Sample records for existing candu reactors

  1. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  2. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, W.

    2012-07-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, threemore » benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)« less

  3. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  4. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity.

  5. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    PubMed

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A. C.; Ball, M. R.; Novog, D. R.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxidemore » fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)« less

  7. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-07-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for themore » refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)« less

  8. Estimation of coolant void reactivity for CANDU-NG lattice using DRAGON and validation using MCNP5 and TRIPOLI-4.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, R.; Tellier, R. L.; Hebert, A.

    2006-07-01

    The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advancedmore » self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)« less

  9. Advances in modelling of condensation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less

  10. An Evolutionary Optimization of the Refueling Simulation for a CANDU Reactor

    NASA Astrophysics Data System (ADS)

    Do, Q. B.; Choi, H.; Roh, G. H.

    2006-10-01

    This paper presents a multi-cycle and multi-objective optimization method for the refueling simulation of a 713 MWe Canada deuterium uranium (CANDU-6) reactor based on a genetic algorithm, an elitism strategy and a heuristic rule. The proposed algorithm searches for the optimal refueling patterns for a single cycle that maximizes the average discharge burnup, minimizes the maximum channel power and minimizes the change in the zone controller unit water fills while satisfying the most important safety-related neutronic parameters of the reactor core. The heuristic rule generates an initial population of individuals very close to a feasible solution and it reduces the computing time of the optimization process. The multi-cycle optimization is carried out based on a single cycle refueling simulation. The proposed approach was verified by a refueling simulation of a natural uranium CANDU-6 reactor for an operation period of 6 months at an equilibrium state and compared with the experience-based automatic refueling simulation and the generalized perturbation theory. The comparison has shown that the simulation results are consistent from each other and the proposed approach is a reasonable optimization method of the refueling simulation that controls all the safety-related parameters of the reactor core during the simulation

  11. Modelling the activity of 129I in the primary coolant of a CANDU reactor

    NASA Astrophysics Data System (ADS)

    Lewis, Brent J.; Husain, Aamir

    2003-01-01

    A mathematical treatment has been developed to describe the activity levels of 129I as a function of time in the primary heat transport system during constant power operation and for a reactor shutdown situation. The model accounts for a release of fission-product iodine from defective fuel rods and tramp uranium contamination on in-core surfaces. The physical transport constants of the model are derived from a coolant activity analysis of the short-lived radioiodine species. An estimate of 3×10 -9 has been determined for the coolant activity ratio of 129I/ 131I in a CANDU Nuclear Generating Station (NGS), which is in reasonable agreement with that observed in the primary coolant and for plant test resin columns from pressurized and boiling water reactor plants. The model has been further applied to a CANDU NGS, by fitting it to the observed short-lived iodine and long-lived cesium data, to yield a coolant activity ratio of ˜2×10 -8 for 129I/ 137Cs. This ratio can be used to estimate the levels of 129I in reactor waste based on a measurement of the activity of 137Cs.

  12. A CFD Model for High Pressure Liquid Poison Injection for CANDU-6 Shutdown System No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo Wook Rhee; Chang Jun Jeong; Hye Jeong Yun

    2002-07-01

    In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzingmore » the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the pressure tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, a CFD code, to simulate the formation of the poison jet curtain inside the moderator tank. For validation, an attempt was made to validate this model against a poison injection experiment performed at BARC. As conclusion this set of models is judged to be appropriate. (authors)« less

  13. Transmutation of actinides in power reactors.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  14. Tritium resources available for fusion reactors

    NASA Astrophysics Data System (ADS)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future fusion reactors.

  15. Modeling and simulation of CANDU reactor and its regulating system

    NASA Astrophysics Data System (ADS)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.

  16. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    NASA Astrophysics Data System (ADS)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  17. AECL's Lawson optimistic about company, nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, E.

    1993-01-27

    Atomic Energy of Canada Ltd. is hopeful its sale of two heavy water reactors to South Korea last September represents the end of a two-year dry spell and the beginning of better times for Canadian nuclear power research. In an hour-long interview in the company's Rockville, Md., office, AECL's newly appointed chairman, Donald Lawson, discussed his outlook for the sale of plants and services worldwide and the company's efforts to license the approximately 400 megawatt CANDU-3 nuclear plant for use in the United States. AECL's CANDU reactors offer users a number of advantages. In particular, they burn natural uranium, makingmore » it possible to load while operating, and have one of the best operating records of any commercial plant design around today.« less

  18. A high-fidelity Monte Carlo evaluation of CANDU-6 safety parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.; Hartanto, D.

    2012-07-01

    Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANDU-6 (CANada Deuterium Uranium) reactor have been evaluated by using a modified MCNPX code. For accurate analysis of the parameters, the DBRC (Doppler Broadening Rejection Correction) scheme was implemented in MCNPX in order to account for the thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted by using the MCNPX and the FTC value is evaluated for several burnup points including the mid-burnupmore » representing a near-equilibrium core. The Doppler effect has been evaluated by using several cross section libraries such as ENDF/B-VI, ENDF/B-VII, JEFF, JENDLE. The PCR value is also evaluated at mid-burnup conditions to characterize safety features of equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, huge number of neutron histories are considered in this work and the standard deviation of the k-inf values is only 0.5{approx}1 pcm. It has been found that the FTC is significantly enhanced by accounting for the Doppler broadening of scattering resonance and the PCR are clearly improved. (authors)« less

  19. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less

  20. Tritium handling experience at Atomic Energy of Canada Limited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritiummore » powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.« less

  1. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is sealed by rolling its ends into the rolled joint area. During reactor refurbishment, the original FC calandria tubes are removed, potentially scratching the rolled joint area and, thereby, compromising the seal with the new FC calandria tube. The procedure involves delivering an inspection module having a radiation-resistant camera, standard lighting, and a structured lighting projector. The surface is inspected by rotating the module within the rolled joint area. If a flaw is detected, its depth and width are gauged from the profile variation of the structured lighting in a captured image. As well, the diameter profile of the area is measured from the analysis of a series of captured circumferential images of the structured lighting profiles on the surface.

  2. Renewability and sustainability aspects of nuclear energy

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, 233U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO2/RG-PuO2) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG-PuO2 + 96 % ThO2; 6 % RG-PuO2 + 94 % ThO2; 10 % RG-PuO2 + 90 % ThO2; 20 % RG-PuO2 + 80 % ThO2; 30 % RG-PuO2 + 70 % ThO2, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ˜ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ˜ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG-PuO2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ˜160 kg 233U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ˜1.3.

  3. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori

    2015-02-01

    In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographicmore » examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  5. Renewability and sustainability aspects of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şahin, Sümer, E-mail: ssahin@atilim.edit.tr

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2};more » 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ∼1.3.« less

  6. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  7. Feasible variants for intermediate storage of the spent fuel obtained at NPP Cernavoda, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Popescu, G.

    1993-12-31

    The 5 CANDU-PHW Reactors of 600 Standard type of Cernavoda Nuclear Power Plant are under construction and the first unit is expected to be commissioned in 1995, group 2 following after 2 years, and then groups 3, 4 and 5 one each year. In this study there are presented feasible variants for intermediate storage of spent fuel, obtained during 30 years of operation from the stations at Cernavoda. From the solutions applied worldwide, both dry and wet storage have been taken into account. In any of the two variants, a unique intermediate storage will be provided and the storage buildingmore » was proposed to be built in 4 different stages. As a first estimation, considering the fact that, by now Romania has only one nuclear plant of CANDU fuel type the dry variant seems to be the best.« less

  8. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  9. View of Pakistan Atomic Energy Commission towards SMPR's in the light of KANUPP performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huseini, S.D.

    1985-01-01

    The developing countries in general do not have grid capacities adequate enough to incorporate standard size, economic but rather large nuclear power plants for maximum advantage. Therefore, small and medium size reactors (SMPR) have been and still are, of particular interest to the developing countries in spite of certain known problems with these reactors. Pakistan Atomic Energy Commission (PAEC) has been operating a CANDU type of a small PHWR plant since 1971 when it was connected to the local Karachi grid. This paper describes PAEC's view in the light of KANUPP performance with respect to such factors associated with SMPR'smore » as selection of suitable reactor size and type, its operation in a grid of small capacity, flexibility of operation and its role as a reliable source of electrical power.« less

  10. Finite Element Stress Analysis of Spent Nuclear Fuel Disposal Canister in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Kwon, Young Joo; Choi, Jong Won

    This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.

  11. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  12. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  13. PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-04-01

    Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less

  14. A statistical approach to nuclear fuel design and performance

    NASA Astrophysics Data System (ADS)

    Cunning, Travis Andrew

    As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional limit of operating envelope case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the two methods is very prominent, and the highly conservative nature of the deterministic approach is demonstrated. A reliability analysis of CANDU fuel manufacturing parametric data, specifically pertaining to the quantification of fuel performance margins, has not been conducted previously. Key Words: CANDU, nuclear fuel, Cameco, fuel manufacturing, fuel modelling, fuel performance, fuel reliability, ELESTRES, ELOCA, dimensional reduction methods, global sensitivity analysis, deterministic safety analysis, probabilistic safety analysis.

  15. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].

  16. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE PAGES

    Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...

    2017-05-23

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  17. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piro, M.H.A; Wassermann, F.; Grundmann, S.

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  18. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity ratios showed distinct differences between the closed CANDU primary coolant system and radiopharmaceutical production releases. According to the concept proposed by Kalinowski and Pistner (2006), the relationship between different isotopic activity ratios based on three or four radioxenon isotopes was plotted in a log-log diagram for source characterisation (civil vs. nuclear test). The multiple isotopic activity ratios were distributed in three distinct areas: HC atmospheric monitoring ratios extended to far left; the CANDU primary coolant system ratios lay in the middle; and 99Mo stack monitoring ratios for ANSTO and CRL were located on the right. The closed CANDU primary coolant has the lowest logarithmic mean ratio that represents the nuclear power reactor operation. The HC atmospheric monitoring exhibited a broad range of ratios spreading over several orders of magnitude. In contrast, the ANSTO and CRL stack emissions showed the smallest range of ratios but the results indicate at least two processes involved in the 99Mo productions. Overall, most measurements were found to be shifted towards the reactor domain. The hypothesis is that this is due to an accumulation of the isotope 131mXe in the stack or atmospheric background as it has the longest half-life and extra 131mXe emissions from the decay of 131I. The contribution of older 131mXe to a fresh release shifts the ratio of 133mXe/131mXe to the left. It was also very interesting to note that there were some situations where isotopic ratios from 99Mo production emissions fell within the nuclear test domain. This is due to operational variability, such as shorter target irradiation times. Martin B. Kalinowski and Christoph Pistner, (2006), Isotopic signature of atmospheric xenon released from light water reactors, Journal of Environmental Radioactivity, 88, 215-235.

  19. An Example of an INPRO Assessment of an INS in the Area of Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, C.; Busurin, Y.; Depisch, F.

    2006-07-01

    Following a resolution of the General Conference of the IAEA in the year 2000 the International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated. INPRO has defined requirements organized in a hierarchy of Basic Principles, User Requirements and Criteria (consisting of an indicator and an acceptance limit) to be met by innovative nuclear reactor systems (INS) in six areas, namely: economics, safety, waste management, environment, proliferation resistance, and infrastructure. If an INS meets all requirements in all areas it represents a sustainable system for the supply of energy, capable of making a significant contributionmore » to meeting the energy needs of the 21. century. Draft manuals have been developed, for each INPRO area, to provide guidance for performing an assessment of whether an INS meets the INPRO requirements in a given area. The manuals set out the information that needs to be assembled to perform an assessment and provide guidance on selecting the acceptance limits and, for a given INS, for determining the value of the indicators for comparison with the associated acceptance limits. Each manual also includes an example of a specific assessment to illustrate the guidance. This paper discusses the example presented in the manual for performing an INPRO assessment in the area of waste management. The example, chosen solely for the purpose of illustrating the INPRO methodology, describes an assessment of an INS based on the DUPIC fuel cycle. It is assumed that uranium is mined, milled, converted, enriched, and fabricated into LWR fuel in Canada. The LWR fuel is assumed to be leased to a utility in the USA. The spent LWR fuel is assumed to be returned to Canada where it is processed into CANDU DUPIC fuel, which is then burned in CANDU reactors. The assessment steps and the results are presented in detail in the paper. The example illustrates an assessment performed for an INS at an early stage of development. (authors)« less

  20. Eddy current proximity measurement of perpendicular tubes from within pressure tubes in CANDU nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bennett, P. F. D.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2018-04-01

    Fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of two non-concentric tubes; an inner pressure tube (PT) and a larger diameter calandria tube (CT). Up to 400 horizontally mounted fuel channels are contained within a calandria vessel, which also holds the heavy water moderator. Certain fuel channels pass perpendicularly over horizontally oriented tubes (nozzles) that are part of the reactor's liquid injection shutdown system (LISS). Due to sag, these fuel channels are at risk of coming into contact with the LISS nozzles. In the event of contact between the LISS nozzle and CT, flow-induced vibrations from within the moderator could lead to fretting and deformation of the CT. LISS nozzle proximity to CTs is currently measured optically from within the calandria vessel, but from outside the fuel channels. Measurement by an independent means would provide confidence in optical results and supplement cases where optical observations are not possible. Separation of PT and CT, known as gap, is monitored from within the PT using a transmit-receive eddy current probe. Investigation of the eddy current based gap probe as a tool to also measure proximity of LISS nozzles was carried out experimentally in this work. Eddy current response as a function of LISS-PT proximity was recorded. When PT-CT gap, PT wall thickness, PT resistivity and probe lift-off variations were not present this dependence could be used to determine the LISS-PT proximity. This method has the potential to provide LISS-CT proximity using existing gap measurement data. Obtaining LISS nozzle proximity at multiple inspection intervals could be used to provide an estimate of the time to LISS-CT contact, and thereby provide a means of optimizing maintenance schedules.

  1. Emerging nuclear programs in Asia: The Phillipines, Thailand, Indonesia, and Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.L.

    This article is a review of the potential for nuclear energy development in the developing nations of Pakistan, Indonesia, Thailand, and the Philippines. In each country, there is a substantial need for new generating capacity, and each is exploring the idea of having nuclear energy supply a meaningful portion of this new capacity. Of the four countries, only Pakistan is currently a nuclear operator, and one vintage CANDU plant in operation and the Chashma unit under construction. Thailand and Indonesia have ambitious plans to have 12 reactors in service by the year 2015.

  2. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E.

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less

  3. Enrichment of 57Fe isotope in neutron flux of nuclear reactors observed by Mössbauer spectroscopy.

    PubMed

    Sawicki, Jerzy A

    2018-02-01

    The abundance of 57 Fe isotope in nuclear reactor core materials can be considerably enriched by neutron-capture 56 Fe(n,γ) reactions. This is demonstrated using the sections of Zr-2.5 wt.%Nb pressure tubes removed from two CANDU* reactors. The tubes contained 0.11 and 0.04wt% Fe and were irradiated for about 10 effective full power years (EFPY) up to ~10 26 n/m 2 fast neutron (E > 1MeV) fluencies. The Mössbauer spectra of 57 Fe in irradiated samples indicated up to 10 times larger areas than unirradiated off-cuts from the same pressure tubes. The observed effect is in accord with the values calculated for known thermal neutron-capture cross-sections and resonance capture integrals, neutron flux profiles and spectra, and times of irradiation. The build-up of 57 Fe facilitated recording Mössbauer absorption spectra of alloys with minor amount of Fe down to ~ 400ppm, despite intense background radiation emitted by samples. These findings can open new possibilities in post-irradiation studies of alloys used in nuclear reactors and in other objects subjected to large neutron fluencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The International Experimental Thermal Hydraulic Systems database – TIETHYS: A new NEA validation tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Upendra S.

    Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary ofmore » appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available. https://www.oecd-nea.org/tiethysweb/« less

  5. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    NASA Astrophysics Data System (ADS)

    Philipose, K.; Shenton, B.

    2011-04-01

    The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  6. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyer, Brian David; Beddingfield, David H; Durst, Philip

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguardsmore » criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.« less

  7. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Jointmore » Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)« less

  8. Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasut, F.; Preda, A.; Zamfirache, M.

    2008-07-15

    The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalystsmore » that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)« less

  9. Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preeti, T.; Rulko, R.

    2012-07-01

    In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less

  10. Development of a Korean reference HLW disposal system under the Korean representative geologic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Heui-Joo; Lee, Jong Youl; Choi, Jongwon

    2007-07-01

    The development of a Korean Reference disposal System for the spent fuels from PWR and CANDU reactors is outlined in this paper. Around 36,000 tU of spent fuels are being projected based on the lifetimes of 28 nuclear power reactors in Korea. Since the site for the geological disposal has not yet been decided, a hypothetical site with representative Korean geologic conditions is proposed for the conceptual design of the repository. The disposal rates of the spent fuels are determined according to the total operation time of 55 years. The canisters are optimized by considering natural Korean conditions, and themore » buffer is designed with domestic Ca-bentonite. The depth of the repository is determined to be 500 m below the ground's surface. The canister separation distances are determined through a thermal analysis. The main features of the repository are presented from the layout to the closure. A computer program has been developed to calculate and analyze the volume and the area of the disposal system to help in the cost analysis. The final output of the design is presented as a unit disposal cost, US $315 /kgU. (authors)« less

  11. Methodology, status and plans for development and assessment of TUF and CATHENA codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxat, J.C.; Liu, W.S.; Leung, R.K.

    1997-07-01

    An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically onmore » CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.« less

  12. ORCHID - a computer simulation of the reliability of an NDE inspection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moles, M.D.C.

    1987-03-01

    CANDU pressurized heavy water reactors contain several hundred horizontally-mounted zirconium alloy pressure tubes. Following a pressure tube failure, a pressure tube inspection system called CIGARette was rapidly designed, manufactured and put in operation. Defects called hydride blisters were found to be the cause of the failure, and were detected using a combination of eddy current and ultrasonic scans. A number of improvements were made to CIGARette during the inspection period. The ORCHID computer program models the operation of the delivery system, eddy current and ultrasonic systems by imitating the on-reactor decision-making procedure. ORCHID predicts that during the early stage ofmore » development, less than one blistered tube in three would be detected, while less than one in two would be detected in the middle development stage. However, ORCHID predicts that during the late development stage, probability of detection will be over 90%, primarily due to the inclusion of axial ultrasonic scans (a procedural modification). Rotational and axial slip could severely reduce probability of detection. Comparison of CIGARette's inspection data with ORCHID's predictions indicate that the latter are compatible with the actual inspection results, through the numbers are small and data uncertain. It should be emphasized that the CIGARette system has been essentially replaced with the much more reliable CIGAR system.« less

  13. Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP

    NASA Astrophysics Data System (ADS)

    Thind, Harwinder

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.

  14. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    NASA Astrophysics Data System (ADS)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  15. Study of fission-product segregation in used CANDU fuel by X-ray photoelectron spectroscopy (XPS) II

    NASA Astrophysics Data System (ADS)

    Hocking, William H.; Duclos, A. Michael; Johnson, Lawrence H.

    1994-03-01

    A thorough investigation of the grain-boundary chemistry of used CANDU fuel from one intact element has been conducted by X-ray photoelectron spectroscopy (XPS). Selected findings from more extensive XPS measurements on other used CANDU fuels exposed to storage conditions are included for comparison. Cesium, rubidium, tellurium and barium have been commonly observed, often reaching high degrees of surface enrichment, although their relative abundances can vary widely with a complex dependence on the fuel irradiation history. Lower concentrations of cadmium, molybdenum, strontium and iodine have also been occasionally detected. Except for iodine, chemical-shift data are indicative of oxidized species, possibly uranates. Segregation at monolayer-level coverages has been demonstrated by sequential XPS analysis and argon-ion sputtering. Calculations based on an idealized thin-film model are consistent with the depth profiles. The interpretation of these results is discussed in the context of previous studies, especially on LWR fuels.

  16. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the test sections provides the Joule heating required to heat up the fluid to supercritical conditions. A high-temperature dielectric gasket isolates the current carrying parts of the test section from the rest of the assembly. Temperature and pressure drop data are collected at the inlet and outlet, and along the heated length of the test section. The test loops and test sections are designed according to American Society of Mechanical Engineers (ASME) Pressure Piping B31.1, and Boiler and Pressure Vessel Code, Section VIII-Division 1 rules. The final test loops and test sections assemblies are certified by Technical Standards and Safety Authority (TSSA). Every attempt is made to use off-the-shelf components where possible in order to streamline the design process and reduce costs. Following a rigorous selection process, stainless steel Types 316 and 316H are selected as the construction materials for the test loops, and Inconel 625 is selected as the construction material for the test sections. This thesis describes the design of the SCW and R-134a loops along with the three test-section geometries (i.e., tubular, annular and bundle designs).

  17. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.

  18. The Results From the First High-Pressure Melt Ejection Test Completed in the Molten Fuel Moderator Interaction Facility at Chalk River Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitheanandan, T.; Kyle, G.; O'Connor, R.

    2006-07-01

    A high-pressure melt ejection test using prototypical corium was conducted at Atomic Energy of Canada Limited Chalk River Laboratories. This test was planned by the CANDU Owners Group to study the potential for an energetic interaction between molten fuel and water under postulated single-channel flow-blockage events. The experiments were designed to address regulator concerns surrounding this very low probability postulated accident events in CANDU Pressurized Heavy Water Reactors. The objective of the experimental program is to determine whether a highly energetic 'steam explosion' and associated high-pressure pulse, is possible when molten material is finely fragmented as it is ejected frommore » a fuel channel into the heavy-water moderator. The finely fragmented melt particles would transfer energy to the moderator as it is dispersed, creating a modest pressure pulse in the calandria vessel. The high-pressure melt ejection test consisted of heating up a {approx} 5 kg thermite mixture of U, U{sub 3}O{sub 8}, Zr, and CrO{sub 3} inside a 1.14-m length of insulated pressure tube. When the molten material reached the desired temperature of {approx} 2400 deg C, the pressure inside the tube was raised to 11.6 MPa, failing the pressure tube at a pre-machined flaw, and releasing the molten material into the surrounding tank of 68 deg C water. The experiment investigated the dynamic pressure history, debris size, and the effects of the material interacting with tubes representing neighbouring fuel channels. The measured mean particle size was 0.686 mm and the peak dynamic pressures were between 2.54 and 4.36 MPa, indicating that an energetic interaction between the melt and the water did not occur in the test. (authors)« less

  19. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less

  20. Wavelet analysis of poorly-focused ultrasonic signal of pressure tube inspection in nuclear industry

    NASA Astrophysics Data System (ADS)

    Zhao, Huan; Gachagan, Anthony; Dobie, Gordon; Lardner, Timothy

    2018-04-01

    Pressure tube fabrication and installment challenges combined with natural sagging over time can produce issues with probe alignment for pressure tube inspection of the primary circuit of CANDU reactors. The ability to extract accurate defect depth information from poorly focused ultrasonic signals would reduce additional inspection procedures, which leads to a significant time and cost saving. Currently, the defect depth measurement protocol is to simply calculate the time difference between the peaks of the echo signals from the tube surface and the defect from a single element probe focused at the back-wall depth. When alignment issues are present, incorrect focusing results in interference within the returning echo signal. This paper proposes a novel wavelet analysis method that employs the Haar wavelet to decompose the original poorly focused A-scan signal and reconstruct detailed information based on a selected high frequency component range within the bandwidth of the transducer. Compared to the original signal, the wavelet analysis method provides additional characteristic defect information and an improved estimate of defect depth with errors less than 5%.

  1. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    NASA Astrophysics Data System (ADS)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for pressure tubes. Also it is helpful in guiding the development of new materials for the next generation of nuclear reactors. Furthermore, the large data set obtained from this study can be used in evaluation and improving current and future polycrystalline deformation models.

