NASA Astrophysics Data System (ADS)
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
"What's in a structure?" The story of biguanides
NASA Astrophysics Data System (ADS)
Kathuria, Deepika; Bankar, Apoorva A.; Bharatam, Prasad V.
2018-01-01
Biguanides are a very interesting class of molecules which have been extensively studied for their medicinal applications. The structural and electronic structural aspects of biguanides have been explored in detail; however, even today, scientific literature continues to represent biguanides incorrectly as 1a. The X-ray crystal structure analysis and various spectroscopic studies such as UV, 1H and 15N NMR have confirmed that biguanide exists as tautomer 1b. Electronic structure analysis also supports the existence of 1b. This review focuses on the structure and electronic structure of biguanides and aims to emphasize the importance of the correct representation of a structure. There is a need to commence the use of 1b for the general representation of biguanides in textbooks and research articles which will ensure a correct perspective for further studies on these molecules.
Solid-solution thermodynamics in Al-Li alloys
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Lukina, E. A.
2016-05-01
The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.
NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in
2014-08-15
Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. Formore » the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maharaj, S. K.; Bharuthram, R.; Singh, S. V.
2012-12-15
A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density ofmore » either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.« less
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2009-12-01
By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.
Band structure and unconventional electronic topology of CoSi
NASA Astrophysics Data System (ADS)
Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.
2018-04-01
Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \
Xu, Min; Chai, Xiaoqi; Muthakana, Hariank; Liang, Xiaodan; Yang, Ge; Zeev-Ben-Mordehai, Tzviya; Xing, Eric P.
2017-01-01
Abstract Motivation: Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. Results: To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. Availability and Implementation: Source code freely available at http://www.cs.cmu.edu/∼mxu1/software. Contact: mxu1@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881965
NASA Astrophysics Data System (ADS)
Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning
2018-07-01
Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.
A direct connection between quantum Hall plateaus and exact pair states in a 2D electron gas
NASA Astrophysics Data System (ADS)
Hai, Wenhua; Li, Zejun; Xiao, Kewen
2011-12-01
It is previously found that the two-dimensional (2D) electron-pair in a homogeneous magnetic field has a set of exact solutions for a denumerably infinite set of magnetic fields. Here we demonstrate that as a function of magnetic field a band-like structure of energy associated with the exact pair states exists. A direct and simple connection between the pair states and the quantum Hall effect is revealed by the band-like structure of the hydrogen "pseudo-atom". From such a connection one can predict the sites and widths of the integral and fractional quantum Hall plateaus for an electron gas in a GaAs-Al x Ga1- x As heterojunction. The results are in good agreement with the existing experimental data.
On the state of crystallography at the dawn of the electron microscopy revolution.
Higgins, Matthew K; Lea, Susan M
2017-10-01
While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Measurement of the electron structure function F2e at LEP energies
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Gonçalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Slominski, W.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Szwed, J.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomé, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration
2014-10-01
The hadronic part of the electron structure function F2e has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √{ s} = 91.2- 209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F2γ analyses and help in refining existing parameterisations.
Synergistic effects of nuclear and electronic energy loss in KTaO 3 under ion irradiation
Zarkadoula, Eva; Jin, Ke; Zhang, Yanwen; ...
2017-01-09
In this paper, we use the inelastic thermal spike model for insulators and molecular dynamic simulations to investigate the effects of pre-existing damage on the energy dissipation and structural alterations in KTaO 3 under irradiation with 21 MeV Ni ions. Our results reveal a synergy between the pre-existing defects and the electronic energy loss, indicating that the defects play an important role on the energy deposition in the system. Our findings highlight the need for better understanding on the role of defects in electronic energy dissipation and the coupling of the electronic and atomic subsystems.
Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems
NASA Astrophysics Data System (ADS)
Nistor, Razvan A.
The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.
Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy.
Baird, Nathan J; Ludtke, Steven J; Khant, Htet; Chiu, Wah; Pan, Tao; Sosnick, Tobin R
2010-11-24
RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, Jonathan E.
2013-05-13
This piece of software is a new feature implemented inside an existing open-source library. Specifically, it is a new implementation of a density functional (HSE, short for Heyd-Scuseria-Ernzerhof) for a repository of density functionals, the libxc library. It fixes some numerical problems with existing implementations, as outlined in a scientific paper recently submitted for publication. Density functionals are components of electronic structure simulations, which model properties of electrons inside molecules and crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less
NASA Astrophysics Data System (ADS)
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Xu, Min; Chai, Xiaoqi; Muthakana, Hariank; Liang, Xiaodan; Yang, Ge; Zeev-Ben-Mordehai, Tzviya; Xing, Eric P
2017-07-15
Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. Source code freely available at http://www.cs.cmu.edu/∼mxu1/software . mxu1@cs.cmu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DOT National Transportation Integrated Search
2014-09-01
Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...
NASA Astrophysics Data System (ADS)
Yang, Guangrui; Qin, Dezhi; Zhang, Li
2014-06-01
A simple, convenient, and controllable strategy was reported in this contribution for protein-assisted synthesis BHb-conjugated PbS nanocubes. Powder X-ray diffraction, energy disperse X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction characterizations were used to determine the structure and morphology of BHb-conjugated PbS nanocubes. The prepared PbS nanocrystals with cubic rock salt structure were uniform and monodispersed with homogeneous size around 12 nm. The results of Fourier transform infrared and circular dichroism assay proved that Pb2+/PbS had coordination interaction with functional groups of BHb besides physical-binding effect, and the secondary structure of protein significantly changed with this interaction. Thermogravimetric analysis results confirmed the existence of BHb in PbS nanocrystals and indicated that the conjugate bonds existed between PbS and BHb. A clear perspective was shown here that special nanostructure could be created by using proteins as a mediating template at the inorganic-organic interface.
NASA Astrophysics Data System (ADS)
Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.
2017-01-01
We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.
Lee, Ho-Sung; Kang, Dai-In; Yoon, Seung Zhoo; Ryu, Yeon Hee; Lee, Inhyung; Kim, Hoon-Gi; Lee, Byung-Cheon; Lee, Ki Bog
2015-01-01
With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-week-old rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix. PMID:26330833
NASA Astrophysics Data System (ADS)
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
Thermodynamic signatures for the existence of Dirac electrons in ZrTe 5
Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; ...
2017-09-12
We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe 5 and its evolution with temperature. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semi-metal. We also observe a strong non-linearity in the magnetization that suggests the presence of additional low-lying carriers from other low-energy bands. Finally, we observe a striking sensitivity of the magnetic reversal to temperature that is not readily explained by simple band-structure models, but may be connected to a temperature dependent Lifshitz transition proposed to exist inmore » this material.« less
Electronic structures of Al-Si clusters and the magic number structure Al8Si4
NASA Astrophysics Data System (ADS)
Du, Ning; Su, Mingzhi; Chen, Hongshan
2018-02-01
The low-energy structures of Al8Sim (m = 1-6) have been determined by using the genetic algorithm combined with density functional theory and the Second-order Moller-Plesset perturbation theory (MP2) models. The results show that the close-packed structures are preferable in energy for Al-Si clusters and in most cases there exist a few isomers with close energies. The valence molecular orbitals, the orbital level structures and the electron localisation function (ELF) consistently demonstrate that the electronic structures of Al-Si clusters can be described by the jellium model. Al8Si4 corresponds to a magic number structure with pronounced stability and large energy gap; the 40 valence electrons form closed 1S21P61D102S21F142P6 shells. The ELF attractors also suggest weak covalent Si-Si, Si-Al and Al-Al bonding, and doping Si in aluminium clusters promotes the covalent interaction between Al atoms.
Structural complexities in the active layers of organic electronics.
Lee, Stephanie S; Loo, Yueh-Lin
2010-01-01
The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.
DNA-Based Single-Molecule Electronics: From Concept to Function.
Wang, Kun
2018-01-17
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I-V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.
DNA-Based Single-Molecule Electronics: From Concept to Function
2018-01-01
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed. PMID:29342091
Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas
NASA Technical Reports Server (NTRS)
Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.
2012-01-01
Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
NASA Astrophysics Data System (ADS)
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hyesung; Ryu, Dongsu; Jones, T. W., E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr, E-mail: twj@msi.umn.edu
2012-09-01
Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that aremore » expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.« less
Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels.
