hirata, Yoko; Kiuchi, Kazutoshi

    2016-08-01

    Recently, we developed a variety of phenformin derivatives as selective antitumor agents. Based on previous findings, this study evaluated a promising compound, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on the basis of stress responses in the human colon cancer cell line HT-29 under a serum- and glucose-deprived condition. 2-Cl-Phen triggered morphological changes such as shrinkage and plasma membrane disintegration, as well as a decrease in mitochondrial activity and an increase in LDH leakage. To understand intracellular issues relating to 2-Cl-Phen, this study focused on the expression levels of ER stress-inducible genes and several oncogenic genes. Serum and glucose deprivation significantly induced a variety of ER stress-inducible genes, but a 12-h treatment of 2-Cl-Phen down-regulated expression of several ER stress-related genes, with the exception of GADD153. Interestingly, the expression levels of ATF6α, GRP78, MANF, and CRELD2 mRNA were almost completely decreased by 2-Cl-Phen. This study also observed that a 24-h treatment of 2-Cl-Phen attenuated the expression levels of GRP78, GADD153, and c-Myc protein. The decrease in c-Myc protein occurred before the fluctuation of GRP78 protein, while the expression of c-Myc mRNA showed little change with cotreatment of serum and glucose deprivation with 2-Cl-Phen. To further understand the 2-Cl-Phen-induced down-regulation of ATF6-related genes, this study investigated the stability of ATF6α and GRP78 proteins using NanoLuc-tagged constructs. The expression levels of NanoLuc-tagged ATF6α and GRP78 were significantly down-regulated by 2-Cl-Phen in the presence or absence of the translation inhibitor cycloheximide. Taken together, our novel phenformin derivative 2-Cl-Phen has the unique characteristic of diminishing tumor adaptive responses, especially the expression of ATF6-related genes, as well as that of c-Myc protein, in a transcriptional and posttranscriptional manner under a serum- and glucose-deprived condition. Further characterization of cytotoxic mechanisms related to phenformin derivatives may give new insights into developing additional promising anticancer agents.

  2. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway

    PubMed Central

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-01-01

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy. PMID:27708226

  3. Hormone regulates endometrial function via cooperation of endoplasmic reticulum stress and mTOR-autophagy.

    PubMed

    Yang, Diqi; Jiang, Tingting; Liu, Jianguo; Hong, Jin; Lin, Pengfei; Chen, Huatao; Zhou, Dong; Tang, Keqiong; Wang, Aihua; Jin, Yaping

    2017-12-05

    In ruminant, the receptive endometrium and the elongation of the hatched blastocyst are required to complete the process of implantation. However, the mechanisms regulating goat endometrial function during the peri-implantation period of pregnancy are still unclear. In this study, EECs were treated with progesterone, estradiol, and interferon-tau (IFNT). We have found that endoplasmic reticulum (ER) stress was activated under hormones treatment. To identify the cellular mechanism of regulation of endometrial function, we investigated the effect of ER stress activator thapsigargin (TG) and inhibitor 4 phenyl butyric acid (4-PBA) on EECs. We found that TG, which activated the three branches of UPR, increased the expression of genes associated with promoting conceptus elongation and cellular attachment, significantly up-regulated the spheroid attachment rate and PGE 2 /PGF 2α ratio. 4-PBA pre-treatment inhibited UPR and inhibited promoting conceptus elongation and cellular attachment related genes, but the spheroid attachment rate and PGE 2 /PGF 2α ratio were not changed significantly. Moreover, knockdown of ATF6 via shATF6 promoted the conceptus elongation related genes, but increased the dissolution of the corpus luteum. Besides, blocking ATF6 attenuated autophagy by activating mammalian target of rapamycin (mTOR) pathway. Moreover, rapamycin (mTOR inhibitor) pre-treatment inhibited the expression of promoting conceptus elongation and increased PGE 2 /PGF 2α ratio. Taken together, our study indicated that physiological level of ER stress may contribute to early pregnancy success, and ATF6 signaling pathway cooperated with autophagy to regulate endometrial function by modulating mTOR pathway. © 2017 Wiley Periodicals, Inc.

  4. Organotypic distribution of stem cell markers in formalin-fixed brain harboring glioblastoma multiforme.

    PubMed

    Schrot, Rudolph J; Ma, Joyce H; Greco, Claudia M; Arias, Angelo D; Angelastro, James M

    2007-11-01

    The role of stem cells in the origin, growth patterns, and infiltration of glioblastoma multiforme is a subject of intense investigation. One possibility is that glioblastoma may arise from transformed stem cells in the ventricular zone. To explore this hypothesis, we examined the distribution of two stem cell markers, activating transcription factor 5 (ATF5) and CD133, in an autopsy brain specimen from an individual with glioblastoma multiforme. A 41-year-old male with a right posterior temporal glioblastoma had undergone surgery, radiation, and chemotherapy. The brain was harvested within several hours after death. After formalin fixation, sectioning, and mapping of tumor location in the gross specimen, histologic specimens were prepared from tumor-bearing and grossly normal hemispheres. Fluorescence immunohistochemistry and colorimetric staining were performed for ATF5 and CD133. Both markers co-localized to the ependymal and subependymal zones on the side of the tumor, but not in the normal hemisphere or more rostrally in the affected hemisphere. ATF5 staining was especially robust within the diseased hemisphere in histologically normal ependyma. To our knowledge, this is the first in situ demonstration of stem cell markers in whole human brain. These preliminary results support the hypothesis that some glioblastomas may arise from the neurogenic zone of the lateral ventricle. The robust staining for ATF5 and CD133 in histologically normal ventricular zone suggests that an increase in periventricular stem cell activity occurred in this patient on the side of the tumor, either as a localized response to brain injury or as an integral component of oncogenesis and tumor recurrence.

  5. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    NASA Astrophysics Data System (ADS)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  6. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.

    PubMed

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-11-08

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.

  7. The ALMA common software: dispatch from the trenches

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Sommer, H.; Jeram, B.; Sekoranja, M.; Chiozzi, G.; Grimstrup, A.; Caproni, A.; Paredes, C.; Allaert, E.; Harrington, S.; Turolla, S.; Cirami, R.

    2008-07-01

    The ALMA Common Software (ACS) provides both an application framework and CORBA-based middleware for the distributed software system of the Atacama Large Millimeter Array. Building upon open-source tools such as the JacORB, TAO and OmniORB ORBs, ACS supports the development of component-based software in any of three languages: Java, C++ and Python. Now in its seventh major release, ACS has matured, both in its feature set as well as in its reliability and performance. However, it is only recently that the ALMA observatory's hardware and application software has reached a level at which it can exploit and challenge the infrastructure that ACS provides. In particular, the availability of an Antenna Test Facility(ATF) at the site of the Very Large Array in New Mexico has enabled us to exercise and test the still evolving end-to-end ALMA software under realistic conditions. The major focus of ACS, consequently, has shifted from the development of new features to consideration of how best to use those that already exist. Configuration details which could be neglected for the purpose of running unit tests or skeletal end-to-end simulations have turned out to be sensitive levers for achieving satisfactory performance in a real-world environment. Surprising behavior in some open-source tools has required us to choose between patching code that we did not write or addressing its deficiencies by implementing workarounds in our own software. We will discuss these and other aspects of our recent experience at the ATF and in simulation.

  8. Electric Motor Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.« less

  9. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2.

    PubMed

    Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl

    2017-04-01

    Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.

  10. The chalcone 2'-hydroxy-4',5'-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells.

    PubMed

    Yang, Lina; Su, Ling; Cao, Congmei; Xu, Linyan; Zhong, Diansheng; Xu, Lijia; Liu, Xiangguo

    2013-06-01

    Natural chalcones have been proved to inhibit cancer cells with therapeutic potential, but the underlying molecular mechanism is still largely unexplored. Here, we identified a novel chalcone, 2'-hydroxy-4',5'-dimethoxychalcone (HDMC) and demonstrated that HDMC induced apoptosis in various nonsmall cell lung cancer cells. Further study showed that HDMC elevated cellular reactive oxygen species (ROS) levels, thus inducing expressions of ATF4 and C/EBP homologous protein (CHOP). Then, death receptor 5 (DR5) was upregulated through ATF4-CHOP axis and eventually resulted in apoptosis. We also found that downregulation of c-FLIPL contributed to HDMC-induced apoptosis. In conclusion, HDMC induces apoptosis in human nonsmall cell lung cancer cells via activation of DR5 signaling pathway, and ROS-mediated ATF4-CHOP axis is involved in the process. Our results further supported the potential for HDMC to be developed as a new antitumor agent for cancer therapy or chemoprevention. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  11. ATF4, A Novel Mediator of the Anabolic Actions of PTH on Bone

    DTIC Science & Technology

    2012-01-01

    5-CTG CAA ATG GCA GCC CTG GTG AC-3 (reverse). For all primers the amplification was performed as follows: initial denaturation at 95 C for 10 min...rat Atf4, 5-ATG GCT TGG CCA GTG CCTCAGA-3 (forward), 5-GCTCTGGAGTGGAAGACA GAA C-3 (reverse); mouse/ratHprt, 5-GTT GAG AGA TCA TCT CCA CC-3...primers used for real-time PCR were: cyclin D1 (GenBank Accession number-NM-007631), 50 GAG GAG GGG GAA GTG GAG GA 30 (forward, þ1,049-bp), 50 CCT CTT TGC

  12. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    DOE PAGES

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...

    2017-03-26

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less

  13. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O.; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E.; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C.; Orlowski, Robert; Sarbassov, Dos D.; Lorenzi, Philip L.; Huang, Xuelin; Neelapu, Sattva S.; McDonnell, Timothy; Miranda, Roberto N.; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R. Eric.; Andreeff, Michael

    2016-01-01

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. PMID:26884599

  14. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing

    PubMed Central

    Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François

    2015-01-01

    Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486

  15. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide

    PubMed Central

    Araujo, Magali; Welch, William J.

    2009-01-01

    Thromboxane (TxA2) and nitric oxide (NO) are potent vasoactive autocoids that modulate tubuloglomerular feedback (TGF). Each is produced in the macula densa (MD) by cyclooxygenase-2 (COX-2) and neuronal nitric oxide synthase (nNOS), respectively. Both enzymes are similarly regulated in the MD and their interaction may be an important factor in the regulation of TGF and glomerular filtration rate. We tested the hypothesis that TGF is modified by the balance between MD nNOS-dependent NO and MD COX-2-dependent TxA2. We measured maximal TGF during perfusion of the loop of Henle (LH) by continuous recording of the proximal tubule stopped flow pressure response to LH perfusion of artificial tubular fluid (ATF) at 0 and 40 nl/min. The response to inhibitors of COX-1 (SC-560), COX-2 [parecoxib (Pxb)], and nNOS (l-NPA) added to the ATF solution was measured in separate nephrons. COX-2 inhibition with Pxb reduced TGF by 46% (ATF + vehicle vs. ATF + Pxb), whereas COX-1 inhibition with SC-560 reduced TGF by only 23%. Pretreatment with intravenous infusion of SQ-29,548, a selective thromboxone/PGH2 receptor (TPR) antagonist, blocked all of the SC-560 effect on TGF, suggesting that this effect was due to activation of TPR. However, SQ-29,548 only partially diminished the effect of Pxb (−66%). Specific inhibition of nNOS with l-NPA increased TGF, as expected. However, the ability of Pxb to reduce TGF was significantly impaired with comicroperfusion of l-NPA. These data suggest that COX-2 modulates TGF by two proconstrictive actions: generation of TxA2 acting on TPR and by simultaneous reduction of NO. PMID:19144694

  16. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  17. JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells.

    PubMed

    Fernandes, Kimberly A; Harder, Jeffrey M; Kim, Jessica; Libby, Richard T

    2013-07-01

    The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUN's dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Unfolded Protein Response and PERK Kinase as a New Therapeutic Target in the Pathogenesis of Alzheimer's Disease.

    PubMed

    Rozpedek, Wioletta; Markiewicz, Lukasz; Diehl, J Alan; Pytel, Dariusz; Majsterek, Ireneusz

    2015-01-01

    Recent evidence suggests that the development of Alzheimer's disease (AD) and related cognitive loss is due to mutations in the Amyloid Precursor Protein (APP) gene on chromosome 21 and increased activation of eukaryotic translation initiation factor-2α (eIF2α) phosphorylation. The high level of misfolded and unfolded proteins loading in Endoplasmic Reticulum (ER) lumen triggers ER stress and as a result Unfolded Protein Response (UPR) pathways are activated. Stress-dependent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the significant elevation of phospho-eIF2α. That attenuates general translation and, on the other hand, promotes the preferential synthesis of Activating Transcription Factor 4 (ATF4) and secretase β (BACE1) - a pivotal enzyme responsible for the initiation of the amyloidogenic pathway resulting in the generation of the amyloid β (Aβ) variant with high ability to form toxic senile plaques in AD brains. Moreover, excessive, long-term stress conditions may contribute to inducing neuronal death by apoptosis as a result of the overactivated expression of pro-apoptotic proteins via ATF4. These findings allow to infer that dysregulated translation, increased expression of BACE1 and ATF4, as a result of eIF2α phosphorylation, may be a major contributor to structural and functional neuronal loss resulting in memory impairment. Thus, blocking PERK-dependent eIF2α phosphorylation through specific, small-molecule PERK branch inhibitors seems to be a potential treatment strategy for AD individuals. That may contribute to the restoration of global translation rates and reduction of expression of ATF4 and BACE1. Hence, the treatment strategy can block accelerated β -amyloidogenesis by reduction in APP cleaving via the BACE1-dependent amyloidogenic pathway.