  2. 77 FR 38742 - Non-Power Reactor License Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...-0087] RIN 3150-AI96 Non-Power Reactor License Renewal AGENCY: Nuclear Regulatory Commission. ACTION... reactors. This contemplated rulemaking would also make conforming changes to address technical issues in existing non-power reactor regulations. The NRC is seeking input from the public, licensees, certificate...

  3. Solar Power Satellites - A Review of the Space Transportation Options.

    DTIC Science & Technology

    1980-03-01

    already exists with such systems, gained mainly through liquid-metal breeder reactor programmes. 0 For example, inlet temperatures of 970 C can be handled...alternatives exist. In addition, there would be extreme reluctance on the part of most governments to allow large C- reactors , producing gigawatts of power, to...antenna. The reactors employed are high-temperature gas- cooled breeders , which convert U238 into fissile plutonium. Each of the modules includes a

  4. Down-selection of candidate alloys for further testing of advanced replacement materials for LWR core internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Leonard, Keith J.; Tan, Lizhen

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less

  5. Localization of a Robotic Crawler for CANDU Fuel Channel Inspection

    NASA Astrophysics Data System (ADS)

    Manning, Mark

    This thesis discusses the design and development of a pipe crawling robot for the purpose of CANDU fuel channel inspection. The pipe crawling robot shall be capable of deploying the existing CIGAR (Channel Inspection and Gauging Apparatus for Reactors) sensor head. The main focus of this thesis is the design of the localization system for this robot and the many tests that were completed to demonstrate its accuracy. The proposed localization system consists of three redundant resolver wheels mounted to the robot's frame and two resolvers that are mounted inside a custom made cable drum. This cable drum shall be referred to in this thesis as the emergency retrieval device. This device serves the dual-purpose of providing absolute position measurements (via the cable that is tethered to the robot) as well as retrieving the robot if it is inoperable. The estimated accuracy of the proposed design is demonstrated with the use of a proof-of-concept prototype and a custom made test bench that uses a vision system to provide a more accurate estimate of the robot's position. The only major difference between the proof-of-concept prototype and the proposed solution is that the more expensive radiation hardened components were not used in the proof-of-concept prototype design. For example, the proposed solution shall use radiation hardened resolver wheels, whereas the proof-of-concept prototype used encoder wheels. These encoder wheels provide the same specified accuracy as the radiation hardened resolvers for the most realistic results possible. The rationale behind the design of the proof-of-concept prototype, the proposed final design, the design of the localization system test bench, and the test plan for developing all of the components of the design related to the robot's localization system are discussed in the thesis. The test plan provides a step by step guide to the configuration and optimization of an Unscented Kalman Filter (UKF). The UKF was selected as the ideal sensor fusion algorithm for use in this application. Benchmarking was completed to compare the accuracy achieved by the UKF algorithm to other data fusion algorithms. When compared to other algorithms, the UKF demonstrated the best accuracy when considering all likely sources of error such as sensor failure and surface unevenness. The test results show that the localization system is able to achieve a worst case positional accuracy of +/- 3.6 mm for the robot crawler over the full 6350 mm distance that the robot travels inside the pressure tube. This is extrapolated from the test results completed over the shorter length test bench with simulated surface unevenness. The key benefits of the pipe crawling robot when compared to the current system include: reduced dosage to workers and the reduced outage time. The advantages are due to the fact that the robot can be automated and multiple inspection robots can be deployed simultaneously. The current inspection system is only able to complete one inspection at a time.

  6. 75 FR 66168 - Seeks Qualified Candidates for the Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... NUCLEAR REGULATORY COMMISSION Seeks Qualified Candidates for the Advisory Committee on Reactor... Reactor Safeguards (ACRS). Submit r[eacute]sum[eacute]s to Ms. Brandi Hamilton, ACRS, Mail Stop T2E-26, U... of existing and proposed nuclear power plants and on the adequacy of proposed reactor safety...

  7. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year (0...

  8. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year (0...

  9. Investigation related to hydrogen isotopes separation by cryogenic distillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornea, A.; Zamfirache, M.; Stefanescu, I.

    2008-07-15

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (formore » The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)« less

  10. Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin

    NASA Astrophysics Data System (ADS)

    Palazhchenko, Olga

    Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with in-situ pH measurement. Solubilities, determined via spectroscopic techniques, were used to calculate equilibrium constants and the Gibbs energies of Sn complexes for E-pH diagram construction. The SnOH3+ and Sn(OH )-5 species were incorporated, for the first time, into the 298.15 K and 358.15 K diagrams, with novel Go values determined at 358.15 K. Key words: Pourbaix diagrams, EH-pH, elevated temperatures, solubility, equilibrium, metal oxides, hydrolysis, redox potential, pH, thermochemical data, tin, zinc, zircaloy, corrosion, passivity.

  11. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOEpatents

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  12. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    NASA Astrophysics Data System (ADS)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a mechanical power of 1200 MW. It is observed that in most cases the landscape of Pareto's front is mostly controlled only by few key parameters. These results may be very useful for future plant design engineers. Furthermore, some calculations for pipe sizing and temperature variation between coolant and fuel have been carried out to provide an idea on their order of magnitude.

  13. Remote Field Eddy Curent Signal Modeling for the Gap Measurement of Neighboring Tubes

    NASA Astrophysics Data System (ADS)

    Jung, H. K.; Lee, D. H.; Lee, Y. S.

    2005-04-01

    The fuel channels in the Canadian Deuterium Uranium (CANDU) reactor consist of the coaxial pressure tube (PT) and the calandria tube (CT). The Liquid injection nozzle (LIN) is cross aligned with the fuel channel to control the reactor by injecting poison. For a safe operation, the gap between the LIN and CT should be maintained in order to prevent a contact of the neighboring tubes. The remote field eddy current (RFEC) method was applied to measure the gap between a nonmagnetic Zircaloy-2 liquid injection nozzle (LIN) and a Zircaloy-2 calandria tube. Under the condition of inserting the RFEC probe into the coaxial tubes and of crossing a LIN above or under the CT, the modeling of a LIN signal is needed to check the possibility of a gap measurement. The Volume Integral Code S/W which covers the axi-symmetric 3D configuration has been very rarely applied to obtain a LIN signal. This problem was solved by assuming a LIN as a flaw which can be described as a complete 3D object. This simulated LIN signal was verified by performing the laboratory experiment. The gap between the LIN and CT can be correlated with the amplitude of the LIN signals in the voltage plane. Typical noises in the fuel channel were the relative constriction, the change in the pressure tube diameter (fill-factor), thickness variation, and so on. These noise signals were simulated by using the modeling and were analyzed by considering their dependency on the phase angle and amplitude of the voltage plane in order to separate the gap signal from them. It could be concluded that the voltage plane analysis of the simulated RFEC signals were effective for obtaining the gap measurement of the neighboring tube.

  14. Thermomechanical analysis of fast-burst reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  15. 10 CFR 100.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.1 Purpose. (a) The purpose of this part is to establish approval requirements for proposed sites for stationary power and testing reactors subject to part 50 or part 52 of this chapter. (b) There exists a substantial base of knowledge regarding power reactor...

  16. 10 CFR 140.96 - Appendix F-Indemnity locations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... construction area of the nuclear power reactor, as determined by the Commission. Such area will not necessarily... or combined license under 10 CFR part 52 is issued for such additional nuclear power reactors. (2) In... an existing nuclear power reactor, the geographical boundaries of the indemnity location shall...

  17. Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater.

    PubMed

    Watari, Takahiro; Cuong Mai, Trung; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi

    2017-01-01

    Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m -3 day -1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m -3 day -1 . 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.

  18. On Study of Application of Micro-reactor in Chemistry and Chemical Field

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2018-02-01

    Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.

  19. FMDP reactor alternative summary report. Volume 1 - existing LWR alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.R.; Bevard, B.B.

    1996-10-07

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] are becoming surplus to national defense needs in both the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. This document summarizes the results of analysis concerned with existing light water reactor plutonium disposition alternatives.

  20. Development of a tritium recovery system from CANDU tritium removal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consistsmore » of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)« less

  1. Experiment for search for sterile neutrino at SM-3 reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  2. Application of perturbation theory to lattice calculations based on method of cyclic characteristics

    NASA Astrophysics Data System (ADS)

    Assawaroongruengchot, Monchai

    Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the computing time when both direct and adjoint solutions are required. A problem that arises for the generalized adjoint problem is that the direct use of the negative external generalized adjoint sources in the adjoint solution algorithm results in negative generalized adjoint functions. A coupled flux biasing/decontamination scheme is applied to make the generalized adjoint functions positive using the adjoint functions in such a way that it can be used for the multigroup rebalance technique. Next we consider the application of the perturbation theory to the reactor problems. Since the coolant void reactivity (CVR) is a important factor in reactor safety analysis, we have decided to select this parameter for optimization studies. We consider the optimization and adjoint sensitivity techniques for the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice. The sensitivity coefficients are evaluated using the perturbation theory based on the integral transport equations. Three sets of parameters for CVR-BOC and keff-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR at beginning of cycle (CBCVR-BOC). To approximate the sensitivity coefficient at EOC, we perform constant-power burnup/depletion calculations for 600 full power days (FPD) using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Sensitivity analyses of CVR and eigenvalue are included in the study. In addition the optimization and adjoint sensitivity techniques are applied to the CBCVR-BOC and keff-EOC adjustment of the ACR lattices with Gadolinium in the central pin. Finally we apply these techniques to the CVR-BOC, CVR-EOC and keff-EOC adjustment of a CANDU lattice of which the burnup period is extended from 300 to 450 FPDs. The cases with the central pin containing either Dysprosium or Gadolinium in the natural Uranium are considered in our study. (Abstract shortened by UMI.)

  3. Extension of the TRANSURANUS burnup model to heavy water reactor conditions

    NASA Astrophysics Data System (ADS)

    Lassmann, K.; Walker, C. T.; van de Laar, J.

    1998-06-01

    The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.

  4. A roadmap for nuclear energy technology

    NASA Astrophysics Data System (ADS)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.

  5. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  6. 10 CFR 100.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approval requirements for proposed sites for stationary power and testing reactors subject to part 50 or part 52 of this chapter. (b) There exists a substantial base of knowledge regarding power reactor... approach incorporates the appropriate standards and criteria for approval of stationary power and testing...

  7. NUCLEAR FUEL COMPOSITION

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.

    1960-05-31

    A novel reactor composition for use in a self-sustaining fast nuclear reactor is described. More particularly, a fuel alloy comprising thorium and uranium-235 is de scribed, the uranium-235 existing in approximately the same amount that it is found in natural uranium, i.e., 1.4%.

  8. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  9. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less

  10. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, Eric B.

    The neutrons emitted following the β decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the β-decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the time dependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticalitymore » calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved β-delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayed neutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality β-delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation« less

  11. The environmental constraint needs for design improvements to the Saligny I/LLW-repository near Cernavoda NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2007-07-01

    The paper presents the new perspectives on the development of the L/ILW Final Repository Project which will be built near Cernavoda NPP. The Repository is designed to satisfy the main performance objectives in accordance to IAEA recommendation. Starting in October 1996, Romania became a country with an operating nuclear power plant. Reactor 2 reached the criticality on May 6, 2007 and it will be put in commercial operation in September 2007. The Ministry of Economy and Finance has decided to proceed with the commissioning of Units 3 and 4 of Cernavoda NPP till 2014. The Strategy for radioactive waste managementmore » was elaborated by National Agency for Radioactive Waste (ANDRAD), the jurisdictional authority for definitive disposal and the coordination of nuclear spent fuel and radioactive waste management (Order 844/2004) with attributions established by Governmental Decision (GO) 31/2006. The Strategy specifies the commissioning of the Saligny L/IL Radwaste Repository near Cernavoda NPP in 2014. When designing the L/IL Radwaste Repository, the following prerequisites have been taken into account: 1) Cernavoda NPP will be equipped with 4 Candu 6 units. 2) National Legislation in radwaste management will be reviewed and/or completed to harmonize with UE standards 3) The selected site is now in process of confirmation after a comprehensive set of interdisciplinary investigations. (author)« less

  12. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.

  13. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  14. A facility for testing 10 to 100-kWe space power reactors

    NASA Astrophysics Data System (ADS)

    Carlson, William F.; Bitten, Ernest J.

    1993-01-01

    This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural features that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.

  15. Development of RF plasma simulations of in-reactor tests of small models of the nuclear light bulb fuel region

    NASA Technical Reports Server (NTRS)

    Roman, W. C.; Jaminet, J. F.

    1972-01-01

    Experiments were conducted to develop test configurations and technology necessary to simulate the thermal environment and fuel region expected to exist in in-reactor tests of small models of nuclear light bulb configurations. Particular emphasis was directed at rf plasma tests of approximately full-scale models of an in-reactor cell suitable for tests in Los Alamos Scientific Laboratory's Nuclear Furnace. The in-reactor tests will involve vortex-stabilized fissioning uranium plasmas of approximately 200-kW power, 500-atm pressure and equivalent black-body radiating temperatures between 3220 and 3510 K.

  16. The Cost-Effectiveness of Nuclear Power for Navy Surface Ships

    DTIC Science & Technology

    2011-05-01

    shipbuilding plan. 1 All of the Navy’s aircraft car- riers (and submarines) are powered by nuclear reactors ; its other surface combatants are powered by...in whether the ships were powered by conventional systems that used petroleum-based fuels or by nuclear reactors . Estimates of the relative costs...would existing ships be retrofitted with nuclear reactors . 5. Those fuel -reduction findings are based on CBO’s analysis and on data provided to CBO by

  17. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devgun, Jas S.; Laraia, Michele; Pescatore, Claudio

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimizemore » the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-line sharing of information and especially the creation of an on-line compendium of methods, tools, and techniques by which damaged fuel and other unique situations have been addressed can be addressed sooner and maintained as new problems and solutions arise and are resolved. The IAEA's new 'WEB 2.0 tool' CONNECT is expected to play a significant role in this and related information-sharing activities. The trend in some countries such as the United States has been to re-license the existing reactors for additional twenty years, beyond the original design life. Given the advances in technology over the past four decades, and considering that the newer designs incorporate significant improvements in safety systems, it may not be economical or technically feasible to retrofit enhancements into some of the older reactors. In such cases, the reactors may be retired from service and decommissioned. Overall, the energy demand in the world continues to rise, with sharp increases in the Asian countries, and nuclear power's role in the world's energy supply is expected to continue. Events at Fukushima have led to a re-examination on many fronts, including reactor design and regulatory requirements. Further changes may occur in these areas in the post-Fukushima era. These changes in turn will also impact the world-wide decommissioning scene and the decommissioning phase of the future reactors. (authors)« less

  19. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  20. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  1. Nuclear reactor downcomer flow deflector

    DOEpatents

    Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  2. 75 FR 4493 - Natural Resources Defense Council; Denial of Petition for Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... NRC continues to license the civilian use of HEU to fuel seven existing research and test reactors... predicts that the three HEU-fueled TRIGA-type research reactors at Oregon State University, the University...) is scheduled for conversion to LEU but notes that the newer and larger LEU-fueled TRIGA facility at...

  3. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  4. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyack, B.E.

    The PIUS reactor utilizes simplified, inherent, passive, or other innovative means to accomplish safety functions. Accordingly, the PIUS reactor is subject to the requirements of 10CFR52.47(b)(2)(i)(A). This regulation requires that the applicant adequately demonstrate the performance of each safety feature, interdependent effects among the safety features, and a sufficient data base on the safety features of the design to assess the analytical tools used for safety analysis. Los Alamos has assessed the quality and completeness of the existing and planned data bases used by Asea Brown Boveri to validate its safety analysis codes and other relevant data bases. Only amore » limited data base of separate effect and integral tests exist at present. This data base is not adequate to fulfill the requirements of 10CFR52.47(b)(2)(i)(A). Asea Brown Boveri has stated that it plans to conduct more separate effect and integral test programs. If appropriately designed and conducted, these test programs have the potential to satisfy most of the data base requirements of 10CFR52.47(b)(2)(i)(A) and remedy most of the deficiencies of the currently existing combined data base. However, the most important physical processes in PIUS are related to reactor shutdown because the PIUS reactor does not contain rodded shutdown and control systems. For safety-related reactor shutdown, PIUS relies on negative reactivity insertions from the moderator temperature coefficient and from boron entering the core from the reactor pool. Asea Brown Boveri has neither developed a direct experimental data base for these important processes nor provided a rationale for indirect testing of these key PIUS processes. This is assessed as a significant shortcoming. In preparing the conclusions of this report, test documentation and results have been reviewed for only one integral test program, the small-scale integral tests conducted in the ATLE facility.« less

  6. Graphite for the nuclear industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.

    Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactormore » systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.« less

  7. Neutrino Physics with Nuclear Reactors: An Overview

    NASA Astrophysics Data System (ADS)

    Ochoa-Ricoux, J. P.

    Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.

  8. A Compact Nuclear Fusion Reactor for Space Flights

    NASA Astrophysics Data System (ADS)

    Nastoyashchiy, Anatoly F.

    2006-05-01

    A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products — charged particles. The energy balance considerably improves, as synchrotron radiation turn out "captured" in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.

  9. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less

  10. Application of point kinetics equations to the design of a reactivity meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binney, S.E.; Bakir, A.J.M.

    1988-01-01

    The time-dependent reactivity of a nuclear reactor is obviously one of the most important reactor parameters that describes the state of the reactor. Although several different types of techniques exist to measure reactivity, only the kinetic method is described here. The paper illustrates the measured reactor power and calculated reactivity for a 70 cents step change in reactivity. These data were taken at 1-s time intervals. It is seen that the reactivity, initially at zero, rises rapidly to a predetermined value (determined by the reactivity change induced in the system) and then returns to zero as the reactor is reestablishedmore » in a critical situation by insertion of another control rod. It is concluded that the method of Tuttle has been adapted to produce a reliable, on-line calculation of reactivity from a time-dependent reactor power signal.« less

  11. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  12. Analog to digital converter system for temperature monitoring -- B, C, D, DR, F, and H reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballowe, J.W.

    1961-03-23

    This document discusses a proposal that certain presently installed reactor process water outlet temperature data logging equipment in subject reactors to be replaced with new functionally simplified equipment of a more adequate design. The primary purpose of the proposed installation is to replace existing equipment which is obsolete and in three reactors is worn out to the point where the equipment is out of service frequently for periods of time up to 8 hours or more. The new equipment will provide reliable process tube temperature information for use in the functions of reactor control and product accountability. Based upon anticipatedmore » incremental production gains resulting from use of the new equipment, the amortization period for the project is calculated at 2.7 years.« less

  13. Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.

    2017-02-01

    A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.

  14. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  15. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  16. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  17. A systematic reactor design approach for the synthesis of active pharmaceutical ingredients.

    PubMed

    Emenike, Victor N; Schenkendorf, René; Krewer, Ulrike

    2018-05-01

    Today's highly competitive pharmaceutical industry is in dire need of an accelerated transition from the drug development phase to the drug production phase. At the heart of this transition are chemical reactors that facilitate the synthesis of active pharmaceutical ingredients (APIs) and whose design can affect subsequent processing steps. Inspired by this challenge, we present a model-based approach for systematic reactor design. The proposed concept is based on the elementary process functions (EPF) methodology to select an optimal reactor configuration from existing state-of-the-art reactor types or can possibly lead to the design of novel reactors. As a conceptual study, this work summarizes the essential steps in adapting the EPF approach to optimal reactor design problems in the field of API syntheses. Practically, the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene was analyzed as a case study of pharmaceutical relevance. Here, a small-scale tubular coil reactor with controlled heating was identified as the optimal set-up reducing the residence time by 33% in comparison to literature values. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Advanced Instrumentation for Transient Reactor Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Michael L.; Anderson, Mark; Imel, George

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less

  19. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.

  20. Feasibility study of a magnetic fusion production reactor

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.

  1. TREAT neutron-radiography facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.

  2. Etude thermo-hydraulique de l'ecoulement du moderateur dans le reacteur CANDU-6

    NASA Astrophysics Data System (ADS)

    Mehdi Zadeh, Foad

    Etant donne la taille (6,0 m x 7,6 m) ainsi que le domaine multiplement connexe qui caracterisent la cuve des reacteurs CANDU-6 (380 canaux dans la cuve), la physique qui gouverne le comportement du fluide moderateur est encore mal connue de nos jours. L'echantillonnage de donnees dans un reacteur en fonction necessite d'apporter des changements a la configuration de la cuve du reacteur afin d'y inserer des sondes. De plus, la presence d'une zone intense de radiations empeche l'utilisation des capteurs courants d'echantillonnage. En consequence, l'ecoulement du moderateur doit necessairement etre etudie a l'aide d'un modele experimental ou d'un modele numerique. Pour ce qui est du modele experimental, la fabrication et la mise en fonction de telles installations coutent tres cher. De plus, les parametres de la mise a l'echelle du systeme pour fabriquer un modele experimental a l'echelle reduite sont en contradiction. En consequence, la modelisation numerique reste une alternative importante. Actuellement, l'industrie nucleaire utilise une approche numerique, dite de milieu poreux, qui approxime le domaine par un milieu continu ou le reseau des tubes est remplace par des resistances hydrauliques distribuees. Ce modele est capable de decrire les phenomenes macroscopiques de l'ecoulement, mais ne tient pas compte des effets locaux ayant un impact sur l'ecoulement global, tel que les distributions de temperatures et de vitesses a proximite des tubes ainsi que des instabilites hydrodynamiques. Dans le contexte de la surete nucleaire, on s'interesse aux effets locaux autour des tubes de calandre. En effet, des simulations faites par cette approche predisent que l'ecoulement peut prendre plusieurs configurations hydrodynamiques dont, pour certaines, l'ecoulement montre un comportement asymetrique au sein de la cuve. Ceci peut provoquer une ebullition du moderateur sur la paroi des canaux. Dans de telles conditions, le coefficient de reactivite peut varier de maniere importante, se traduisant par l'accroissement de la puissance du reacteur. Ceci peut avoir des consequences majeures pour la surete nucleaire. Une modelisation CFD (Computational Fluid Dynamics) detaillee tenant compte des effets locaux s'avere donc necessaire. Le but de ce travail de recherche est de modeliser le comportement complexe de l'ecoulement du moderateur au sein de la cuve d'un reacteur nucleaire CANDU-6, notamment a proximite des tubes de calandre. Ces simulations servent a identifier les configurations possibles de l'ecoulement dans la calandre. Cette etude consiste ainsi a formuler des bases theoriques a l'origine des instabilites macroscopiques du moderateur, c.-a-d. des mouvements asymetriques qui peuvent provoquer l'ebullition du moderateur. Le defi du projet est de determiner l'impact de ces configurations de l'ecoulement sur la reactivite du reacteur CANDU-6.

  3. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  4. Application of biocatalysts to Space Station ECLSS and PMMS water reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Bagdigian, Robert M.

    1989-01-01

    Immobilized enzyme reactors have been developed and tested for potential water reclamation applications in the Space Station Freedom Environmental Control and Life Support System (ECLSS) and Process Materials Management System (PMMS). The reactors convert low molecular weight organic contaminants found in ECLSS and PMMS wastewaters to compounds that are more efficiently removed by existing technologies. Demonstration of the technology was successfully achieved with two model reactors. A packed bed reactor containing immobilized urease was found to catalyze the complete decomposition of urea to by-products that were subsequently removed using conventional ion exchange results. A second reactor containing immobilized alcohol oxidase showed promising results relative to its ability to convert methanol and ethanol to the corresponding aldehydes for subsequent removal. Preliminary assessments of the application of biocatalysts to ECLSS and PMMS water reclamation sytems are presented.