Ing, Nicole L; Spencer, Ryan K; Luong, Son H; Nguyen, Hung D; Hochbaum, Allon I
2018-03-27
Examples of long-range electronic conductivity are rare in biological systems. The observation of micrometer-scale electronic transport through protein wires produced by bacteria is therefore notable, providing an opportunity to study fundamental aspects of conduction through protein-based materials and natural inspiration for bioelectronics materials. Borrowing sequence and structural motifs from these conductive protein fibers, we designed self-assembling peptides that form electronically conductive nanofibers under aqueous conditions. Conductivity in these nanofibers is distinct for two reasons: first, they support electron transport over distances orders of magnitude greater than expected for proteins, and second, the conductivity is mediated entirely by amino acids lacking extended conjugation, π-stacking, or redox centers typical of existing organic and biohybrid semiconductors. Electrochemical transport measurements show that the fibers support ohmic electronic transport and a metallic-like temperature dependence of conductance in aqueous buffer. At higher solution concentrations, the peptide monomers form hydrogels, and comparisons of the structure and electronic properties of the nanofibers and gels highlight the critical roles of α-helical secondary structure and supramolecular ordering in supporting electronic conductivity in these materials. These findings suggest a structural basis for long-range electronic conduction mechanisms in peptide and protein biomaterials.
Structural transition of (InSb)n clusters at n = 6-10
NASA Astrophysics Data System (ADS)
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De
2016-10-01
An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.
Electrospinning for nano- to mesoscale photonic structures
NASA Astrophysics Data System (ADS)
Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.
2017-08-01
The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this process can be expected to grow rapidly and provide an alternative to traditional resource-intensive fabrication techniques.
Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons
NASA Astrophysics Data System (ADS)
Li, Kuanhong; Zhang, Xiang-Hua
2018-05-01
We investigate the electronic structures and transport properties of the embedded zigzag graphene nanoribbon (E-ZGNR) in hexagonal boron nitride trenches, which are achievable in recent experiments. Our first principles results show that the E-ZGNR has a significant enhanced conductivity relative to common ZGNRs due to the existence of asymmetrical edge structures. Moreover, only one spin-orientation electrons possess a widely opened band gap at the magnetic ground state with anti-ferromagnetic configuration, resulting in a full current-polarization at low bias region. Our findings indicate that the state-of-the-art embedding technology is quite useful for tuning the electronic structure of ZGNR and building possible spin injection and spin filter devices in spintronics.
On small beams with large topological charge: II. Photons, electrons and gravitational waves
NASA Astrophysics Data System (ADS)
Krenn, Mario; Zeilinger, Anton
2018-06-01
Beams of light with a large topological charge significantly change their spatial structure when they are focused strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the same modification of the spatial structure exists for relativistic electrons as well as for focused gravitational waves. However, this is for different physical reasons: for electrons, which are described by the Dirac equation, the spatial structure changes due to a spin–orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space–time between the transverse and propagation direction leads to the modification of the spatial structure. Thus, this universal phenomenon exists for both massive and massless elementary particles with spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C60) or neutrinos show a similar behavior and how this phenomenon can be explained in a unified physical way.
Structural and electronic properties of L-amino acids
NASA Astrophysics Data System (ADS)
Tulip, P. R.; Clark, S. J.
2005-05-01
The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang
2016-03-01
DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.
Structure of initial crystals formed during human amelogenesis
NASA Astrophysics Data System (ADS)
Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.
1992-02-01
X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.
Multi-band Electronic Structure of Ferromagnetic CeRuPO
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Ootsuki, Daiki; Horio, Masafumi; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Saini, Naurang L.; Sugawara, Hitoshi; Mizokawa, Takashi
2018-04-01
We have studied the multi-band electronic structure of ferromagnetic CeRuPO (TC = 15 K) by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results show that three hole bands exist around the zone center and two of them cross the Fermi level (EF). Around the zone corner, two electron bands are observed and cross EF. These hole and electron bands, which can be assigned to the Ru 4d bands, are basically consistent with the band-structure calculation including their orbital characters. However, one of the electron bands with Ru 4d 3z2 - r2 character is strongly renormalized indicating correlation effect due to hybridization with the Ce 4f orbitals. The Ru 4d 3z2 - r2 band changes across TC suggesting that the out-of-plane 3z2 - r2 orbital channel plays essential roles in the ferromagnetism.
NASA Astrophysics Data System (ADS)
Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang
2018-05-01
Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.
ELECTRON AS A FUNDAMENTAL ELEMENTARY PARTICLE. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, U.
1962-12-01
Elementary particles may be nothing but an electron existing under a certain condition, or a group of electrons that are formed to a certain combined state. Therefore, the knowledge of the electron structure is the starting point of our investigation about matter. To obtain the structure, the electron in an absolutely statical state is considered first and is studied by use of the gage- transformation defined in a modified way. This leads to the discovery oi a revised expression for the electromagnetic energy-tensor inside the electron as well as the wave equation for the electron formally similar to the Schrodingermore » equation for the hydrogen atom. However, our wave equation is interpreted as indicating the mode of energy distribution in the electron. To linearize the wave equation, a complex Riemannian geometry has been developed with results promising to be serviceable for further studies. (auth)« less
Han, Seungsuk; Yarkony, David R
2011-05-07
A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M
2009-09-30
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki
2011-10-01
The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.
Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy
ERIC Educational Resources Information Center
Bogle, Stephanie Nicole
2009-01-01
Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…
NASA Astrophysics Data System (ADS)
Varma, Ram K.; Punithavelu, A. M.; Banerjee, S. B.
2002-02-01
We report here the observations that exhibit the existence of matter wave phenomena with wavelength in the macrodomain of a few centimeters, for electrons moving along a magnetic field from an electron gun to a collector plate situated behind a grounded grid. These are in accordance with the predictions of a quantumlike theory for charged particles in the classical macrodomain, given by one of the authors [R. K. Varma, Phys. Rev. A 31, 3951 (1985)] with a recent generalization [R. K. Varma, Phys. Rev. E 64, 036608 (2001)]. The beats correspond to two closely spaced ``frequencies'' in the system, with the beat frequency given, in accordance with the characteristics of a wave phenomena, by the difference between the two frequencies. The beats ride as a modulation over a discrete energy band structure obtained with only one frequency present. The frequency here corresponds to the distance between the electron gun and the detector plate as it characterizes the variation in the energy band structure as the electron energy is swept. The second ``frequency'' corresponds to the gun-grid distance. These observations of the beats of matter waves in this experiment, with characteristics in accordance with the wave algorithm, then establish unambiguously the existence of macroscopic matter waves for electrons propagating along a magnetic field.
Electride and superconductivity behaviors in Mn5Si3-type intermetallics
NASA Astrophysics Data System (ADS)
Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo
2017-08-01
Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.
Emergent quasicrystals in strongly correlated systems
NASA Astrophysics Data System (ADS)
Sagi, Eran; Nussinov, Zohar
2016-07-01
Commensurability is of paramount importance in numerous strongly interacting electronic systems. In the fractional quantum Hall effect, a rich cascade of increasingly narrow plateaux appear at larger denominator filling fractions. Rich commensurate structures also emerge, at certain filling fractions, in high temperature superconductors and other electronic systems. A natural question concerns the character of these and other electronic systems at irrational filling fractions. Here we demonstrate that quasicrystalline structures naturally emerge in these situations, and trigger behaviors not typically expected of periodic systems. We first show that irrationally filled quantum Hall systems cross over into quasiperiodically ordered configuration in the thin-torus limit. Using known properties of quasicrystals, we argue that these states are unstable against the effects of disorder, in agreement with the existence of quantum Hall plateaux. We then study analogous physical situations in a system of cold Rydberg atoms placed on an optical lattice. Such an experimental setup is generally disorder free, and can therefore be used to detect the emergent quasicrystals we predict. We discuss similar situations in the Falicov-Kimball model, where known exact results can be used to establish quasicrystalline structures in one and two dimensions. We briefly speculate on possible relations between our theoretical findings and the existence of glassy dynamics and other features of strongly correlated electronic systems.
Carrell, David S; Schoen, Robert E; Leffler, Daniel A; Morris, Michele; Rose, Sherri; Baer, Andrew; Crockett, Seth D; Gourevitch, Rebecca A; Dean, Katie M; Mehrotra, Ateev
2017-09-01
Widespread application of clinical natural language processing (NLP) systems requires taking existing NLP systems and adapting them to diverse and heterogeneous settings. We describe the challenges faced and lessons learned in adapting an existing NLP system for measuring colonoscopy quality. Colonoscopy and pathology reports from 4 settings during 2013-2015, varying by geographic location, practice type, compensation structure, and electronic health record. Though successful, adaptation required considerably more time and effort than anticipated. Typical NLP challenges in assembling corpora, diverse report structures, and idiosyncratic linguistic content were greatly magnified. Strategies for addressing adaptation challenges include assessing site-specific diversity, setting realistic timelines, leveraging local electronic health record expertise, and undertaking extensive iterative development. More research is needed on how to make it easier to adapt NLP systems to new clinical settings. A key challenge in widespread application of NLP is adapting existing systems to new clinical settings. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan
2010-04-15
An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less
NASA Astrophysics Data System (ADS)
Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.