  19. Antenna Test Facility (ATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  20. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2 nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  1. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells

    PubMed Central

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-01-01

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies. PMID:28423492

  2. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells.

    PubMed

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-03-28

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.

  3. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  4. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.

    2016-12-01

    Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.

  5. Drosophila melanogaster Activating Transcription Factor 4 Regulates Glycolysis During Endoplasmic Reticulum Stress

    PubMed Central

    Lee, Ji Eun; Oney, McKenna; Frizzell, Kimberly; Phadnis, Nitin; Hollien, Julie

    2015-01-01

    Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells. PMID:25681259

  6. RIA simulation tests using driver tube for ATF cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut N.; Brown, N. R.; Lowden, R. R.

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone reportmore » focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age-hardened FeCrAl alloys and SiC/SiC composites in detail during RIA conditions informed by the computational studies performed under the US Department of Energy Office of Nuclear Energy Advanced Fuels Campaign. The testing instrument and the new DIC system will be further developed to reach different stress-state conditions and to perform tests at elevated temperatures.« less

  7. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    PubMed Central

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected acyltransferase were studied. As discussed in this paper, and in contrast to many other bacteria, streptomycetes seem to possess a complex metabolic network to synthesize lipids, whereof crucial steps are still largely unknown. This paper therefore provides insights into a range of topics, including extremophile bacteria, the physiology of lipid accumulation, and the biotechnological production of bacterial lipids. PMID:27474711

  8. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S.; Chung, C.; Fitsos, P.

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less

  9. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells.

    PubMed

    La, Xiaoqin; Zhang, Lichao; Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-03-28

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34.

  10. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells

    PubMed Central

    Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-01-01

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34. PMID:28157699

  11. Comparative study on the passivation layers of copper sulphide minerals during bioleaching

    NASA Astrophysics Data System (ADS)

    Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long

    2012-10-01

    The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.

  12. A metrology system for a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  13. Biochemical specificity of von Economo neurons in hominoids

    PubMed Central

    Stimpson, Cheryl D.; Tetreault, Nicole A.; Allman, John M.; Jacobs, Bob; Butti, Camilla; Hof, Patrick R.; Sherwood, Chet C.

    2010-01-01

    Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This distribution suggests that VENs contribute to specializations of neural circuits in species that share both large brain size and complex social cognition, possibly representing an adaptation to rapidly relay socially-relevant information over long distances across the brain. Recent evidence indicates that unique patterns of protein expression may also characterize VENs, particularly involving molecules that are known to regulate gut and immune function. In this study, we used quantitative stereologic methods to examine the expression of three such proteins that are localized in VENs – activating-transcription factor 3 (ATF3), interleukin 4 receptor (IL4Rα) and neuromedin B (NMB). We quantified immunoreactivity against these proteins in different morphological classes of ACC layer V neurons of hominoids. Among the different neuron types analyzed (pyramidal, VEN, fork, enveloping, and other multipolar), VENs showed the greatest percentage that displayed immunostaining. Additionally, a higher proportion of VENs in humans were immunoreactive to ATF3, IL4Rα, and NMB than in other apes. No other ACC layer V neuron type displayed a significant species difference in the percentage of immunoreactive neurons. These findings demonstrate that phylogenetic variation exists in the protein expression profile of VENs, suggesting that humans might have evolved biochemical specializations for enhanced interoceptive sensitivity. PMID:21140465

  14. Status of the ATF Damping Ring BPM Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briegel, C.; /Fermilab; Eddy, N.

    2011-12-01

    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it'smore » finalization are presented.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDONIAN,G.BABZIEN,MLBEN-ZVI,I.YAKIMENKO,Y.ET AL.

    VISA II is the follow-up project to the successful Visible to Infrared SASE Amplifier (VISA) experiment at the Accelerator Test Facility (ATF) in Brookhaven National Lab (BNL). This paper will report the motivation for and status of the two main experiments associated with the VISA II program. One goal of VISA II is to perform an experimental study of the physics of a chirped beam SASE FEL at the upgraded facilities of the ATF. This requires a linearization of the transport line to preserve energy chirping of the electron beam at injection. The other planned project is a strong bunchmore » compression experiment, where the electron bunch is compressed in the chicane, and the dispersive beamline transport, allowing studies of deep saturation.« less

  16. Amino Acid Sensing in Skeletal Muscle

    PubMed Central

    Moro, Tatiana; Ebert, Scott M.; Adams, Christopher M.; Rasmussen, Blake B.

    2016-01-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mTORC1- and ATF4-mediated amino acid sensing pathways, triggered by impaired amino acid delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle amino acid delivery, mTORC1 activity and/or ATF4 activity. An improved understanding of the mechanisms and roles of amino acid sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia. PMID:27444066

  17. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  18. In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt

    PubMed Central

    Tan, Xiao Wei; Riau, Andri; Shi, Zhi Long; Tan, Anna C S; Neoh, Koon Gee; Khor, Khiam Aik; Beuerman, Roger W; Tan, Donald; Mehta, Jodhbir S

    2012-01-01

    Aim Keratoprosthesis (KPro) devices are prone to long-term corrosion and microbiological assault. The authors aimed to compare the inflammatory response and material dissolution properties of two candidate KPro skirt materials, hydroxyapatite (HA) and titania (TiO2) in a simulated in vitro cornea inflammation environment. Methods Lipopolysaccharide-stimulated cytokine secretions were evaluated with human corneal fibroblasts on both HA and TiO2. Material specimens were subjected to electrochemical and long-term incubation test with artificial tear fluid (ATF) of various acidities. Topography and surface roughness of material discs were analysed by scanning electron microscopy and atomic force microscopy. Results There were less cytokines secreted from human corneal fibroblasts seeded on TiO2 substrates as compared with HA. TiO2 was more resistant to the corrosion effect caused by acidic ATF in contrast to HA. Moreover, the elemental composition of TiO2 was more stable than HA after long-term incubation with ATF. Conclusions TiO2 is more resistant to inflammatory degradation and has a higher corrosion resistance as compared with HA, and in this regard may be a suitable material to replace HA as an osteo-odonto-keratoprosthesis skirt. This would reduce resorption rates for KPro surgery. PMID:22802307

  19. Preconditioning With Tauroursodeoxycholic Acid Protects Against Contrast-Induced HK-2 Cell Apoptosis by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Peng, Pingan; Ma, Qian; Wang, Le; Zhang, Ou; Han, Hongya; Liu, Xiaoli; Zhou, Yujie; Zhao, Yingxin

    2015-11-01

    To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 (P = .005), ATF4 (P = .01), and caspase 12 (P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups (P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS. © The Author(s) 2015.

  20. Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress.

    PubMed

    Lee, Ji Eun; Oney, McKenna; Frizzell, Kimberly; Phadnis, Nitin; Hollien, Julie

    2015-02-13

    Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells. Copyright © 2015 Lee et al.

  1. Bidirectional modulation of endogenous EpCAM expression to unravel its function in ovarian cancer

    PubMed Central

    van der Gun, B T F; Huisman, C; Stolzenburg, S; Kazemier, H G; Ruiters, M H J; Blancafort, P; Rots, M G

    2013-01-01

    Background: The epithelial cell adhesion molecule (EpCAM) is overexpressed on most carcinomas. Dependent on the tumour type, its overexpression is either associated with improved or worse patient survival. For ovarian cancer, however, the role of EpCAM remains unclear. Methods: Cell survival of ovarian cancer cell lines was studied after induction or repression of endogenous EpCAM expression using siRNA/cDNA or artificial transcription factors (ATF) consisting of engineered zinc-fingers fused to either a transcriptional activator or repressor domain. Results: Two ATFs were selected as the most potent down- and upregulator, showing at least a two-fold alteration of EpCAM protein expression compared with control. Downregulation of EpCAM expression resulted in growth inhibition in breast cancer, but showed no effect on cell growth in ovarian cancer. Induction or further upregulation of EpCAM expression decreased ovarian cancer cell survival. Conclusion: The bidirectional ATF-based approach is uniquely suited to study cell-type-specific biological effects of EpCAM expression. Using this approach, the oncogenic function of EpCAM in breast cancer was confirmed. Despite its value as a diagnostic marker and for immunotherapy, EpCAM does not seem to represent a therapeutic target for gene expression silencing in ovarian cancer. PMID:23403823

  2. Severe Accident Test Station Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accidentmore » Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.« less

  3. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  4. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirementsmore » for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.« less

  5. Source characteristics of 2000 small earthquakes nucleating on the Alto Tiberina fault system (central Italy).

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Tinti, E.; Chiaraluce, L.; Di Stefano, R.; Valoroso, L.

    2014-12-01

    The Alto Tiberina Fault (ATF) is a 60 km long east-dipping low-angle normal fault, located in a sector of the Northern Apennines (Italy) undergoing active extension since the Quaternary. The ATF has been imaged by analyzing the active source seismic reflection profiles, and the instrumentally recorded persistent background seismicity. The present study is an attempt to separate the contributions of source, site, and crustal attenuation, in order to focus on the mechanics of the seismic sources on the ATF, as well on the synthetic and the antithetic structures within the ATF hanging-wall (i.e. Colfiorito fault, Gubbio fault and Umbria Valley fault). In order to compute source spectra, we perform a set of regressions over the seismograms of 2000 small earthquakes (-0.8 < ML< 4) recorded between 2010 and 2014 at 50 permanent seismic stations deployed in the framework of the Alto Tiberina Near Fault Observatory project (TABOO) and equipped with three-components seismometers, three of which located in shallow boreholes. Because we deal with some very small earthquakes, we maximize the signal to noise ratio (SNR) with a technique based on the analysis of peak values of bandpass-filtered time histories, in addition to the same processing performed on Fourier amplitudes. We rely on a tool called Random Vibration Theory (RVT) to completely switch from peak values in the time domain to Fourier spectral amplitudes. Low-frequency spectral plateau of the source terms are used to compute moment magnitudes (Mw) of all the events, whereas a source spectral ratio technique is used to estimate the corner frequencies (Brune spectral model) of a subset of events chosen over the analysis of the noise affecting the spectral ratios. So far, the described approach provides high accuracy over the spectral parameters of earthquakes of localized seismicity, and may be used to gain insights into the underlying mechanics of faulting and the earthquake processes.

  6. Modelling Accident Tolerant Fuel Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, Jason Dean; Gamble, Kyle Allan Lawrence

    2016-05-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. The United States Department of Energy (DOE) through its Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is a three-year project to perform research on two accident tolerant concepts. The final outcome of the ATF HIP will be an in-depth report to the DOE Advanced Fuels Campaign (AFC) giving a recommendation on whether eithermore » of the two concepts should be included in their lead test assembly scheduled for placement into a commercial reactor in 2022. The two ATF concepts under investigation in the HIP are uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (Idaho National Laboratory, Los Alamos National Laboratory, and Argonne National Laboratory), a comprehensive multiscale approach to modeling is being used that includes atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. Model development and fuel performance analysis are critical since a full suite of experimental studies will not be complete before AFC must prioritize concepts for focused development. In this paper, we present simulations of the two proposed accident tolerance fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. Sensitivity analyses are completed using Sandia National Laboratories’ Dakota software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). We also outline the multiscale modelling approach being employed. Considerable additional work is required prior to preparing the recommendation report for the Advanced Fuels Campaign.« less

  7. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C; Orlowski, Robert; Sarbassov, Dos D; Lorenzi, Philip L; Huang, Xuelin; Neelapu, Sattva S; McDonnell, Timothy; Miranda, Roberto N; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R Eric; Andreeff, Michael

    2016-02-16

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. Copyright © 2016, American Association for the Advancement of Science.

  8. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon Michelle

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force (TF1) includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, and identification of fuel performance and systemmore » codes applicable to ATF evaluation. The Cladding and Core Materials (TF2) and Fuel Concepts (TF3) task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment task force is chaired by Shannon Bragg-Sitton (Idaho National Laboratory [INL], U.S.), the Cladding Task Force is chaired by Marie Moatti (Electricite de France [EdF], France), and the Fuels Task Force is chaired by a Masaki Kurata (Japan Atomic Energy Agency [JAEA], Japan). The original Expert Group mandate was established for June 2014 to June 2016. In April 2016 the Expert Group voted to extend the mandate one additional year to June 2017 in order to complete the task force deliverables; this request was subsequently approved by the Nuclear Science Committee. This report provides an update on the status Systems Assessment Task Force activities.« less

  9. miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2.