  5. Current Status of The Romanian National Deep Geological Repository Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Nicolae, R.; Nicolae, D.

    2008-07-01

    Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvementmore » in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)« less

  6. FAST CHOPPER DETECTOR HOUSE, TRA665. SECOND FLOOR ADDITION: PLAN, SECTIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER DETECTOR HOUSE, TRA-665. SECOND FLOOR ADDITION: PLAN, SECTIONS AND DETAILS AS ADDED TO THE EXISTING CHOPPER HOUSE IN 1962. F.C. TORKELSON 842-MTR-665-S-3, 4/1962. INL INDEX NO. 531-0665-60-851-150997, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluencemore » monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.« less

  8. Characterization of deformation mechanisms in zirconium alloys: effect of temperature and irradiation

    NASA Astrophysics Data System (ADS)

    Long, Fei

    Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion irradiated hot-rolled Zr-2.5Nb alloy is described, providing evidence for the interaction between moving dislocations and irradiation induced loops. Chapter 8 gives the effect on the dislocation structure of different levels of compressive strains along two directions in the hot-rolled Zr-2.5Nb alloy. By using high resolution neutron diffraction and TEM observations, the evolution of type and dislocation densities, as well as changes of dislocation microstructure with plastic strain were characterized.

  9. Top shield temperatures, C and K Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agar, J.D.

    1964-12-28

    A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less

  10. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    PubMed

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  11. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    NASA Astrophysics Data System (ADS)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  12. The benefits of a fast reactor closed fuel cycle in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, R.; Hesketh, K.

    2013-07-01

    The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size,more » so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the fission product will primarily be a function of nuclear energy generated). However, by reprocessing spent fuel, it is possible to immobilise the fission product in a more suitable waste form that has far more superior in-repository performance. (authors)« less

  13. The prototype fast reactor at Dounreay, Scotland. Process and engineering development for sodium removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, A.; Herrick, R.; Gunn, J.

    2007-07-01

    Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal ofmore » the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)« less

  14. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  15. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  16. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less

  17. PWR upper/lower internals shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homyk, W.A.

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use ofmore » lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.« less

  18. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. On some control problems of dynamic of reactor

    NASA Astrophysics Data System (ADS)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  20. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affectmore » reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).« less

  1. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    NASA Astrophysics Data System (ADS)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space.

  2. Reactor concepts for bioelectrochemical syntheses and energy conversion.

    PubMed

    Krieg, Thomas; Sydow, Anne; Schröder, Uwe; Schrader, Jens; Holtmann, Dirk

    2014-12-01

    In bioelectrochemical systems (BESs) at least one electrode reaction is catalyzed by microorganisms or isolated enzymes. One of the existing challenges for BESs is shifting the technology towards industrial use and engineering reactor systems at adequate scales. Due to the fact that most BESs are usually deployed in the production of large-volume but low-value products (e.g., energy, fuels, and bulk chemicals), investment and operating costs must be minimized. Recent advances in reactor concepts for different BESs, in particular biofuel cells and electrosynthesis, are summarized in this review including electrode development and first applications on a technical scale. A better understanding of the impact of reactor components on the performance of the reaction system is an important step towards commercialization of BESs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  4. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  5. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  6. Interim waste storage for the Integral Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less

  7. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  8. Search for eV sterile neutrinos at a nuclear reactor — the Stereo project

    NASA Astrophysics Data System (ADS)

    Haser, J.; Stereo Collaboration

    2016-05-01

    The re-analyses of the reference spectra of reactor antineutrinos together with a revised neutrino interaction cross section enlarged the absolute normalization of the predicted neutrino flux. The tension between previous reactor measurements and the new prediction is significant at 2.7 σ and is known as “reactor antineutrino anomaly”. In combination with other anomalies encountered in neutrino oscillation measurements, this observation revived speculations about the existence of a sterile neutrino in the eV mass range. Mixing of this light sterile neutrino with the active flavours would lead to a modification of the detected antineutrino flux. An oscillation pattern in energy and space could be resolved by a detector at a distance of few meters from a reactor core: the neutrino detector of the Stereo project will be located at about 10 m distance from the ILL research reactor in Grenoble, France. Lengthwise separated in six target cells filled with 2 m3 Gd-loaded liquid scintillator in total, the experiment will search for a position-dependent distortion in the energy spectrum.

  9. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less

  10. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    NASA Astrophysics Data System (ADS)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  11. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  12. Nuclear fuel requirements for the American economy - A model

    NASA Astrophysics Data System (ADS)

    Curtis, Thomas Dexter

    A model is provided to determine the amounts of various fuel streams required to supply energy from planned and projected nuclear plant operations, including new builds. Flexible, user-defined scenarios can be constructed with respect to energy requirements, choices of reactors and choices of fuels. The model includes interactive effects and extends through 2099. Outputs include energy provided by reactors, the number of reactors, and masses of natural Uranium and other fuels used. Energy demand, including electricity and hydrogen, is obtained from US DOE historical data and projections, along with other studies of potential hydrogen demand. An option to include other energy demand to nuclear power is included. Reactor types modeled include (thermal reactors) PWRs, BWRs and MHRs and (fast reactors) GFRs and SFRs. The MHRs (VHTRs), GFRs and SFRs are similar to those described in the 2002 DOE "Roadmap for Generation IV Nuclear Energy Systems." Fuel source choices include natural Uranium, self-recycled spent fuel, Plutonium from breeder reactors and existing stockpiles of surplus HEU, military Plutonium, LWR spent fuel and depleted Uranium. Other reactors and fuel sources can be added to the model. Fidelity checks of the model's results indicate good agreement with historical Uranium use and number of reactors, and with DOE projections. The model supports conclusions that substantial use of natural Uranium will likely continue to the end of the 21st century, though legacy spent fuel and depleted uranium could easily supply all nuclear energy demand by shifting to predominant use of fast reactors.

  13. Continuous AE crack monitoring of a dissimilar metal weldment at Limerick Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, P.H.; Friesel, M.A.; Dawson, J.F.

    1993-12-01

    Acoustic emission (AE) technology for continuous surveillance of a reactor component(s) to detect crack initiation and/or crack growth has been developed at Pacific Northwest Laboratory (PNL). The technology was validated off-reactor in several major tests, but it had not been validated by monitoring crack growth on an operating reactor system. A flaw indication was identified during normal inservice inspection of piping at Philadelphia Electric Company (PECO) Limerick Unit 1 reactor during the 1989 refueling outage. Evaluation of the flaw indication showed that it could remain in place during the subsequent fuel cycle without compromising safety. The existence of this flawmore » indication offered a long sought opportunity to validate AE surveillance to detect and evaluate crack growth during reactor operation. AE instrumentation was installed by PNL and PECO to monitor the flaw indication during two complete fuel cycles. This report discusses the results obtained from the AE monitoring over the period May 1989 to March 1992 (two fuel cycles).« less

  14. Quantity and management of spent fuel from prototype and research reactors in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Sabine; Bollingerfehr, Wilhelm; Filbert, Wolfgang

    Within the scope of an R and D project (project identification number FKZ 02 S 8679) sponsored by BMBF (Federal Ministry of Education and Research), the current state of storage and management of fuel elements from prototype and research reactors was established, and an approach for their future storage/management was developed. The spent fuels from prototype and research reactors in Germany that require disposal were specified and were described in regard to their repository-relevant characteristics. As there are currently no casks licensed for disposal in Germany, descriptions of casks that were considered to be suitable were provided. Based on themore » information provided on the spent fuel from prototype and research reactors and the potential casks, a technical disposal concept was developed. In this context, concepts to integrate the spent fuel from prototype and research reactors into existing disposal concepts for spent fuel from German nuclear power plants and for waste from reprocessing were developed for salt and clay formations. (authors)« less

  15. Status of Experiment NEUTRINO-4 Search for Sterile Neutrino

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-01-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The measurements with full-scale detector with liquid scintillator volume of 3m3 (5x10 sections) was started only in June, 2016. The today available data is presented in the article.

  16. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  17. Prospects for improved understanding of isotopic reactor antineutrino fluxes

    NASA Astrophysics Data System (ADS)

    Gebre, Y.; Littlejohn, B. R.; Surukuchi, P. T.

    2018-01-01

    Predictions of antineutrino fluxes produced by fission isotopes in a nuclear reactor have recently received increased scrutiny due to observed differences in predicted and measured inverse beta decay (IBD) yields, referred to as the "reactor antineutrino flux anomaly." In this paper, global fits are applied to existing IBD yield measurements to produce constraints on antineutrino production by individual plutonium and uranium fission isotopes. We find that fits including measurements from highly U 235 -enriched cores and fits including Daya Bay's new fuel evolution result produce discrepant best-fit IBD yields for U 235 and Pu 239 . This discrepancy can be alleviated in a global analysis of all data sets through simultaneous fitting of Pu 239 , U 235 , and U 238 yields. The measured IBD yield of U 238 in this analysis is (7.02 ±1.65 )×10-43 cm2/fission , nearly two standard deviations below existing predictions. Future hypothetical IBD yield measurements by short-baseline reactor experiments are examined to determine their possible impact on the global understanding of isotopic IBD yields. It is found that future improved short-baseline IBD yield measurements at both high-enriched and low-enriched cores can significantly improve constraints for U 235 , U 238 , and Pu 239 , providing comparable or superior precision to existing conversion- and summation-based antineutrino flux predictions. Systematic and experimental requirements for these future measurements are also investigated.

  18. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.

    2011-11-14

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may bemore » constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.« less

  19. Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Richins; Stephen Novascone; Cheryl O'Brien

    Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selectedmore » to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.« less

  20. A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope

    NASA Astrophysics Data System (ADS)

    Horowitz, Y. S.; Weizman, Y.; Hirning, C. R.

    1996-02-01

    This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 μm thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 μm thick, and the intermediate detector is similar to the front detector but 72 μm thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 μm thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 μm thick front detector, and operated at 15°C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program.

  1. Improving online risk assessment with equipment prognostics and health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Liu, Xiaotong; Briere, Chris

    The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less

  2. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less

  3. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  4. Calculation of the neutron diffusion equation by using Homotopy Perturbation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koklu, H., E-mail: koklu@gantep.edu.tr; Ozer, O.; Ersoy, A.

    The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent resultsmore » consistent with the existing literature.« less

  5. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individualmore » component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.« less

  6. Investigation of a Possibility of Chromium-51 Accumulation in the SM-3 Reactor to Fabricate a Neutrino Source

    NASA Astrophysics Data System (ADS)

    Romanov, E. G.; Gavrin, V. N.; Tarasov, V. A.; Malkov, A. P.; Kupriyanov, A. V.; Danshin, S. N.; Veretenkin, E. P.

    2017-01-01

    Compact high intensity neutrino sources based on 51Cr isotope are demanded for very short baseline neutrino experiments. In particular, a 3 MCi 51Cr neutrino source is needed for the experiment BEST on search for transitions of electron neutrinos to sterile states. The paper presents the results of the analysis of options of the irradiation of highly enriched 50Cr in the existing trap of thermal neutrons of high-flux reactor SM-3, as well as using the most promising variants of the trap after upcoming reconstruction of the reactor. It is shown that it is possible to to obtain the intensity of 51Cr up to 3.85 MCi at the end of irradiation of 50Cr enriched to 97% in the high-flux reactor SM-3 of the JSC “SSC NIIAR”.

  7. Beryllium processing technology review for applications in plasma-facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less

  8. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-06

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gapsmore » in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.« less

  10. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  11. Liquid metal magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lielpeteris, J.; Moreau, R.

    1989-01-01

    Liquid metal MHD is the subject of this book. It is of central importance in fields like metals processing, energy conversion, nuclear engineering (fast breeders or fusion reactors), geomagnetism and astrophysics. In some circumstances fluid flow phenomena are controlled by an existing magnetic field; the melts in induction furnaces or the liquid metal blanket around future tokamak fusion reactors being significant examples. In other cases the application of an external magnetic field (or of an electric current) may generate drastic modifications in the fluid motion and in the transfer rates; such effects may be used to develop new technologies (electromagneticmore » shaping) or to improve existing techniques (electromagnetic stirring in continuous casting). In the core of the Earth, fluid motion and magnetic fields are both present and their interaction governs important phenomena.« less

  12. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    NASA Astrophysics Data System (ADS)

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor operation was calculated. The results of the preliminary calculations are shown and limitations in the methods and data discussed.

  13. Effects of the Fabrication Process and Thermal Cycling on the Oxidation of Zirconium-Niobium Pressure Tubes

    NASA Astrophysics Data System (ADS)

    Nam, Cheol

    2009-12-01

    Pressure tubes made of Zr-2.5%Nb alloy are used to contain fuels and coolant in CANDU nuclear power reactors The pressure tube oxidizes during reactor operation and hydrogen ingress through the oxide grown on the tube limits its lifetime. Little attention was paid to the intermediate tube manufacturing processes in enhancing the oxidation resistance. In addition, the oxide grown on the tube experiences various thermal cycles depending on the reactor shutdown and startup cycles. To address these two aspects and to better understand the oxidation process of the Zr-2.5Nb tube, research was conducted in two parts: (i) effects of tube fabrication on oxidation behavior, and (ii) thermal cycling behaviors of oxides grown on a pressure tube. In the first part, the optimum manufacturing process was pursued to improve the corrosion resistance of Zr-2.5Nb tubes. Experimental micro-tubes were fabricated with various manufacturing routes in the stages of billet preparation, hot extrusion and cold drawing. These were oxidized in air at 400°C and 500°C, and in an autoclave at 360°C lithiated water. Microstructure and texture of the tubes and oxides were characterized with X-ray diffraction, scanning electron microscope and optical microscope. Special emphasis was given to examinations of the metal/oxide interface structures. A correlation between the manufacturing process and oxidation resistance was investigated in terms of tube microstructure and the metal/oxide interface structure. As a result, it was consistently observed that uniform interface structures were formed on the tubes which had a fine distribution of secondary phases. These microstructures were found to be beneficial in enhancing the oxidation resistance as opposed to the tubes that had coarse and continuous beta-Zr phases. Based on these observations, a schematic model of the oxidation process was proposed with respect to the oxidation resistance under oxidizing temperatures of 360°C, 400°C and 500°C. In the second part, the oxides grown on a standard Zr-2.5Nb pressure tube were analyzed by X-ray diffraction peak broadening and line shift. Crystallite size, t-ZrO2 fraction and residual stress of the zirconium oxides were investigated upon several thermal cycles at DeltaT range of 500°C--750°C. The oxide residual stresses measured by the sin2psi method were always compressive around 2 GPa. Different stress-states were noticed with the oxides grown on different sections of pressure tube. The compressive stress was released when the oxide was thermally cycled at the highest DeltaT of 750°C. Discussion was given to the effects of anisotropic nature of thermal expansion coefficients and crystallographic texture on the stress-state of Zr oxides.

  14. The SANS facility at the Pitesti 14MW TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionita, I.; Grabcev, B.; Todireanu, S.

    2006-12-15

    The SANS facility existing at the Pitesti 14MW TRIGA reactor is presented. The main characteristics and the preliminary evaluation of the installation performances are given. A monochromatic neutron beam with 1.5 A {<=} {lambda} {<=} 5 A is produced by a mechanical velocity selector with helical slots. A fruitful partnership was established between INR Pitesti (Romania) and JINR Dubna (Russia). The first step in this cooperation consists in the manufacturing in Dubna of a battery of gas-filled positional detectors devoted to the SANS instrument.

  15. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  16. Nuclear Nonproliferation: Concerns With U.S. Delays in Accepting Foreign Research Reactors’ Spent Fuel

    DTIC Science & Technology

    1994-03-01

    transport or storage plans. The return of some of the spent fuel will also depend on the readiness of dry storage . One expert told us that...enriched uranium fuel (HEU), a material that can be used to make nuclear bombs, in civilian nuclear programs worldwide. Research reactors are of...address the environmental impact of transporting the fuel and storing it in both existing and new storage units, possibly by June 1995. Under the

  17. Automated power control system for reactor TRIGA PUSPATI

    NASA Astrophysics Data System (ADS)

    Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair

    2017-01-01

    Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.

  18. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas releasemore » and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.« less

  19. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  20. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick

    2017-01-01

    The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  1. Numerical and Experimental Thermal Responses of Single-cell and Differential Calorimeters: from Out-of-Pile Calibration to Irradiation Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Carette, M.

    2015-07-01

    The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less

  2. Tory II-A: a nuclear ramjet test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, J.W.

    Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less

  3. A Comparison Framework for Reactor Anti-Neutrino Detectors in Near-Field Nuclear Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendenhall, M.; Bowden, N.; Brodsky, J.

    Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculatingmore » generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.« less

  4. An Approach for Assessing Development and Deployment Risks in the DOE Fuel Cycle Options Evaluation and Screening Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehin, Jess C; Oakley, Brian; Worrall, Andrew

    2015-01-01

    Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less

  5. Potential use of sugar binding proteins in reactors for regeneration of CO2 fixation acceptor D-Ribulose-1,5-bisphosphate

    PubMed Central

    Mahato, Sourav; De, Debojyoti; Dutta, Debajyoti; Kundu, Moloy; Bhattacharya, Sumana; Schiavone, Marc T; Bhattacharya, Sanjoy K

    2004-01-01

    Sugar binding proteins and binders of intermediate sugar metabolites derived from microbes are increasingly being used as reagents in new and expanding areas of biotechnology. The fixation of carbon dioxide at emission source has recently emerged as a technology with potentially significant implications for environmental biotechnology. Carbon dioxide is fixed onto a five carbon sugar D-ribulose-1,5-bisphosphate. We present a review of enzymatic and non-enzymatic binding proteins, for 3-phosphoglycerate (3PGA), 3-phosphoglyceraldehyde (3PGAL), dihydroxyacetone phosphate (DHAP), xylulose-5-phosphate (X5P) and ribulose-1,5-bisphosphate (RuBP) which could be potentially used in reactors regenerating RuBP from 3PGA. A series of reactors combined in a linear fashion has been previously shown to convert 3-PGA, (the product of fixed CO2 on RuBP as starting material) into RuBP (Bhattacharya et al., 2004; Bhattacharya, 2001). This was the basis for designing reactors harboring enzyme complexes/mixtures instead of linear combination of single-enzyme reactors for conversion of 3PGA into RuBP. Specific sugars in such enzyme-complex harboring reactors requires removal at key steps and fed to different reactors necessitating reversible sugar binders. In this review we present an account of existing microbial sugar binding proteins and their potential utility in these operations. PMID:15175111

  6. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less

  7. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from CO2 Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Muscatello, Anthony

    2015-01-01

    Oxygen recovery from respiratory CO2 is an important aspect of human spaceflight. Methods exist to sequester the CO2, but production of oxygen needs further development. The current ISS Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction is the only real alternative to the Sabatier reaction, but in the last reaction in the cycle (Boudouard) the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling, find a use for this waste product, and increase efficiency, we propose testing various self-cleaning catalyst designs in an existing MSFC Boudouard reaction test bed and to determine which one is the most reliable in conversion and lack of fouling. Challenges include mechanical reliability of the cleaning method and maintaining high conversion efficiency with lower catalyst surface area. The above chemical reactions are well understood, but planned implementations are novel (TRL 2) and haven't been investigated at any level.

  8. TOWARD THE DEVELOPMENT OF A CONSENSUS MATERIALS DATABASE FOR PRESSURE TECHNOLGY APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, Robert W; Ren, Weiju

    The ASME construction code books specify materials and fabrication procedures that are acceptable for pressure technology applications. However, with few exceptions, the materials properties provided in the ASME code books provide no statistics or other information pertaining to material variability. Such information is central to the prediction and prevention of failure events. Many sources of materials data exist that provide variability information but such sources do not necessarily represent a consensus of experts with respect to the reported trends that are represented. Such a need has been identified by the ASME Standards Technology, LLC and initial steps have been takenmore » to address these needs: however, these steps are limited to project-specific applications only, such as the joint DOE-ASME project on materials for Generation IV nuclear reactors. In contrast to light-water reactor technology, the experience base for the Generation IV nuclear reactors is somewhat lacking and heavy reliance must be placed on model development and predictive capability. The database for model development is being assembled and includes existing code alloys such as alloy 800H and 9Cr-1Mo-V steel. Ownership and use rights are potential barriers that must be addressed.« less

  9. Modernization of existing VVER-1000 surveillance programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Erak, D.; Makhotin, D.

    2011-07-01

    According to generally accepted world practice, evaluation of the reactor pressure vessel (RPV) material behavior during operation is carried out using tests of surveillance specimens. The main objective of the surveillance program consists in insurance of safe RPV operation during the design lifetime and lifetime-extension period. At present, the approaches of pressure vessels residual life validation based on the test results of their surveillance specimens have been developed and introduced in Russia and are under consideration in other countries where vodo-vodyanoi energetichesky reactors- (VVER-) 1000 are in operation. In this case, it is necessary to ensure leading irradiation of surveillancemore » specimens (as compared to the pressure vessel wall) and to provide uniformly irradiated specimen groups for mechanical testing. Standard surveillance program of VVER-1000 has several significant shortcomings and does not meet these requirements. Taking into account program of lifetime extension of VVER-1000 operating in Russia, it is necessary to carry out upgrading of the VVER-1000 surveillance program. This paper studies the conditions of a surveillance specimen's irradiation and upgrading of existing sets to provide monitoring and prognosis of RPV material properties for extension of the reactor's lifetime up to 60 years or more. (authors)« less

  10. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    NASA Astrophysics Data System (ADS)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.

  11. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  12. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.« less

  13. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.« less

  14. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  15. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin nextmore » year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.« less

  16. An Expert Elicitation of the Proliferation Resistance of Using Small Modular Reactors (SMR) for the Expansion of Civilian Nuclear Systems.

    PubMed

    Siegel, Jonas; Gilmore, Elisabeth A; Gallagher, Nancy; Fetter, Steve

    2018-02-01

    To facilitate the use of nuclear energy globally, small modular reactors (SMRs) may represent a viable alternative or complement to large reactor designs. One potential benefit is that SMRs could allow for more proliferation resistant designs, manufacturing arrangements, and fuel-cycle practices at widespread deployment. However, there is limited work evaluating the proliferation resistance of SMRs, and existing proliferation assessment approaches are not well suited for these novel arrangements. Here, we conduct an expert elicitation of the relative proliferation resistance of scenarios for future nuclear energy deployment driven by Generation III+ light-water reactors, fast reactors, or SMRs. Specifically, we construct the scenarios to investigate relevant technical and institutional features that are postulated to enhance the proliferation resistance of SMRs. The experts do not consistently judge the scenario with SMRs to have greater overall proliferation resistance than scenarios that rely on conventional nuclear energy generation options. Further, the experts disagreed on whether incorporating a long-lifetime sealed core into an SMR design would strengthen or weaken proliferation resistance. However, regardless of the type of reactor, the experts judged that proliferation resistance would be enhanced by improving international safeguards and operating several multinational fuel-cycle facilities rather than supporting many more national facilities. © 2017 Society for Risk Analysis.

  17. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK{sup TM}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Sanchez, Travis

    2005-02-06

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less

  18. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build newmore » production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.« less

  19. 78 FR 47010 - Proposed Safety Evaluation for Plant-Specific

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... to the existing SR on the reactor core isolation cooling system to maintain consistency within the... TS Bases are revised to reflect the change to the SRs. The proposed change captures the on-going...

  20. Tritium laboratory with multiple purposes at NIPNE Magurele Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matei, L.; Postolache, C.