2018-02-01
Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.
RAPID COMMUNICATION: Study of superstructure II in multiferroic BiMnO3
NASA Astrophysics Data System (ADS)
Ge, Bing-Hui; Li, Fang-Hua; Li, Xue-Ming; Wang, Yu-Mei; Chi, Zhen-Hua; Jin, Chang-Qing
2008-09-01
The crystal structure of the minor phase, named superstructure II, existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy. Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images. The unit cell of minor phase was determined to be triclinic with the size 4×4×4 times as large as the distorted perovskite subcell. The [111] and [10bar 1] projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing. A possible rough three-dimensional (3D) structure model was proposed based on the 3D structural information extracted from the two projected structure maps. Since there is no inversion centre in the proposed model, the minor phase may contribute to the ferroelectric property of BiMnO3.
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo
2016-07-07
An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.
Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)
2002-01-01
Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.
Electronic and optoelectronic device applications based on ReS2
NASA Astrophysics Data System (ADS)
Liu, Erfu; Long, Mingsheng; Wang, Yaojia; Pan, Yiming; Ho, Chinghwa; Wang, Baigeng; Miao, Feng
Rhenium disulfide (ReS2) is a unique semiconducting TMD with distorted 1T structure and weak interlayer coupling. We have previously investigated its in-plane anisotropic property and electronic applications on FET and digital inverters. In this talk, we will present high responsivity phototransistors based on few-layer ReS2. Depending on the back gate voltage, source drain bias and incident optical light intensity, the maximum attainable photoresponsivity can reach as high as 88,600 A W-1, which is one of the highest value among individual two-dimensional materials with similar device structures. Such high photoresponsivity is attributed to the increased light absorption as well as the gain enhancement due to the existence of trap states in the few-layer ReS2 flakes. The existence of trap states is proved by temperature dependent transport measurements. It further enables the detection of weak signals. Our studies underscore ReS2 as a promising material for future electronic and sensitive optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borhanian, J.; Shahmansouri, M.
2013-01-15
A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less
NASA Astrophysics Data System (ADS)
Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.
2017-09-01
The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.
Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; ...
2016-03-30
DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtainmore » 14 density maps at ~ 2-nm resolution . Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.« less
NASA Astrophysics Data System (ADS)
Rehman, Shafiq Ur; Li, H. M.; Ding, Z. J.
2018-05-01
First principles calculations have been performed to predict the structural stability and electronic structures of hydrogen passivated wurtzite CdSe/ZnS and ZnS/CdSe core/shell nanowires (CSNWs) in the [0001] direction. The calculated binding energy shows that ZnS/CdSe CSNWs are more stable than CdSe/ZnS CSNWs and the stability of ZnS/CdSe CSNWs increases with increasing the thickness of ZnS shell. The modulated electronic band gap demonstrates an increase when the size of both CSNWs is reduced, as a result of the quantum confinement effect. The core-to-shell chemical composition of atoms shows that a strong composition effect also exists in these CSNWs, which in turn affects their electronic properties. Our simulated results show that the photoemission spectra of the CSNWs can be significantly improved by tuning the energy gap of CSNWs.
NASA Astrophysics Data System (ADS)
Bano, Amreen; Gaur, N. K.
2018-05-01
Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.
Ji, T T; Bu, N; Chen, F J; Tao, Y C; Wang, J
2016-04-14
For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.
Electron Heat Flux in Pressure Balance Structures at Ulysses
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.
Searching for the rules that govern hadron construction
Shepherd, Matthew R.; Dudek, Jozef J.; Mitchell, Ryan E.
2016-06-22
Just as quantum electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by the exchange of photons, quantum chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by the exchange of gluons. QCD seems to allow hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, not to be present in nature. In this paper, we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for predicting hadron structure from QCD.
The impact of electron correlations on the energetics and stability of silicon nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsko, N. L.; Baturin, V. S.; Lepeshkin, S. V.
2016-08-21
The first-principles prediction of stable nanocluster structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects beyond density functional theory (DFT), because their contributions can change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si{sub 10}H{sub 2n} (0 ≤ n ≤ 11), where passivation changes the structure from compact to loosely packed and branched. Our calculations performed with DFT, hybrid functionals, and Hartree-Fock methods, as well as bymore » the GW approximation, confirm a considerable sensitivity of isomer energy ordering to many-electron effects.« less
Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.
De, Amrit; Pryor, Craig E
2014-01-29
Crystalline semiconductors may exist in different polytypic phases with significantly different electronic and optical properties. In this paper, we calculate the electronic structure and optical properties of diamond, Si and Ge in the lonsdaleite (hexagonal diamond) phase using a transferable model empirical pseudopotential method with spin–orbit interactions. We calculate their band structures and extract various relevant parameters. Differences between the cubic and hexagonal phases are highlighted by comparing their densities of states. While diamond and Si remain indirect gap semiconductors in the lonsdaleite phase, Ge transforms into a direct gap semiconductor with a much smaller bandgap. We also calculate complex dielectric functions for different optical polarizations and find strong optical anisotropy. We further provide expansion parameters for the dielectric functions in terms of Lorentz oscillators.
Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms
Martínez-Santiago, Oscar; Marrero-Ponce, Yovani; Barigye, Stephen J.; Le Thi Thu, Huong; Torres, F. Javier; Zambrano, Cesar H.; Muñiz Olite, Jorge L.; Cruz-Monteagudo, Maykel; Vivas-Reyes, Ricardo; Vázquez Infante, Liliana; Artiles Martínez, Luis M.
2016-01-01
This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms. PMID:27240357
Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax
NASA Astrophysics Data System (ADS)
Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.
2018-04-01
We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.
Electron currents associated with an auroral band
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Anderson, H. R.
1975-01-01
Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.
Heptagraphene: Tunable dirac cones in a graphitic structure
Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.
2016-09-13
Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less
Behavior of magnesium at high pressures and high temperatures
NASA Astrophysics Data System (ADS)
Cynn, H.; Evans, W.; Yoo, C. S.; Ohishi, Y.; Sata, N.; Shimomura, O.
2004-03-01
Structural stability relationship manifested by 3-, 4-, 5d-electron transition metals also appears in so-called nearly free electron metal, magnesium as exampled by HCP to BCC structure change at high pressures. This transition has been examined by theory and confirmed by experiment. Recently, HCP to DHCP crystal structure change has been reported at high temperatures below 20 GPa. However, this type of structure change is rather common in 4f-electron lanthanides. In this study, we used synchrotron x-ray diffraction to find out the relationship between BCC and DHCP employing a diamond anvil cell technique coupled with external and laser heating methods. We also examined pressure gradient effects in relation with the existence of DHCP. This work has been supported by PDRP program at the Lawrence Livermore National Laboratory, University of California under the auspices of the U.S. Department of Energy under Contract No. W-7405-ENG-48
Theoretical Analysis of the Electron Spiral Toroid Concept
NASA Technical Reports Server (NTRS)
Cambier, Jean-Luc; Micheletti, David A.; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
This report describes the analysis of the Electron Spiral Toroid (EST) concept being promoted by Electron Power Systems Inc. (EPS). The EST is described as a toroidal plasma structure composed Of ion and electron shells. It is claimed that the EST requires little or no external confinement, despite the extraordinarily large energy densities resulting from the self-generating magnetic fields. The present analysis is based upon documentation made available by EPS, a previous description of the model by the Massachusetts Institute of Technology (MIT), and direct discussions with EPS and MIT. It is found that claims of absolute stability and large energy storage capacities of the EST concept have not been substantiated. Notably, it can be demonstrated that the ion fluid is fundamentally unstable. Although various scenarios for ion confinement were subsequently suggested by EPS and MIT, none were found to be plausible. Although the experimental data does not prove the existence of EST configurations, there is undeniable experimental evidence that some type of plasma structures whose characteristics remain to be determined are observed. However, more realistic theoretical models must first be developed to explain their existence and properties before applications of interest to NASA can he assessed and developed.
Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas
NASA Astrophysics Data System (ADS)
Volosevich, A.-V.; Meister, C.-V.