    PubMed

    Gao, Ming; Liu, Yun; Chen, Yue; Yin, Chunyang; Chen, Jane-Jane; Liu, Sijin

    2016-03-01

    Nuclear factor (erythroid-derived 2) like 2 (Nrf2) is a key regulator in protecting cells against stress by targeting many anti-stress response genes. Recent evidence also reveals that Nrf2 functions partially by targeting mircroRNAs (miRNAs). However, the understanding of Nrf2-mediated cytoprotection through miRNA-dependent mechanisms is largely unknown. In the current study, we identified a direct Nrf2 targeting miRNA, miR-214, and demonstrated a protective role of miR-214 in erythroid cells against oxidative stresses generated by radiation, excess iron and arsenic (As) exposure. miR-214 expression was transcriptionally repressed by Nrf2 through a canonical antioxidant response element (ARE) within its promoter region, and this repression is ROS-dependence. The suppression of miR-214 by Nrf2 could antagonize oxidative stress-induced cell death in erythroid cells by two ways. First, miR-214 directly targeted ATF4, a crucial transcriptional factor involved in anti-stress responses, down regulation of miR-214 releases the repression of ATF4 translation and leads to increased ATF4 protein content. Second, miR-214 was able to prevent cell death by targeting EZH2, the catalytic core component of PRC2 complex that is responsible for tri-methylation reaction at lysine 27 (K27) of histone 3 (H3) (H3K27me3), by which As-induced miR-214 reduction resulted in an increased global H3K27me3 level and a compromised overexpression of a pro-apoptotic gene Bim. These two pathways downstream of miR-214 synergistically cooperated to antagonize erythroid cell death upon oxidative stress. Our combined data revealed a protective role of miR-214 signaling in erythroid cells against oxidative stress, and also shed new light on Nrf2-mediated cytoprotective machinery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An Astrometric Facility For Planetary Detection On The Space Station

    NASA Astrophysics Data System (ADS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-09-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential Space Station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distances within the Milky Way Galaxy. This paper summarizes the results of a recently completed ATF preliminary systems definition study. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objectives without the development of any new technologies. This preliminary systems study started with the following basic assumptions: 1) the facility will be placed in orbit by a single Shuttle launch, 2) the Space Station will provide a coarse pointing system , electrical power, communications, assembly and checkout, maintenance and refurbishment services, and 3) the facility will be operated from a ground facility. With these assumptions and the science performance requirements a preliminary "strawman" facility was designed. The strawman facility design with a prime-focus telescope of 1.25-m aperture, f-ratio of 13 and a single prime-focus instrument was chosen to minimize random and systemmatic errors. Total facility mass is 5100 kg and overall dimensions are 1.85-m diam by 21.5-m long. A simple straightforward operations approach has been developed for ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the Space Station crew with ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  11. Analysis of the process applied to end-of-life vehicles in Authorised Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Muñoz, C.; Garraín, D.; Franco, V.; Royo, M.; Justel, D.; Vidal, R.

    2009-11-01

    Authorised treatment facilities (ATFs) play a key role in the process undergone by vehicles when they reach their end of life (EoL) within the context of Directive 2000/53/EC. Whenever an EoL vehicle is received at an ATF, a certificate of destruction is issued. The process continues with the depollution of hazardous waste materials from the vehicle and dismantling of parts that will be reused or recycled. Finally, the remaining parts of the vehicle are transported to a shredding plant. Directive 2000/53/EC sets a number of environmental goals regarding the reuse and recycling of vehicle parts and the recovery of waste materials at the EoL of vehicles. These goals will condition the evolution of ATFs as they gradually become more restrictive. As of today, the goals set by Directive 2000/53/EC for the year 2006 are being met (1). However, it would be necessary to assess the situation of those parts that comprise the fraction of the vehicle that is not recycled, reused or recovered in order to predict the degree of compliance with the goals set for the year 2015 (recycling, reusing or recovering 95% by weight of EoL vehicles). The use of lighter materials—light alloys and reinforced plastics—as a vehicle weight-reducing strategy should be coordinated with the process carried out at ATFs in order to ensure compliance with the aforementioned goals. The results of our study seem to indicate that the most usual EoL scenario today—that in which practically all of the ferrous and non-ferrous metals are recycled and the lightweight fraction of vehicles and remaining inert materials are sent to a landfill—should be revised in order to reach the environmental goals set for the year 2015. To that avail, new strategies will have to be developed to allow for an adequate treatment—recycling, reuse or recovery—of those vehicle components that are presently sent to a landfill.

  12. Lupus high-density lipoprotein induces proinflammatory responses in macrophages by binding lectin-like oxidised low-density lipoprotein receptor 1 and failing to promote activating transcription factor 3 activity.

    PubMed

    Smith, Carolyne K; Seto, Nickie L; Vivekanandan-Giri, Anuradha; Yuan, Wenmin; Playford, Martin P; Manna, Zerai; Hasni, Sarfaraz A; Kuai, Rui; Mehta, Nehal N; Schwendeman, Anna; Pennathur, Subramaniam; Kaplan, Mariana J

    2017-03-01

    Recent evidence indicates that high-density lipoprotein (HDL) exerts vasculoprotective activities by promoting activating transcription factor 3 (ATF3), leading to downregulation of toll-like receptor (TLR)-induced inflammatory responses. Systemic lupus erythematosus (SLE) is associated with increased cardiovascular disease risk not explained by the Framingham risk score. Recent studies have indicated oxidised HDL as a possible contributor. We investigated the potential mechanisms by which lupus HDL may lose its anti-inflammatory effects and promote immune dysregulation. Control macrophages were challenged with control and SLE HDL in vitro and examined for inflammatory markers by real-time qRT-PCR, confocal microscopy, ELISA and flow cytometry. Lupus-prone mice were treated with an HDL mimetic (ETC-642) in vivo and inflammatory cytokine levels measured by real-time qRT-PCR and ELISA. Compared with control HDL, SLE HDL activates NFκB, promotes inflammatory cytokine production and fails to block TLR-induced inflammation in control macrophages. This failure of lupus HDL to block inflammatory responses is due to an impaired ability to promote ATF3 synthesis and nuclear translocation. This inflammation is dependent on lectin-like oxidised low-density lipoprotein receptor 1 (LOX1R) binding and rho-associated, coiled-coil containing protein kinase 1 and 2 (ROCK1/2) kinase activity. HDL mimetic-treated lupus mice showed significant ATF3 induction and proinflammatory cytokine abrogation. Lupus HDL promotes proinflammatory responses through NFκB activation and decreased ATF3 synthesis and activity in an LOX1R-dependent and ROCK1/2-dependent manner. HDL mimetics should be explored as potential therapies for inflammation and SLE cardiovascular risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Drug-Induced HSP90 Inhibition Alleviates Pain in Monoarthritic Rats and Alters the Expression of New Putative Pain Players at the DRG.

    PubMed

    Nascimento, Diana Sofia Marques; Potes, Catarina Soares; Soares, Miguel Luz; Ferreira, António Carlos; Malcangio, Marzia; Castro-Lopes, José Manuel; Neto, Fani Lourença Moreira

    2018-05-01

    Purinergic receptors (P2XRs) have been widely associated with pain states mostly due to their involvement in neuron-glia communication. Interestingly, we have previously shown that satellite glial cells (SGC), surrounding dorsal root ganglia (DRG) neurons, become activated and proliferate during monoarthritis (MA) in the rat. Here, we demonstrate that P2X7R expression increases in ipsilateral DRG after 1 week of disease, while P2X3R immunoreactivity decreases. We have also reported a significant induction of the activating transcriptional factor 3 (ATF3) in MA. In this study, we show that ATF3 knocked down in DRG cell cultures does not affect the expression of P2X7R, P2X3R, or glial fibrillary acidic protein (GFAP). We suggest that P2X7R negatively regulates P2X3R, which, however, is unlikely mediated by ATF3. Interestingly, we found that ATF3 knockdown in vitro induced significant decreases in the heat shock protein 90 (HSP90) expression. Thus, we evaluated in vivo the involvement of HSP90 in MA and demonstrated that the HSP90 messenger RNA levels increase in ipsilateral DRG of inflamed animals. We also show that HSP90 is mostly found in a cleaved form in this condition. Moreover, administration of a HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), attenuated MA-induced mechanical allodynia in the first hours. The drug also reversed the HSP90 upregulation and cleavage. 17-DMAG seemed to attenuate glial activation and neuronal sensitization (as inferred by downregulation of GFAP and P2X3R in ipsilateral DRG) which might correlate with the observed pain alleviation. Our data indicate a role of HSP90 in MA pathophysiology, but further investigation is necessary to clarify the underlying mechanisms.

  14. Regulation of eIF2α phosphorylation in hindlimb-unloaded and STS-135 space-flown mice

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Tanjung, Nancy; Swarnkar, Gaurav; Ledet, Eric; Yokota, Hiroki

    2012-09-01

    Various environmental stresses elevate the phosphorylation level of eukaryotic translation initiation factor 2 alpha (eIF2α) and induce transcriptional activation of a set of stress responsive genes such as activating transcription factors 3 and 6 (ATF3 and ATF6), CCAAT/enhancer-binding protein homologous protein (CHOP), and Xbp1 (X-box binding protein 1). These stress sources include radiation, oxidation, and stress to the endoplasmic reticulum, and it is recently reported that unloading by hindlimb unloading is such a stress source. No studies, however, have examined the phosphorylation level of eIF2α (eIF2α-p) using skeletal samples that have experienced microgravity in space. In this study we addressed a question: Does a mouse tibia flown in space show altered levels of eIF2α-p? To address this question, we obtained STS-135 flown samples that were harvested 4-7 h after landing. The tibia and femur isolated from hindlimb unloaded mice were employed as non-flight controls. The effects of loading were also investigated in non- flight controls. Results indicate that the level of eIF2α-p of the non-flight controls was elevated during hindlimb unloading and reduced after being released from unloading. Second, the eIF2α-p level of space-flown samples was decreased, and mechanical loading to the tibia caused the reduction of the eIF2α-p level. Third, the mRNA levels of ATF3, ATF6, and CHOP were lowered in space-flown samples as well as in the non-flight samples 4-7 h after being released from unloading. Collectively, the results herein indicated that a release from hindlimb unloading and a return to normal weight environment from space provided a suppressive effect to eIF2α-linked stress responses and that a period of 2-4 h is sufficient to induce this suppressive outcome.

  15. Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT2-positive perineuronal baskets

    PubMed Central

    Brumovsky, Pablo R.; Seroogy, Kim B.; Lundgren, Kerstin H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G. F.

    2011-01-01

    Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporters (VGLUTs) type 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin generelated peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets. PMID:21596036

  16. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord.

    PubMed

    McCarthy, Carly J; Tomasella, Eugenia; Malet, Mariana; Seroogy, Kim B; Hökfelt, Tomas; Villar, Marcelo J; Gebhart, G F; Brumovsky, Pablo R

    2016-05-01

    Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.

  17. The Drosophila MAPK p38c Regulates Oxidative Stress and Lipid Homeostasis in the Intestine

    PubMed Central

    Chakrabarti, Sveta; Poidevin, Mickaël; Lemaitre, Bruno

    2014-01-01

    The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c. PMID:25254641

  18. Modification of tRNALys UUU by Elongator Is Essential for Efficient Translation of Stress mRNAs

    PubMed Central

    Sansó, Miriam; Buhne, Karin; Carmona, Mercè; Paulo, Esther; Hermand, Damien; Rodríguez-Gabriel, Miguel; Ayté, José; Leidel, Sebastian; Hidalgo, Elena

    2013-01-01

    The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALys UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery. PMID:23874237

  19. Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs.

    PubMed

    Fernández-Vázquez, Jorge; Vargas-Pérez, Itzel; Sansó, Miriam; Buhne, Karin; Carmona, Mercè; Paulo, Esther; Hermand, Damien; Rodríguez-Gabriel, Miguel; Ayté, José; Leidel, Sebastian; Hidalgo, Elena

    2013-01-01

    The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNA(Lys) UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery.

  20. Effect of Increased Yeast Alcohol Acetyltransferase Activity on Flavor Profiles of Wine and Distillates

    PubMed Central

    Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.

    2000-01-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling. PMID:10653746

  1. The Effects of IGF-1 on TNF-α-Treated DRG Neurons by Modulating ATF3 and GAP-43 Expression via PI3K/Akt/S6K Signaling Pathway.

    PubMed

    Zhang, Lei; Yue, Yaping; Ouyang, Meishuo; Liu, Huaxiang; Li, Zhenzhong

    2017-05-01

    Upregulation of the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) is involved in the development and progression of numerous neurological disorders. Recent reports have challenged the concept that TNF-α exhibits only deleterious effects of pro-inflammatory destruction, and have raised the awareness that it may play a beneficial role in neuronal growth and function in particular conditions, which prompts us to further investigate the role of this cytokine. Insulin-like growth factor-1 (IGF-1) is a cytokine possessing powerful neuroprotective effects in promoting neuronal survival, neuronal differentiation, neurite elongation, and neurite regeneration. The association of IGF-1 with TNF-α and the biological effects, produced by interaction of IGF-1 and TNF-α, on neuronal outgrowth status of primary sensory neurons are still to be clarified. In the present study, using an in vitro model of primary cultured rat dorsal root ganglion (DRG) neurons, we demonstrated that TNF-α challenge at different concentrations elicited diverse biological effects. Higher concentration of TNF-α (10 ng/mL) dampened neurite outgrowth, induced activating transcription factor 3 (ATF3) expression, reduced growth-associated protein 43 (GAP-43) expression, and promoted GAP-43 and ATF3 coexpression, which could be reversed by IGF-1 treatment; while lower concentration of TNF-α (1 ng/mL) promoted neurite sprouting, decreased ATF3 expression, increased GAP-43 expression, and inhibited GAP-43 and ATF3 coexpression, which could be potentiated by IGF-1 supplement. Moreover, IGF-1 administration restored the activation of Akt and p70 S6 kinase (S6K) suppressed by higher concentration of TNF-α (10 ng/mL) challenge. In contrast, lower concentration of TNF-α (1 ng/mL) had no significant effect on Akt or S6K activation, and IGF-1 administration activated these two kinases. The effects of IGF-1 were abrogated by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These data imply that IGF-1 counteracts the toxic effect of higher concentration of TNF-α, while potentiates the growth-promoting effect of lower concentration of TNF-α, with the node for TNF-α and IGF-1 interaction being the PI3K/Akt/S6K signaling pathway. This study is helpful for interpretation of the association of IGF-1 with TNF-α and the neurobiological effects elicited by interaction of IGF-1 and TNF-α in neurological disorders.