    2008-07-15

    The Tritium Laboratory from NIPNE (Romania)) is part of Radioisotope Research and Production Center. The Tritium Laboratory has been in operation since 1960, and carries out R and D activities involving tritium sources in gaseous, liquids and solid state, provides specialized service to CANDU NPP Cernavoda (Romania)), and provides tritium assay services to internal and external customers. The paper presents the activities and perspectives of Tritium Laboratory and its performances in accordance with Quality System Management. (authors)

  1. Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Aubin, E.; Marleau, G.

    2012-07-01

    We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annularmore » geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)« less

  2. Estimating cancer risk in relation to tritium exposure from routine operation of a nuclear-generating station in Pickering, Ontario.

    PubMed

    Wanigaratne, S; Holowaty, E; Jiang, H; Norwood, T A; Pietrusiak, M A; Brown, P

    2013-09-01

    Evidence suggests that current levels of tritium emissions from CANDU reactors in Canada are not related to adverse health effects. However, these studies lack tritium-specific dose data and have small numbers of cases. The purpose of our study was to determine whether tritium emitted from a nuclear-generating station during routine operation is associated with risk of cancer in Pickering, Ontario. A retrospective cohort was formed through linkage of Pickering and north Oshawa residents (1985) to incident cancer cases (1985-2005). We examined all sites combined, leukemia, lung, thyroid and childhood cancers (6-19 years) for males and females as well as female breast cancer. Tritium estimates were based on an atmospheric dispersion model, incorporating characteristics of annual tritium emissions and meteorology. Tritium concentration estimates were assigned to each cohort member based on exact location of residence. Person-years analysis was used to determine whether observed cancer cases were higher than expected. Cox proportional hazards regression was used to determine whether tritium was associated with radiation-sensitive cancers in Pickering. Person-years analysis showed female childhood cancer cases to be significantly higher than expected (standardized incidence ratio [SIR] = 1.99, 95% confidence interval [CI]: 1.08-3.38). The issue of multiple comparisons is the most likely explanation for this finding. Cox models revealed that female lung cancer was significantly higher in Pickering versus north Oshawa (HR = 2.34, 95% CI: 1.23-4.46) and that tritium was not associated with increased risk. The improved methodology used in this study adds to our understanding of cancer risks associated with low-dose tritium exposure. Tritium estimates were not associated with increased risk of radiationsensitive cancers in Pickering.

  3. Microchannel Reactor System for Catalytic Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal; Woo Lee; Ron Besser

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less

  4. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    DOE PAGES

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...

    2014-06-30

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less

  5. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    PubMed

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Aircraft and Bases Powered by Compact Nuclear Reactors: Solutions to Projecting Power in Highly Contested Environments and Fossil Fuel Dependence

    DTIC Science & Technology

    2015-05-01

    pushed the depletion date past 2100.21 David Archibald, author of books and papers on climate science and a fellow at the Institute of World...Politics, does not predict explicitly the date of complete exhaustion, but he does note that humans have consumed about half of the world’s supply.22...deuterium, and lithium are plentiful on the earth and in the solar system. As far as fuel for existing and future fission reactors, uranium and

  7. FAST CHOPPER DETECTOR HOUSE, TRA665. FIRST FLOOR, PLAN AND SECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER DETECTOR HOUSE, TRA-665. FIRST FLOOR, PLAN AND SECTION, AS PROPOSED FOR MODIFICATION IN 1962. CONCRETE WALLS THREE FEET THICK. EXISTING WINDOWS IN MTR AND DETECTOR HOUSE WALLS WERE TO BE FILLED IN WITH HIGH-DENSITY BRICK. NOTE 20-METER MARK, WHERE THE FAST CHOPPER DETECTOR HAD BEEN LOCATED. F.C. TORKELSON 842-MTR-665-S-2, 4/1962. INL INDEX NO. 531-0665-60-851-150996, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    PubMed

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  9. Reactor safeguards system assessment and design. Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnado, G.B.; Ericson, D.M. Jr.; Daniel, S.L.

    1978-06-01

    This report describes the development and application of a methodology for evaluating the effectiveness of nuclear power reactor safeguards systems. Analytic techniques are used to identify the sabotage acts which could lead to release of radioactive material from a nuclear power plant, to determine the areas of a plant which must be protected to assure that significant release does not occur, to model the physical plant layout, and to evaluate the effectiveness of various safeguards systems. The methodology was used to identify those aspects of reactor safeguards systems which have the greatest effect on overall system performance and which, therefore,more » should be emphasized in the licensing process. With further refinements, the methodology can be used by the licensing reviewer to aid in assessing proposed or existing safeguards systems.« less

  10. The diversity and unit of reactor noise theory

    NASA Astrophysics Data System (ADS)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the contribution of the terms that are novel as compared to the traditional formulae has been made. The second subject treats a problem in power reactor noise with the Langevin formalism. With a very few exceptions, in all previous work the diffusion approximation was used. In order to extend the treatment to transport theory, in Paper III, we introduced a novel method, i.e. Padé approximation via Lanczos algorithm to calculate the transfer function of a finite slab reactor described by one-group transport equation. It was found that the local-global decomposition of the neutron noise, formerly only reproduced in at least 2- group theory, can be reconstructed. We have also showed the existence of a boundary layer of the neutron noise close to the boundary. Finally, we have explored the possibility of building up a unified theory to account for the coexistence of zero power and power reactor noise in a system. In Paper IV, a unified description of the neutron noise is given by the use of backward master equations in a model where the cross section fluctuations are given as a simple binary pseudorandom process. The general solution contains both the zero power and power reactor noise concurrently, and they can be extracted individually as limiting cases of the general solution. It justified the separate treatments of zero power and power reactor noise. The result was extended to the case including one group of delayed neutron precursors in Paper V.

  11. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  12. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  13. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.J.

    1997-05-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less

  14. Interim Status Report for Risk Management for SFRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary Kyle; Denman, Matthew R.; Groth, Katrina

    2015-10-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of passive, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to take advantage of natural phenomena to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a variety of beyondmore » design basis events with the intent of exploring the utility of a Dynamic Bayesian Network to infer the state of the reactor to inform the operator's corrective actions. These inferences also serve to identify the instruments most critical to informing an operator's actions as candidates for hardening against radiation and other extreme environmental conditions that may exist in an accident. This reduction in uncertainty serves to inform ongoing discussions of how small sodium reactors would be licensed and may serve to reduce regulatory risk and cost for such reactors.« less

  15. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    PubMed Central

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  16. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. L. Grossbeck J-P.A. Renier Tim Bigelow

    2003-09-30

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility andmore » cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.« less

  17. Analysis of mixing conditions and multistage irradiation impact on NOx removal efficiency in the electron beam flue gas treatment process.

    PubMed

    Pawelec, Andrzej; Dobrowolski, Andrzej

    2017-01-01

    In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NO x removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NO x removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.

  18. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    PubMed

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Biomagnetic effects: a consideration in fusion reactor development.

    PubMed Central

    Mahlum, D D

    1977-01-01

    Fusion reactors will utilize powerful magnetic fields for the confinement and heating of plasma and for the diversion of impurities. Large dipole fields generated by the plasma current and the divertor and transformer coils will radiate outward for several hundred meters, resulting in magnetic fields up to 450 gauss in working areas. Since occupational personnel could be exposed to substantial magnetic fields in a fusion power plant, an attempt has been made to assess the possible biological and health consequences of such exposure, using the existing literature. The available data indicate that magnetic fields can interact with biological material to produce effects, although the reported effects are usually small in magnitude and often unconfirmed. The existing data base is judged to be totally inadequate for assessment of potential health and environmental consequences of magnetic fields and for the establishment of appropriate standards. Requisite studies to provide an adequate data base are outlined. PMID:598345

  20. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less

  1. FY16 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Shemon, E. R.; Smith, M. A.

    2016-09-30

    The goal of the NEAMS neutronics effort is to develop a neutronics toolkit for use on sodium-cooled fast reactors (SFRs) which can be extended to other reactor types. The neutronics toolkit includes the high-fidelity deterministic neutron transport code PROTEUS and many supporting tools such as a cross section generation code MC 2-3, a cross section library generation code, alternative cross section generation tools, mesh generation and conversion utilities, and an automated regression test tool. The FY16 effort for NEAMS neutronics focused on supporting the release of the SHARP toolkit and existing and new users, continuing to develop PROTEUS functions necessarymore » for performance improvement as well as the SHARP release, verifying PROTEUS against available existing benchmark problems, and developing new benchmark problems as needed. The FY16 research effort was focused on further updates of PROTEUS-SN and PROTEUS-MOCEX and cross section generation capabilities as needed.« less

  2. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  3. The concerted calculation of the BN-600 reactor for the deterministic and stochastic codes

    NASA Astrophysics Data System (ADS)

    Bogdanova, E. V.; Kuznetsov, A. N.

    2017-01-01

    The solution of the problem of increasing the safety of nuclear power plants implies the existence of complete and reliable information about the processes occurring in the core of a working reactor. Nowadays the Monte-Carlo method is the most general-purpose method used to calculate the neutron-physical characteristic of the reactor. But it is characterized by large time of calculation. Therefore, it may be useful to carry out coupled calculations with stochastic and deterministic codes. This article presents the results of research for possibility of combining stochastic and deterministic algorithms in calculation the reactor BN-600. This is only one part of the work, which was carried out in the framework of the graduation project at the NRC “Kurchatov Institute” in cooperation with S. S. Gorodkov and M. A. Kalugin. It is considering the 2-D layer of the BN-600 reactor core from the international benchmark test, published in the report IAEA-TECDOC-1623. Calculations of the reactor were performed with MCU code and then with a standard operative diffusion algorithm with constants taken from the Monte - Carlo computation. Macro cross-section, diffusion coefficients, the effective multiplication factor and the distribution of neutron flux and power were obtained in 15 energy groups. The reasonable agreement between stochastic and deterministic calculations of the BN-600 is observed.

  4. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    NASA Astrophysics Data System (ADS)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  5. Dissecting Reactor Antineutrino Flux Calculations

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  6. Dissecting Reactor Antineutrino Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-15

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235 U , 239 Pu , 241 Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In our present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238 U contribution as wellmore » as the effective charge and the allowed shape assumption used in the conversion method. Here, we observe that including a shape correction of about + 6 % MeV - 1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.« less

  7. Assessment of released heavy metals from electrical and electronic equipment (EEE) existing in shipwrecks through laboratory-scale simulation reactor.

    PubMed

    Hahladakis, John N; Stylianos, Michailakis; Gidarakos, Evangelos

    2013-04-15

    In a passenger ship, the existence of EEE is obvious. In time, under shipwreck's conditions, all these materials will undergo an accelerated severe corrosion, due to salt water, releasing, consequently, heavy metals and other hazardous substances in the aquatic environment. In this study, a laboratory-scale reactor was manufactured in order to simulate the conditions under which the "Sea Diamond" shipwreck lies (14 bars of pressure and 16°C of temperature) and remotely observe and assess any heavy metal release that would occur, from part of the EEE present in the ship, into the sea. Ten metals were examined and the results showed that zinc, mercury and copper were abundant in the water samples taken from the reactor and in significantly higher concentrations compared to the US EPA CMC (criterion maximum concentration) criterion. Moreover, nickel and lead were found in concentrations higher than the CCC (criterion constant concentration) criterion set by the US EPA for clean seawater. The rest of the elements were measured in concentrations within the permissible limits. It is therefore of environmental benefit to salvage the wreck and recycle all the WEEE found in it. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  9. Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons

    EPA Science Inventory

    Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...

  10. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly casesmore » are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.« less

  11. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors.

    PubMed

    Schmidt, J E; Ahring, B K

    1999-03-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and mumax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor.

  12. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes.

    PubMed

    Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don

    2011-11-15

    Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    PubMed Central

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less

  15. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  16. Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

    DOE PAGES

    Fallot, M.; Porta, A.; Meur, L. Le; ...

    2017-09-13

    Here, the accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several studies have shown that the underlying nuclear physicsmore » required for the conversion of these spectra into antineutrino spectra is not totally understood. An alternative to such converted spectra is a complementary approach that consists of determining the antineutrino spectrum by means of the measurement and processing of nuclear data. The beta properties of some key fission products suffer from the pandemonium effect which can be circumvented by the use of the Total Absorption Gamma-ray Spectroscopy technique (TAGS). The two main contributors to the Pressurized Water Reactor antineutrino spectrum in the region where the spectral distortion has been observed are 92Rb and 142Cs, which have been measured at the radioactive beam facility of the University of Jyvaskyla in two TAGS experiments. We present the results of the analysis of the TAGS measurements of the β-decay properties of 92Rb along with preliminary results on 142Cs and report on the measurements already performed.« less

  17. Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallot, M.; Porta, A.; Meur, L. Le

    Here, the accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several studies have shown that the underlying nuclear physicsmore » required for the conversion of these spectra into antineutrino spectra is not totally understood. An alternative to such converted spectra is a complementary approach that consists of determining the antineutrino spectrum by means of the measurement and processing of nuclear data. The beta properties of some key fission products suffer from the pandemonium effect which can be circumvented by the use of the Total Absorption Gamma-ray Spectroscopy technique (TAGS). The two main contributors to the Pressurized Water Reactor antineutrino spectrum in the region where the spectral distortion has been observed are 92Rb and 142Cs, which have been measured at the radioactive beam facility of the University of Jyvaskyla in two TAGS experiments. We present the results of the analysis of the TAGS measurements of the β-decay properties of 92Rb along with preliminary results on 142Cs and report on the measurements already performed.« less

  18. Online monitoring of the Osiris reactor with the Nucifer neutrino detector

    NASA Astrophysics Data System (ADS)

    Boireau, G.; Bouvet, L.; Collin, A. P.; Coulloux, G.; Cribier, M.; Deschamp, H.; Durand, V.; Fechner, M.; Fischer, V.; Gaffiot, J.; Gérard Castaing, N.; Granelli, R.; Kato, Y.; Lasserre, T.; Latron, L.; Legou, P.; Letourneau, A.; Lhuillier, D.; Mention, G.; Mueller, Th. A.; Nghiem, T.-A.; Pedrol, N.; Pelzer, J.; Pequignot, M.; Piret, Y.; Prono, G.; Scola, L.; Starzinski, P.; Vivier, M.; Dumonteil, E.; Mancusi, D.; Varignon, C.; Buck, C.; Lindner, M.; Bazoma, J.; Bouvier, S.; Bui, V. M.; Communeau, V.; Cucoanes, A.; Fallot, M.; Gautier, M.; Giot, L.; Guilloux, G.; Lenoir, M.; Martino, J.; Mercier, G.; Milleto, T.; Peuvrel, N.; Porta, A.; Le Quéré, N.; Renard, C.; Rigalleau, L. M.; Roy, D.; Vilajosana, T.; Yermia, F.; Nucifer Collaboration

    2016-06-01

    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second-shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides a new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the International Agency for Atomic Energy to enhance the safeguards of civil nuclear reactors. Deployed at only 7.2 m away from the compact Osiris research reactor core (70 MW) operating at the Saclay research center of the French Alternative Energies and Atomic Energy Commission, the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the ˜0.85 m3 detector remotely operating at a shallow depth equivalent to ˜12 m of water and under intense background radiation conditions. Based on 145 (106) days of data with the reactor on (off), leading to the detection of an estimated 40760 ν¯ e , the mean number of detected antineutrinos is 281 ±7 (stat )±18 (syst )ν¯ e/day , in agreement with the prediction of 277 ±23 ν¯ e/day . Because of the large background, no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.

  19. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  20. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  1. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    PubMed Central

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  2. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    NASA Technical Reports Server (NTRS)

    Hissam, David Andy; Stewart, Eric T.

    2006-01-01

    A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.

  3. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  5. Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil

    2011-04-01

    Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Chasing the light sterile neutrino with the STEREO detector

    NASA Astrophysics Data System (ADS)

    Minotti, A.

    2017-09-01

    The standard three-family neutrino oscillation model is challenged by a number of observations, such as the reactor antineutrino anomaly (RAA), that can be explained by the existence of sterile neutrinos at the eV mass scale. The STEREO experiment detects {\\bar ν _e} produced in the 58.3MW Th compact core of the ILL research reactor via inverse beta decay (IBD) interactions in a liquid scintillator. Using 6 identical target cells, STEREO compares {\\bar ν _e} energy spectra at different baselines in order to observe possible distortions due to short-baseline oscillations toward eV sterile neutrinos. IBD events are effectively singled out from γ radiation by selecting events with a two-fold coincidence that is typical of an IBD interaction. External background is reduced by means of layers of shielding material. A Cherenkov veto allows to partially remove background produced by cosmic muons, and the remaining component is measured in reactor-off periods and subtracted statistically. If no evidence of sterile neutrinos after the full statistics of 6 reactor cycles is gathered, STEREO is expected to fully exclude the RAA allowed region.

  7. Impact of partial nitritation degree and C/N ratio on simultaneous Sludge Fermentation, Denitrification and Anammox process.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Yuan, Yue; Zhao, Mengyue; Wang, Shuying

    2016-11-01

    This study presents a novel process (i.e. PN/SFDA) to remove nitrogen from low C/N domestic wastewater. The process mainly involves two reactors, a pre-Sequencing Batch Reactor for partial nitritation (termed as PN-SBR) and an anoxic reactor for integrated Denitrification and Anammox with carbon sources produced from Sludge Fermentation (termed as SFDA). During long-term Runs, NO2(-)/NH4(+) ratio (i.e. NO2(-)-N/NH4(+)-N calculated by mole) in the PN-SBR effluent was gradually increased from 0.2 to 37 by extending aerobic duration, meaning that partial nitritation turning to full nitritation could be achieved. Impact of partial nitritation degree on SFDA process was investigated and the result showed that, NO2(-)/NH4(+) ratios between 2 and 10 were appropriate for the co-existence of denitrification and anammox together in the SFDA reactor, and denitrification instead of anammox contributed greater for nitrogen removal. Further batch tests indicated that anammox collaborated well with denitrification at low C/N (1.0 in this study). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Boronline, a new generation of boron meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirat, P.

    2011-07-01

    Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions - civil aerospace, defence aerospace, marine and energy Rolls-Royce understands the challenges of design, procurement, manufacture, operation and in-service support of nuclear reactor plants, with over 50 years of experience through the Royal Navy submarine programme. Rolls-Royce can therefore offer full product life-cycle management for new civil nuclear installations, as well as support to existing installations, including plant lifetime extensions. Rolls-Royce produced for 40 years, Instrumentation and Control (I andmore » C) systems of and associated services for nuclear reactors in Europe, including 58 French reactors and others situated in the United States and in others countries, such as China. Rolls-Royce equipped in this domain 200 nuclear reactors in 20 countries. Among all of its nuclear systems, Rolls Royce is presenting to the conference its new generation of on-line boron measurement system, so called Boronline. (authors)« less

  9. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  10. A Hardware-in-the-Loop Simulation Platform for the Verification and Validation of Safety Control Systems

    NASA Astrophysics Data System (ADS)

    Rankin, Drew J.; Jiang, Jin

    2011-04-01

    Verification and validation (V&V) of safety control system quality and performance is required prior to installing control system hardware within nuclear power plants (NPPs). Thus, the objective of the hardware-in-the-loop (HIL) platform introduced in this paper is to verify the functionality of these safety control systems. The developed platform provides a flexible simulated testing environment which enables synchronized coupling between the real and simulated world. Within the platform, National Instruments (NI) data acquisition (DAQ) hardware provides an interface between a programmable electronic system under test (SUT) and a simulation computer. Further, NI LabVIEW resides on this remote DAQ workstation for signal conversion and routing between Ethernet and standard industrial signals as well as for user interface. The platform is applied to the testing of a simplified implementation of Canadian Deuterium Uranium (CANDU) shutdown system no. 1 (SDS1) which monitors only the steam generator level of the simulated NPP. CANDU NPP simulation is performed on a Darlington NPP desktop training simulator provided by Ontario Power Generation (OPG). Simplified SDS1 logic is implemented on an Invensys Tricon v9 programmable logic controller (PLC) to test the performance of both the safety controller and the implemented logic. Prior to HIL simulation, platform availability of over 95% is achieved for the configuration used during the V&V of the PLC. Comparison of HIL simulation results to benchmark simulations shows good operational performance of the PLC following a postulated initiating event (PIE).

  11. Trends in the short-term release of fission products and actinides to aqueous solution from used CANDU fuels at elevated temperature

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, S.

    1992-08-01

    A large number of short-term leaching experiments has been performed to determine fission product and actinide release from used CANDU (CANada Deuterium Uranium) fuels and to establish which factors affect release. Results are reported after30 ± 10 d leaching at 100-150°C under oxidizing (air) or reducing (Ar-3% H 2 or Ar) conditions, in various synthetic groundwaters. Cesium-137 release (0.007-6%) was positively correlated with increases in fuel power, leachant temperature and ionic strength. Strontium-90 release (0.0003-0.3%) generally increased with ionic strength, higher temperature and redox conditions. Actinide and Tc concentrations were compared to ranges calculated with a thermodynamic equilibrium model, that accounts for the uncertain geochemical parameters of a nuclear waste vault by calculating concentration ranges based on 40000 hypothetical cases. Experimental U concentrations (10 -8.5 to 10 -3 mol/kg) were higher than the model range, probably because of higher redox potentials in the experiments. Measured Pu concentrations (10 -12.5 to 10 -7 mol/kg) were at the low end of the calculated range. Americium and Cm concentrations (10 -12.5 to 10 -7 and 10 -15 to 10 -9 mol/kg, respectively) were highest under oxidizing conditions and higher temperatures. Technetium-99 concentrations (10 -5.5 to 10 -10.5 mol/kg) covered a much narrower range than calculated by the model.

  12. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    PubMed

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  13. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    PubMed

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    2016-08-01

    Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologiesmore » (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants« less

  15. Testing piezoelectric sensors in a nuclear reactor environment

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard

    2017-02-01

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.

  16. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    NASA Astrophysics Data System (ADS)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  17. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less

  18. ELECTROLYTIC REACTOR FOR N REMOVAL FROM EXISTING SEPTIC TANKS - PHASE I

    EPA Science Inventory

    According to the U.S. EPA 2002 Onsite Wastewater Treatment Systems Manual, approximately 26 million homes, businesses and recreational facilities in the United States use onsite wastewater treatment and disposal systems (OWTD) (also called septic systems). Numero...

  19. Gas-Liquid Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; Motil, Brian J.; McCready, Mark J.; Kamotani, Yasuhiro

    2004-01-01

    Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).

  20. Analysis of the TREAT LEU Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less

  1. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Williams, Paul

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less

  2. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  3. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  4. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    PubMed

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  5. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger

    PubMed Central

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195

  6. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE PAGES

    Tonks, Michael; Andersson, David; Devanathan, Ram; ...

    2018-03-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  7. TOPAZ II Anti-Criticality Device Rapid Prototype

    NASA Astrophysics Data System (ADS)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  8. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  9. Effect of water on sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas in a direct current corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Yang, Jiaxiang; Chi, Xiaochun; Dong, Limin

    2007-05-01

    A direct current (dc) corona discharge reactor composed of needle-plate electrodes in a glass container filled with flue gas was designed. To clarify the influence of water on discharge characteristics, water was introduced in the plasma reactor as electrode where plate electrode is immersed, under the application of dc voltage. Experiment results show that (1) corona wind forming between high-voltage needle electrode and water by corona discharge enhances the cleaning efficiency of flue gas due to the existence of water and the cleaning efficiency will increase with the increase of applied dc voltage within definite range and (2) both removal efficiencies of NOx and SO2 increased in the presence of water, which reach up to 98% for SO2, and about 85% for NOx under suitable conditions. These results play an important role in flue gas cleanup research.

  10. Unit mechanisms of fission gas release: Current understanding and future needs

    NASA Astrophysics Data System (ADS)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  11. Army gas-cooled reactor systems program. Preliminary design report off-normal scram system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushnell, W.H.; Malmstrom, S.A.