2003-04-01
In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.
Existence regimes for shocks in inhomogeneous magneto-plasmas having entropy
NASA Astrophysics Data System (ADS)
Iqbal, Javed; Yaqub Khan, M.
2018-04-01
The finding of connection of plasma density and temperature with entropy gives an incitement to study different plasma models with respect to entropy. Nonlinear dissipative one- and two-dimensional structures (shocks) are investigated in nonuniform magnetized plasma with respect to entropy. The dissipation comes in the medium through ion-neutral collisions. The linear dispersion relation is derived. The Korteweg-deVries-Burgers and Kadomtsev-Petviashvili-Burgers equations are derived for nonlinear drift waves in 1-D and 2-D by employing the drift approximation. It is found that vd/u ( vd is the diamagnetic drift velocity and u is the velocity of nonlinear structure) plays a significant role in the shock formation. It is also found that entropy has a significant effect on the strength of shocks. It is noticed that v d/u determines the rarefactive and compressive nature of the shocks. It is observed that upper and lower bounds exist for the shock velocity. It is also observed that the existing regimes for both one- and two-dimensional shocks for kappa distributed electrons are different from shocks with Cairns distributed electrons. Both rarefactive and compressive shocks are found for the 1-D drift waves with kappa distributed electrons. Interestingly, it is noticed that entropy enhances the strength of one- and two-dimensional shocks.
Using an ultrafast, high-intensity radiation source called an X-ray free-electron laser (XFEL), scientists have captured an atomic-level picture of an RNA structure called a riboswitch as it reorganizes itself to regulate protein production. The structure they visualized has never before been seen, and likely exists for only milliseconds after the riboswitch first encounters
[Study on structure and phase transformation laws of natural FeS2 whisker by Raman spectroscopy].
Huang, Fei; Kou, Da-Ming; Yao, Yu-Zeng; Ni, Pei; Ding, Jun-Ying
2009-08-01
FeS2 belongs to sulfide, including pyrite of isometric system and marcasite of orthorhombic system. The FeS2 discovered in Gengzhuang, Shanxi Province, was growing in the form of whisker. The study with scanning electron microscopy and electron probe show that the mineral components of FeS2 vary regularly. The structure of natural nano-micron FeS2 whisker was determined by micro-Raman spectroscopy. The results show that there exist two types of structure in FeS2 whiskers: pyrite and marcasite. Marcasite presents irregular shapes, such as coarse lotus root joints, crude columnar or beaded. Pyrite exists in the shape of straight line and smooth surface. In the early growing stage, Gengzhuang FeS2 whisker was mainly marcasite-type structure; in the middle stage it was coexistent structure of pyrite- and marcasite-type; in the late stage it was mainly pyrite-type. The growing stages of the whisker FeS2 show the phase transformation laws. Moreover, during the growing process marcasite was growing with pyrite coated on. Study on FeS2 whisker structure shows that there are correlations between phase transformation laws of the structure and forms, and between the forming time and the composition characteristics.
Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.
Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M
2017-09-29
Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.
Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E
2016-11-23
Doped BiVO 4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO 4 . Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W 6+ for V 5+ in BiVO 4 . This is shown to result in the presence of inter-band gap states related to electrons at V 4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO 4 .
METHODOLOGICAL NOTES: Integrating magnetism into semiconductor electronics
NASA Astrophysics Data System (ADS)
Zakharchenya, Boris P.; Korenev, Vladimir L.
2005-06-01
The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor—making the hybrid an electronic-write-in and electronic-read-out elementary storage unit.
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-01-01
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers. PMID:28008910
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films.
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-12-23
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
A stable compound of helium and sodium at high pressure
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...
2017-02-06
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ait Ahsaine, H.; Taoufyq, A.; Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex
2014-10-15
The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better representedmore » by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.« less
NASA Astrophysics Data System (ADS)
Ding, Yi; Wang, Yanli; Ni, Jun; Shi, Lin; Shi, Siqi; Tang, Weihua
2011-05-01
Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX 2) sheets. We find the lattice parameters and stabilities of the MX 2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS 2 and TaS 2 sheets have comparable energetic stabilities to the synthesized MoS 2 and WS 2 ones. The molybdenum and tungsten dichalcogenide (MoX 2 and WX 2) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX 2 and TaX 2) sheets. However, the NbX 2 and TaX 2 sheets are metals, while the MoX 2 and WX 2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS 2 and WS 2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX 2 sheets have potential applications in nano-electronics and nano-devices.
Saleh, Navid B; Milliron, Delia J; Aich, Nirupam; Katz, Lynn E; Liljestrand, Howard M; Kirisits, Mary Jo
2016-10-15
Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pal, Banabir; Singh, Anjali; Sharada, G.; Mahale, Pratibha; Kumar, Abhinav; Thirupathaiah, S.; Sezen, H.; Amati, M.; Gregoratti, Luca; Waghmare, Umesh V.; Sarma, D. D.
2017-11-01
A metastable trigonal phase, existing only as small patches on a chemically exfoliated few-layered, thermodynamically stable 1 H phase of Mo S2 , is believed to critically influence the properties of Mo S2 -based devices. The electronic structure of this metastable phase is little understood in the absence of a direct experimental investigation of its electronic properties, complicated further by conflicting claims from theoretical investigations. We address this issue by investigating the electronic structure of this minority phase in chemically exfoliated Mo S2 few-layered systems by enhancing its contributions with the use of highly spatially resolved (≤120 nm resolution) photoemission spectroscopy and Raman spectroscopy in conjunction with state-of-the-art electronic structure calculations. Based on these results, we establish that the ground state of this phase, arrived at by the chemical exfoliation of Mo S2 using the usual Li intercalation technique, is a small gap (˜90 ±40 meV ) semiconductor in contrast to most claims in the literature; we also identify the specific trigonal structure it has among many suggested ones.
NASA Astrophysics Data System (ADS)
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2012-02-01
We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on TiO2-terminated SrTiO3(001) thin film surfaces. The conductance map exhibited electronic modulations that were completely different from the surface structure. We also found that the electronic modulations were strongly dependent on temperature and the density of atomic defects associated with oxygen vacancies. These results suggest the existence of strongly correlated two-dimensional electronic states near the SrTiO3 surface, implying the importance of electron correlation at the interfaces of SrTiO3-related heterostructures.
Using an ultrafast, high-intensity radiation source called an X-ray free-electron laser (XFEL), scientists have captured an atomic-level picture of an RNA structure called a riboswitch as it reorganizes itself to regulate protein production. The structure they visualized has never before been seen, and likely exists for only milliseconds after the riboswitch first encounters its activating molecule. Read more...
Ordered structure of FeGe2 formed during solid-phase epitaxy
NASA Astrophysics Data System (ADS)
Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.
2018-05-01
Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.
Investigation of multipactor breakdown in communication satellite microwave co-axial systems
NASA Astrophysics Data System (ADS)
Nagesh, S. K.; Revannasiddiah, D.; Shastry, S. V. K.
2005-01-01
Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green's function technique. This field has been compared with the field that would exist in the absence of multipactor.
Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.
Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won
2017-11-01
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron beam interaction and its effect on crystalline 2H phase of MoS2
NASA Astrophysics Data System (ADS)
Reshmi, S.; Akshaya, M. V.; Basu, Palash Kumar; Bhattacharjee, K.
2018-04-01
Transition metal dichalcogenides (TMDs) in their two dimensional (2D) and nanostructured forms are of fundamentally and technologically important. TMDs can exist in various forms like mono- or few layers or in nanostructures like- nanospheres or rod like- structures whose band gap energy and carrier concentration varies depending on the crystalline phase and the structure. Tunableelectronic properties of the TMDs and the impact of controlled electron beam interaction on the TMDs can have dramatic performances in the area of energy storage, supercapacitors, electrocatalysis and for sensing applications. Here, we report of such electron beam interaction on the MoS2 nanostructures and propose a 1T-2H phase of MoS2 which might be responsible for comprising the post electron beam interaction phase of MoS2.
Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy
Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...
2014-08-21
Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less
InGaAs/InAlAs Double Quantum Wells as Starting Structures for Quantum Logic Gates
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.
2011-12-01
The detection of both symmetric and anti-symmetric electron states in DQWs by an optical method is described in this paper. Values of the symmetric and anti-symmetric splitting (SAS-gap) determined in this way are used for interpretation of the beating effect in the SdH oscillations observed at low temperatures in the external magnetic field. SAS-splitting of electron states in DQWs clearly exists at room temperature and electrons in symmetric and anti-symmetric states have different statistics so these states can be identified in electron transport.