  2. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia.

    PubMed

    Feng, Aiwen; Zhou, Guangrong; Yuan, Xiaoming; Huang, Xinli; Zhang, Zhengyuan; Zhang, Ti

    2013-01-01

    The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites). LPS not only increased toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor gamma (PPARγ) content, but also activated p38 and activating transcription factor 2 (ATF2) and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA) ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I) attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II) ameliorated LPS-elicited TLR4 and PPARγ production, and (III) inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV) prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I) partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II) partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways.

  3. Inhibitory Effect of Baicalin on iNOS and NO Expression in Intestinal Mucosa of Rats with Acute Endotoxemia

    PubMed Central

    Yuan, Xiaoming; Huang, Xinli; Zhang, Zhengyuan; Zhang, Ti

    2013-01-01

    The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites). LPS not only increased toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor gamma (PPARγ) content, but also activated p38 and activating transcription factor 2 (ATF2) and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA) ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I) attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II) ameliorated LPS-elicited TLR4 and PPARγ production, and (III) inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV) prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I) partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II) partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways. PMID:24312512

  4. Antiangiogenic Effects and Therapeutic Targets of Azadirachta indica Leaf Extract in Endothelial Cells

    PubMed Central

    Mahapatra, Saswati; Young, Charles Y. F.; Kohli, Manish; Karnes, R. Jeffrey; Klee, Eric W.; Holmes, Michael W.; Tindall, Donald J.; Donkena, Krishna Vanaja

    2012-01-01

    Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2′,3′-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2′,3′-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression. PMID:22461839

  5. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, V; Hayano, H; Honda, Y

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less

  6. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    PubMed Central

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G. L.; Howlett, Allyn C.

    2015-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. PMID:24927667

  7. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiationmore » tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO 2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO 2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys, hence promoting FCCI between the fuel-clad systems. The other factor was to develop a test bed where multiple candidate alloys could be evaluated within a single irradiation test train, thereby reducing overall costs and increasing efficiency in alloy screening efforts. A collaboration between ORNL and INL was developed to facilitate the completion of the test bed for FCCI testing. The report highlights the activities related to the development of the ATF-1 ORNL FCCI rodlets for irradiation in INL’s ATR as part of the on-going ATF-1 experiments.« less

  8. Biobehavioral modulation of the exosome transcriptome in ovarian carcinoma.

    PubMed

    Lutgendorf, Susan K; Thaker, Premal H; Arevalo, Jesusa M; Goodheart, Michael J; Slavich, George M; Sood, Anil K; Cole, Steve W

    2018-02-01

    Social factors in the patient macroenvironment have been shown to influence molecular events in the tumor microenvironment and thereby influence cancer progression. However, biomarkers providing a window into the longitudinal effects of biobehavioral factors on tumor biology over time are lacking. Exosome analysis is a novel strategy for in vivo monitoring of dynamic changes in tumor cells. This study examined exosomal profiles from patients with low or high levels of social support for epithelial-mesenchymal transition (EMT) polarization and gene expression related to inflammation and β-adrenergic signaling. Exosomes were isolated from plasma sampled from a series of 40 women before primary surgical resection of advanced-stage, high-grade ovarian carcinoma. Samples were selected for analysis on the basis of extremes of low and high levels of social support. After exosomal isolation and RNA extraction, a microarray analysis of the transcriptome was performed. Primary analyses identified significant upregulation of 67 mesenchymal-characteristic gene transcripts and downregulation of 63 epithelial-characteristic transcripts in patients with low social support; this demonstrated increased EMT polarization (P = .0002). Secondary analyses using promoter sequence bioinformatics supported a priori hypotheses linking low social support to 1) increased activity of cyclic adenosine monophosphate response element binding protein (CREB)/activating transcription factor (ATF) family transcription factors that mediate the β-adrenergic response to catecholamines via the cyclic adenosine monophosphate/protein kinase A signaling pathway (mean fold change for CREB: 2.24 ± 0.65; P = .0019; mean fold change for ATF: 2.00 ± 0.55; P = .0049) and 2) increased activity of the proinflammatory nuclear factor κB/Rel family of transcription factors (mean fold change: 2.10 ± 0.70; P = .0109). These findings suggest the possibility of leveraging exosomes as a noninvasive assessment of biobehavioral factors to help to direct personalized treatment approaches. Cancer 2018;124:580-6. © 2017 American Cancer Society. © 2017 American Cancer Society.

  9. User's guide to the Residual Gas Analyzer (RGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artman, S.A.

    1988-08-04

    The Residual Gas Analyzer (RGA), a Model 100C UTI quadrupole mass spectrometer, measures the concentrations of selected masses in the Fusion Energy Division's (FED) Advanced Toroidal Facility (ATF). The RGA software is a VAX FORTRAN computer program which controls the experimental apparatus, records the raw data, performs data reduction, and plots the data. The RGA program allows data to be collected from an RGA on ATF or from either of two RGAs in the laboratory. In the laboratory, the RGA diagnostic plays an important role in outgassing studied on various candidate materials for fusion experiments. One such material, graphite, ismore » being used more often in fusion experiments due to its ability to withstand high power loads. One of the functions of the RGA diagnostic is aid in the determination of the best grade of graphite to be used in these experiments and to study the procedures used to condition it. A procedure of particular interest involves baking the graphite sample in order to remove impurities that may be present in it. These impurities can be studied while in the ATF plasma or while being baked and outgassed in the laboratory. The Residual Gas Analyzer is a quadrupole mass spectrometer capable of scanning masses ranging in size from 1 atomic mass unit (amu) to 300 amu while under computer control. The procedure for collecting data for a particular mass is outlined.« less

  10. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity.

    PubMed

    Kim, Yeo Jin; Kim, Hyoung-June; Kim, Hye Lim; Kim, Hyo Jeong; Kim, Hyun Soo; Lee, Tae Ryong; Shin, Dong Wook; Seo, Young Rok

    2017-02-01

    The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Hydrogen-rich saline protects against small-scale liver ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress.

    PubMed

    Li, Hui; Bai, Ge; Ge, Yansong; Zhang, Qianzhen; Kong, Xiangdong; Meng, Weijing; Wang, Hongbin

    2018-02-01

    Our research investigated the role of Hydrogen-rich saline (HRS) on the Endoplasmic reticulum stress (ERS) pathway and the effect of HRS on tissue injury in small Bama pig model of hepatic ischemia-reperfusion combined with partial hepatectomy. Eighteen healthy Bama miniature pigs were randomly divided equally into three groups: Sham, IRI, and HRS. Laparoscopic technique was employed to establish the model of hepatic ischemia-reperfusion combined with partial hepatectomy. HRS (10mL/kg) was injected into the portal vein 10min before perfusion. Histological examinations of the liver tissues were performed after HE staining. Additionally, transmission electron microscopy was performed to detect liver cell microstructure. Real-time PCR, Western blotting, and immunohistochemical staining were performed to analyze various ERS molecules including GRP78, p-eIF2α, XBP-1s, Full-length ATF6α, p-JNK, ATF4, and CHOP. We observed that HRS visibly improved ischemia-reperfusion injury (IRI) by reducing various parameters of ERS stress as evidenced by down-regulation of the mRNA as well as protein levels of GRP78, p-eIF2α, XBP-1s, p-JNK, and CHOP, and reducing the cleavage of Full-length ATF6α. Our study demonstrates that HRS protects the liver from IRI by inhibiting ERS. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Influence of the valine zipper region on the structure and aggregation of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5).

    PubMed

    Ciaccio, Natalie A; Reynolds, T Steele; Middaugh, C Russell; Laurence, Jennifer S

    2012-11-05

    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and nonreducing conditions. Our data indicate that removal of this region results in a loss of α-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation.

  13. Gas6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yunhee; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon; Lee, Mira

    2013-04-26

    Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signalingmore » in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.« less

  14. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less

  15. ATF Elimination Act

    THOMAS, 113th Congress

    Rep. Sensenbrenner, F. James, Jr. [R-WI-5

    2014-09-17

    House - 10/28/2014 Referred to the Subcommittee on Crime, Terrorism, Homeland Security, and Investigations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.

    PubMed

    Figueira, Inês; Tavares, Lucélia; Jardim, Carolina; Costa, Inês; Terrasso, Ana P; Almeida, Andreia F; Govers, Coen; Mes, Jurriaan J; Gardner, Rui; Becker, Jörg D; McDougall, Gordon J; Stewart, Derek; Filipe, Augusto; Kim, Kwang S; Brites, Dora; Brito, Catarina; Brito, M Alexandra; Santos, Cláudia N

    2017-11-18

    Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MS n . BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.

  17. Performance of the French version of the 4AT for screening the elderly for delirium in the emergency department.

    PubMed

    Gagné, Anne-Julie; Voyer, Philippe; Boucher, Valérie; Nadeau, Alexandra; Carmichael, Pierre-Hugues; Pelletier, Mathieu; Gouin, Emilie; Berthelot, Simon; Daoust, Raoul; Wilchesky, Machelle; Richard, Hélène; Pelletier, Isabelle; Ballard, Stephanie; Laguë, Antoine; Émond, Marcel

    2018-05-17

    CLINICIAN'S CAPSULE What is known about the topic? Delirium is frequent in older inpatients but often goes undetected. A short tool, the 4 A's Test (4AT), was created and validated for the detection of delirium. What did this study ask? This study compared the performance of the French version of the 4AT (4AT-F) with the Confusion Assessment Method (CAM) for the screening of delirium. What did this study find? The 4AT-F was a fast and reliable screening tool for delirium in the emergency department (ED). Why does this study matter to clinicians? Because of its quick administration time, it allows for systematic screening of patients at risk of delirium and cognitive impairment.

  18. Development of an S-band cavity Beam Position Monitor for ATF2

    NASA Astrophysics Data System (ADS)

    Heo, A.; Kim, E.-S.; Kim, H.; Son, D.; Honda, Y.; Tauchi, T.

    2013-04-01

    We have developed an S-band cavity Beam Position Monitor (BPM) in order to measure the position of an electron beam in the final focus area at ATF2, which is the test facility for the final focus design for the International Linear Collider (ILC). The lattice of the ILC Beam Delivery System (BDS) has been modified, requiring a larger physical aperture of 40 mm in the final focus area. The beam orbit measurement in this area is now covered with high resolution S-Band cavity BPMs. In this paper we summarize the design of the cavity BPM and the first experimental results. The calibration slopes were measured as 0.87 counts/μm in the x-coordinate direction and 1.16 counts/μm in the y-coordinate direction.

  19. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  20. [Activation of endoplasmic reticulum stress and its effect on osteogenic differentiation induced by micropit/nanotube topography].

    PubMed

    Shi, M Q; Song, W; Han, T X; Chang, B; Zhang, Y M

    2017-02-09

    Objective: To explore the activation of endoplasmic reticulum stress (ERS) in bone marrow mesenchymal stem cell (BMMSC) and its effect on osteogenic differentiation induced by micropit/nanotube topography (MNT), so as to provide guidance for the topography design of biomaterials. Methods: Four sample groups were fabricated: polishing control group (polished titanium, PT, no treatment), thapsigargin treatment (TG, 0.1 μmol/L TG treated for 9 h), MNT5 and MNT20 (anodized at 5 V and 20 V after acid etching). Scanning electron microscope (SEM) was used to observe the topography of Ti samples. The alkaline phosphatase (ALP) production, collagen secretion and extracellular matrix (ECM) mineralization of BMMSC (osteogenic induced for 7, 14 and 21 d) on Ti samples were detected to evaluate the osteogenic differentiation. After 12 h incubation, the shape and size of ER was examined using a transmission electron microscope (TEM), and ERS-related genes including immunoglobulin heavy chain binding protein (BiP), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4) were detected by quantitative real-time PCR (qRT-PCR). Results: After 7, 14 and 21 d of induction, the ALP production, collagen secretion and ECM mineralization in TG and MNT20 all significantly increased compared to PT ( P< 0.05). The cells grown on TG, MNT5 and MNT20 surfaces displayed gross distortions of the ER. Compared to PT, BiP, PERK, ATF4 mRNA expression in TG was respectively 1.87±0.10, 2.24±0.35, 1.85±0.14; BiP, ATF4 mRNA expression in MNT5 were respectively 1.27±0.09, 1.25±0.04; BiP, PERK, ATF4 mRNA expression in MNT20 were respectively 1.44±0.09, 2.40±0.60, 1.48±0.05 ( P< 0.05). Conclusions: MNT triggered different degree of ERS, and the activated ERS may promote MNT-induced osteogenic differentiation.