    1965-06-01

    The maximum allowable ML-1 fuel element cladding (hot spot) temperature is established by ANTS 201 at 1750/sup 0/F. The existing ML-1 design makes no provision for automatic scram when this limit is reached. Operating experience has indicated a requirement for such an automatic system during plant startup and a revised hot spot envelope (generated during conceptual design of the scram system) established the desirability of extending this protection to operation at full power conditions. It was also determined that the scram system should include circuitry to initiate an automatic scram if reactor ..delta..T exceeded 450/sup 0/F (the limit established inmore » ANTS 201) and if reactor power exceeded 6 kw(t) without coolant flow in the main loop. The preliminary design of the scram system (designated off-normal scram system) which will provide the required protection is described.« less

  12. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoj, L.; Stancar, Z.; Radulovic, V.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the fewmore » available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)« less

  13. Adaptive control method for core power control in TRIGA Mark II reactor

    NASA Astrophysics Data System (ADS)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  14. Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron

    NASA Technical Reports Server (NTRS)

    Fox, Thomas A.; Bogart, Donald

    1955-01-01

    Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.

  15. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less

  16. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE PAGES

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek; ...

    2017-03-27

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  17. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2018-01-05

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  18. Prospects of a baryon instability search in neutron-antineutron oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efremenko, Yu.; Kamyshkov, Yu.

    1996-12-31

    The purpose of this article is to review the current status and the future prospects for an experimental neutron-antineutron transition search. Traditional and new experimental techniques are discussed here. In the n {r_arrow} {anti n} search in experiments at existing reactors, it would be possible to increase the discovery potential up to four orders of magnitude for vacuum n {r_arrow} {anti n} transitions relative to the existing experimental level or to achieve the limit of {tau}{sub n-{anti n}{sup {approximately}}} 10{sup 10}s.. With dedicated future reactors and an ultimate experimental layout, it might be possible to reach the limit of 10{supmore » 11}s. Significant progress in an intranuclear n {r_arrow} {anti n} transition search expected to be made during the next decade by the SuperKamiokande and Icarus detectors. It can be matched, or even exceeded, in a new alternative approach, where unstable long-lived isotopes of technetium are searched in non radioactive deep-mined ores.« less

  19. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor [Novel Methodology and Software for Spent Fuel Gross Defect Detection at the Atucha-I Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek

    Here, fuel assemblies in the spent fuel pool are stored by suspending them in two vertically stacked layers at the Atucha Unit 1 nuclear power plant (Atucha-I). This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 wt% 235U and has been in operation since 1974, a wide range of burnups and cooling times can exist in any given pool. A gross defect detection tool, the spent fuel neutron counter (SFNC), has been used at themore » site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups, the existing signal processing software of the tool was found to fail due to nonlinearity of the source term with burnup.« less

  20. Technical assumption for Mo-99 production in the MARIA reactor. Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaroszewicz, J.; Pytel, K.; Dabkowski, L.

    2008-07-15

    The main objective of U-235 irradiation is to obtain the Tc-99m isotope which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short life time, is a reaction of radioactive decay of Mo-99 into Tc- 99m. One of the possible sources of molybdenum can be achieved in course of the U-235 fission reaction. The paper presents activities and the calculations results obtained upon the feasibility study on irradiation of U-235 targets for production of molybdenum in the MARIA reactor. The activities including technical assumption were focused on performing calculation for modelling ofmore » the target and irradiation device as well as adequate equipment and tools for processing in reactor. It has been assumed that the basic component of fuel charge is an aluminium cladded plate with dimensions of 40x230x1.45 containing 4.7 g U-235. The presumed mode of the heat removal generated in the fuel charge of the reactor primary cooling circuit influences the construction of installation to be used for irradiation and the technological instrumentation. The outer channel construction for irradiation has to be identical as the standard fuel channel construction of the MARIA reactor. It enables to use the existing slab and reactor mounting sockets for the fastening of the molybdenum channel as well as the cooling water delivery system. The measurement of water temperature cooling a fuel charge and control of water flow rate in the channel can also be carried out be means of the standard instrumentation of the reactor. (author)« less

  1. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-07-01

    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less

  3. Reactor pressure vessel embrittlement: Insights from neural network modelling

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  4. Current and anticipated uses of thermal-hydraulic codes in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  5. Strengthening IAEA Safeguards for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half amore » dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.« less

  6. 40 CFR 63.9882 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...

  7. 40 CFR 63.9882 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...

  8. 40 CFR 63.9882 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...

  9. 40 CFR 63.9882 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...

  10. 40 CFR 63.9882 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...

  11. Microbial Population Dynamics and Ecosystem Functions of Anoxic/Aerobic Granular Sludge in Sequencing Batch Reactors Operated at Different Organic Loading Rates

    PubMed Central

    Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie

    2017-01-01

    The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation. PMID:28507540

  12. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    PubMed

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  14. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  15. Comparison of evolving photovoltaic and nuclear power systems for earth orbital applications

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Jones, R. M.; Schulman, I.

    1982-01-01

    Photovoltaic and fission reactor orbital power systems are compared in terms of the end-to-end system power-to-mass ratios. Three PV systems are examined, i.e., a solid substrate with a cell array and a NiCd battery, a modified SEP array and an NiH2 battery, and a 62-micron Si cell array and a fuel cell. All arrays were modeled to be 13.5% efficient and to produce 25 kW dc. The SP-100 reactor consists of the heat source, radiation shield, heat pipes to transfer thermal energy from the reactor to thermoelectric elements, and a waste heat radiator. Consideration is given to system applications in orbits ranging from LEO to GEO, and to mission durations of 1, 5, and 10 yr. PV systems are concluded to be flight-proven, useful out of radiation belts, and best for low to moderate power levels. Limitations exist for operations where atmospheric drag may become a factor and due to the size of a large PV power supply. Space nuclear reactors will continue under development and uses at high power levels and in low altitude orbits are foreseen.

  16. Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.

    1992-01-01

    Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less

  17. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    NASA Astrophysics Data System (ADS)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  18. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  19. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  20. MACHINING TEST SPECIMENS FROM HARVESTED ZION RPV SEGMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K; Rosseel, Thomas M; Sokolov, Mikhail A

    2015-01-01

    The decommissioning of the Zion Nuclear Generating Station (NGS) in Zion, Illinois, presents a special and timely opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing nuclear power plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, an international nuclear services company, the selective procurement of materials,more » structures, components, and other items of interest from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), cutting these segments into blocks from the beltline and upper vertical welds and plate material and machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for microstructural (TEM, SEM, APT, SANS and nano indention) characterization. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models [1].« less

  1. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgasmore » composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.« less

  2. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated formore » up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.« less

  3. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas releasemore » during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  4. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Shun; Ebitani, Kohki, E-mail: ebitani@jaist.ac.jp; Miyazato, Akio

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H{sub 2}O: 18.4 wt%, and served a good calorific value ofmore » 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, {sup 13}C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.« less

  5. Comparison of operating strategies for increased biogas production from thin stillage.

    PubMed

    Moestedt, Jan; Nordell, Erik; Schnürer, Anna

    2014-04-10

    The effect of increasing organic loading rate (OLR) and simultaneously decreasing hydraulic retention time (HRT) during anaerobic digestion of sulphur- and nitrogen-rich thin stillage was investigated during operation of continuously stirred tank laboratory reactors at two different temperatures. The operating strategies and substrate were set in order to mimic an existing full-scale commercial biogas plant in Sweden. The reactors were operated for 554-570 days with a substrate mixture of thin stillage and milled grain, resulting in high ammonium concentrations (>4.5gL(-1)). Initially, one reactor was operated at 38°C, as in the full-scale plant, while in the experimental reactor the temperature was raised to 44°C. Both reactors were then subjected to increasing OLR (from 3.2 to 6.0gVSL(-1)d(-1)) and simultaneously decreasing HRT (from 45 to 24 days) to evaluate the effects of these operational strategies on process stability, hydrogen sulphide levels and microbial composition. The results showed that operation at 44°C was the most successful strategy, resulting in up to 22% higher methane yield compared with the mesophilic reactor, despite higher free ammonia concentration. Furthermore, kinetic studies revealed higher biogas production rate at 44°C compared with 38°C, while the level of hydrogen sulphide was not affected. Quantitative PCR analysis of the microbiological population showed that methanogenic archaea and syntrophic acetate-oxidising bacteria had responded to the new process temperature while sulphate-reducing bacteria were only marginally affected by the temperature-change. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Protective interior wall and attaching means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, R.D.; Upham, G.A.; Anderson, P.M.

    1985-03-01

    The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.

  7. Inside the Black Triangle.

    ERIC Educational Resources Information Center

    Clamp, Alice

    1991-01-01

    The energy policies of four emerging democratic governments in Eastern Europe are individually profiled with respect to the challenge of producing more electrical energy, while creating less pollution and cleaning up the existing environmental disorder. Highlighted is the possible change from the burning of lignite coal to use of nuclear reactors.…

  8. 75 FR 16202 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ..., Revision 2, ``An Acceptable Model and Related Statistical Methods for the Analysis of Fuel Densification.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to an existing guide in the... nuclear power reactors. To meet these objectives, the guide describes statistical methods related to...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, A. J.; Fei, T.; Strons, P. S.

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort ismore » to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis Report (FSAR) [3]. Depending on the availability of historical data derived from HEU TREAT operation, results calculated for the LEU core are compared to measurements obtained from HEU TREAT operation. While all analyses in this report are largely considered complete and have been reviewed for technical content, it is important to note that all topics will be revisited once the LEU design approaches its final stages of maturity. For most safety significant issues, it is expected that the analyses presented here will be bounding, but additional calculations will be performed as necessary to support safety analyses and safety documentation. It should also be noted that these analyses were completed as the LEU design evolved, and therefore utilized different LEU reference designs. Preliminary shielding, neutronic, and thermal hydraulic analyses have been completed and have generally demonstrated that the various LEU core designs will satisfy existing safety limits and standards also satisfied by the existing HEU core. These analyses include the assessment of the dose rate in the hodoscope room, near a loaded fuel transfer cask, above the fuel storage area, and near the HEPA filters. The potential change in the concentration of tramp uranium and change in neutron flux reaching instrumentation has also been assessed. Safety-significant thermal hydraulic items addressed in this report include thermally-induced mechanical distortion of the grid plate, and heating in the radial reflector.« less

  10. Calibration factors for the SNOOPY NP-100 neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Moscu, D. F.; McNeill, F. E.; Chase, J.

    2007-10-01

    Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.

  11. 75 FR 13 - Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...The Nuclear Regulatory Commission (NRC) is amending its regulations to provide alternate fracture toughness requirements for protection against pressurized thermal shock (PTS) events for pressurized water reactor (PWR) pressure vessels. This final rule provides alternate PTS requirements based on updated analysis methods. This action is desirable because the existing requirements are based on unnecessarily conservative probabilistic fracture mechanics analyses. This action reduces regulatory burden for those PWR licensees who expect to exceed the existing requirements before the expiration of their licenses, while maintaining adequate safety, and may choose to comply with the final rule as an alternative to complying with the existing requirements.

  12. Vapor phase synthesis of compound semiconductors, from thin films to nanoparticles

    NASA Astrophysics Data System (ADS)

    Sarigiannis, Demetrius

    A counterflow jet reactor was developed to study the gas-phase decomposition kinetics of organometallics used in the vapor phase synthesis of compound semiconductors. The reactor minimized wall effects by generating a reaction zone near the stagnation point of two vertically opposed counterflowing jets. Smoke tracing experiments were used to confirm the stability of the flow field and validate the proposed heat, mass and flow models of the counterflow jet reactor. Transport experiments using ethyl acetate confirmed the overall mass balance for the system and verified the ability of the model to predict concentrations at various points in the reactor under different flow conditions. Preliminary kinetic experiments were performed with ethyl acetate and indicated a need to redesign the reactor. The counterflow jet reactor was adapted for the synthesis of ZnSe nanoparticles. Hydrogen selenide was introduced through one jet and dimethylzinc-triethylamine through the other. The two precursors reacted in a region near the stagnation zone and polycrystalline particles of zinc selenide were reproducibly synthesized at room temperature and collected for analysis. Raman spectroscopy confirmed that the particles were crystalline zinc selenide, Morphological analysis using SEM clearly showed the presence of aggregates of particles, 40 to 60 nanometers in diameter. Analysis by TEM showed that the particles were polycrystalline in nature and composed of smaller single crystalline nanocrystallites, five to ten nanometers in diameter. The particles in the aggregate had the appearance of being sintered together. To prevent this sintering, a split inlet lower jet was designed to introduce dimethylzinc through the inner tube and a surface passivator through the outer one. This passivating agent appeared to prevent the particles from agglomerating. An existing MOVPE reactor for II-VI thin film growth was modified to grow III-V semiconductors. A novel new heater was designed and built around an easily replaceable, economical, 650-watt, tungsten-halogen lamp. The heater was successfully tested to temperatures up to 1500°F. The deposition reactor was successfully tested by growing a thin film of GaP on GaAs <100>. The film surface was imperfect but the experiments proved that the reactor was ready for service.

  13. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two magnetostrictive transducers were fabricated with Remendur or Galfenol as the active elements. Pulse-echo ultrasonic measurements of these transducers are made in-situ. This paper will present an overview of the test design including selection criteria for candidate materials and optimization of test assembly parameters, data obtained from both out-of-pile and in-pile testing at elevated temperatures, and an assessment based on initial data of the expected performance of ultrasonic devices in irradiation conditions.

  14. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure themore » safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.« less

  15. Experiment on search for neutron-antineutron oscillations using a projected UCN source at the WWR-M reactor

    NASA Astrophysics Data System (ADS)

    Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.

    2017-01-01

    We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.

  16. Transportation Shock and Vibration Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Lahti, Erik A.; Ross, Steven B.

    2013-06-06

    This report fulfills the M4 milestone M4FT-13OR08220112, "Report Documenting Experimental Activities." The purpose of this report is to document the results of a literature review conducted of studies related to the vibration and shock associated with the normal conditions of transport for rail shipments of used nuclear fuel from commercial light-water reactors. As discussed in Adkins (2013), the objective of this report is to determine if adequate data exist that would enable the impacts of the shock and vibration associated with the normal conditions of transport on commercial light-water reactor used nuclear fuel shipped in current generation rail transportation casksmore » to be realistically modeled.« less

  17. Protective interior wall and attach8ing means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, Richard D.; Upham, Gerald A.; Anderson, Paul M.

    1988-01-01

    An array of connected plates mounted on the inside wall of the vacuum vessel of a magnetic confinement reactor in order to provide a protective surface for energy deposition inside the vessel. All fasteners are concealed and protected beneath the plates, while the plates themselves share common mounting points. The entire array is installed with torqued nuts on threaded studs; provision also exists for thermal expansion by mounting each plate with two of its four mounts captured in an oversize grooved spool. A spool-washer mounting hardware allows one edge of a protective plate to be torqued while the other side remains loose, by simply inverting the spool-washer hardware.

  18. Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.

    Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less

  19. Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion

    DOE PAGES

    Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.

    2018-03-20

    Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less

  20. Efficiency improvement of an antibody production process by increasing the inoculum density.

    PubMed

    Hecht, Volker; Duvar, Sevim; Ziehr, Holger; Burg, Josef; Jockwer, Alexander

    2014-01-01

    Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2-day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 10(10) cells L(-1) , a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers.

  1. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  2. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  3. Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.Y.

    1978-10-01

    Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less

  4. Electrolytic ammonia removal and current efficiency by a vermiculite-packed electrochemical reactor

    PubMed Central

    Li, Liang; Yao, Ji; Fang, Xueyou; Huang, Yuanxing; Mu, Yan

    2017-01-01

    The ammonia removal as well as the current efficiency during electrolysis was investigated by using a vermiculite-packed electrochemical reactor under continuous mode. Experimental results showed that adsorption of ammonia by vermiculite and electrolytic desorption of ammonia simultaneously existed in the reactor, leading to 89% removal of initial 30 mg N/L ammonia and current efficiency of 25% under the condition of 2.0 A, 6.0 min hydraulic retention time with 300 mg Cl/L chloride as the catalyst. The ammonia removal capacity had a linear relationship with the products of hydraulic retention time, current and chloride concentration within experimental conditions. The treatment results of secondary effluent indicated that 29.9 mg N/L ammonia can be reduced to 4.6 mg N/L with 72% removal of total nitrogen and a current efficiency of 23%, which was 2% less than synthetic wastewater due to the reducing components in the real wastewater. PMID:28102340

  5. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  6. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Research on stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  8. Proposal for a novel type of small scale aneutronic fusion reactor

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.

    2017-02-01

    The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.

  9. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  10. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.

    PubMed

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2014-09-01

    Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  12. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  13. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  14. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  15. Nuclear power plant 5,000 to 10,000 kilowatts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this proposal is to present a suggested program for the development of an Aqueous Homogeneous Reactor Power Plant for the production of power in the 5000 to 10,000 kilowatt range under the terms of the Atomic Energy Commission's invitation of September 21, 1955. It envisions a research and development program prior to finalizing fabricating commitments of full scale components for the purpose of proving mechanical and hydraulic operating and chemical processing feasibility with the expectation that such preliminary effort will assure the contruction of the reactor at the lowest cost and successful operation at the earliest date.more » It proposes the construction of a reactor for an eventual net electrical output of ten megawatts but initially in conjunction with a five megawatt turbo-generating unit. This unit would be constructed at the site of the existing Hersey diesel generating plant of the Wolverine Electric Cooperative approximately ten miles north of Big Rapids, Michigan.« less

  16. Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, D.; Taiwo, T. A.; Kim, T. K.

    2010-10-01

    The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluatemore » the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.« less

  17. Developpement d'une methode de Monte Carlo dependante du temps et application au reacteur de type CANDU-6

    NASA Astrophysics Data System (ADS)

    Mahjoub, Mehdi

    La resolution de l'equation de Boltzmann demeure une etape importante dans la prediction du comportement d'un reacteur nucleaire. Malheureusement, la resolution de cette equation presente toujours un defi pour une geometrie complexe (reacteur) tout comme pour une geometrie simple (cellule). Ainsi, pour predire le comportement d'un reacteur nucleaire,un schema de calcul a deux etapes est necessaire. La premiere etape consiste a obtenir les parametres nucleaires d'une cellule du reacteur apres une etape d'homogeneisation et condensation. La deuxieme etape consiste en un calcul de diffusion pour tout le reacteur en utilisant les resultats de la premiere etape tout en simplifiant la geometrie du reacteur a un ensemble de cellules homogenes le tout entoure de reflecteur. Lors des transitoires (accident), ces deux etapes sont insuffisantes pour pouvoir predire le comportement du reacteur. Comme la resolution de l'equation de Boltzmann dans sa forme dependante du temps presente toujours un defi de taille pour tous types de geometries,un autre schema de calcul est necessaire. Afin de contourner cette difficulte, l'hypothese adiabatique est utilisee. Elle se concretise en un schema de calcul a quatre etapes. La premiere et deuxieme etapes demeurent les memes pour des conditions nominales du reacteur. La troisieme etape se resume a obtenir les nouvelles proprietes nucleaires de la cellule a la suite de la perturbation pour les utiliser, au niveau de la quatrieme etape, dans un nouveau calcul de reacteur et obtenir l'effet de la perturbation sur le reacteur. Ce projet vise a verifier cette hypothese. Ainsi, un nouveau schema de calcul a ete defini. La premiere etape de ce projet a ete de creer un nouveau logiciel capable de resoudre l'equation de Boltzmann dependante du temps par la methode stochastique Monte Carlo dans le but d'obtenir des sections efficaces qui evoluent dans le temps. Ce code a ete utilise pour simuler un accident LOCA dans un reacteur nucleaire de type CANDU-6. Les sections efficaces dependantes du temps ont ete par la suite utilisees dans un calcul de diffusion espace-temps pour un reacteur CANDU-6 subissant un accident de type LOCA affectant la moitie du coeur afin d'observer son comportement durant toutes les phases de la perturbation. Dans la phase de developpement, nous avons choisi de demarrer avec le code OpenMC, developpe au MIT,comme plateforme initiale de developpement. L'introduction et le traitement des neutrons retardes durant la simulation ont presente un grand defi a surmonter. Il est important de noter que le code developpe utilisant la methode Monte Carlo peut etre utilise a grande echelle pour la simulation de tous les types des reacteurs nucleaires si les supports informatiques sont disponibles.

  18. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  19. Mass transfer resistance in ASFF reactors for waste water treatment.

    PubMed

    Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M

    1996-01-01

    Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.

  20. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di, E-mail: diyun1979@xjtu.edu.cn; Xi'an Jiao Tong University, 28 Xian Ning West Road, Xi'an 710049; Mo, Kun

    2015-12-15

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratorymore » (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition where nano-sized grains were observed to emerge. • UO{sub 2} phase exists at the thin area of the as-annealed specimen whereas U-10Mo γ phase dominated at the thicker part. • Bcc γ U-10Mo recrystallized to become nano-meter sized crystallites near the specimen surface. • A separateannealing experiment was conducted with a FIB processed specimen where similar transition occurred at a lower temperature of 460 °C with a faster rate.« less

  1. Energy Innovation Hubs: A Home for Scientific Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.« less

  2. Energy Innovation Hubs: A Home for Scientific Collaboration

    ScienceCinema

    Chu, Steven

    2017-12-11

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.

  3. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. L. Davis; D. L. Knudson; J. L. Rempe

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less

  4. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  5. Interfacial Studies of Chemical Vapor Infiltrated (CVI) Ceramic Matrix Composites

    DTIC Science & Technology

    1988-10-01

    carbon layer exists at the fiber/matrix interface. From Fig. 6, it can also be seen that a small amount of Cl exists at the interface and in the CVD SiC...matrix interface, most of which stayed on the fiber surface upon fracture. A small amount of oxygen (3-5 at*/) was found to be present in the CVI SiC. The... small amount of oxygen (1-2%). The results of MTS precursor coatings applied to Nextel 440 and Nicalon fibers preceded by an argon flush of the reactor

  6. The use of experimental data in an MTR-type nuclear reactor safety analysis

    NASA Astrophysics Data System (ADS)

    Day, Simon E.

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.

  7. Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.

    2006-06-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  8. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less

  9. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    NASA Astrophysics Data System (ADS)

    Lunn, Griffin; Wheeler, Raymond; Hummerick, Mary; Birmele, Michele; Richards, Jeffrey; Coutts, Janelle; Koss, Lawrence; Spencer, Lashelle.; Johnsey, Marissa; Ellis, Ronald

    Bioreactor research, even today, is mostly limited to continuous stirred-tank reactors (CSTRs). These are not an option for microgravity applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. This has led to testing of Hollow Fiber Membrane Bioreactors (HFMBs) for microgravity applications, including possible use for wastewater treatment systems for the International Space Station (ISS). Bioreactors and filtration systems for treating wastewater could avoid the need for harsh pretreatment chemicals and improve overall water recovery. However, the construction of these reactors is difficult and commercial off-the-shelf (COTS) versions do not exist in small sizes. We have used 1-L modular HFMBs in the past, but the need to perform rapid testing has led us to consider even smaller systems. To address this, we designed and built 125-mL, rectangular reactors, which we have called the Fiber Attachment Module Experiment (FAME) system. A polycarbonate rack of four square modules was developed with each module containing removable hollow fibers. Each FAME reactor is self-contained and can be easily plumbed with peristaltic and syringe pumps for continuous recycling of fluids and feeding, as well as fitted with sensors for monitoring pH, dissolved oxygen, and gas measurements similar to their larger counterparts. The first application tested in the FAME racks allowed analysis of over a dozen fiber surface treatments and three inoculation sources to achieve rapid reactor startup and biofilm attachment (based on carbon oxidation and nitrification of wastewater). With these miniature FAME reactors, data for this multi-factorial test were collected in duplicate over a six-month period; this greatly compressed time period required for gathering data needed to study and improve bioreactor performance.