Final Report - Few-Body Studies Using Electromagnetic Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine
The work discussed here is an extension of work previously funded by U.S. Department of Energy Grant DE-FG02-97ER41025. Measurements of charged pion photoproduction from deuterium using the Laser Electron Gamma Source (LEGS) at the Brookhaven National Laboratory previously made by us, as members of the LEGS Collaboration, resulted in the most interesting result of two decades of work. By measuring the production of a charged pion (π +) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of rare, long-lived states not explicable by standard nuclear theory; they suggested a setmore » of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued. Several measurements at various laboratories have supported, but not proved, the existence of these exotic states. The rarity of these states made their existence undetectable in most previous measurements. Only by observing characteristic signatures of such states (i.e., decay photons), by using very specific kinematics which isolate certain reaction products, or by measuring polarization-dependent observables. During the period of this grant we pursued and made progress on the development of experiments to be performed at the High Intensity Gamma Source (HIGS) of the Tri Universities Nuclear Laboratory (TUNL). Our understanding of photon- and electron-induced nuclear reactions depends on understanding of the basic electron and photon interaction. Recently, the issue of two-photon contributions has arisen in the context of deeply inelastic electron scattering. One way to address this is to measure asymmetries in the Bethe-Heitler ee process. We also made progress in developing the detectors required to measure these asymmetries at HIGS. During the last several years the apparent discrepancy between the size of the proton as measured using electrons and that as measured using muons has received a great deal of attention. Working with colleagues at the Jefferson Laboratory (JLAB) we showed that the apparent discrepancy was almost surely the result of mistakes in the statistical analysis of electron scattering data, that there is almost surely no discrepancy.« less
NASA Astrophysics Data System (ADS)
Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.
2016-06-01
We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.
Liu, Zhe; Jiang, Liwei; Zheng, Yisong
2015-02-04
By means of an appropriate wave function connection condition, we study the electronic structure of a line defect superlattice of graphene with the Dirac equation method. We obtain the analytical dispersion relation, which can simulate well the tight-binding numerical result about the band structure of the superlattice. Then, we generalize this theoretical method to study the electronic transmission through a potential barrier where multiple line defects are periodically patterned. We find that there exists a critical incident angle which restricts the electronic transmission through multiple line defects within a specific incident angle range. The critical angle depends sensitively on the potential barrier height, which can be modulated by a gate voltage. As a result, non-trivial transmissions of K and K' valley electrons are restricted, respectively, in two distinct ranges of the incident angle. Our theoretical result demonstrates that a gate voltage can act as a feasible measure to tune the valley polarization when electrons tunnel through multiple line defects.
On the structural origins of ferroelectricity in HfO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Xiahan; Grimley, Everett D.; LeBeau, James M.
2015-04-20
Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.
NASA Astrophysics Data System (ADS)
Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie
2017-07-01
Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J.; Zarkadoula, Eva; Pakarinen, Olli H.
2015-01-12
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontiummore » titanate (SrTiO 3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.« less
Electronic structures of superionic conductor Li3N
NASA Astrophysics Data System (ADS)
Aoki, Masaru; Ode, Yoshiyuki; Tsumuraya, Kazuo
2011-03-01
Lithium nitride is a superionic conductor with high Li conductivity. The compound has been studied extensively because of its potential utility as electrolyte in solid-state batteries. Though the mobility of the cations within the crystalline solid is high comparable to that of molten salts, the mechanism of the high mobility of the cations remains unsolved. To clarify the origin of the mobility we investigate the electronic states of the Li cations in the Li 3 N crystal with the first principles electronic structure analysis, focusing a correlation between the cations and the ionicities of the constituent atoms. We have found the existence of the covalent bonding between the Li atoms in the Li 3 N crystal in spite of the ionized states of the constituent atoms.
Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces
Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...
2016-07-26
Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less
Demonstration project: Putting the bioastronautics data book on line
NASA Technical Reports Server (NTRS)
Travis, I. L.
1985-01-01
The possibilities for prototyping electronic document designs using existing microcomputer software are considered. An initial prototype of a hierarchically structured design that includes both text and graphics from a section of the Bioastronautics Data Book are considered.
Electronic structures of 1-ML C84/Ag(111): Energy level alignment and work function variation
NASA Astrophysics Data System (ADS)
Wang, Peng; Zhao, Li-Li; Zhang, Jin-Juan; Li, Wen-Jie; Liu, Wei-Hui; Chen, Da; Sheng, Chun-Qi; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; Li, Hong-Nian
2017-12-01
The electronic structures of fullerene/metal interface are critical to the performance of devices based on fullerene in molecular electronics and organic electronics. Herein, we investigate the electronic structures at the interface between C84 and Ag(111) by photoelectron spectroscopy and soft X-ray absorption spectroscopy techniques. It is observed that C84 monolayer on Ag(111) surface (1-ML C84/Ag(111)) has metallic nature. A charge transfer from substrate to the unoccupied states of C84 is determined to be 1.3 electrons per molecule. However, the work function of 1-ML C84 (4.72 eV) is observed slightly larger than that of the clean Ag(111) substrate (4.50 eV). A bidirectional charge transfer model is introduced to understand the work function variation of the fullerene/metal system. In addition to the charge transfer from substrate to the adsorbate's unoccupied states, there exists non-negligible back charge transfer from fullerene occupied molecular orbital to the metal substrate through interfacial hybridization. The Fermi level will be pinned at ∼4.72 eV for C84 monolayer on coinage metal substrate.
Ion-Acoustic Double-Layers in Plasmas with Nonthermal Electrons
NASA Astrophysics Data System (ADS)
Rios, L. A.; Galvão, R. M. O.
2014-12-01
A double layer (DL) consists of a positive/negative Debye sheath, connecting two quasineutral regions of a plasma. These nonlinear structures can be found in a variety of plasmas, from discharge tubes to space plasmas. It has applications to plasma processing and space propulsion, and its concept is also important for areas such as applied geophysics. In the present work we investigate the ion-acoustic double-layers (IADLs). It is believed that these structures are responsible for the acceleration of auroral electrons, for example. The plasma distributions near a DL are usually non-Maxwellian and can be modeled via a κ distribution function. In its reduced form, the standard κ distribution is equivalent to the distribution function obtained from the maximization of the Tsallis entropy, the q distribution. The parameters κ and q measure the deviation from the Maxwellian equilibrium ("nonthermality"), with -κ=1/(1-q) (in the limit κ → ∞ (q → 1) the Maxwellian distribution is recovered). The existence of obliquely propagating IADLs in magnetized two-electron plasmas is investigated, with the hot electron population modeled via a κ distribution function [1]. Our analysis shows that only subsonic and rarefactive DLs exist for the entire range of parameters investigated. The small amplitude DLs exist only for τ=Th/Tc greater than a critical value, which grows as κ decreases. We also observe that these structures exist only for large values of δ=Nh0/N0, but never for δ=1. In our model, which assumes a quasineutral condition, the Mach number M grows as θ decreases (θ is the angle between the directions of the external magnetic field and wave propagation). However, M as well as the DL amplitude are reduced as a consequence of nonthermality. The relation of the quasineutral condition and the functional form of the distribution function with the nonexistence of IADLs has also been analyzed and some interesting results have been obtained. A more detailed discussion about this topic will be presented during the conference. References: [1] L. A. Rios and R. M. O. Galvão, Phys. Plasmas 20, 112301 (2013).
Fragment approach to the electronic structure of τ -boron allotrope
NASA Astrophysics Data System (ADS)
Karmodak, Naiwrit; Jemmis, Eluvathingal D.
2017-04-01
The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.
Electronic structure of the high-temperature oxide superconductors
NASA Astrophysics Data System (ADS)
Pickett, Warren E.
1989-04-01
Since the discovery of superconductivity above 30 K by Bednorz and Müller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa2Cu3O7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections ("correlations") are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials.
ERIC Educational Resources Information Center
Smithenry, Dennis W.
2009-01-01
Classifying a particle requires an understanding of the type of bonding that exists within and among the particles, which requires an understanding of atomic structure and electron configurations, which requires an understanding of the elements of periodic properties, and so on. Rather than getting tangled up in all of these concepts at the start…
Nonequilibrium Phase Precursors during a Photoexcited Insulator-to-Metal Transition in V2O3
NASA Astrophysics Data System (ADS)
Singer, Andrej; Ramirez, Juan Gabriel; Valmianski, Ilya; Cela, Devin; Hua, Nelson; Kukreja, Roopali; Wingert, James; Kovalchuk, Olesya; Glownia, James M.; Sikorski, Marcin; Chollet, Matthieu; Holt, Martin; Schuller, Ivan K.; Shpyrko, Oleg G.