  1. Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komoike, Yuta, E-mail: komoike@research.twmu.ac.jp

    Acrylamide (AA) is a well-known neurotoxic compound in humans and experimental animals. However, intracellular stress signaling pathways responsible for the neurotoxicity of AA are still not clear. In this study, we explored the involvement of the endoplasmic reticulum (ER) stress response in AA-induced neuronal damage in vitro and in vivo. Exposure of SH-SY5Y human neuroblastoma cells to AA increased the levels of phosphorylated form of eukaryotic translation initiation factor 2α (eIF2α) and its downstream effector, activating transcription factor 4 (ATF4), indicating the induction of the unfolded protein response (UPR) by AA exposure. Furthermore, AA exposure increased the mRNA level ofmore » c/EBP homologous protein (CHOP), the ER stress-dependent apoptotic factor, and caused the accumulation of reactive oxygen species (ROS) in SH-SY5Y cells. Treatments of SH-SY5Y cells with the chemical chaperone, 4-phenylbutyric acid and the ROS scavenger, N-acetyl-cysteine reduced the AA-induced expression of ATF4 protein and CHOP mRNA, and resulted in the suppression of apoptosis. In addition, AA-induced eIF2α phosphorylation was also suppressed by NAC treatment. In consistent with in vitro study, exposure of zebrafish larvae at 6-day post fertilization to AA induced the expression of chop mRNA and apoptotic cell death in the brain, and also caused the disruption of brain structure. These findings suggest that AA exposure induces apoptotic neuronal cell death through the ER stress and subsequent eIF2α–ATF4–CHOP signaling cascade. The accumulation of ROS by AA exposure appears to be responsible for this ER stress-mediated apoptotic pathway. - Highlights: • Exposure of SH-SY5Y cells to AA activates the eIF2α–ATF4 pathway of the UPR. • Exposure of SH-SY5Y cells to AA induces the CHOP expression and apoptosis. • Exposure of zebrafish to AA induces the chop expression and apoptosis in the brain. • AA possibly induces apoptotic neuronal cell death through the ER stress response. • AA-induced ROS production is involved in this ER stress response.« less

  2. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dosemore » and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.« less

  3. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei

    2017-05-01

    The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Sevoflurane-Induced Endoplasmic Reticulum Stress Contributes to Neuroapoptosis and BACE-1 Expression in the Developing Brain: The Role of eIF2α.

    PubMed

    Liu, Bin; Xia, Junming; Chen, Yali; Zhang, Jun

    2017-02-01

    Neonatal exposure to volatile anesthetics causes apoptotic neurodegeneration in the developing brain, possibly leading to neurocognitive deficits in adulthood. Endoplasmic reticulum (ER) stress might be associated with sevoflurane (sevo)-induced neuroapoptosis. However, the signaling pathway regulating sevo-induced neuroapoptosis is not understood. We investigated the effects of neonatal sevo exposure on ER signaling pathway activation. Seven-day-old mouse pups were divided into control (C) and sevo (S; 3 % sevo exposure, 6 h) groups. ER stress marker [protein kinase RNA-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), CHOP, and caspase-12] levels were determined by western blotting. To understand the role of eIF2α in sevo-induced ER stress and caspase-3 activation, pups were pretreated with an eIF2α dephosphorylation inhibitor, salubrinal, and a potent and selective inhibitor of PERK, GSK2656157, before sevo exposure, and the effects on ER stress signaling and neuroapoptosis were examined. We investigated whether neonatal exposure to sevo increased β-site APP-cleaving enzyme 1 (BACE-1) expression. Neonatal sevo exposure elevated caspase-3 activation. ER stress signaling was activated, along with increased PERK and eIF2α phosphorylation, and upregulation of proapoptotic proteins (ATF4 and CHOP) in the cerebral cortex of the developing brain. Pretreatment with salubrinal augmented sevo-induced eIF2α phosphorylation, which inhibited ER stress-mediated ATF4 and caspase-3 activation. Inhibition of PERK phosphorylation due to GSK2656157 pretreatment reduced the sevo-induced increase in eIF2α phosphorylation. Sevo increased BACE-1 expression, which was attenuated by GSK2656157 and salubrinal pretreatment. Our data suggested that neonatal sevo exposure-induced neuroapoptosis is mediated via the PERK-eIF2α-ATF4-CHOP axis of the ER stress signaling pathway. Modulation of eIF2α phosphorylation may play a key role in sevo-induced neurotoxicity in the developing brain.

  5. 27 CFR 6.92 - Newspaper cuts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL âTIED-HOUSEâ Exceptions § 6.92 Newspaper cuts. Newspaper cuts, mats, or... retailer selling the industry member's products. [T.D. ATF-364, 60 FR 20423, Apr. 26, 1995] ...

  6. 27 CFR 6.92 - Newspaper cuts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL âTIED-HOUSEâ Exceptions § 6.92 Newspaper cuts. Newspaper cuts, mats, or... retailer selling the industry member's products. [T.D. ATF-364, 60 FR 20423, Apr. 26, 1995] ...

  7. 27 CFR 6.92 - Newspaper cuts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.92 Newspaper cuts. Newspaper cuts, mats, or... retailer selling the industry member's products. [T.D. ATF-364, 60 FR 20423, Apr. 26, 1995] ...

  8. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less

  9. Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction.

    PubMed

    Yano, Kazuo; Kawasaki, Koh; Hattori, Tsuyoshi; Tawara, Shunsuke; Toshima, Yoshinori; Ikegaki, Ichiro; Sasaki, Yasuo; Satoh, Shin-ichi; Asano, Toshio; Seto, Minoru

    2008-10-10

    Evidence that Rho-kinase is involved in cerebral infarction has accumulated. However, it is uncertain whether Rho-kinase is activated in the brain parenchyma in cerebral infarction. To answer this question, we measured Rho-kinase activity in the brain in a rat cerebral infarction model. Sodium laurate was injected into the left internal carotid artery, inducing cerebral infarction in the ipsilateral hemisphere. At 6 h after injection, increase of activating transcription factor 3 (ATF3) and c-Fos was found in the ipsilateral hemisphere, suggesting that neuronal damage occurs. At 0.5, 3, and 6 h after injection of laurate, Rho-kinase activity in extracts of the cerebral hemispheres was measured by an ELISA method. Rho-kinase activity in extracts of the ipsilateral hemisphere was significantly increased compared with that in extracts of the contralateral hemisphere at 3 and 6 h but not 0.5 h after injection of laurate. Next, localization of Rho-kinase activity was evaluated by immunohistochemical analysis in sections of cortex and hippocampus including infarct area 6 h after injection of laurate. Staining for phosphorylation of myosin-binding subunit (phospho-MBS) and myosin light chain (phospho-MLC), substrates of Rho-kinase, was elevated in neuron and blood vessel, respectively, in ipsilateral cerebral sections, compared with those in contralateral cerebral sections. These findings indicate that Rho-kinase is activated in neuronal and vascular cells in a rat cerebral infarction model, and suggest that Rho-kinase could be an important target in the treatment of cerebral infarction.

  10. 27 CFR 18.34 - Continuing partnerships.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the winding up of the partnership affairs is completed, and the surviving partner has the exclusive... by the Office of Management and Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921...

  11. 27 CFR 18.34 - Continuing partnerships.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the winding up of the partnership affairs is completed, and the surviving partner has the exclusive... by the Office of Management and Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921...

  12. 27 CFR 18.34 - Continuing partnerships.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the winding up of the partnership affairs is completed, and the surviving partner has the exclusive... by the Office of Management and Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921...

  13. 27 CFR 18.34 - Continuing partnerships.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the winding up of the partnership affairs is completed, and the surviving partner has the exclusive... by the Office of Management and Budget under control number 1512-0046) [T.D. ATF-104, 47 FR 23921...

  14. Preliminary Results on New Prototypes of Precision Rh-0.5at%Fe Resistance Thermometers of Chinese Production

    NASA Astrophysics Data System (ADS)

    Pavese, F.; Szmyrka-Grzebyk, A.; Lipinski, L.; Manuszkiewicz, H.; Qiu, Ping; Zhang, Jin Tao; Lin, Peng; Li, Xing Wei

    2008-02-01

    Given the practical impossibility of obtaining new precision Rh-0.5at%Fe resistance thermometers in recent years, the possible re-starting of the production of such thermometers in Yunnan (China) was explored by Istituto Nazionale di Ricerca Metrologica (INRIM). Ten prototypes of the new production were made available in early 2006. The paper reports the preliminary data from the testing performed to date on these prototypes at National Institute of Metrology (NIM) and Instytut Niskich Temperatur i Badan Strukturalnych (INTiBS). Although a problem with the alloy composition was detected, the reproducibility results on thermal cycling are very encouraging. Resistance-temperature ( R- T) characteristics below 30 K, though not identical with those of similar thermometers formerly available from Tinsley and VNIIFTRI, are still suitable for accurate metrology.

  15. Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease

    PubMed Central

    Sbodio, Juan I.; Snyder, Solomon H.; Paul, Bindu D.

    2016-01-01

    Disturbances in amino acid metabolism, which have been observed in Huntington’s disease (HD), may account for the profound inanition of HD patients. HD is triggered by an expansion of polyglutamine repeats in the protein huntingtin (Htt), impacting diverse cellular processes, ranging from transcriptional regulation to cognitive and motor functions. We show here that the master regulator of amino acid homeostasis, activating transcription factor 4 (ATF4), is dysfunctional in HD because of oxidative stress contributed by aberrant cysteine biosynthesis and transport. Consistent with these observations, antioxidant supplementation reverses the disordered ATF4 response to nutrient stress. Our findings establish a molecular link between amino acid disposition and oxidative stress leading to cytotoxicity. This signaling cascade may be relevant to other diseases involving redox imbalance and deficits in amino acid metabolism. PMID:27436896

  16. Electric Motor Thermal Management R&D. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less

  17. Involvement of HTLV-I Tax and CREB in aneuploidy: a bioinformatics approach.

    PubMed

    de la Fuente, Cynthia; Gupta, Madhur V; Klase, Zachary; Strouss, Katharine; Cahan, Patrick; McCaffery, Timothy; Galante, Anthony; Soteropoulos, Patricia; Pumfery, Anne; Fujii, Masahiro; Kashanchi, Fatah

    2006-07-05

    Adult T-cell leukemia (ATL) is a complex and multifaceted disease associated with human T-cell leukemia virus type 1 (HTLV-I) infection. Tax, the viral oncoprotein, is considered a major contributor to cell cycle deregulation in HTLV-I transformed cells by either directly disrupting cellular factors (protein-protein interactions) or altering their transcription profile. Tax transactivates these cellular promoters by interacting with transcription factors such as CREB/ATF, NF-kappaB, and SRF. Therefore by examining which factors upregulate a particular set of promoters we may begin to understand how Tax orchestrates leukemia development. We observed that CTLL cells stably expressing wild-type Tax (CTLL/WT) exhibited aneuploidy as compared to a Tax clone deficient for CREB transactivation (CTLL/703). To better understand the contribution of Tax transactivation through the CREB/ATF pathway to the aneuploid phenotype, we performed microarray analysis comparing CTLL/WT to CTLL/703 cells. Promoter analysis of altered genes revealed that a subset of these genes contain CREB/ATF consensus sequences. While these genes had diverse functions, smaller subsets of genes were found to be involved in G2/M phase regulation, in particular kinetochore assembly. Furthermore, we confirmed the presence of CREB, Tax and RNA Polymerase II at the p97Vcp and Sgt1 promoters in vivo through chromatin immunoprecipitation in CTLL/WT cells. These results indicate that the development of aneuploidy in Tax-expressing cells may occur in response to an alteration in the transcription profile, in addition to direct protein interactions.

  18. Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie

    2016-01-01

    Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316

  19. Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Vico, Pedro; Cauet, Gilles; Rose, Ken; Lathe, Richard; Degryse, Eric

    2002-07-01

    We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility. Copyright 2002 John Wiley & Sons, Ltd.

  20. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  1. Camel whey protein protects lymphocytes from apoptosis via the PI3K/AKT, NF-κB, ATF-3 and HSP-70 signaling pathways in heat-stressed male mice.

    PubMed

    Badr, Gamal; Ramadan, Nancy K; Abdel-Tawab, Hanem S; Ahmed, Samia F; Mahmoud, Mohamed H

    2017-11-22

    Heat stress (HS) is an environmental factor that depresses the immune systems mediating dysfunctional immune cells. Camel whey protein (CWP) can scavenge free radicals and enhance immunity. The present study investigated the impact of dietary supplementation with CWP on immune dysfunction induced by exposure to HS. Male mice (n = 45) were divided into three groups: control group; HS group; and HS mice that were orally administered CWP (HS+CWP group). The HS group exhibited elevated levels of reactive oxygen species (ROS) and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) as well as a significant reduction in the IL-2 and IL-4 levels. Exposure to HS resulted in impaired AKT and IκB-α phosphorylation; increased ATF-3 and HSP70 expression; and aberrant distribution of CD3+ T cells and CD20+ B cells in the thymus and spleen. Interestingly, HS mice treated with CWP presented significantly restored levels of ROS and pro-inflammatory cytokines near the levels observed in control mice. Furthermore, supplementation of HS mice with CWP enhanced the phosphorylation of AKT and IκB-α; attenuated the expression of ATF-3, HSP70 and HSP90; and improved T and B cell distributions in the thymus and spleen. Our findings reveal a potential immunomodulatory effect of CWP in attenuating immune dysfunction induced by exposure to thermal stress.

  2. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  3. 77 FR 32137 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Strategic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ...] Agency Information Collection Activities: Proposed Collection; Comments Requested; Strategic Planning... Form/Collection: Strategic Planning Environmental Assessment Outreach. (3) Agency form number, if any... Strategic Planning Office at ATF will [[Page 32138

  4. 75 FR 63861 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Implements of War. The Department of Justice (DOJ), Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF... Form/Collection: Release and Receipt of Imported Firearms, Ammunition and Implements of War. (3) Agency...

  5. 78 FR 76859 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Prevent All...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... contact Joseph Fox, Branch Chief, Alcohol and Tobacco Enforcement Branch, Bureau of Alcohol, Tobacco, Firearms and Explosives at Joseph.Fox@atf.gov . Written comments and suggestions from the public and...

  6. ATC automation concepts

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    1990-01-01

    Information on the design of human-centered tools for terminal area air traffic control (ATC) is given in viewgraph form. Information is given on payoffs and products, guidelines, ATC as a team process, automation tools for ATF, and the traffic management advisor.