  10. Variants of Regenerated Fissile Materials Usage in Thermal Reactors as the First Stage of Fuel Cycle Closing

    NASA Astrophysics Data System (ADS)

    Andrianova, E. A.; Tsibul'skiy, V. F.

    2017-12-01

    At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.

  11. Supercell Depletion Studies for Prismatic High Temperature Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi

    2012-10-01

    The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challengesmore » exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.« less

  12. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  13. Investigation of Dispersed and Dispersed Annular (rivulet or Thin Film) Flow Phase Separation in Tees.

    NASA Astrophysics Data System (ADS)

    McCreery, Glenn Ernest

    An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow phase separation in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of phase separation, and (2) develop the analytical models in computer programs which predict phase separation from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four separate computer programs were developed to analyze phase separation. Three of the programs are used sequentially to calculate dispersed mist phase separation in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss coefficients, contraction coefficients, and eddy geometry. The important transient effects of liquid storage in eddies were also analyzed.

  14. Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, He Ken; Yao, Zhongwen; Judge, Colin; Griffiths, Malcolm

    2013-11-01

    Work on Inconel®Inconel® is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys.1 X-750 spacers removed from CANDU®CANDU® is a registered trademark of Atomic Energy of Canada Limited standing for ''CANada Deuterium Uranium''.2 reactors has shown that they become embrittled and there is development of many small cavities within the metal matrix and along grain boundaries. In order to emulate the neutron irradiation induced microstructural changes, heavy ion irradiations (1 MeV Kr2+ ions) were performed while observing the damage evolution using an intermediate voltage electron microscope (IVEM) operating at 200 kV. The irradiations were carried out at various temperatures 60-400 °C. The principal strengthening phase, γ‧, was disordered at low doses (˜0.06 dpa) during the irradiation. M23C6 carbides were found to be stable up to 5.4 dpa. Lattice defects consisted mostly of stacking fault tetrahedras (SFTs), 1/2<1 1 0> perfect loops and small 1/3<1 1 1> faulted Frank loops. The ratio of SFT number density to loop number density for each irradiation condition was found to be neither temperature nor dose dependent. Under the operation of the ion beam the SFT production was very rapid, with no evidence for further growth once formed, indicating that they probably formed as a result of cascade collapse in a single cascade. The number density of the defects was found to saturate at low dose (˜0.68 dpa). No cavities were observed regardless of the irradiation temperature between 60 °C and 400 °C for doses up to 5.4 dpa. In contrast, cavities have been observed after neutron irradiation in the same material at similar doses and temperatures indicating that helium, produce during neutron irradiation, may be essential for the nucleation and growth of cavities.

  15. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE PAGES

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.; ...

    2017-10-06

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  16. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  17. Initiating Event Analysis of a Lithium Fluoride Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Geraci, Nicholas Charles

    The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to arrive at a list of key initiating events that can be used to address vulnerabilities during the design phases of LFTR development.

  18. A Novel Method of Measuring the Phase Behavior and Rheology of Polyethylene Solutions Using a Multi-Pass Rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Karen; Lacombe, Y.; Cheluget, E.

    2008-07-01

    The Advanced SCLAIRTECH™ Technology process is used to manufacture Linear Low Density Polyethylene using solution polymerization. In this process ethylene is polymerized in an inert solvent, which is subsequently evaporated and recycled. The reactor effluent in the process is a polymer solution containing the polyethylene product, which is separated from the solvent and unconverted ethylene/co-monomer before being extruded and pelletized. The design of unit operations in this process requires a detailed understanding of the thermophysical properties, phase behaviour and rheology of polymer containing streams at high temperature and pressure, and over a wide range of composition. This paper describes a device used to thermo-rheologically characterize polymer solutions under conditions prevailing in polymerization reactors, downstream heat exchangers and attendant phase separation vessels. The downstream processing of the Advanced SCLAIRTECH™ Technology reactor effluent occurs at temperatures and pressures near the critical point of the solvent and co-monomer mixture. In addition, the process trajectory encompasses regions of liquid-liquid and liquid-liquid-vapour co-existence, which are demarcated by a `cloud point' curve. Knowing the location of this phase boundary is essential for the design of downstream devolatilization processes and for optimizing operating conditions in existing plants. In addition, accurate solution rheology data are required for reliable equipment sizing and design. At NOVA Chemicals, a robust high-temperature and high-pressure-capable version of the Multi-Pass Rheometer (MPR) is used to provide data on solution rheology and phase boundary location. This sophisticated piece of equipment is used to quantify the effects of solvent types, comonomer, and free ethylene concentration on the properties of the reactor effluent. An example of the experimental methodology to characterize a polyethylene solution with hexane solvent, and the ethylene dosing technique developed for the MPR will be described. ™Advanced SCLAIRTECH is a trademark of NOVA Chemicals.

  19. Human Health and the Biological Effects of Tritium in Drinking Water: Prudent Policy Through Science – Addressing the ODWAC New Recommendation

    PubMed Central

    Dingwall, S.; Mills, C.E.; Phan, N.; Taylor, K.; Boreham, D.R.

    2011-01-01

    Tritium is a radioactive form of hydrogen and is a by-product of energy production in Canadian Deuterium Uranium (CANDU) reactors. The release of this radioisotope into the environment is carefully managed at CANDU facilities in order to minimize radiation exposure to the public. However, under some circumstances, small accidental releases to the environment can occur. The radiation doses to humans and non-human biota from these releases are low and orders of magnitude less than doses received from naturally occurring radioisotopes or from manmade activities, such as medical imaging and air travel. There is however a renewed interest in the biological consequences of low dose tritium exposures and a new limit for tritium levels in Ontario drinking water has been proposed. The Ontario Drinking Water Advisory Council (ODWAC) issued a formal report in May 2009 in response to a request by the Minister of the Environment, concluding that the Ontario Drinking Water Quality Standard for tritium should be revised from the current 7,000 Bq/L level to a new, lower 20 Bq/L level. In response to this recommendation, an international scientific symposium was held at McMaster University to address the issues surrounding this change in direction and the validity of a new policy. Scientists, regulators, government officials, and industrial stakeholders were present to discuss the potential health risks associated with low level radiation exposure from tritium. The regulatory, economic, and social implications of the new proposed limit were also considered. The new recommendation assumed a linear-no-threshold model to calculate carcinogenic risk associated with tritium exposure, and considered tritium as a non-threshold chemical carcinogen. Both of these assumptions are highly controversial given that recent research suggests that low dose exposures have thresholds below which there are no observable detrimental effects. Furthermore, mutagenic and carcinogenic risk calculated from tritium exposure at 20 Bq/L would be orders of magnitude less than that from exposure to natural background sources of radiation. The new proposed standard would set the radiation dose limit for drinking water to 0.0003 mSv/year, which is equivalent to approximately three times the dose from naturally occurring tritium in drinking water. This new standard is incongruent with national and international standards for safe levels of radiation exposure, currently set at 1 mSv/year for the general public. Scientific research from leading authorities on the carcinogenic health effects of tritium exposure supports the notion that the current standard of 7,000 Bq/L (annual dose of 0.1 mSv) is a safe standard for human health. Policy-making for the purpose of regulating tritium levels in drinking water is a dynamic multi-stage process that is influenced by more than science alone. Ethics, economics, and public perception also play important roles in policy development; however, these factors sometimes undermine the scientific evidence that should form the basis of informed decision making. Consequently, implementing a new standard without a scientific basis may lead the public to perceive that risks from tritium have been historically underestimated. It was concluded that the new recommendation is not supported by any new scientific insight regarding negative consequences of low dose effects, and may be contrary to new data on the potential benefits of low dose effects. Given the lack of cost versus benefit analysis, this type of dramatic policy change could have detrimental effects to society from an ethical, economical, and public perception perspective. PMID:21431084

  20. Human Health and the Biological Effects of Tritium in Drinking Water: Prudent Policy Through Science - Addressing the ODWAC New Recommendation.

    PubMed

    Dingwall, S; Mills, C E; Phan, N; Taylor, K; Boreham, D R

    2011-02-22

    Tritium is a radioactive form of hydrogen and is a by-product of energy production in Canadian Deuterium Uranium (CANDU) reactors. The release of this radioisotope into the environment is carefully managed at CANDU facilities in order to minimize radiation exposure to the public. However, under some circumstances, small accidental releases to the environment can occur. The radiation doses to humans and non-human biota from these releases are low and orders of magnitude less than doses received from naturally occurring radioisotopes or from manmade activities, such as medical imaging and air travel. There is however a renewed interest in the biological consequences of low dose tritium exposures and a new limit for tritium levels in Ontario drinking water has been proposed. The Ontario Drinking Water Advisory Council (ODWAC) issued a formal report in May 2009 in response to a request by the Minister of the Environment, concluding that the Ontario Drinking Water Quality Standard for tritium should be revised from the current 7,000 Bq/L level to a new, lower 20 Bq/L level. In response to this recommendation, an international scientific symposium was held at McMaster University to address the issues surrounding this change in direction and the validity of a new policy. Scientists, regulators, government officials, and industrial stakeholders were present to discuss the potential health risks associated with low level radiation exposure from tritium. The regulatory, economic, and social implications of the new proposed limit were also considered.The new recommendation assumed a linear-no-threshold model to calculate carcinogenic risk associated with tritium exposure, and considered tritium as a non-threshold chemical carcinogen. Both of these assumptions are highly controversial given that recent research suggests that low dose exposures have thresholds below which there are no observable detrimental effects. Furthermore, mutagenic and carcinogenic risk calculated from tritium exposure at 20 Bq/L would be orders of magnitude less than that from exposure to natural background sources of radiation. The new proposed standard would set the radiation dose limit for drinking water to 0.0003 mSv/year, which is equivalent to approximately three times the dose from naturally occurring tritium in drinking water. This new standard is incongruent with national and international standards for safe levels of radiation exposure, currently set at 1 mSv/year for the general public. Scientific research from leading authorities on the carcinogenic health effects of tritium exposure supports the notion that the current standard of 7,000 Bq/L (annual dose of 0.1 mSv) is a safe standard for human health.Policy-making for the purpose of regulating tritium levels in drinking water is a dynamic multi-stage process that is influenced by more than science alone. Ethics, economics, and public perception also play important roles in policy development; however, these factors sometimes undermine the scientific evidence that should form the basis of informed decision making. Consequently, implementing a new standard without a scientific basis may lead the public to perceive that risks from tritium have been historically underestimated. It was concluded that the new recommendation is not supported by any new scientific insight regarding negative consequences of low dose effects, and may be contrary to new data on the potential benefits of low dose effects. Given the lack of cost versus benefit analysis, this type of dramatic policy change could have detrimental effects to society from an ethical, economical, and public perception perspective.

  1. Current status of the development of high density LEU fuel for Russian research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatulin, A.; Dobrikova, I.; Suprun, V.

    2008-07-15

    One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less

  2. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    DOE PAGES

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump tomore » avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.« less

  3. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  4. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  5. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    PubMed

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.

  6. Non-electric applications for magneto-inertial fusion

    NASA Astrophysics Data System (ADS)

    Slough, John

    2016-10-01

    In addition to the generation of commercial electric power, there are several other applications for an intense pulse of neutrons that would be produced by magneto-inertial fusion (MIF) systems. Many of these applications can be achieved without the need for a fully developed reactor at high gain, and could thus be pursued at a much earlier stage of development which would dramatically reduce the risk of the long-term development and concern for the expense of an all-encompassing, single use system such as the tokamak or stellerator. A short list of applications well suited for MIF would include: (1) production of radioisotopes for medical applications and research, (2) efficient, high power propulsion through direct fusion heating of lithium propellants (3) Noninvasive interrogation of objects for homeland security (4) neutron radiography and tomography (5) destruction of long-lived radioactive waste, and (6) breeding of proliferation proof fissile fuel for existing nuclear reactors. These applications could all be pursued at lower neutron yield, but clearly the energy goals are by far the most significant and far reaching such as applying fusion energy as a hybrid to enable thorium cycle reactors which produce very little waste compared to the current uranium reactors. A discussion of how MIF could be configured and utilized to realize several of these uses will be discussed.

  7. A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

    NASA Astrophysics Data System (ADS)

    Bertch, Timothy Creston

    1998-12-01

    Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release with a submerged commercial nuclear power plant. The two box models predict the most of the radio-ecological impact occurs during the first eight days after release. The most significant risk to humans is from consumption of biota. The reduction in impact to humans from a large radioactive release makes the concept worthy of further study.

  8. The future of nuclear power: A world-wide perspective

    NASA Astrophysics Data System (ADS)

    Aktar, Ismail

    This study analyzes the future of commercial nuclear electric generation worldwide using the Environmental Kuznets Curve (EKC) concept. The Tobit panel data estimation technique is applied to analyze the data between 1980 and 1998 for 105 countries. EKC assumes that low-income countries increase their nuclear reliance in total electric production whereas high-income countries decrease their nuclear reliance. Hence, we expect that high-income countries should shut down existing nuclear reactors and/or not build any new ones. We encounter two reasons for shutdowns: economic or political/environmental concerns. To distinguish these two effects, reasons for shut down are also investigated by using the Hazard Model technique. Hence, the load factor of a reactor is used as an approximation for economic reason to shut down the reactor. If a shut downed reactor had high load factor, this could be attributable to political/environmental concern or else economic concern. The only countries with nuclear power are considered in this model. The two data sets are created. In the first data set, the single entry for each reactor is created as of 1998 whereas in the second data set, the multiple entries are created for each reactor beginning from 1980 to 1998. The dependent variable takes 1 if operational or zero if shut downed. The empirical findings provide strong evidence for EKC relationship for commercial nuclear electric generation. Furthermore, higher natural resources suggest alternative electric generation methods rather than nuclear power. Economic index as an institutional variable suggests higher the economic freedom, lower the nuclear electric generation as expected. This model does not support the idea to cut the carbon dioxide emission via increasing nuclear share. The Hazard Model findings suggest that higher the load factor is, less likely the reactor will shut down. However, if it is still permanently closed downed, then this could be attributable to political hostility against nuclear power. There are also some projections indicating which reactors are most/least likely to be shut downed from the logit model. We also project which countries are most likely to increase/decrease their nuclear reliance from the residuals of EKC model.

  9. Characterization of Sodium Thermal Hydraulics with Optical Fiber Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Weathered, Matthew Thomas

    The thermal hydraulic properties of liquid sodium make it an attractive coolant for use in Generation IV reactors. The liquid metal's high thermal conductivity and low Prandtl number increases efficiency in heat transfer at fuel rods and heat exchangers, but can also cause features such as high magnitude temperature oscillations and gradients in the coolant. Currently, there exists a knowledge gap in the mechanisms which may create these features and their effect on mechanical structures in a sodium fast reactor. Two of these mechanisms include thermal striping and thermal stratification. Thermal striping is the oscillating temperature field created by the turbulent mixing of non-isothermal flows. Usually this occurs at the reactor core outlet or in piping junctions and can cause thermal fatigue in mechanical structures. Meanwhile, thermal stratification results from large volumes of non-isothermal sodium in a pool type reactor, usually caused by a loss of coolant flow accident. This stratification creates buoyancy driven flow transients and high temperature gradients which can also lead to thermal fatigue in reactor structures. In order to study these phenomena in sodium, a novel method for the deployment of optical fiber temperature sensors was developed. This method promotes rapid thermal response time and high spatial temperature resolution in the fluid. The thermal striping and stratification behavior in sodium may be experimentally analyzed with these sensors with greater fidelity than ever before. Thermal striping behavior at a junction of non-isothermal sodium was fully characterized with optical fibers. An experimental vessel was hydrodynamically scaled to model thermal stratification in a prototypical sodium reactor pool. Novel auxiliary applications of the optical fiber temperature sensors were developed throughout the course of this work. One such application includes local convection coefficient determination in a vessel with the corollary application of level sensing. Other applications were cross correlation velocimetry to determine bulk sodium flow rate and the characterization of coherent vortical structures in sodium with temperature frequency data. The data harvested, instrumentation developed and techniques refined in this work will help in the design of more robust reactors as well as validate computational models for licensing sodium fast reactors.

  10. Proposal for a possible use of fusion power for hydrogen production within this century

    NASA Astrophysics Data System (ADS)

    Seifritz, W.

    Consideration is given to the possibility of building a commercial fusion power reactor before the turn of the century. The main element incorporated by the proposed system is the PACER project powerplant, which employs the explosive deuterium-deuterium (D-D) fusion process. Because all required technology already exists, PACER is believed to represent the quickest way to harness fusion on a large scale. It is argued that such reactors, scattered throughout the world on a series of 'energy parks', will meet a 30 TW global energy demand after the depletion of fossil fuel resources. Consideration is also given to both the breeding of fissile materials and the electrolytic production of hydrogen; a by-product of which would be deuterium fuel.

  11. Web Time-Management Tool

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Oak Grove Reactor, developed by Oak Grove Systems, is a new software program that allows users to integrate workflow processes. It can be used with portable communication devices. The software can join e-mail, calendar/scheduling and legacy applications into one interactive system via the web. Priority tasks and due dates are organized and highlighted to keep the user up to date with developments. Reactor works with existing software and few new skills are needed to use it. Using a web browser, a user can can work on something while other users can work on the same procedure or view its status while it is being worked on at another site. The software was developed by the Jet Propulsion Lab and originally put to use at Johnson Space Center.

  12. Advanced Exploration Systems Logistics Reduction and Repurposing Trash-to-Gas and Heat Melt Compactor KSC

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne J.; Layne, Andrew; Hummerick, Mary

    2013-01-01

    Topics covered: 1. Project Structure 2. "Trash to Gas" 3. "Smashing Trash! The Heat Melt Compactor" 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste" Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash. CO2 can be fed to Sabatier reactor for CH4 production to fuel LOX/LCH4 ascent vehicle. Optimal performance: HFWS, full temperature ramp to 500-600 C. Tar challenges exist. Catalysis: Dolomag did eliminate allene byproducts from the product stream. 2nd Gen Reactor Studies. Targeting power, mass, time efficiency. Gas separation, Catalysis to reduce tar formation. Microgravity effects. Downselect in August will determine where we should spend time optimizing the technology.

  13. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.

    1997-02-01

    Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less

  14. Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitheanandan, T.; Sanderson, D.B.; Kyle, G.

    2004-07-01

    Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10more » Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)« less

  15. The Future Is Now: Implications for the Development of (Special) Education Leaders.

    ERIC Educational Resources Information Center

    Posno, T. R.

    This paper discusses the nature of people and the prospect of change. People are identified as either creators of change, reactors to change, or those who attempt to move forward while looking backward, and the education profession exhibits a seeming increase in reactionary approaches. In the educational planning process, many issues exist that…

  16. An Update on the Status of the Supply of Plutonium-238 for Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Wham, R. M.

    2016-12-01

    For more than five decades, Radioisotope Power Systems (RPSs) have enabled space missions to operate in locations where the Sun's intensity is too weak, obscured, or otherwise inadequate for solar power or other conventional power‒generation technologies. The natural decay heat (0.57 W/g) from the radioisotope, plutonium-238 (238Pu), provides the thermal energy source used by an RPS to generate electricity for operation of instrumentation, as well as heat to keep key subsystems warm for missions such as Voyagers 1 and 2, the Cassini mission to Saturn, the New Horizons flyby of Pluto, and the Mars Curiosity rover which were sponsored by the National Aeronautics and Space Administration (NASA). Plutonium-238 is produced by irradiation of neptunium-237 in a nuclear reactor a relatively high neutron flux. The United States has not produced new quantities of 238Pu since the early 1990s. RPS‒powered missions have continued since then using existing 238Pu inventory managed by the U.S. Department of Energy (DOE), including material purchased from Russia. A new domestic supply is needed to ensure the continued availability of RPSs for future NASA missions. NASA and DOE are currently executing a project to reestablish a 238Pu supply capability using its existing facilities and reactors, which are much smaller than the large-scale production reactors and processing canyon equipment used previously. The project is led by the Oak Ridge National Laboratory (ORNL). Target rods, containing NpO2, will be fabricated at ORNL and irradiated in the ORNL High Flux Isotope Reactor and the Advanced Test Reactor at Idaho National Laboratory. Irradiated targets will be processed in chemical separations at the ORNL Radiochemical Engineering Center to recover the plutonium product and unconverted neptunium for recycle. The 238PuO2 product will be shipped to Los Alamos National Laboratory for fabrication of heat source pellets. Key activities, such as transport of the neptunium to ORNL, irradiation of neptunium, and chemical processing to recover the newly generated 238Pu, have begun and have been demonstrated with the initial amounts (50-100 g) produced. Product samples have been shipped to LANL for evaluation, including chemical impurity analysis. This paper will provide an overview of the approach to the project and its progress to date.

  17. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less

  18. The role of mass spectrometry to study the Oklo-Bangombé natural reactors.

    PubMed

    De Laeter, J R; Hidaka, H

    2007-01-01

    The discovery of the existence of chain reactions at the Oklo natural reactors in Gabon, Central Africa in 1972 was a triumph for the accuracy of mass spectrometric measurements, in that a 0.5% anomaly in the (235)U/(238)U ratio of certain U ore samples indicated a depletion in (235)U. Mass spectrometric techniques thereafter played a dominant role in determining the nuclear parameters of the reactor zones themselves, and in deciphering the geochemical characteristics of various elements in the U-rich ore and in the surrounding rock strata. The variations in the isotopic composition of a large number of elements, caused by a combination of nuclear fission, neutron capture and radioactive decay, provide a powerful tool for investigating this unique geological environment. Mass spectrometry can be used to measure the present-day elemental and isotopic abundances of numerous elements, so as to decipher the past history of the reactors and examine the retentivity/mobility of these elements. Many of the fission products have a radioactive decay history that have been used to date the age and duration of the reactor zones, and to provide insight into their nuclear and geochemical behavior as a function of time. The Oklo fission reactors and their near neighbor at Bangombé, some 30 km to the south-east of Oklo, are unique in that not only did they become critical some 2 x 10(9) years ago, but also the deposits have been preserved over this period of geological time. The long-term geochemical behavior of actinides and fission products have been extensively studied by a variety of mass spectrometric techniques over the past 30 years to provide us with significant information on the mobility/retentivity of this material in a natural geological repository. The Oklo-Bangombé natural reactors are therefore geological analogs that can be evaluated in terms of possible radioactive waste containment sites. As more reactor zones were discovered, it was realized that they could be classified into two groups according to their burial depth in the Oklo mine-site. Reactor Zones 10, 13, and 16 were buried more deeply, and were therefore less weathered than the other zones. The less-weathered zones are of great importance in mobility/retentivity studies and therefore to the question of radioactive waste containment. Isotopic studies of these natural reactors are also of value in physics to examine possible variations in fundamental constants over the past 2 billion years.

  19. Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site

    NASA Astrophysics Data System (ADS)

    Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.

    1990-12-01

    Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.

  20. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of themore » important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.« less

  1. Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores.