2018-05-01
Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3 . Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.
NASA Astrophysics Data System (ADS)
Green, M. A.; Teubner, P. J. O.; Brunger, M. J.; Cartwright, D. C.; Campbell, L.
2001-03-01
We report integral cross sections (ICSs) for electron impact excitation of the sum (c 1Σ-u + A' 3Δu + A 3Σ+u) of the three states that constitute the Herzberg pseudocontinuum in O2. These ICSs were measured at seven incident electron energies in the range 9-20 eV in order to investigate for the existence of the strong resonance feature predicted by earlier R-matrix calculations. No such structure was observed in this letter.
Definition of molecular structure: by choice or by appeal to observation?
Bader, Richard F W
2010-07-22
There are two schools of thought in chemistry: one derived from the valence bond and molecular orbital models of bonding, the other appealing directly to the measurable electron density and the quantum mechanical theorems that determine its behavior, an approach embodied in the quantum theory of atoms in molecules, QTAIM. No one questions the validity of the former approach, and indeed molecular orbital models and QTAIM play complementary roles, the models finding expression in the principles of physics. However, some orbital proponents step beyond the models to impose their personal stamp on their use in interpretive chemistry, by denying the possible existence of a physical basis for the concepts of chemistry. This places them at odds with QTAIM, whose very existence stems from the discovery in the observable topology of the electron density, the definitions of atoms, of the bonding between atoms and hence of molecular structure. Relating these concepts to the electron density provides the necessary link for their ultimate quantum definition. This paper explores in depth the possible causes of the difficulties some have in accepting the quantum basis of structure beginning with the arguments associated with the acceptance of a "bond path" as a criterion for bonding. This identification is based on the finding that all classical structures may be mapped onto molecular graphs consisting of bond paths linking neighboring atoms, a mapping that has no known exceptions and one that is further bolstered by the finding that there are no examples of "missing bond paths". Difficulties arise when the quantum concept is applied to systems that are not amenable to the classical models of bonding. Thus one is faced with the recurring dilemma of science, of having to escape the constraints of a model that requires a change in the existing paradigm, a process that has been in operation since the discovery of new and novel structures necessitated the extension of the Lewis model and the octet rule. The paper reviews all facets of bonding beginning with the work of Pauling and Slater in their accounting for crystal structures, taking note of Pauling's advocating possible bonding between large anions. Many examples of nonbonded or van der Waals interactions are considered from both points of view. The final section deals with the consequences of the realization that bonded quantum atoms that share an interatomic surface do not "overlap". The time has come for entering students of chemistry to be taught that the electron density can be seen, touched, and measured and that the chemical structures they learn are in fact the tracings of "bonds" onto lines of maximum density that link bonded nuclei. Matter, as we perceive it, is bound by the electrostatic force of attraction between the nuclei and the electron density.
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-02-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.
Janus monolayers of transition metal dichalcogenides.
Lu, Ang-Yu; Zhu, Hanyu; Xiao, Jun; Chuu, Chih-Piao; Han, Yimo; Chiu, Ming-Hui; Cheng, Chia-Chin; Yang, Chih-Wen; Wei, Kung-Hwa; Yang, Yiming; Wang, Yuan; Sokaras, Dimosthenis; Nordlund, Dennis; Yang, Peidong; Muller, David A; Chou, Mei-Yin; Zhang, Xiang; Li, Lain-Jong
2017-08-01
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS 2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.
Electronic Structure Studies on the Whole Keplerate Family: Predicting New Members.
Melgar, Dolores; Bandeira, Nuno A G; Bo, Carles
2017-04-19
A comprehensive study of the electronic structure of nanoscale molecular oxide capsules of the type [{M VI (M VI ) 5 O 21 } 12 {M' V 2 O 2 (μ-X)(μ-Y)(L n- )} 30 ] (12+n)- is presented, where M,M'=Mo,W, and the bridging ligands X,Y=O,S, carried out by means of density functional theory. Discussion of the electronic structure of these derivatives is focused on the thermodynamic stability of each of the structures, the one having the highest HOMO-LUMO gap being M=W, M'=Mo, X=Y=S. For the most well-known structure M=M'=Mo, X=Y=O, [Mo 132 O 372 ] 12- , the chemical bonding of several ligands to the {Mo V 2 O 2 (μ-O) 2 } linker moiety produces negligible effects on its stability, which is evidence of a strong ionic component in these bonds. The existence of a hitherto unknown species, namely W 132 with both bridging alternatives, is discussed and put into context. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automated RTOP Management System
NASA Technical Reports Server (NTRS)
Hayes, P.
1984-01-01
The structure of NASA's Office of Aeronautics and Space Technology electronic information system network from 1983 to 1985 is illustrated. The RTOP automated system takes advantage of existing hardware, software, and expertise, and provides: (1) computerized cover sheet and resources forms; (2) electronic signature and transmission; (3) a data-based information system; (4) graphics; (5) intercenter communications; (6) management information; and (7) text editing. The system is coordinated with Headquarters efforts in codes R,E, and T.
NASA Astrophysics Data System (ADS)
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-05-01
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j
Coronal electron stream and Langmuir wave detection inside a propagation channel at 4.3 AU
NASA Technical Reports Server (NTRS)
Buttighoffer, A.; Pick, M.; Roelof, E. C.; Hoang, S.; Mangeney, A.; Lanzerotti, L. J.; Forsyth, R. J.; Phillips, J. L.
1995-01-01
Observations of an energetic interplanetary electron event associated with the production of Langmuir waves, both of which are identified at 4.3 AU by instruments on the Ulysses spacecraft, are presented in this paper. This electron event propagates inside a well-defined magnetic structure. The existence of this structure is firmly established by joint particle and plasma observations made by Ulysses instruments. Its local estimated radial width is of the order of 2.3 x 10(exp 7) km (0.15 AU). The electron beam is associated with a type III burst observed from Earth at high frequencies and at low frequencies from Ulysses in association with Langmuir waves detected inside the structure. The consistency of local (Ulysses) and remote (Earth) observations in terms of temporal and geometrical considerations establishes that the structure is anchored in the solar corona near the solar active region responisble for the observed type III emission and gives an accurate determination of the injection time for the observed electron beam. Propagation analysis of the electron event is presented. In order to quantify the magnetic field properties, a variance analysis has been performed and is presented in this paper. The analysis establishes that inside the structure the amount of magnetic energy involved in the fluctuations is less than 4% of the total magnetic energy; the minimal variance direction is well defined and in coincidence with the direction of the mean magnetic field. This configuration may produce conditions favorable for scatter free streaming of energetic electrons and/or Langmuir wave production. The results presented show that the magnetic field might play a role in stabilizing the coronal-origin plasma structures and then preserving them to large, approximately 4 AU, distances in the heliosphere.
Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Ma, J.-Z.; Kong, L.-Y.; Richard, Pierre; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, Tian; Ding, Hong; Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland Team; Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Team; University of Chinese Academy of Sciences, Beijing 100190, China Team; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Team
Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed crystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions. We thank Binbin Fu, Nan Xu, and Xin Gao for the assistance in the ARPES experiments.
Jiang, Shan; Liu, Chang; Cao, H.; ...
2016-02-26
Here we report a study of the Ca 0.73La 0.27FeAs 2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic (AFM) phase transition at 54 K, below which spins order 45° away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S-walls). Finally, in addition to the central-hole and corner-electron Fermi pockets usually appearing in FPS, angle-resolved photoemission (ARPES) measurements resolve a Fermiology where an extra electron pocket of mainly As chain character exists at themore » Brillouin zone edge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin
2016-12-19
Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd 2Ti 2O 7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environmentmore » and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiO x polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd 2Ti 2O 7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsytovich, Vadim, E-mail: tsytov@lpi.ru; Max Planck Institute for Extraterrestrial Physics, Garching; Gusein-zade, Namik
Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, themore » total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.« less
Strongly-correlated crystal-field approach to heavy-fermion compounds and to 3d oxides
NASA Astrophysics Data System (ADS)
Radwanski, Ryszard; Ropka, Zofia
2005-03-01
The description of electronic and magnetic properties of real compounds like LaMnO3, LaCoO3, Na2V3O7, FeO, NdAl2 and ErNi5 as well as heavy-fermion superconductor UPd2Al3 and heavy-fermion metal YbRh2Si2, both zero-temperature ground state properties and thermodynamics, will be presented pointing out the existence of a discrete atomic-like low-energy, in the meV scale, electronic structure. This low-energy many-electron discrete atomic-like electronic structure is governed by very strong electron correlations, predominantly on-site, by the intra-atomic spin-orbit coupling and by details of the local surrounding (crystal-field interactions), but later is modified by inter-site interactions. Our studies indicate that there is the highest time to ``unquench'' the orbital moment in solid state physics in description of 3d-/4f-/5f-atom containing compounds and that heavy-fermion phenomena are of the relativistic origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; ...