  7. 75 FR 5119 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Implements of War. The Department of Justice (DOJ), Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF...: Release and Receipt of Imported Firearms, Ammunition and Implements of War. (3) Agency form number, if any...

  8. 75 FR 79023 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Implements of War. The Department of Justice (DOJ), Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF... Receipt of Imported Firearms, Ammunition and Implements of War. (3) Agency form number, if any, and the...

  9. 76 FR 39900 - Agency Information Collection Activities: A National Repository for the Collection and Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... or additional information, please contact Steven Avato, [email protected] , U.S. Bomb Data Center..., Tobacco, Firearms and Explosives (ATF)--United States Bomb Data Center (USBDC). State, Local and Tribal...

  10. 27 CFR 13.1 - Scope of part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL LABELING PROCEEDINGS Scope and Construction of Regulations § 13.1 Scope of... process in this part does not apply to organic claims on alcohol beverage labels. See § 13.101. [T.D. ATF...

  11. 27 CFR 13.1 - Scope of part.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS LABELING PROCEEDINGS Scope and Construction of Regulations § 13.1 Scope of... process in this part does not apply to organic claims on alcohol beverage labels. See § 13.101. [T.D. ATF...

  12. 27 CFR 13.1 - Scope of part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF THE TREASURY LIQUORS LABELING PROCEEDINGS Scope and Construction of Regulations § 13.1 Scope of... process in this part does not apply to organic claims on alcohol beverage labels. See § 13.101. [T.D. ATF...

  13. 27 CFR 7.41 - Certificates of label approval.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF MALT BEVERAGES Requirements for Approval of..., as well as appeal procedures, see part 13 of this chapter. [T.D. ATF-406, 64 FR 2129, Jan. 13, 1999...

  14. 27 CFR 7.31 - Label approval and release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF MALT BEVERAGES Requirements for Withdrawal of... approval, as well as appeal procedures, see part 13 of this chapter. [T.D. ATF-66, 45 FR 40552, June 13...

  15. Effect of 3-(3'-tert-butyl-4'-hydroxyphenyl)propyl thiosulfonate sodium on expression of GSTP1 and NQO1 genes and protein transcription factors in BALB/c mouse liver.

    PubMed

    Shintyapina, A B; Safronova, O G; Vavilin, V A; Kandalintseva, N V; Prosenko, A E; Lyakhovich, V V

    2014-08-01

    The study examined dynamics of the effect of novel phenol antioxidant preparation 3-(3'-tertbutyl- 4'-hydroxyphenyl)propyl thiosulfonate sodium (TS-13) on expression of antioxidant protection enzymes genes GSTP1 and NQO1 and on the content of protein transcription factors NF-κB and ATF-2 in mouse liver. Expression of GSTP1 gene decreased significantly on days 4 and 7 after per os administration of TS-13 (100 mg/kg), but increased on post-administration day 14. On days 7 and 14 post-administration, expression of NQO1 gene was significantly increased. On day 7, the hepatic content of the phosphorylated form of ATF-2 and two subunits of nuclear factor NF-κB (p50, p65) decreased significantly.

  16. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Larry Don; Miller, David Torbet

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots ofmore » both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.« less

  17. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.« less

  18. Steam Oxidation Testing in the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.; McMurray, Jake W.

    2016-08-01

    Since 2011, Oak Ridge National Laboratory (ORNL) has been conducting high temperature steam oxidation testing of candidate alloys for accident tolerant fuel (ATF) cladding. These concepts are designed to enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the US ATF community, the Severe Accident Test Station (SATS) has been evaluating candidate materials (including coatings) since 2012. Compared to the current UO 2/Zr-based alloy fuel system, alternative cladding materials need to offer slower oxidation kinetics and a smaller enthalpy of oxidation in order to significantly reduce the rate of heat and hydrogen generation in the coremore » during a coolant-limited severe accident. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models. However, prior modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. In some cases, the results have been difficult to interpret and more fundamental information is needed such as the stability of alumina in flowing steam at 1400°-1500°C. This report summarizes recent work to measure the steam oxidation kinetics of candidate alloys, the evaporation rate of alumina in steam and the development of integral data on FeCrAl compared to conventional Zr-based cladding.« less

  19. Sciatic Nerve Intrafascicular Lidocaine Injection-induced Peripheral Neuropathic Pain: Alleviation by Systemic Minocycline Administration.

    PubMed

    Cheng, Kuang-I; Wang, Hung-Chen; Wu, Yi-Chia; Tseng, Kuang-Yi; Chuang, Yi-Ta; Chou, Chao-Wen; Chen, Ping-Luen; Chang, Lin-Li; Lai, Chung-Sheng

    2016-06-01

    Peripheral nerve block guidance with a nerve stimulator or echo may not prevent intrafascicular injury. This study investigated whether intrafascicular lidocaine induces peripheral neuropathic pain and whether this pain can be alleviated by minocycline administration. A total of 168 male Sprague-Dawley rats were included. In experiment 1, 2% lidocaine (0.1 mL) was injected into the left sciatic nerve. Hindpaw responses to thermal and mechanical stimuli, and sodium channel and activating transcription factor (ATF-3) expression in dorsal root ganglion (DRG) and glial cells in the spinal dorsal horn (SDH), were measured on days 4, 7, 14, 21, and 28. On the basis of the results in experiment 1, rats in experiment 2 were divided into sham, extraneural, intrafascicular, peri-injury minocycline, and postinjury minocycline groups. Behavioral responses, macrophage recruitment, expression changes of myelin basic protein and Schwann cells in the sciatic nerve, dysregulated expression of ATF-3 in the DRG, and activated glial cells in L5 SDH were assessed on days 7 and 14. Intrafascicular lidocaine induced mechanical allodynia, downregulated Nav1.8, increased ATF-3 expression in the DRG, and activated glial cells in the SDH. Increased expression of macrophages, Schwann cells, and myelin basic protein was found in the sciatic nerve. Minocycline attenuated intrafascicular lidocaine-induced neuropathic pain and nerve damage significantly. Peri-injury minocycline was better than postinjury minocycline administration in alleviating mechanical behaviors, mitigating macrophage recruitment into the sciatic nerve, and suppressing activated microglial cells in the spinal cord. Systemic minocycline administration alleviates intrafascicular lidocaine injection-induced peripheral nerve damage.

  20. Determinants that specify the integration pattern of retrotransposon Tf1 in the fbp1 promoter of Schizosaccharomyces pombe.

    PubMed

    Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Ripmaster, Tracy L; Levin, Henry L

    2011-01-01

    Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1.

  1. Determinants That Specify the Integration Pattern of Retrotransposon Tf1 in the fbp1 Promoter of Schizosaccharomyces pombe ▿ †

    PubMed Central

    Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Ripmaster, Tracy L.; Levin, Henry L.

    2011-01-01

    Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1. PMID:20980525

  2. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    PubMed

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon Michelle

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. Themore » Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.« less

  4. Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuser, Brent; Stubbins, James; Kozlowski, Tomasz

    The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys.more » The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be. International fabrication options were explored in Europe and Asia, but this proved to be impractical, if not impossible. Consequently, experimental investigation of the Zr-Be binary system was dropped and exploration binary Zr-Y binary system was initiated. The motivation behind the Zr-Y system is the known thermodynamic stability of yttria over zirconia.« less

  5. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar; Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar; Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent withmore » increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA signaling pathway is involved downstream of cAMP. • Transcriptional MRP2 regulation ultimately involved participation of c-JUN and ATF2.« less

  6. MiR-214 regulates the function of osteoblast under simulated microgravity by targeting ATF4

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Wang, Xiaogang; Li, Qi; Lv, Ke; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Background: MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3'-untranslated region (UTR) of mRNAs, resulting in translational repression. Growing evidence shows that microRNAs (miRNAs) regu-late various developmental and homeostatic events in vertebrates and invertebrates. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass; How-ever, the physiological role of non-coding small RNAs, especially miRNAs, in osteoblast dif-ferentiation remains elusive. Methods: To study the potential involvement of miRNAs in osteoblast differentiation under stimulated microgravity, we analyzed the expression of 20 bone relative miRNAs using real time PCR platform to find particularly miRNAs whose expression is altered during osteoblast differentiation. TargetScan, miRBase and Miranda were used to predict the target gene of candidate miRNA. To investigate whether ATF4 can be directly targeted by miR-214, we engineered luciferase reporters that have either the wild-type 3'UTRs of these genes, or the mutant UTRs with a 6 base pair (bp) deletion in the target sites. Lastly, to address the in vivo role of miR-214 in bone formation, tail suspension mice model was used to simulate the change of osteoblast function and bone loss. Results: Recent studies have sug-gested that miRNAs might play a role in osteoblast differentiation and bone formation. Here, we identify miR-214 in MC3T3-E1 cells, which is a primary mouse osteoblasts cell line, to promote osteoblast differentiation by repressing Activating Transcription Factor4 (ATF4) ex-pression at the posttranscriptional level. What is more, miR-214 was found to be transcribed in C2C12 cells during bone morphogenetic protein 2-induced (BMP2-induced) osteogenesis, and overexpression of miR-214 attenuated BMP2-induced osteoblastogenesis, whereas inhibition of miR-214 expression enhanced this progress. The levels of miR-214 increased dramatically in tail suspension mice. Conclusions: Thus, our studies show that miR-214 plays an important role in osteoblast differentiation by targeting ATF4 under stimulated microgravity induced bone loss and contributes to osteoporosis via its effect on osteoblasts.

  7. 27 CFR 478.93 - Authorized operations by a licensed collector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the licensed collector in curios and relics. The collector's license is of no force or effect and a... disposition as required by § 478.125 (a) and (b). [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988] ...

  8. 27 CFR 478.93 - Authorized operations by a licensed collector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the licensed collector in curios and relics. The collector's license is of no force or effect and a... disposition as required by § 478.125 (a) and (b). [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988] ...

  9. 27 CFR 24.276 - Prepayment of tax; proprietor in default.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...)) (Approved by the Office of Management and Budget under control numbers 1512-0467 and 1512-0492) [T.D. ATF... default will be in cash, or will be in the form of a certified, cashier's, or treasurer's check drawn on...

  10. Bunch Length Measurements at the ATF Damping Ring in April 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, K.L.F.; /SLAC; Naito, T.

    We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with themore » wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for studying IBS, and an indispensable ingredient for this study is a knowledge of the longitudinal phase space of the beam. The results of earlier bunch lengthening measurements in the ATF can be found in Refs. [2]-[4]. Measurements of current dependent effects, especially bunch length measurements using a streak camera, can be difficult to perform accurately. For example, space charge in the camera itself can lead to systematic errors in the measurement results. It is important the results be accurate and reproducible. In the measurements of both December 1998[3] and December 1999[4], by using light filters, the authors first checked that space charge in the streak camera was not significant. And then the Dec 99 authors show that their results agree with those Dec 98, i.e. on the dates of the two measurements the results were reproducible. Since IBS is so strong in the ATF, in the Dec 99 measurements an attempt was made to estimate the impedance effect using the following method: First, from the form of the energy spread vs. current measurements it was concluded that the threshold to the microwave instability was beyond 2 mA. Then, by dividing the bunch length vs. current curve by the energy spread vs. current curve the effect of IBS was divided out, and PWBL was approximated. The assumption is that PWBL can be treated as a perturbation on top of IBS. The result was that this component of bunch lengthening was found to grow by 7-15% (depending on the rf voltage) between the currents of .5 mA and 2 mA, about a factor of 3 less than the total bunch length growth. The conclusion was that the inductive component of the impedance was small, in fact much smaller than had been concluded earlier in Ref. [2]. Electron machines generally run in a parameter regime where IBS is an insignificant effect, and impedance measurements and calculations have also normally been performed for machines where IBS is unimportant. To simplify the interpretation of the impedance from bunch length measurements, in April 2000 the energy spread and bunch length measurements of Dec 99 were repeated, but now with the beam on a linear (difference) coupling resonance, where the horizontal and vertical emittances were approximately equal. For this case the effect of IBS was expected to be very small. An energy spread vs. current measurement under such conditions will also allow us to more clearly see whether we reach the threshold to the microwave instability. As part of the April data taking we, in addition, repeated the earlier off-coupling measurements, in order to check the reproducibility of the earlier results. In this report we present and analyze this recent set of data, and compare it with the results of the earlier measurements, particularly those of Dec 99. The measurements and analysis of data in this report follow essentially the same procedure as was used in Ref. [4]. In the present report we will try to be relatively brief. The comparison of our results with IBS theory will be given in a following report. For more details about the measurement and analysis techniques presented in this report, the reader should consult Ref. [4].« less

  11. 75 FR 81650 - Agency Information Collection Activities:

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ...] Agency Information Collection Activities: Proposed Collection; Comments Requested ACTION: 30-Day Notice of Information Collection Under Review: Open Letter to States With Permits That Appear to Qualify as... Explosives (ATF) will be submitting the following information collection request to the Office of Management...

  12. The Expansion of Explosives Safety Education for the 21st Century

    DTIC Science & Technology

    2010-07-01

    shape charges, explosive welding, thermite reaction – Sensitivity testing: drop hammer, electrospark discharge, friction – Physics of explosives, history... ATF ) • Phytoremediation workers use plants to remove explosives from soil and render the explosives harmless • Sales of explosives detection

  13. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment.