    PubMed

    Zaghloul, Mohamed A S; Wang, Mohan; Huang, Sheng; Hnatovsky, Cyril; Grobnic, Dan; Mihailov, Stephen; Li, Ming-Jun; Carpenter, David; Hu, Lin-Wen; Daw, Joshua; Laffont, Guillaume; Nehr, Simon; Chen, Kevin P

    2018-04-30

    This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 10 14 n/cm 2 /s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 10 20 n/cm 2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

  2. Expert assessments of the cost of light water small modular reactors

    PubMed Central

    Abdulla, Ahmed; Azevedo, Inês Lima; Morgan, M. Granger

    2013-01-01

    Analysts and decision makers frequently want estimates of the cost of technologies that have yet to be developed or deployed. Small modular reactors (SMRs), which could become part of a portfolio of carbon-free energy sources, are one such technology. Existing estimates of likely SMR costs rely on problematic top-down approaches or bottom-up assessments that are proprietary. When done properly, expert elicitations can complement these approaches. We developed detailed technical descriptions of two SMR designs and then conduced elicitation interviews in which we obtained probabilistic judgments from 16 experts who are involved in, or have access to, engineering-economic assessments of SMR projects. Here, we report estimates of the overnight cost and construction duration for five reactor-deployment scenarios that involve a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants vary by more than a factor of 2.5. Expert judgments about likely SMR costs display an even wider range. Median estimates for a 45 megawatts-electric (MWe) SMR range from $4,000 to $16,300/kWe and from $3,200 to $7,100/kWe for a 225-MWe SMR. Sources of disagreement are highlighted, exposing the thought processes of experts involved with SMR design. There was consensus that SMRs could be built and brought online about 2 y faster than large reactors. Experts identify more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable. PMID:23716682

  3. Expert assessments of the cost of light water small modular reactors.

    PubMed

    Abdulla, Ahmed; Azevedo, Inês Lima; Morgan, M Granger

    2013-06-11

    Analysts and decision makers frequently want estimates of the cost of technologies that have yet to be developed or deployed. Small modular reactors (SMRs), which could become part of a portfolio of carbon-free energy sources, are one such technology. Existing estimates of likely SMR costs rely on problematic top-down approaches or bottom-up assessments that are proprietary. When done properly, expert elicitations can complement these approaches. We developed detailed technical descriptions of two SMR designs and then conduced elicitation interviews in which we obtained probabilistic judgments from 16 experts who are involved in, or have access to, engineering-economic assessments of SMR projects. Here, we report estimates of the overnight cost and construction duration for five reactor-deployment scenarios that involve a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants vary by more than a factor of 2.5. Expert judgments about likely SMR costs display an even wider range. Median estimates for a 45 megawatts-electric (MWe) SMR range from $4,000 to $16,300/kWe and from $3,200 to $7,100/kWe for a 225-MWe SMR. Sources of disagreement are highlighted, exposing the thought processes of experts involved with SMR design. There was consensus that SMRs could be built and brought online about 2 y faster than large reactors. Experts identify more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable.

  4. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    PubMed

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  6. Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions.

    PubMed

    Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F

    2013-01-01

    In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Assessment of the TRACE Reactor Analysis Code Against Selected PANDA Transient Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavisca, M.; Ghaderi, M.; Khatib-Rahbar, M.

    2006-07-01

    The TRACE (TRAC/RELAP Advanced Computational Engine) code is an advanced, best-estimate thermal-hydraulic program intended to simulate the transient behavior of light-water reactor systems, using a two-fluid (steam and water, with non-condensable gas), seven-equation representation of the conservation equations and flow-regime dependent constitutive relations in a component-based model with one-, two-, or three-dimensional elements, as well as solid heat structures and logical elements for the control system. The U.S. Nuclear Regulatory Commission is currently supporting the development of the TRACE code and its assessment against a variety of experimental data pertinent to existing and evolutionary reactor designs. This paper presents themore » results of TRACE post-test prediction of P-series of experiments (i.e., tests comprising the ISP-42 blind and open phases) conducted at the PANDA large-scale test facility in 1990's. These results show reasonable agreement with the reported test results, indicating good performance of the code and relevant underlying thermal-hydraulic and heat transfer models. (authors)« less

  8. Analytic expressions for Atomic Layer Deposition: coverage, throughput, and materials utilization in cross-flow, particle coating, and spatial ALD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanguas-Gil, Angel; Elam, Jeffrey W.

    2014-05-01

    In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authorsmore » show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e. g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes. (C) 2014 American Vacuum Society« less

  9. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation.

    PubMed

    Hodges, Alan; Fica, Zachary; Wanlass, Jordan; VanDarlin, Jessica; Sims, Ronald

    2017-05-01

    Wastewater derived from petroleum refining currently accounts for 33.6 million barrels per day globally. Few wastewater treatment strategies exist to produce value-added products from petroleum refining wastewater. In this study, mixed culture microalgal biofilm-based treatment of petroleum refining wastewater using rotating algae biofilm reactors (RABRs) was compared with suspended-growth open pond lagoon reactors for removal of nutrients and suspended solids. Triplicate reactors were operated for 12 weeks and were continuously fed with petroleum refining wastewater. Effluent wastewater was monitored for nitrogen, phosphorus, total suspended solids (TSS), and chemical oxygen demand (COD). RABR treatment demonstrated a statistically significant increase in removal of nutrients and suspended solids, and increase in biomass productivity, compared to the open pond lagoon treatment. These trends translate to a greater potential for the production of biomass-based fuels, feed, and fertilizer as value-added products. This study is the first demonstration of the cultivation of mixed culture biofilm microalgae on petroleum refining wastewater for the dual purposes of treatment and biomass production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. History of fast reactor fuel development

    NASA Astrophysics Data System (ADS)

    Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.

    1993-09-01

    The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.

  11. An Update on Improvements to NiCE Support for PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay

    2015-09-01

    The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less

  12. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hvastkovs, Eli, G.; Schenkman, John B.; Rusling, James, F.

    2012-07-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.

  13. A Methodology for Loading the Advanced Test Reactor Driver Core for Experiment Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowherd, Wilson M.; Nielsen, Joseph W.; Choe, Dong O.

    In support of experiments in the ATR, a new methodology was devised for loading the ATR Driver Core. This methodology will replace the existing methodology used by the INL Neutronic Analysis group to analyze experiments. Studied in this paper was the as-run analysis for ATR Cycle 152B, specifically comparing measured lobe powers and eigenvalue calculations.

  14. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    NASA Astrophysics Data System (ADS)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  15. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey C. Joe; Johanna H. Oxstrand

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks.more » We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.« less

  16. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  17. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE PAGES

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...

    2017-06-08

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  18. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  19. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  20. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  1. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  2. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  3. Machining Test Specimens from Harvested Zion RPV Segments for Through Wall Attenuation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, Thomas M; Sokolov, Mikhail A; Nanstad, Randy K

    2015-01-01

    The decommissioning of the Zion Units 1 and 2 Nuclear Generating Station (NGS) in Zion, Illinois presents a special opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing Nuclear Power Plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, the selective procurement of materials, structures, and componentsmore » from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), the cutting of these segments into sections and blocks from the beltline and upper vertical welds and plate material, the current status of machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for chemical and microstructural (TEM, APT, SANS, and nano indention) characterization, as well as the current test plans and possible collaborative projects. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models (Rosseel et al. (2012) and Rosseel et al. (2015)).« less

  4. Grizzly Staus Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Zhang, Yongfeng; Chakraborty, Pritam

    2014-09-01

    This report summarizes work during FY 2014 to develop capabilities to predict embrittlement of reactor pressure vessel steel, and to assess the response of embrittled reactor pressure vessels to postulated accident conditions. This work has been conducted a three length scales. At the engineering scale, 3D fracture mechanics capabilities have been developed to calculate stress intensities and fracture toughnesses, to perform a deterministic assessment of whether a crack would propagate at the location of an existing flaw. This capability has been demonstrated on several types of flaws in a generic reactor pressure vessel model. Models have been developed at themore » scale of fracture specimens to develop a capability to determine how irradiation affects the fracture toughness of material. Verification work has been performed on a previously-developed model to determine the sensitivity of the model to specimen geometry and size effects. The effects of irradiation on the parameters of this model has been investigated. At lower length scales, work has continued in an ongoing to understand how irradiation and thermal aging affect the microstructure and mechanical properties of reactor pressure vessel steel. Previously-developed atomistic kinetic monte carlo models have been further developed and benchmarked against experimental data. Initial work has been performed to develop models of nucleation in a phase field model. Additional modeling work has also been performed to improve the fundamental understanding of the formation mechanisms and stability of matrix defects caused.« less

  5. Algebraic Turbulence-Chemistry Interaction Model

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  6. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less

  7. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek, E-mail: vivek.agarwal@inl.gov; Tawfik, Magdy S., E-mail: magdy.tawfik@inl.gov; Smith, James A., E-mail: james.smith@inl.gov

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failuremore » modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.« less

  8. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID,more » is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.« less

  9. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel

    2013-12-01

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less

  10. The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.

    2008-07-01

    The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facilitymore » at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)« less

  11. Multiplexed chemostat system for quantification of biodiversity and ecosystem functioning in anaerobic digestion

    PubMed Central

    Plouchart, Diane; Guizard, Guillaume; Latrille, Eric

    2018-01-01

    Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering. PMID:29518106

  12. Expected geoneutrino signal at JUNO

    NASA Astrophysics Data System (ADS)

    Strati, Virginia; Baldoncini, Marica; Callegari, Ivan; Mantovani, Fabio; McDonough, William F.; Ricci, Barbara; Xhixha, Gerti

    2015-12-01

    Constraints on the Earth's composition and on its radiogenic energy budget come from the detection of geoneutrinos. The Kamioka Liquid scintillator Antineutrino Detector (KamLAND) and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th inside the Earth. The Jiangmen Underground Neutrino Observatory (JUNO) neutrino experiment, designed as a 20 kton liquid scintillator detector, will be built in an underground laboratory in South China about 53 km from the Yangjiang and Taishan nuclear power plants, each one having a planned thermal power of approximately 18 GW. Given the large detector mass and the intense reactor antineutrino flux, JUNO aims not only to collect high statistics antineutrino signals from reactors but also to address the challenge of discriminating the geoneutrino signal from the reactor background. The predicted geoneutrino signal at JUNO is terrestrial neutrino unit (TNU), based on the existing reference Earth model, with the dominant source of uncertainty coming from the modeling of the compositional variability in the local upper crust that surrounds (out to approximately 500 km) the detector. A special focus is dedicated to the 6° × 4° local crust surrounding the detector which is estimated to contribute for the 44% of the signal. On the basis of a worldwide reference model for reactor antineutrinos, the ratio between reactor antineutrino and geoneutrino signals in the geoneutrino energy window is estimated to be 0.7 considering reactors operating in year 2013 and reaches a value of 8.9 by adding the contribution of the future nuclear power plants. In order to extract useful information about the mantle's composition, a refinement of the abundance and distribution of U and Th in the local crust is required, with particular attention to the geochemical characterization of the accessible upper crust where 47% of the expected geoneutrino signal originates and this region contributes the major source of uncertainty.

  13. Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows.

    PubMed

    Illg, Tobias; Löb, Patrick; Hessel, Volker

    2010-06-01

    The terminology Novel Process Window unites different methods to improve existing processes by applying unconventional and harsh process conditions like: process routes at much elevated pressure, much elevated temperature, or processing in a thermal runaway regime to achieve a significant impact on process performance. This paper is a review of parts of IMM's works in particular the applicability of above mentioned Novel Process Windows on selected chemical reactions. First, general characteristics of microreactors are discussed like excellent mass and heat transfer and improved mixing quality. Different types of reactions are presented in which the use of microstructured devices led to an increased process performance by applying Novel Process Windows. These examples were chosen to demonstrate how chemical reactions can benefit from the use of milli- and microstructured devices and how existing protocols can be changed toward process conditions hitherto not applicable in standard laboratory equipment. The used milli- and microstructured reactors can also offer advantages in other areas, for example, high-throughput screening of catalysts and better control of size distribution in a particle synthesis process by improved mixing, etc. The chemical industry is under continuous improvement. So, a lot of research is being done to synthesize high value chemicals, to optimize existing processes in view of process safety and energy consumption and to search for new routes to produce such chemicals. Leitmotifs of such undertakings are often sustainable development(1) and Green Chemistry(2).

  14. The U.S. RERTR program status and progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1998-01-21

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program since its inception in 1978 is described. A brief summary of the results which the RERTR Program had achieved by the end of 1996 in collaboration with its many international partners is followed by a detailed review of the major events, findings, and activities of 1997. Significant progress has been made during the past year. In the area of U.S. acceptance of spent fuel from foreign research reactors, several shipments have taken place and additional are being planned. Intense fuel development activities are in progress, including procurement ofmore » equipment, screening of candidate materials, and production of microplates. Irradiation of the first series of microplates began in August 1997 in the Advanced Test Reactor, in Idaho. Progress has been made in the Russian RERTR program, which aims to develop and demonstrate within five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, controversial performance issues which were raised at last year's meeting. Progress was also made on several aspects of producing molybdenum-99 from fission targets utilizing LEU instead of HEU. Various types of targets and processes are being pursued, with FDA approval of an LEU process projected to occur within two years. The feasibility of LEU Fuel conversion for three important DOE research reactors (BMRR, HFBR, and HFIR) has been evaluated by the RERTR program. In spite of the many momentous events which have occurred during the intervening years, and the excellent progress achieved, the most important challenges that the RERTR program faces today are not very different in type from those that were faced during the first RERTR meeting. Now, as then, the most important task is to develop new LEU fuels satisfying requirements which cannot be satisfied by any existing fuel. These new advanced fuels will enable conversion of the reactors which cannot be converted today, ensure better efficiency and performance for all research reactors, and allow the design of more powerful new advanced LEU reactors. As in the past, the success of the RERTR program will depend on free exchange of ideas and information, and on the international friendship and cooperation that have been a trademark of the RERTR program since its inception.« less

  15. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less

  16. SHARP Multiphysics Tutorials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.

    SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less

  17. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusheva, P.; Schaefer, F.; Kliem, S.

    2012-07-01

    The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safetymore » systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)« less

  18. PERFORM 60 - Prediction of the effects of radiation for reactor pressure vessel and in-core materials using multi-scale modelling - 60 years foreseen plant lifetime

    NASA Astrophysics Data System (ADS)

    Leclercq, Sylvain; Lidbury, David; Van Dyck, Steven; Moinereau, Dominique; Alamo, Ana; Mazouzi, Abdou Al

    2010-11-01

    In nuclear power plants, materials may undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities that operate these reactors need to quantify the ageing and the potential degradations of some essential structures of the power plant to ensure safe and reliable plant operation. So far, the material databases needed to take account of these degradations in the design and safe operation of installations mainly rely on long-term irradiation programs in test reactors as well as on mechanical or corrosion testing in specialized hot cells. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences have now made possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. A first step towards this goal has been successfully reached through the development of the RPV-2 and Toughness Module numerical tools by the scientific community created around the FP6 PERFECT project. These tools allow to simulate irradiation effects on the constitutive behaviour of the reactor pressure vessel low alloy steel, and also on its failure properties. Relying on the existing PERFECT Roadmap, the 4 years Collaborative Project PERFORM 60 has mainly for objective to develop multi-scale tools aimed at predicting the combined effects of irradiation and corrosion on internals (austenitic stainless steels) and also to improve existing ones on RPV (bainitic steels). PERFORM 60 is based on two technical sub-projects: (i) RPV and (ii) internals. In addition to these technical sub-projects, the Users' Group and Training sub-project shall allow representatives of constructors, utilities, research organizations… from Europe, USA and Japan to receive the information and training to get their own appraisal on limits and potentialities of the developed tools. An important effort will also be made to teach young researchers in the field of materials' degradation. PERFORM 60 has officially started on March 1st, 2009 with 20 European organizations and Universities involved in the nuclear field.

  19. Reducing Actinide Production Using Inert Matrix Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deinert, Mark

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less

  20. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  1. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  2. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for themore » present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, Jon; Hayes, Steven; Walters, L. C.

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less

  4. Design of a heatpipe-cooled Mars-surface fission reactor

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Guffee, Ray M.; Reid, Robert S.; Lipinski, Ronald J.; Wright, Steven A.; Talandis, Regina A.

    2002-01-01

    The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars-surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heatpipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive space fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed-which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heatpipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heatpipes. Fission energy is conducted from the fuel pins to the heatpipes, which then carry the heat to the Stirling engine. This paper describes the attributes, specifications, and performance of a 15-kWt HOMER reactor. .

  5. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    NASA Astrophysics Data System (ADS)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  6. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    NASA Astrophysics Data System (ADS)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  7. Addressing Research and Development Gaps for Plasma-Material Interactions with Linear Plasma Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Juergen

    Plasma-material interactions in future fusion reactors have been identified as a knowledge gap to be dealt with before any next step device past ITER can be built. The challenges are manifold. They are related to power dissipation so that the heat fluxes to the plasma-facing components can be kept at technologically feasible levels; maximization of the lifetime of divertor plasma-facing components that allow for steadystate operation in a reactor to reach the neutron fluence required; the tritium inventory (storage) in the plasma-facing components, which can lead to potential safety concerns and reduction in the fuel efficiency; and it is relatedmore » to the technology of the plasma-facing components itself, which should demonstrate structural integrity under the high temperatures and high neutron fluence. While the dissipation of power exhaust can and should be addressed in high power toroidal devices, the interaction of the plasma with the materials can be best addressed in dedicated linear devices due to their cost effectiveness and ability to address urgent research and development gaps more timely. However, new linear plasma devices are needed to investigate the PMI under fusion reactor conditions and test novel plasma-facing components. Existing linear devices are limited either in their flux, their reactor-relevant plasma transport regimes in front of the target, their fluence, or their ability to test material samples a priori exposed to high neutron fluence. The proposed Material Plasma Exposure eXperiment (MPEX) is meant to address those deficiencies and will be designed to fulfill the fusion reactor-relevant plasma parameters as well as the ability to expose a priori neutron activated materials to plasmas.« less

  8. Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors.

    PubMed

    Fu, H; Zhang, J-J; Xu, Y; Chao, H-J; Zhou, N-Y

    2017-03-01

    The ortho-nitrophenol (ONP)-utilizing Alcaligenes sp. strain NyZ215, meta-nitrophenol (MNP)-utilizing Cupriavidus necator JMP134 and para-nitrophenol (PNP)-utilizing Pseudomonas sp. strain WBC-3 were assembled as a consortium to degrade three nitrophenol isomers in sequential batch reactors. Pilot test was conducted in flasks to demonstrate that a mixture of three mononitrophenols at 0·5 mol l -1 each could be mineralized by this microbial consortium within 84 h. Interestingly, neither ONP nor MNP was degraded until PNP was almost consumed by strain WBC-3. By immobilizing this consortium into polyurethane cubes, all three mononitrophenols were continuously degraded in lab-scale sequential reactors for six batch cycles over 18 days. Total concentrations of ONP, MMP and PNP that were degraded were 2·8, 1·5 and 2·3 mol l -1 during this time course respectively. Quantitative real-time PCR analysis showed that each member in the microbial consortium was relatively stable during the entire degradation process. This study provides a novel approach to treat polluted water, particularly with a mixture of co-existing isomers. Nitroaromatic compounds are readily spread in the environment and pose great potential toxicity concerns. Here, we report the simultaneous degradation of three isomers of mononitrophenol in a single system by employing a consortium of three bacteria, both in flasks and lab-scale sequential batch reactors. The results demonstrate that simultaneous biodegradation of three mononitrophenol isomers can be achieved by a tailor-made microbial consortium immobilized in sequential batch reactors, providing a pilot study for a novel approach for the bioremediation of mixed pollutants, especially isomers present in wastewater. © 2016 The Society for Applied Microbiology.

  9. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.

    PubMed

    Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A

    2016-10-01

    Chemical looping combustion (CLC) is an inherent CO 2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO 2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO 2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO 2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe 2 O 3 , CuO, and mixed carrier-Fe 2 O 3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.

  10. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  11. Nuclear Energy Policy

    DTIC Science & Technology

    2010-05-27

    small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants

  12. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.; Giumanca, R.

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the plant complies with current safety standards. This plant will also need to be adapted to treat wastes generated by WWER dismantling. The Baita-Bihor National Radioactive Waste Disposal Facility consists of two galleries in an abandoned uranium mine located in the central-western part of the Bihor Mountains in Transylvania. The galleries lie at a depth of 840 m. The facility requires a considerable overhaul. Several steps recommended for the upgrade of the facility are explored. Environmental concerns have lately become a crucial part of the radioactive waste management strategy. As such, all decisions must be made with great regard for land utilization around nuclear objectives. (authors)« less

  13. Microbial sequencing methods for monitoring of anaerobic treatment of antibiotics to optimize performance and prevent system failure.

    PubMed

    Aydin, Sevcan

    2016-06-01

    As a result of developments in molecular technologies and the use of sequencing technologies, the analyses of the anaerobic microbial community in biological treatment process has become increasingly prevalent. This review examines the ways in which microbial sequencing methods can be applied to achieve an extensive understanding of the phylogenetic and functional characteristics of microbial assemblages in anaerobic reactor if the substrate is contaminated by antibiotics which is one of the most important toxic compounds. It will discuss some of the advantages and disadvantages associated with microbial sequencing techniques that are more commonly employed and will assess how a combination of the existing methods may be applied to develop a more comprehensive understanding of microbial communities and improve the validity and depth of the results for the enhancement of the stability of anaerobic reactors.

  14. The Nuclear Renaissance in the U.S.

    ScienceCinema

    Buongiorno, Jacopo

    2018-04-23

    Nuclear power currently provides 20% of the electricity generation in the U.S. and about 16% worldwide.  As a carbon-free energy source, nuclear is receiving a lot of attention by industry, lawmakers and environmental groups, as they attempt to resolve the issue of man-made climate change.  For the first time in 30 years several U.S. electric utilities have applied for construction and operation licenses of new nuclear power plants.  This talk will review the safety, operational and economic record of the existing U.S. commercial reactor fleet, will provide an overview of the reactor designs considered for the new wave of plant construction, and will discuss several research projects being conducted at the Massachusetts Institute of Technology to support the expansion of nuclear power in the U.S. and overseas.

  15. Liquid Metal Fast Breeder Reactor Program: Argonne facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, S. V.

    1976-09-01

    The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locationsmore » at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended.« less

  16. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup

    DOE PAGES

    Hayes, A. C.; Ricard-McCutchan, E. A.; Jungman, Gerard; ...

    2018-01-12

    We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured 235U/ 239Pu ratio of the fission beta spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment beta-decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation methodmore » still predicts an anomaly. Thus, we conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.« less

  17. Ionizing Radiation: how fungi cope, adapt, and exploit with the help of melanin

    PubMed Central

    Dadachova, Ekaterina; Casadevall, Arturo

    2008-01-01

    SUMMARY OF RECENT ADVANCES Life on Earth has always existed in the flux of ionizing radiation. However, fungi seem to interact with the ionizing radiation differently from other Earth’s inhabitants. Recent data show that melanized fungal species like those from Chernobyl’s reactor respond to ionizing radiation with enhanced growth. Fungi colonize space stations and adapt morphologically to extreme conditions. Radiation exposure causes upregulation of many key genes, and an inducible microhomology-mediated recombination pathway could be a potential mechanism of adaptive evolution in eukaryotes. The discovery of melanized organisms in high radiation environments, the space stations, Antarctic mountains, and in the reactor cooling water combined with phenomenon of ‘radiotropism’ raises the tantalizing possibility that melanins have functions analogous to other energy harvesting pigments such as chlorophylls. PMID:18848901

  18. SP-100 ground engineering system test site description and progress update

    NASA Astrophysics Data System (ADS)

    Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.

    1991-01-01

    The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.