2016-11-11
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
Multidisciplinary analysis and design of printed wiring boards
NASA Astrophysics Data System (ADS)
Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin
1991-04-01
Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.
The self-assembling zwitterionic form of L-phenylalanine at neutral pH.
Mossou, Estelle; Teixeira, Susana C M; Mitchell, Edward P; Mason, Sax A; Adler-Abramovich, Lihi; Gazit, Ehud; Forsyth, V Trevor
2014-03-01
The title zwitterion (2S)-2-azaniumyl-1-hydroxy-3-phenylpropan-1-olate, C9H11NO2, also known as L-phenylalanine, was characterized using synchrotron X-rays. It crystallized in the monoclinic space group P21 with four molecules in the asymmetric unit. The 0.62 Å resolution structure is assumed to be closely related to the fibrillar form of phenylalanine, as observed by electron microscopy and electron diffraction. The structure exists in a zwitterionic form in which π-π stacking and hydrogen-bonding interactions are believed to form the basis of the self-assembling properties.
Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo
2017-09-05
The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.
Computer-Assisted Inverse Design of Inorganic Electrides
NASA Astrophysics Data System (ADS)
Zhang, Yunwei; Wang, Hui; Wang, Yanchao; Zhang, Lijun; Ma, Yanming
2017-01-01
Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.
Storr, Tim; Verma, Pratik; Pratt, Russell C; Wasinger, Erik C; Shimazaki, Yuichi; Stack, T Daniel P
2008-11-19
The geometric and electronic structure of an oxidized Cu complex ([CuSal](+); Sal = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV-vis-NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal](+) (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal](+), affording exclusively a Cu(III) species in the solid state (4-300 K). Variable-temperature solution studies suggest that [CuSal](+) exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal(*)](+) (S = 1) and the high-valent metal form [Cu(III)Sal](+) (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine-bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSal(red)](+) (Sal(red) = N,N'-bis(3,5-di- tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)-ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu-bis-phenoxide complexes.
Storr, Tim; Verma, Pratik; Pratt, Russell C.; Wasinger, Erik C.; Shimazaki, Yuichi; Stack, T. Daniel P.
2009-01-01
The geometric and electronic structure of an oxidized Cu complex ([CuSal]+; Sal = N, N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with a non-innocent salen ligand has been investigated both in the solid state and in solution. Integration of information from UV–vis–NIR spectroscopy, magnetic susceptibility, electrochemistry, resonance Raman spectroscopy, X-ray crystallography, X-ray absorption spectroscopy, and density functional theory calculations provides critical insights into the nature of the localization/delocalization of the oxidation locus. In contrast to the analogous Ni derivative [NiSal]+ (Storr, T.; et al. Angew. Chem., Int. Ed. 2007, 46, 5198), which exists solely in the Ni(II) ligand-radical form, the locus of oxidation is metal-based for [CuSal]+, affording exclusively a Cu(III) species in the solid state (4–300 K). Variable-temperature solution studies suggest that [CuSal]+ exists in a reversible spin-equilibrium between a ligand-radical species [Cu(II)Sal•]+ (S = 1) and the high-valent metal form [Cu(III)Sal]+ (S = 0), indicative of nearly isoenergetic species. It is surprising that a bis-imine–bis-phenolate ligation stabilizes the Cu(III) oxidation state, and even more surprising that in solution a spin equilibrium occurs without a change in coordination number. The oxidized tetrahydrosalen analogue [CuSalred]+ (Salred = N, N′-bis(3,5-di-tert-butylhydroxybenzyl)-1,2-cyclohexane-(1R,2R)-diamine) exists as a temperature-invariant Cu(II)–ligand-radical complex in solution, demonstrating that ostensibly simple variations of the ligand structure affect the locus of oxidation in Cu–bis-phenoxide complexes. PMID:18939830
Nanocoaxes for Optical and Electronic Devices
Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.
2014-01-01
The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400
Data from clinical notes: a perspective on the tension between structure and flexible documentation
Denny, Joshua C; Xu, Hua; Lorenzi, Nancy; Stead, William W; Johnson, Kevin B
2011-01-01
Clinical documentation is central to patient care. The success of electronic health record system adoption may depend on how well such systems support clinical documentation. A major goal of integrating clinical documentation into electronic heath record systems is to generate reusable data. As a result, there has been an emphasis on deploying computer-based documentation systems that prioritize direct structured documentation. Research has demonstrated that healthcare providers value different factors when writing clinical notes, such as narrative expressivity, amenability to the existing workflow, and usability. The authors explore the tension between expressivity and structured clinical documentation, review methods for obtaining reusable data from clinical notes, and recommend that healthcare providers be able to choose how to document patient care based on workflow and note content needs. When reusable data are needed from notes, providers can use structured documentation or rely on post-hoc text processing to produce structured data, as appropriate. PMID:21233086
Seamless growth of a supramolecular carpet
Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo
2016-01-01
Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053
Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity
NASA Astrophysics Data System (ADS)
Pacchioni, Gianfranco
2000-05-01
Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.
Non-Congruence of Thermally Induced Structural and Electronic Transitions in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew
2012-01-01
The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order phase transitions: an insulator-to-metal transition (IMT) and a structural phase transition (SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT are the hysteresis loops that track the phase transition from nucleation to stabilization of a new phase and back. A long-standing question about the mechanism of the VO2 phase transition is whether and how the almost-simultaneous electronic and structural transitions are related. Here we report independent measurements of the IMT and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that, in bothmore » cases, the hystereses are not congruent, that the structural change requires more energy to reach completion. This result is independent of nanoscale morphology, so that the non- congruence is an intrinsic property of the VO2 phase transition. Our conclusion is supported by effective-medium calculations of the dielectric function incorporating the measured volume fractions of the monoclinic and tetragonal states. The results are consistent with the existence of an monoclinic correlated metallic state in which the electron- electron correlations characteristic of the monoclinic state begin to disappear before the transition to the tetragonal structural state.« less
Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Veltri, P.; Mangeney, A.; Scudder, J. D.
1992-01-01
The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.
Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3
NASA Astrophysics Data System (ADS)
Tariq, Saad; Saad, Saher; Jamil, M. Imran; Sohail Gilani, S. M.; Mahmood Ramay, Shahid; Mahmood, Asif
2018-03-01
By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.
NASA Astrophysics Data System (ADS)
Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko
2018-06-01
We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.