    PubMed

    Mellon, S H; Wolkowitz, O M; Schonemann, M D; Epel, E S; Rosser, R; Burke, H B; Mahan, L; Reus, V I; Stamatiou, D; Liew, C-C; Cole, S W

    2016-05-24

    Major depressive disorder (MDD) is associated with a significantly elevated risk of developing serious medical illnesses such as cardiovascular disease, immune impairments, infection, dementia and premature death. Previous work has demonstrated immune dysregulation in subjects with MDD. Using genome-wide transcriptional profiling and promoter-based bioinformatic strategies, we assessed leukocyte transcription factor (TF) activity in leukocytes from 20 unmedicated MDD subjects versus 20 age-, sex- and ethnicity-matched healthy controls, before initiation of antidepressant therapy, and in 17 of the MDD subjects after 8 weeks of sertraline treatment. In leukocytes from unmedicated MDD subjects, bioinformatic analysis of transcription control pathway activity indicated an increased transcriptional activity of cAMP response element-binding/activating TF (CREB/ATF) and increased activity of TFs associated with cellular responses to oxidative stress (nuclear factor erythroid-derived 2-like 2, NFE2l2 or NRF2). Eight weeks of antidepressant therapy was associated with significant reductions in Hamilton Depression Rating Scale scores and reduced activity of NRF2, but not in CREB/ATF activity. Several other transcriptional regulation pathways, including the glucocorticoid receptor (GR), nuclear factor kappa-B cells (NF-κB), early growth response proteins 1-4 (EGR1-4) and interferon-responsive TFs, showed either no significant differences as a function of disease or treatment, or activities that were opposite to those previously hypothesized to be involved in the etiology of MDD or effective treatment. Our results suggest that CREB/ATF and NRF2 signaling may contribute to MDD by activating immune cell transcriptome dynamics that ultimately influence central nervous system (CNS) motivational and affective processes via circulating mediators.

  14. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS

    PubMed Central

    2014-01-01

    Background Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Methods Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Results Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. Conclusions CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism. PMID:24946937

  15. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS.

    PubMed

    Outani, Hidetatsu; Tanaka, Takaaki; Wakamatsu, Toru; Imura, Yoshinori; Hamada, Kenichiro; Araki, Nobuhito; Itoh, Kazuyuki; Yoshikawa, Hideki; Naka, Norifumi

    2014-06-19

    Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.

  16. Inhibition of Nogo-B promotes cardiac hypertrophy via endoplasmic reticulum stress.

    PubMed

    Li, Junli; Wu, Wenchao; Xin, Yanguo; Zhao, Mingyue; Liu, Xiaojing

    2018-05-14

    Nogo-B is a key endoplasmic reticulum (ER) protein that regulates ER stress signaling. However, its role in cardiac hypertrophy remains poorly understood. ER stress is interrelated with autophagy in the process of cardiac hypertrophy. Therefore, we aimed to test the hypothesis that both ER stress and autophagy signaling mediate the function of Nogo-B in cardiac hypertrophy. Rat models of transverse aortic constriction (TAC), neonatal rat cardiomyocytes (NRCMs) stimulated with norepinephrine (Ne) and primary cardiac fibroblasts treated with transforming growth factor β1 (TGF-β1) were used in this study. The expression of Nogo-B and markers of ER stress were determined by quantitative RT-PCR, western blotting and immunofluorescence. Autophagy was measured by monitoring autophagic flux. Specific small interfering RNA (siRNA) of Nogo-B was transfected to investigate the role of Nogo-B in regulating cardiac hypertrophy. In TAC-induced hypertrophic heart tissues, Ne-treated hypertrophic cardiomyocytes and TGF-β1-stimulated cardiac fibroblasts, the expression of Nogo-B, and markers of ER stress were significantly elevated. Impairment of autophagic flux was observed in the activated cardiac fibroblasts. Down-regulation of Nogo-B by siRNA further exacerbated Ne-induced cardiomyocyte hypertrophy and TGF-β1-induced cardiac fibroblast activation. Gene silencing of Nogo-B promoted the activation of the ER stress pathway and the impairment of autophagic flux. Moreover, inhibition of Nogo-B activated the protein kinase RNA-like ER kinase (PERK)/activating transcriptional factor 4 (ATF4) and activating transcriptional factor 6 (ATF6) branches of ER stress pathways. These findings suggest that inhibition of Nogo-B promotes cardiomyocyte hypertrophy and cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and defects of autophagic flux. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment

    PubMed Central

    Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Florido, Roberta; Campbell, Joshua; Liu, Gang; Xiao, Ji; Zhang, Xiaohui; Duclos, Grant; Drizik, Eduard; Si, Huiqing; Perdomo, Catalina; Dumont, Charles; Coxson, Harvey O.; Alekseyev, Yuriy O.; Sin, Don; Pare, Peter; Hogg, James C.; McWilliams, Annette; Hiemstra, Pieter S.; Sterk, Peter J.; Timens, Wim; Chang, Jeffrey T.; Sebastiani, Paola; O’Connor, George T.; Bild, Andrea H.; Postma, Dirkje S.; Lam, Stephen

    2013-01-01

    Rationale: Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function. Objectives: We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy. Methods: Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.0 ST Arrays. Measurements and Main Results: We identified 98 genes whose expression levels were associated with COPD status, FEV1% predicted, and FEV1/FVC. In silico analysis identified activating transcription factor 4 (ATF4) as a potential transcriptional regulator of genes with COPD-associated airway expression, and ATF4 overexpression in airway epithelial cells in vitro recapitulates COPD-associated gene expression changes. Genes with COPD-associated expression in the bronchial airway epithelium had similarly altered expression profiles in prior studies performed on small-airway epithelium and lung parenchyma, suggesting that transcriptomic alterations in the bronchial airway epithelium reflect molecular events found at more distal sites of disease activity. Many of the airway COPD-associated gene expression changes revert toward baseline after therapy with the inhaled corticosteroid fluticasone in independent cohorts. Conclusions: Our findings demonstrate a molecular field of injury throughout the bronchial airway of active and former smokers with COPD that may be driven in part by ATF4 and is modifiable with therapy. Bronchial airway epithelium may ultimately serve as a relatively accessible tissue in which to measure biomarkers of disease activity for guiding clinical management of COPD. PMID:23471465

  18. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation

    PubMed Central

    Silvestroff, Lucas; Franco, Paula Gabriela; Pasquini, Juana María

    2013-01-01

    NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs. PMID:23368675

  19. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, N.; Briegel, C.; Fellenz, B.

    2011-08-17

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facilitymore » (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution ({approx}100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.« less

  20. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    PubMed

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of N ε -(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum N ε -(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between N ε -(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the N ε -(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017 American Heart Association, Inc.

  1. 8-Oxo-2'-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression.

    PubMed

    Lee, Jin-Ku; Ko, Seong-Hee; Ye, Sang-Kyu; Chung, Myung-Hee

    2013-04-01

    Skin is uniquely vulnerable to damage caused by reactive oxygen species (ROS), which are most commonly produced in response to ultraviolet (UV) light. ROS generated at injury sites play an important role in modulating the inflammatory response. Besides inhibiting Rac, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) has also shown notable antioxidant action. We tested whether 8-oxo-dG could protect skin from UVB-induced damage by scavenging ROS. HaCaT cells and hairless mice were irradiated with 15 and 180 mJ/cm(2) narrow-spectrum UVB, respectively. ROS generation was detected through incubation with DCFDA and confocal microscopy. Western blot analyses and immunohistochemistry were performed to verify the activities of ERK, JNK, p38, ATF-2, and c-Jun, and the expression of matrix metalloproteinases (MMPs), in UVB-irradiated HaCaT cells and murine skin. Hydrogen peroxide production and protein carbonyl concentrations were measured in UVB-damaged mouse skin. MMP-1 and MMP-9 expression in UVB-irradiated HaCaT cells was measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In UVB-irradiated HaCaT cells, 8-oxo-dG inhibited ROS production, subsequent activation of mitogen-activated protein kinase (MAPK), ATF-2, and c-Jun, and MMP expression. It also prevented UV-induced skin reactions in hairless mice, inhibiting the increase in protein carbonyl content, activation of MAPKs, ATF-2, and c-Jun, the increases in MMP-9 and -13 expression, and epidermal hyperplasia. 8-oxo-dG can be considered an endogenous antioxidant and its potent antioxidant activity might be a beneficial property that could be exploited to protect skin from ROS-associated photodamage. Copyright © 2013. Published by Elsevier Ireland Ltd.

  2. Decursin enhances TRAIL-induced apoptosis through oxidative stress mediated- endoplasmic reticulum stress signalling in non-small cell lung cancers.

    PubMed

    Kim, Jaekwang; Yun, Miyong; Kim, Eun-Ok; Jung, Deok-Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon; Kim, Sung-Hoon

    2016-03-01

    The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL-induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL-resistant non-small-cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer-binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down-regulated expression of survivin and Bcl-xL in TRAIL-resistant NSCLC cells. ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL-resistant NSCLC cell lines, partly via up-regulation of DR5. © 2015 The British Pharmacological Society.

  3. Decursin enhances TRAIL‐induced apoptosis through oxidative stress mediated‐ endoplasmic reticulum stress signalling in non‐small cell lung cancers

    PubMed Central

    Kim, Jaekwang; Yun, Miyong; Kim, Eun‐Ok; Jung, Deok‐Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon

    2016-01-01

    Background and Purpose The TNF‐related apoptosis‐inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL‐induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Experimental Approach Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Key Results Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL‐resistant non‐small‐cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer‐binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down‐regulated expression of survivin and Bcl‐xL in TRAIL‐resistant NSCLC cells. Conclusions and Implications ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL‐resistant NSCLC cell lines, partly via up‐regulation of DR5. PMID:26661339

  4. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation andmore » confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.« less

  5. C3 exoenzyme impairs cell proliferation and apoptosis by altering the activity of transcription factors.

    PubMed

    von Elsner, Leonie; Hagemann, Sandra; Just, Ingo; Rohrbeck, Astrid

    2016-09-01

    C3 exoenzyme from C. botulinum is an ADP-ribosyltransferase that inactivates selectively RhoA, B, and C by coupling an ADP-ribose moiety. Rho-GTPases are involved in various cellular processes, such as regulation of actin cytoskeleton, cell proliferation, and apoptosis. Previous studies of our group with the murine hippocampal cell line HT22 revealed a C3-mediated inhibition of cell proliferation after 48 h and a prevention of serum-starved cells from apoptosis. For both effects, alterations of various signaling pathways are already known, including also changes on the transcriptional level. Investigations on the transcriptional activity in HT22 cells treated with C3 for 48 h identified five out of 48 transcription factors namely Sp1, ATF2, E2F-1, CBF, and Stat6 with a significantly regulated activity. For validation of identified transcription factors, studies on the protein level of certain target genes were performed. Western blot analyses exhibited an enhanced abundance of Sp1 target genes p21 and COX-2 as well as an increase in phosphorylation of c-Jun. In contrast, the level of p53 and apoptosis-inducing GADD153, a target gene of ATF2, was decreased. Our results reveal that C3 regulates the transcriptional activity of Sp1 and ATF2 resulting downstream in an altered protein abundance of various target genes. As the affected proteins are involved in the regulation of cell proliferation and apoptosis, thus the C3-mediated anti-proliferative and anti-apoptotic effects are consequences of the Rho-dependent alterations of the activity of certain transcriptional factors.

  6. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice

    PubMed Central

    Ai, Ding; Baez, Juan M.; Jiang, Hongfeng; Conlon, Donna M.; Hernandez-Ono, Antonio; Frank-Kamenetsky, Maria; Milstein, Stuart; Fitzgerald, Kevin; Murphy, Andrew J.; Woo, Connie W.; Strong, Alanna; Ginsberg, Henry N.; Tabas, Ira; Rader, Daniel J.; Tall, Alan R.

    2012-01-01

    Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease. PMID:22466652

  7. Molecular Signatures of Peripheral Blood Mononuclear Cells during Chronic Interferon-alpha Treatment: Relationship with Depression and Fatigue

    PubMed Central

    Felger, Jennifer C.; Cole, Steve W.; Pace, Thaddeus W. W.; Hu, Fang; Woolwine, Bobbi J.; Doho, Gregory H.; Raison, Charles L.; Miller, Andrew H.

    2012-01-01

    Background Interferon (IFN)-alpha treatment for infectious disease and cancer causes high rates of depression and fatigue, and has been used to investigate the impact of inflammatory cytokines on brain and behavior. However, little is known about the transcriptional impact of chronic IFN-alpha on immune cells in vivo and its relationship to IFN-alpha-induced behavioral changes. Methods Genome-wide transcriptional profiling was performed on peripheral blood mononuclear cells from 21 patients with chronic hepatitis C either awaiting IFN-alpha therapy (n=10) or at 12 weeks of IFN-alpha treatment (n=11). Results Significance analysis of microarray data identified 252 up-regulated and 116 down-regulated gene transcripts. Of up-regulated genes, 2'-5'-oligoadenylate synthetase 2 (OAS2), a gene linked to chronic fatigue syndrome (CFS), was the only gene that was differentially expressed in patients with IFN-alpha-induced depression/fatigue, and correlated with depression and fatigue scores at 12 weeks (r=0.80, p=0.003 and r=0.70, p=0.017, respectively). Promoter-based bioinformatic analyses linked IFN-alpha-related transcriptional alterations to transcription factors involved in myeloid differentiation, IFN-alpha signaling, AP1 and CREB/ATF pathways, which were derived primarily from monocytes and plasmacytoid dendritic cells. IFN-alpha-treated patients with high depression/fatigue scores demonstrated up-regulation of genes bearing promoter motifs for transcription factors involved in myeloid differentiation, IFN-alpha and AP1 signaling, and reduced prevalence of motifs for CREB/ATF, which has been implicated in major depression. Conclusions Depression and fatigue during chronic IFN-alpha administration were associated with alterations in the expression (OAS2) and transcriptional control (CREB/ATF) of genes linked to behavioral disorders including CFS and major depression, further supporting an immune contribution to these diseases. PMID:22152193

  8. Negative pressure wound therapy inhibits inflammation and upregulates activating transcription factor-3 and downregulates nuclear factor-κB in diabetic patients with foot ulcerations.