  19. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Muhamad Pauzi, Anas, E-mail: anas@uniten.edu.my

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all ofmore » the elemental models can be combined. Once the overall β model is obtained, the β{sub min} is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β{sub min}, resulting in a list of candidate designs that possess the β value that is larger than the β{sub min}. The proposed methodology can also be applied to purposes other than technological foresight.« less

  20. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  1. Containment Sodium Chemistry Models in MELCOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Humphries, Larry L.; Denman, Matthew R

    To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRCmore » code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.« less

  2. Scram recoveries---C Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constable, D.W.; Pierce, J.R.; Wood, S.A.

    1962-04-26

    The purpose of this report is to discuss the observations made on two equilibrium scram recovery startups (April 5 and April 16). Normally, the two startups would have little significance but unusual ruptures were experienced in the top near section of the reactor shortly after both startups, which indicates that some similarity could exist between the two. The ruptures were unusual in that the two tubes involved both had multiple ruptures. One tube contained two E{sup 2} ruptures and the other tube contained three overbore metal ruptures. The overbore tube also contained three incipient ruptures (uranium split under the can).more » The initial rise to power on both startups appeared to be normal with the flux peaking on the near side as expected. On the April 16 startup the maximum level reached was 1050 at which time a rupture in overbore tube 3062 caused on increase in pressure resulting in a high trip on the Panellit gauge. A level of 1600 was reached on the April 5 startup which was held for approximately 14 hours at which time the reactor was shut down due to rupture indications on row 29.« less

  3. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography–Mass Spectrometry

    PubMed Central

    Hvastkovs, Eli G.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography–mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates. PMID:22482786

  4. The chemical state of defective uranium-plutonium oxide fuel pins irradiated in sodium cooled reactors

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1997-09-01

    Steady-state irradiation experiments were conducted in the sodium loop of the Siloe reactor on artificially failed mixed oxide pins that had been pre-irradiated in fast reactors up to 11.5% burnup. The formation of the predominant reaction product Na 3(U,Pu)O 4 starts on the fuel surface and is terminated when a lower O/(U + Pu) threshold of the fuel is attained. The axial extent of the reaction product depends on the size of the initial cladding defect. The occurrence of secondary cracks is possible. Na(U,Pu)O 3 forms at higher fuel temperatures. The existence of Na 3U 1- xPu xO 4 is shown in pre-irradiated blanket pins after artificial defect formation. Caesium in the oxocompounds is reduced to the metallic state and is dissolved in the coolant. Evidence of a very low chemical potential of oxygen in defective fuel pins is sustained by the occurrence of actinide-platinum metal phases formed by coupled reduction of hypostoichiometric fuel with ɛ-(Mo,Tc,Ru,Rh,Pd) precipitates. Continued operation of defective pins is not hazardous by easy precautions.

  5. The extraction of bitumen from western oil sands: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less

  6. A Nuclear Energy Renaissance in the U.S.?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, Carol E.; Mahy, Heidi A.; Ankrum, Al

    2008-01-01

    Is it time for a nuclear energy renaissance? Among other things, nuclear power is a carbon neutral source of base load power. With the growth in energy use expected over the next 20 years and the growing negative impacts of global climate changes, the cost of oil and gas, energy security and diversity concerns, and progress on advanced reactor designs, it may be the right time for nuclear power to enter a new age of growth. Asia and Russia are both planning for a nuclear renaissance. In Europe, Finland and France have both taken steps to pursue new nuclear reactors.more » U.S. utilities are preparing for orders of new reactors; one submitted a request to the U.S. Nuclear Regulatory Commission (NRC) to review its request to construct a new reactor on an existing site. What has the industry been doing since nuclear energy was birthed in the 1960s? In those days a bold new industry boasted that nuclear power in the United States was going to be “too cheap to meter”, but as we all know this did not come about for many reasons. Eventually, it became clear that industry had neglected to do its homework. Critiques of the industry were made on safety, security, environment, economic competitiveness (without government support), and nonproliferation. All of these factors need to be effectively addressed to promote the confidence and support of the public – without which a nuclear power program is not feasible.« less

  7. FEM simulation of a sono-reactor accounting for vibrations of the boundaries.

    PubMed

    Louisnard, O; Gonzalez-Garcia, J; Tudela, I; Klima, J; Saez, V; Vargas-Hernandez, Y

    2009-02-01

    The chemical effects of acoustic cavitation are obtained in sono-reactors built-up from a vessel and an ultrasonic source. In this paper, simulations of an existing sono-reactor are carried out, using a linear acoustics model, accounting for the vibrations of the solid walls. The available frequency range of the generator (19-21 kHz) is systematically scanned. Global quantities are plotted as a function of frequency in order to obtain response curves, exhibiting several resonance peaks. In absence of the precise knowledge of the bubbles size distribution and spatial location, the attenuation coefficient of the wave is taken as a variable, but spatially uniform parameter, and its influence is studied. The concepts of acoustic energy, intensity, active power, and source impedance are recalled, along with the general balance equation for acoustic energy, which is used as a convergence check of the simulations. It is shown that the interface between the liquid and the solid walls cannot be correctly represented by the simple approximations of either infinitely soft, or infinitely hard boundaries. Moreover, the liquid-solid coupling allows the cooling jacket to receive a noticeable part of the input power, although it is not in direct contact with the sonotrode. It may therefore undergo cavitation and this feature opens the perspective to design sono-reactors which avoid direct contact between the working liquid and the sonotrode. Besides, the possibility to shift the main pressure antinode far from the sonotrode area by exciting a resonance of the system is examined.

  8. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  9. Reviewing the Nuclear Nonproliferation Treaty

    DTIC Science & Technology

    2010-05-01

    aim was to determine the critical masses of nuclear explosives by tapping two subcritical masses toward each other with a screw- driver, all the...record. Not only has the IAEA failed to find existing covert reactors and fuel-making plants, which are critical to bomb making, the agency still...sort as possible will be critical if the NPT is to re- main effective against further proliferation. Certainly, such a goal informs the present vol

  10. 130. ARAII Administration building (ARA613) vicinity map and plot plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. ARA-II Administration building (ARA-613) vicinity map and plot plan showing relationship to other existing buildings on site and to ARA-602, to which this building was attached. F.C. Torkelson Comapny 842-area/SL-1-101-U-1. Date: October 1959. Ineel index code no. 070-0101-65-851-150053. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  11. Actual operation and regulatory activities on steam generator replacement in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hitoshi

    1997-02-01

    This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.

  12. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium inmore » the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons.« less

  13. Integrated Ceramic Membrane System for Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggestedmore » that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.« less

  14. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  15. Software reliability models for critical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, H.; Pham, M.

    This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the secondmore » place. 407 refs., 4 figs., 2 tabs.« less

  16. Software reliability models for critical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, H.; Pham, M.

    This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place.more » 407 refs., 4 figs., 2 tabs.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselyov, V.A.; Sokov, L.M.

    The LBB regulatory approach adopted in Russia in 1993 as an extra safety barrier is described for advanced WWER 1000 reactor steamline. The application of LBB concept requires the following additional protections. First, the steamline should be a highly qualified piping, performed in accordance with the applicable regulations and guidelines, carefully screened to verify that it is not subjected to any disqualifying failure mechanism. Second, a deterministic fracture mechanics analysis and leak rate evaluation have been performed to demonstrate that postulated through-wall crack that yields 95 1/min at normal operation conditions is stable even under seismic loads. Finally, it hasmore » been verified that the leak detection systems are sufficiently reliable, diverse and sensitive, and that adequate margins exist to detect a through wall crack smaller than the critical size. The obtained results are encouraging and show the possibility of the application of the LBB case to the steamline of advanced WWER 1000 reactor.« less

  18. Production of Titanium Metal by an Electrochemical Molten Salt Process

    NASA Astrophysics Data System (ADS)

    Fatollahi-Fard, Farzin

    Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.

  19. Thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system

    NASA Astrophysics Data System (ADS)

    Capelli, E.; Beneš, O.; Konings, R. J. M.

    2014-06-01

    The present study describes the full thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system which is one of the key systems considered for a molten salt reactor fuel. The work is an extension of the previously assessed LiF-NaF-ThF4-UF4 system with addition of BeF2 which is characterized by very low neutron capture cross section and a relatively low melting point. To extend the database the binary BeF2-ThF4 and BeF2-UF4 systems were optimized and the novel data were used for the thermodynamic assessment of BeF2 containing ternary systems for which experimental data exist in the literature. The obtained database is used to optimize the molten salt reactor fuel composition and to assess its properties with the emphasis on the melting behaviour.

  20. International workshop on cold neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more ofmore » a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.« less

  1. Light water reactor lower head failure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broadermore » range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.« less

  2. Sonocrystallization and Its Application in Food and Bioprocessing

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.; Pandit, Aniruddha B.

    The chapter aims at understanding in detail, the application of ultrasound for intensification of crystallization operation and covers different aspects such as basic mechanism of expected intensification, reactor designs and overview of existing literature related to food and bioprocess industry applications with an objective of presenting optimum guidelines for maximizing the efficacy of using ultrasound. A case study of lactose recovery from whey has also been discussed in details so as to give quantitative information about the effects of ultrasound in different stages of the crystallization operation and guidelines for optimization of different geometric and operating parameters. Overall it appears that use of ultrasound can significantly improve the crystallization operation by significant reduction in the processing time with generation of better quality crystals and also the recent developments in the design of large scale sonochemical reactors have enhanced the possibility of the application in actual commercial practice.

  3. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less

  4. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  5. Controlled multistep synthesis in a three-phase droplet reactor

    PubMed Central

    Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.

    2014-01-01

    Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034

  6. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  7. Dual benefit robotics programs at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. Inmore » the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.« less

  8. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  9. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Jungman, Gerard; McCutchan, E. A.; Sonzogni, A. A.; Garvey, G. T.; Wang, X. B.

    2018-01-01

    We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured U 235 /Pu 239 ratio of the fission β spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment β decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still allows for an anomaly. We conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.

  10. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  11. Effect of temperature on the fracture toughness in the nuclear reactor pressure vessel steel (SA508-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, S.W.; Lim, M.B.; Yoon, H.K.

    1994-12-31

    The elastic-plastic fracture toughness J{sub IC} of the Nuclear Reactor Pressure Vessel Steel (SA508-3) which has high toughness was obtained at three temperatures (room temperature, {minus}20 C, 200 C) using a 1/2 CT specimen. Especially the two methods recommended in ASTM and JSME were compared. It was found that difficulty exists in obtaining J{sub IC} by ASTM R-curve method, while JSME R-curve method yielded good results. The stretched zone width method gave slightly larger J{sub IC} values than those by the R-curve method for SA508-3 steel and the blunting line was not affected by the test temperatures. The relation betweenmore » SZW and J, SZW and J/E and SZW and J/{sigma}{sub ys} before initiation of a stable crack growth in the fracture toughness test at three temperatures is described.« less

  12. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  13. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less

  14. A cermet fuel reactor for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  15. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Sharp; R. T. McCracken

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.« less

  16. Analysis of key safety metrics of thorium utilization in LWRs

    DOE PAGES

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; ...

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel ( 233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based onmore » concepts that mix thorium with uranium (UO 2 + ThO 2) or that add fertile thorium (ThO 2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO 2 + ThO 2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO 2, alone or mixed with UO 2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO 2 + UO 2 and ThO 2 + PuO 2 against those of UO 2 and typical UO 2 + PuO 2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO 2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of knowledge gaps that require additional analysis or research to develop a technical basis for the licensing of thorium fuel are identified.« less

  17. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.

  18. Metal fires and their implications for advanced reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in thesemore » areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety analysis capabilities of the advanced-reactor community for directly relevant scenarios. Beyond the focus on the thermally-interacting and smoldering sodium pool fires, experimental and analysis capabilities for sodium spray fires have also been developed in this project.« less

  19. An experimental investigation of (UF-235)6 fission nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1979-01-01

    A UF6 handling system was designed for use in conjunction with the existing nuclear-pumped laser vacuum system at a nuclear reactor laboratory to perform the experiments described above. A modification to separate the gas fill system from the vacuum system and thus greatly reduce its volume is described as well as operating procedures for the first controlled nuclear pumping experiments with UF6 vapor contained in the laser cell.

  20. Optimal control of thermally coupled Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Scroggs, Jeffrey S.; Tran, Hien T.

    1994-01-01

    The optimal boundary temperature control of the stationary thermally coupled incompressible Navier-Stokes equation is considered. Well-posedness and existence of the optimal control and a necessary optimality condition are obtained. Optimization algorithms based on the augmented Lagrangian method with second order update are discussed. A test example motivated by control of transport process in the high pressure vapor transport (HVPT) reactor is presented to demonstrate the applicability of our theoretical results and proposed algorithm.

  1. Israel: Background and U.S. Relations

    DTIC Science & Technology

    2013-11-01

    material that could be used for nuclear weapons—apparently adding to existing Israeli concerns regarding Iranian uranium enrichment. The reactor under...York, September 24, 2013. 45 Walter Russell Mead, “Threading the Needle,” blogs.the-american-interest.com, October 25, 2013. 46 Israel Prime...civil war,” haaretz.com, September 17, 2013. 59 “‘Israel will not accept deal that allows Iran to enrich uranium ,’” israelhayom.com, October 23, 2013

  2. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Carl Baily; Tom Hill

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  3. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  4. Transport Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, D.A.; Shoemaker, S.A.

    1996-12-31

    The Morgantown Energy Technology Center (METC) is currently evaluating hot gas desulfurization (HGD)in its on-site transport reactor facility (TRF). This facility was originally constructed in the early 1980s to explore advanced gasification processes with an entrained reactor, and has recently been modified to incorporate a transport riser reactor. The TRF supports Integrated Gasification Combined Cycle (IGCC) power systems, one of METC`s advanced power generation systems. The HGD subsystem is a key developmental item in reducing the cost and increasing the efficiency of the IGCC concept. The TRF is a unique facility with high-temperature, high-pressure, and multiple reactant gas composition capability.more » The TRF can be configured for reacting a single flow pass of gas and solids using a variety of gases. The gas input system allows six different gas inputs to be mixed and heated before entering the reaction zones. Current configurations allow the use of air, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulfide, methane, nitrogen, oxygen, steam, or any mixture of these gases. Construction plans include the addition of a coal gas input line. This line will bring hot coal gas from the existing Fluidized-Bed Gasifier (FBG) via the Modular Gas Cleanup Rig (MGCR) after filtering out particulates with ceramic candle filters. Solids can be fed either by a rotary pocket feeder or a screw feeder. Particle sizes may range from 70 to 150 micrometers. Both feeders have a hopper that can hold enough solid for fairly lengthy tests at the higher feed rates, thus eliminating the need for lockhopper transfers during operation.« less

  5. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, withmore » the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my; Cioncolini, Andrea; Iacovides, Hector

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software calledmore » FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.« less

  7. Role of ADS in the back-end of the fuel cycle strategies and associated design activities: The case of Japan

    NASA Astrophysics Data System (ADS)

    Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Sugawara, Takanori; Kurata, Yuji; Takei, Hayanori; Saito, Shigeru; Sasa, Toshinobu; Obayashi, Hironari

    2011-08-01

    Reduction of burden caused by radioactive waste management is one of the most critical issues for the sustainable utilization of nuclear power. The Partitioning and Transmutation (P&T) technology provides the possibility to reduce the amount of the radiotoxic inventory of the high-level radioactive waste (HLW) dramatically and to extend the repository capacity. The accelerator-driven system (ADS) is regarded as a powerful tool to effectively transmute minor actinides (MAs) in the "double-strata" fuel cycle strategy. The ADS has a potential to flexibly manage MA in the transient phase from light water reactors (LWRs) to fast breeder reactors (FBRs), and can co-exist with FBR symbiotically and complementarily to enhance the reliability and the safety of the commercial FBR cycle. The concept of ADS in JAEA is a lead-bismuth eutectic (LBE) cooled, tank-type subcritical reactor with the power of 800 MWth driven by a 30 MW superconducting LINAC. By such an ADS, 250 kg of MA can be transmuted annually, which corresponds to the amount of MA produced in 10 units of LWR with 1 GWe. The design study was performed mainly for the subcritical reactor and the spallation target with a beam window. In Japan, Atomic Energy Commission (AEC) has implemented the check and review (C&R) on P&T technology from 2008 to 2009. In the C&R, the benefit of P&T technology, the current status of the R&D, and the way forward to promote it were discussed.

  8. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  9. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    PubMed

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interface design of VSOP'94 computer code for safety analysis

    NASA Astrophysics Data System (ADS)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  11. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics.

    PubMed

    Gonçalves, Idalina; Herrero-Yniesta, Victor; Perales Arce, Iratxe; Escrigas Castañeda, Monica; Cavaco-Paulo, Artur; Silva, Carla

    2014-07-01

    The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Methodology and Software for Gross Defect Detection of Spent Nuclear Fuel at the Atucha-I Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Shivakumar; Ham, Young S.; Gharibyan, Narek

    At the Atucha-I pressurized heavy water reactor in Argentina, fuel assemblies in the spent fuel pools are stored by suspending them in two vertically stacked layers. This introduces the unique problem of verifying the presence of fuel in either layer without physically moving the fuel assemblies. Since much of the fuel is very old, Cerenkov viewing devices are often not very useful even for the top layer. Given that the facility uses both natural uranium and slightly enriched uranium at 0.85 w% {sup 235}U, and has been in operation since 1974, a wide range of burnups and cooling times canmore » exist in any given pool. A spent fuel neutron counting tool consisting of a fission chamber, SFNC, has been used at the site to verify the presence of fuel up to burnups of 8000 MWd/t. At higher discharge burnups to levels up 11,000 MWd/t, the existing signal processing software of the tool was found to fail due to non-linearity of the source term with burnup. A new Graphical User Interface software package based on the LabVIEW platform was developed to predict expected neutron signals covering all ranges of burnups and cooling times and establish maps of expected signals at various pool locations. The algorithm employed in the software uses a set of transfer functions in a 47-energy group structure which are coupled with a 47-energy group neutron source spectrum based on various cooling times and burnups for each of the two enrichment levels. The database of the software consists of these transfer functions for the three different inter-assembly pitches that the fuel is stored in at the site. The transfer functions were developed for a 6 by 6 matrix of fuel assemblies with the detector placed at the center surrounded by four near neighbors, eight next nearest neighbors and so on for the 36 assemblies. These calculations were performed using Monte Carlo radiation transport methods. The basic methodology consisted of starting sources in each of the assemblies and tallying the contribution to the detector by a single neutron in each of the 47 energy groups used. Thus for the single existing symmetric pitch in the pools, where the vertical and horizontal separations are equal, only 6 sets of transfer functions are required. For the two asymmetrical pitches, nine sets of transfer functions are stored. In addition, source spectra at burnups ranging from 4000 to 20000 MWd/t and cooling times up to 40 years are stored. These source terms were established based on CANDU 37-rod fuel that is very similar to the Atucha fuel. Linear interpolation is used by the software for both burnup and cooling time to establish source terms at any intermediate condition. Using the burnup, cooling time and initial enrichment of the surrounding assemblies a set of source strengths in the 47-group structure for each of the 36 assemblies is established and multiplied group-wise with the appropriate transfer function set. The grand total over the 47 groups for all 36 assemblies is the predicted signal at the detector. The software was initially calibrated against a set of typically 5-6 measurements chosen from among the measured data at each level of the six pools and calibration factors were established. The set used for calibration is chosen such that it is fairly representative of the range of spent fuel assembly characteristics present in each level. Once established, these calibration factors can be repeatedly used for verification purposes. Recalibration will be required if the hardware or pool configurations has changed. It will also be required if a long enough time has elapsed since they were established thus making a cooling time correction necessary. The objective of the inspection is to detect missing fuel from one or more nearest neighbors of the detector. During the verification mode of the software, the predicted and measured signals are compared and the inspector is alerted if the difference between the two signals is beyond a set tolerance limit. Based on the uncertainties associated with both the calculations and measurements, a lower limit of the tolerance will be 15% with an upper limit of 20%. For the most part a 20% tolerance limit will be able to detect a missing assembly since in the vast majority of cases the drop in signal due to a single missing nearest neighbor assembly will be in the range 24-27%. The software was benchmarked against an extensive set of measured data taken at the site in 2004. Overall, 326 data points were examined and the prediction of the calibrated software was compared to the measurements within a set tolerance of ±20%. Of these, 283 of the predicted signals representing 87% of the total matched the measured data within ±10%. A further 27 or 8% were in the range of ±10-15% and 8 or 2.5% were in the range of ±15-20%. Thus, 97.5% of the data matched the measurements within the set tolerance limit of 20%, with 95% matching measured data with the lowest allowed tolerance limit of ±15%. The remaining 2.5% had measured signals that were very different from those at locations with very similar surrounding assemblies and the cause of these discrepancies could not be ascertained from the measurement logs. In summary, 97.5% of the predictions matched the measurements within the set 20% tolerance limit providing proof of the robustness of the software. This software package linked to SFNC will be deployed at the site and will enhance the capability of gross defect verification for the whole range of burnup, cooling time and initial enrichments of the spent fuel being discharged into the various pools at the Atucha-I reactor site.« less

  13. Response of Syntrophic Propionate Degradation to pH Decrease and Microbial Community Shifts in an UASB Reactor.

    PubMed

    Zhang, Liguo; Ban, Qiaoying; Li, Jianzheng; Jha, Ajay Kumar

    2016-08-28

    The effect of pH on propionate degradation in an upflow anaerobic sludge blanket (UASB) reactor containing propionate as a sole carbon source was studied. Under influent propionate of 2,000 mg/l and 35ºC, propionate removal at pH 7.5-6.8 was above 93.6%. Propionate conversion was significantly inhibited with stepwise pH decrease from pH 6.8 to 6.5, 6.0, 5.5, 5.0, 4.5, and then to 4.0. After long-term operation, the propionate removal at pH 6.5-4.5 maintained an efficiency of 88.5%-70.1%, whereas propionate was hardly decomposed at pH 4.0. Microbial composition analysis showed that propionate-oxidizing bacteria from the genera Pelotomaculum and Smithella likely existed in this system. They were significantly reduced at pH ≤5.5. The methanogens in this UASB reactor belonged to four genera: Methanobacterium, Methanospirillum, Methanofollis, and Methanosaeta. Most detectable hydrogenotrophic methanogens were able to grow at low pH conditions (pH 6.0-4.0), but the acetotrophic methanogens were reduced as pH decreased. These results indicated that propionate-oxidizing bacteria and acetotrophic methanogens were more sensitive to low pH (5.5-4.0) than hydrogenotrophic methanogens.

  14. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    NASA Astrophysics Data System (ADS)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  15. White paper report on using nuclear reactors to search for a value of theta13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.; Anjos, J.C.; Ayres, D.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the ordermore » of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.« less

  16. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  17. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Schneider, E. A.; Deinert, M. R.; Cady, K. B.

    2006-10-01

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  18. Assessment and mitigation of power quality problems for PUSPATI TRIGA Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohd Fazli; Ramachandaramurthy, Vigna K.

    2017-01-01

    An electrical power systems are exposed to different types of power quality disturbances. Investigation and monitoring of power quality are necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. This paper will discuss the power quality problems observed at the electrical sources of PUSPATI TRIGA Reactor (RTP). Assessment of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards) then, if problems exist, recommendation of mitigation techniques must be considered. Field power quality data is collected by power quality recorder and analyzed with reference to power quality standards. Normally the electrical power is supplied to the RTP via two sources in order to keep a good reliability where each of them is designed to carry the full load. The assessment of power quality during reactor operation was performed for both electrical sources. There were several disturbances such as voltage harmonics and flicker that exceeded the thresholds. To reduce these disturbances, mitigation techniques have been proposed, such as to install passive harmonic filters to reduce harmonic distortion, dynamic voltage restorer (DVR) to reduce voltage disturbances and isolate all sensitive and critical loads.

  19. A Passive System Reliability Analysis for a Station Blackout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, Acacia; Bucknor, Matthew; Grabaskas, David

    2015-05-03

    The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less

  20. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

Top