    PubMed

    Wang, T; He, R; Zhao, J; Mei, J C; Shao, M Z; Pan, Y; Zhang, J; Wu, H S; Yu, M; Yan, W C; Liu, L M; Liu, F; Jia, W P

    2017-05-01

    Negative pressure wound therapy (NPWT) is one of the most important treatments for diabetic foot, but the underlying mechanisms of its benefits still remain elusive. This study aims to evaluate the inflammatory signals involved in the effects of negative pressure therapy on diabetic foot ulcers. We enrolled 22 patients with diabetic foot ulceration, 11 treated with NPWT and the other 11 treated with traditional debridement. All patients were treated and observed for 1 week. Granulation tissues were harvested and analyzed in both groups, and then were histologically and immunohistochemically analyzed. Enzyme-linked immunosorbent assay, Western blot analysis, and real-time PCR were performed to evaluate the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS), nuclear factor-κB (NF-κB) p65, I k B-α, and activating transcription factor-3 (ATF-3). After 7 days of treatment, NPWT could obviously promote diabetic wound healing because of the mild inflammation and the dense cell-deposited matrix. Meanwhile, NPWT significantly decreased the expression of TNF-α, IL-6, and iNOS (all P < .05). The result of Western blotting and real-time PCR indicated that NPWT obviously decreased the level of I k B-α and NF-κB p65, and increased the level of ATF-3 (all P < .05). NPWT exerts an anti-inflammatory effect, possibly through the suppression of proinflammatory enzymes and cytokines resulting from I k B-α inhibition and ATF-3 activation, which may prevent the activation of the NF-κB pathway in human diabetic foot wounds. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Sigma receptor 1 modulates ER stress and Bcl2 in murine retina.

    PubMed

    Ha, Yonju; Shanmugam, Arul K; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Smith, Sylvia B

    2014-04-01

    Sigma receptor 1 (σR1), a non-opiate transmembrane protein located on endoplasmic reticulum (ER) and mitochondrial membranes, is considered to be a molecular chaperone. Marked protection against cell death has been observed when ligands for σR1 have been used in in vitro and in vivo models of retinal cell death. Mice lacking σR1 (σR1(-/-)) manifest late-onset loss of retinal ganglion cells and retinal electrophysiological changes (after many months). The role of σR1 in the retina and the mechanisms by which its ligands afford neuroprotection are unclear. We therefore used σR1(-/-) mice to investigate the expression of ER stress genes (BiP/GRP78, Atf6, Atf4, Ire1α) and proteins involved in apoptosis (BCL2, BAX) and to examine the retinal transcriptome at young ages. Whereas no significant changes occurred in the expression of major ER stress genes (over a period of a year) in neural retina, marked changes were observed in these genes, especially Atf6, in isolated retinal Müller glial cells. BCL2 levels decreased in σR1(-/-) retina concomitantly with decreases in NFkB and pERK1/2. We postulate that σR1 regulates ER stress in retinal Müller cells and that the role of σR1 in retinal neuroprotection probably involves BCL2 and some of the proteins that modify its expression (such as ERK, NFκB). Data from the analysis of the retinal transcriptome of σR1 null mice provide new insights into the role of σR1 in retinal neuroprotection.

  10. Sigma receptor 1 modulates ER stress and Bcl2 in murine retina

    PubMed Central

    Ha, Yonju; Shanmugam, Arul K.; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Smith, Sylvia B.

    2014-01-01

    Sigma receptor 1 (σR1), a non-opiate transmembrane protein located on endoplasmic reticulum (ER) and mitochondrial membranes, is considered a molecular chaperone. Marked protection against cell death has been observed when ligands for σR1 have been used in in vitro and in vivo models of retinal cell death. Mice lacking σR1 (σR1−/−) manifest late onset loss of retinal ganglion cells and retinal electrophysiological changes (after many months). The role of σR1 in retina and the mechanisms by which its ligands afford neuroprotection are unclear. To explore this we used σR1−/− mice and investigated expression of ER stress genes (BiP/GRP78, Atf6, Atf4, Ire1α) and proteins involved in apoptosis (BCL2, BAX) and examined the retinal transcriptome at young ages. While there were no significant changes in expression of major ER stress genes (over a period of a year) in neural retina, there were marked changes in these genes especially Atf6 in isolated retinal Müller glial cells. BCL2 levels decreased in σR1−/− retina concomitant with decreases in NFkB and pERK1/2. We postulate that σR1 regulates ER stress in retinal Müller cells and that the role of σR1 in retinal neuroprotection likely involves BCL2 and some of the proteins that modify its expression (such as ERK, NFκB). Data from the analysis of the retinal transcriptome of σR1 null mice provides new avenues to understand the role of σR1 in retinal neuroprotection. PMID:24469320

  11. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway

    PubMed Central

    Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc

    2013-01-01

    Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction. PMID:23530189

  12. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway.

    PubMed

    Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc

    2013-04-09

    Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction.

  13. ELANE mutant-specific activation of different UPR pathways in congenital neutropenia.

    PubMed

    Nustede, Rainer; Klimiankou, Maksim; Klimenkova, Olga; Kuznetsova, Inna; Zeidler, Cornelia; Welte, Karl; Skokowa, Julia

    2016-01-01

    A number of studies have demonstrated induction of the unfolded protein response (UPR) in patients with severe congenital neutropenia (CN) harbouring mutations of ELANE, encoding neutrophil elastase. Why UPR is not activated in patients with cyclic neutropenia (CyN) carrying the same ELANE mutations is unclear. We evaluated the effects of ELANE mutants on UPR induction in myeloid cells from CN and CyN patients, and analysed whether additional CN-specific defects contribute to the differences in UPR induction between CN and CyN patients harbouring identical ELANE mutations. We investigated CN-specific p.C71R and p.V174_C181del (NP_001963.1) and CN/CyN-shared p.S126L (NP_001963.1) ELANE mutants. We found that transduction of haematopoietic cells with p.C71R, but not with p.V174_C181del or p.S126L ELANE mutants induced expression of ATF6, and the ATF6 target genes PPP1R15A, DDIT3 and HSPA5. Recently, we found that levels of secretory leucocyte protease inhibitor (SLPI), a natural ELANE inhibitor, are diminished in myeloid cells from CN patients, but not CyN patients. Combined knockdown of SLPI by shRNA and transduction of ELANE p.S126L in myeloid cells led to elevated levels of ATF6, PPP1R15A and HSPA5 RNA, suggesting that normal levels of SLPI in CyN patients might protect them from the UPR induced by mutant ELANE. In summary, different ELANE mutants have different effects on UPR activation, and SLPI regulates the extent of ELANE-triggered UPR. © 2015 John Wiley & Sons Ltd.

  14. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice.

    PubMed

    Ni, Xian-Qiang; Lu, Wei-Wei; Zhang, Jin-Sheng; Zhu, Qing; Ren, Jin-Ling; Yu, Yan-Rong; Liu, Xiu-Ying; Wang, Xiu-Jie; Han, Mei; Jing, Qing; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2018-06-26

    Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.

  15. Sequestosome 1 (SQSTM1/p62) maintains protein folding capacity under endoplasmic reticulum stress in mouse hypothalamic organotypic culture.

    PubMed

    Tominaga, Takashi; Goto, Motomitsu; Onoue, Takeshi; Mizoguchi, Akira; Sugiyama, Mariko; Tsunekawa, Taku; Hagiwara, Daisuke; Morishita, Yoshiaki; Ito, Yoshihiro; Iwama, Shintaro; Suga, Hidetaka; Banno, Ryoichi; Arima, Hiroshi

    2017-08-24

    Sequestosome 1 (SQSTM1) also known as ubiquitin-binding protein p62 (p62) is a cargo protein involved in the degradation of misfolded proteins via selective autophagy. Disruption of autophagy and resulting accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress. ER stress is implicated in several neurodegenerative diseases and obesity. As knockout of p62 (p62KO) reportedly induces obesity in mice, we examined how p62 contributes to ER stress and the ensuing unfolded protein response (UPR) in hypothalamus using mouse organotypic cultures in the present study. Cultures from p62KO mice showed significantly reduced formation of LC3-GFP puncta, an index of autophagosome formation, in response to the chemical ER stressor thapsigargin compared to wild-type (WT) cultures. Hypothalamic cultures from p62KO mice exhibited higher basal expression of the UPR/ER stress markers CHOP mRNA and ATF4 mRNA than WT cultures. Thapsigargin enhanced CHOP, ATF4, and BiP mRNA as well as p-eIF2α protein expression in both WT and p62KO cultures, but all peak values were greater in p62KO cultures. A proteasome inhibitor increased p62 expression in WT cultures and upregulated the UPR/ER stress markers CHOP mRNA and ATF4 mRNA in both genotypes, but to a greater extent in p62KO cultures. Therefore, p62 deficiency disturbed autophagosome formation and enhanced both basal and chemically induced ER stress, suggesting that p62 serves to prevent ER stress in mouse hypothalamus by maintaining protein folding capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations.

    PubMed

    Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo

    2010-11-01

    Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.

  17. Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice.

    PubMed

    Park, Hyo-Jin; Park, Sun-Ji; Koo, Deog-Bon; Lee, Sang-Rae; Kong, Il-Keun; Ryoo, Jae-Woong; Park, Young-Il; Chang, Kyu-Tae; Lee, Dong-Seok

    2014-09-15

    We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells.

    PubMed

    Bosquet, Alba; Guaita-Esteruelas, Sandra; Saavedra, Paula; Rodríguez-Calvo, Ricardo; Heras, Mercedes; Girona, Josefa; Masana, Lluís

    2016-06-01

    Fatty acid binding protein 4 (FABP4) is an intracellular fatty acid (FA) carrier protein that is, in part, secreted into circulation. Circulating FABP4 levels are increased in obesity, diabetes and other insulin resistance (IR) diseases. FAs contribute to IR by promoting endoplasmic reticulum stress (ER stress) and altering the insulin signaling pathway. The effect of FABP4 on ER stress in the liver is not known. The aim of this study was to investigate whether exogenous FABP4 (eFABP4) is involved in the lipid-induced ER stress in the liver. HepG2 cells were cultured with eFABP4 (40 ng/ml) with or without linoleic acid (LA, 200 μM) for 18 h. The expression of ER stress-related markers was determined by Western blotting (ATF6, EIF2α, IRE1 and ubiquitin) and real-time PCR (ATF6, CHOP, EIF2α and IRE1). Apoptosis was studied by flow cytometry using Annexin V-FITC and propidium iodide staining. eFABP4 increased the ER stress markers ATF6 and IRE1 in HepG2 cells. This effect led to insulin resistance mediated by changes in AKT and JNK phosphorylation. Furthermore, eFABP4 significantly induced both apoptosis, as assessed by flow cytometry, and CHOP expression, without affecting necrosis and ubiquitination. The presence of LA increased the ER stress response induced by eFABP4. eFABP4, per se, induces ER stress and potentiates the effect of LA in HepG2 cells, suggesting that FABP4 could be a link between obesity-associated metabolic abnormalities and hepatic IR mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. INHIBITION OF ERN1 SIGNALING ENZYME AFFECTS HYPOXIC REGULATION OF THE EXPRESSION OF E2F8, EPAS1, HOXC6, ATF3, TBX3 AND FOXF1 GENES IN U87 GLIOMA CELLS.

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A

    2015-01-01

    Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.

  20. NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes

    PubMed Central

    2012-01-01

    Background Lipoteichoic acid (LTA) is a component of gram-positive bacterial cell walls and may be elevated in the cerebrospinal fluid of patients suffering from meningitis. Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Moreover, several studies have suggested that increased oxidative stress is implicated in the pathogenesis of brain inflammation and injury. However, the molecular mechanisms underlying LTA-induced redox signal and MMP-9 expression in brain astrocytes remain unclear. Objective Herein we explored whether LTA-induced MMP-9 expression was mediated through redox signals in rat brain astrocytes (RBA-1 cells). Methods Upregulation of MMP-9 by LTA was evaluated by zymographic and RT-PCR analyses. Next, the MMP-9 regulatory pathways were investigated by pretreatment with pharmacological inhibitors or transfection with small interfering RNAs (siRNAs), Western blotting, and chromatin immunoprecipitation (ChIP)-PCR and promoter activity reporter assays. Moreover, we determined the cell functional changes by migration assay. Results These results showed that LTA induced MMP-9 expression via a PKC(α)-dependent pathway. We further demonstrated that PKCα stimulated p47phox/NADPH oxidase 2 (Nox2)-dependent reactive oxygen species (ROS) generation and then activated the ATF2/AP-1 signals. The activated-ATF2 bound to the AP-1-binding site of MMP-9 promoter, and thereby turned on MMP-9 gene transcription. Additionally, the co-activator p300 also contributed to these responses. Functionally, LTA-induced MMP-9 expression enhanced astrocytic migration. Conclusion These results demonstrated that in RBA-1 cells, activation of ATF2/AP-1 by the PKC(α)-mediated Nox(2)/ROS signals is essential for upregulation of MMP-9 and cell migration enhanced by LTA. PMID:22643046

Top