Structural phase transitions in monolayer molybdenum dichalcogenides
NASA Astrophysics Data System (ADS)
Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo
2015-03-01
The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)2I3
Kobayashi, Akito; Katayama, Shinya; Suzumura, Yoshikazu
2009-01-01
The quasi-two-dimensional molecular conductor α-(BEDT-TTF)2I3 exhibits anomalous transport phenomena where the temperature dependence of resistivity is weak but the ratio of the Hall coefficient at 10 K to that at room temperature is of the order of 104. These puzzling phenomena were solved by predicting massless Dirac fermions, whose motions are described using the tilted Weyl equation with anisotropic velocity. α-(BEDT-TTF)2I3 is a unique material among several materials with Dirac fermions, i.e. graphene, bismuth, and quantum wells such as HgTe, from the view-points of both the structure and electronic states described as follows. α-(BEDT-TTF)2I3 has the layered structure with highly two-dimensional massless Dirac fermions. The anisotropic velocity and incommensurate momenta of the contact points, ±k0, originate from the inequivalency of the BEDT-TTF sites in the unit cell, where ±k0 moves in the first Brillouin zone with increasing pressure. The massless Dirac fermions exist in the presence of the charge disproportionation and are robust against the increase in pressure. The electron densities on those inequivalent BEDT-TTF sites exhibit anomalous momentum distributions, reflecting the angular dependences of the wave functions around the contact points. Those unique electronic properties affect the spatial oscillations of the electron densities in the vicinity of an impurity. A marked behavior of the Hall coefficient, where the sign of the Hall coefficient reverses sharply but continuously at low temperatures around 5 K, is investigated by treating the interband effects of the magnetic field exactly. It is shown that such behavior is possible by assuming the existence of the extremely small amount of electron doping. The enhancement of the orbital diamagnetism is also expected. The results of the present research shed light on a new aspect of Dirac fermion physics, i.e. the emergence of unique electronic properties owing to the structure of the material. PMID:27877282
Layer structure of the Venus daytime ionosphere from Venera-15,-16 radio occultation
NASA Astrophysics Data System (ADS)
Gavrik, Anatoly
Up to now more than five hundred radio occultation experiments had been carried out by different missions to research physical properties of the Venus ionosphere. The purpose of this report is to show new properties of the Venus daytime ionosphere reanalyzing Venera-15,-16 dual-frequency occultation data. The high coherence and stability of radio signals of Venera- 15,-16 at wave lengths 32 cm and 8 cm, along with the fact, that the refractive amplification at 32 cm in the ionosphere exceeds by factor 6 the refractive amplification at 13 cm used by others researches, have allowed to perform analysis of radiophysical parameters in the Venus ionosphere more accurate. Progress in the radiovision theory and up-to-date digital processing techniques have provided an opportunity to discover unknown layered structure of the Venus daytime ionosphere. We offer the new technique of the data analysis that allows us to separate influence of noise, ionosphere and atmosphere on the radio occultation results. We point out that significant gradient variations in the vertical distribution of the electron density are observed in the region of maximum electron density of the daytime ionosphere at altitudes of 150-175 km. That testifies layered structure of this part of the Venus ionosphere. The results of data analysis reveal the regular existence of the ionospheric layers in the bottom daytime ionosphere at altitudes from 80 up to 115 km. The bottom border of the ionosphere part can vary in the range of 80-100 km, and gradients of the electron density show strong variability. We detect the wave structure in the top atmosphere and in the bottom ionosphere at altitudes from 60 up to 115 km as well. It is difficult to obtain correct electron density in the region, where we have detected the new ionospheric layers. Relative errors of the electron density are greater than 100% at altitudes between 80 and 120 km. The bottom part of the ionosphere is more variable, than overlying area of the main maximum of the daytime ionosphere. It is difficult to explain such layered structures of the Venus daytime ionosphere by means of existing model of the photochemical equilibrium.
Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures
Deng, Tianqi; Su, Haibin
2015-01-01
We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715
Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, L. A.; Galvão, R. M. O.; Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo
2013-11-15
In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.
Automated Geometry assisted PEC for electron beam direct write nanolithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, Leonidas E.; Gosztola, David J.; Rosenmann, Daniel
Nanoscale geometry assisted proximity effect correction (NanoPEC) is demonstrated to improve PEC for nanoscale structures over standard PEC, in terms of feature sharpness for sub-100 nm structures. The method was implemented onto an existing commercially available PEC software. Plasmonic arrays of crosses were fabricated using regular PEC and NanoPEC, and optical absorbance was measured. Results confirm that the improved sharpness of the structures leads to increased sharpness in the optical absorbance spectrum features. We also demonstrated that this method of PEC is applicable to arbitrary shaped structures beyond crosses.
Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks
2015-01-01
The emergence of flexible and stretchable electronic components expands the range of applications of electronic devices. Flexible devices are ideally suited for electronic biointerfaces because of mechanically permissive structures that conform to curvilinear structures found in native tissue. Most electronic materials used in these applications exhibit elastic moduli on the order of 0.1–1 MPa. However, many electronically excitable tissues exhibit elasticities in the range of 1–10 kPa, several orders of magnitude smaller than existing components used in flexible devices. This work describes the use of biologically derived heparins as scaffold materials for fabricating networks with hybrid electronic/ionic conductivity and ultracompliant mechanical properties. Photo-cross-linkable heparin–methacrylate hydrogels serve as templates to control the microstructure and doping of in situ polymerized polyaniline structures. Macroscopic heparin-doped polyaniline hydrogel dual networks exhibit impedances as low as Z = 4.17 Ω at 1 kHz and storage moduli of G′ = 900 ± 100 Pa. The conductivity of heparin/polyaniline networks depends on the oxidation state and microstructure of secondary polyaniline networks. Furthermore, heparin/polyaniline networks support the attachment, proliferation, and differentiation of murine myoblasts without any surface treatments. Taken together, these results suggest that heparin/polyaniline hydrogel networks exhibit suitable physical properties as an electronically active biointerface material that can match the mechanical properties of soft tissues composed of excitable cells. PMID:24738911
Observation of three-component fermions in the topological semimetal molybdenum phosphide.
Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H
2017-06-29
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Transitional properties of supersolitons in a two electron temperature warm multi-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Steffy S., E-mail: steffy13@iigs.iigm.res.in; Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in
The existence domain of an ion acoustic supersoliton and its transition to a regular kind of solitary wave have been explored in detail using Sagdeev pseudopotential technique for a two electron temperature warm multi-ion plasma having two species of ions. It was found that both the cold to hot electron temperature ratio and their respective ambient densities play a deterministic role for the existence of a supersoliton, as well as its transitional processes to a regular solitary wave. Analogous to a double layer solution, which often marks the boundary of the existence domain of a regular solitary wave, a “curvemore » of inflection” determines the boundary of the existence domain of a supersoliton. The characteristics of the “curve of inflection,” in turn, depend on the respective concentrations of the two ion species. It is observed that the supersolitons are actually a subset of a more general kind of solutions which are characterized by a fluctuation in the corresponding charge separation which precedes their maximum amplitude. It is also observed that these novel kinds of solitary structures, including supersolitons, occur only for a very narrow range of parameters near constant amplitude beyond which the wave breaks.« less
Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P
2014-02-27
We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.
Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix
NASA Technical Reports Server (NTRS)
Mackinnon, I. D. R.
1982-01-01
High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence SBBSBB. Electron diffraction and imaging techniques show that the basal periodicity is approximately 17 A. Discrete crystals of SBB-type material are typically curved, of small size (less than 1 micron) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of pre-existing material is not yet apparent.
NASA Astrophysics Data System (ADS)
Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer
2014-11-01
We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.
Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer
2014-11-10
We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.
Improved protein surface comparison and application to low-resolution protein structure data.
Sael, Lee; Kihara, Daisuke
2010-12-14
Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.
USDA-ARS?s Scientific Manuscript database
Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...
Payment Services for Global Online Systems Including Internet.
ERIC Educational Resources Information Center
Seebeck, Bill; And Others
1995-01-01
A panel of four conference presenters address issues related to paying for services provided through online systems. Discussion includes the following topics: metering devices; electronic/digital cash; working within existing banking/credit card structures; provision of payment mechanisms in countries without extensive credit card usage; and…
Cryo-electron microscopy and cryo-electron tomography of nanoparticles.
Stewart, Phoebe L
2017-03-01
Cryo-transmission electron microscopy (cryo-TEM or cryo-EM) and cryo-electron tomography (cryo-ET) offer robust and powerful ways to visualize nanoparticles. These techniques involve imaging of the sample in a frozen-hydrated state, allowing visualization of nanoparticles essentially as they exist in solution. Cryo-TEM grid preparation can be performed with the sample in aqueous solvents or in various organic and ionic solvents. Two-dimensional (2D) cryo-TEM provides a direct way to visualize the polydispersity within a nanoparticle preparation. Fourier transforms of cryo-TEM images can confirm the structural periodicity within a sample. While measurement of specimen parameters can be performed with 2D TEM images, determination of a three-dimensional (3D) structure often facilitates more spatially accurate quantization. 3D structures can be determined in one of two ways. If the nanoparticle has a homogeneous structure, then 2D projection images of different particles can be averaged using a computational process referred to as single particle reconstruction. Alternatively, if the nanoparticle has a heterogeneous structure, then a structure can be generated by cryo-ET. This involves collecting a tilt-series of 2D projection images for a defined region of the grid, which can be used to generate a 3D tomogram. Occasionally it is advantageous to calculate both a single particle reconstruction, to reveal the regular portions of a nanoparticle structure, and a cryo-electron tomogram, to reveal the irregular features. A sampling of 2D cryo-TEM images and 3D structures are presented for protein based, DNA based, lipid based, and polymer based nanoparticles. WIREs Nanomed Nanobiotechnol 2017, 9:e1417. doi: 10.1002/wnan.1417 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang
2018-02-01
We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.
Study of Electron Gas on a Neutron-Rich Nuclear Pasta
NASA Astrophysics Data System (ADS)
Ramirez-Homs, Enrique
This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.
Designing Semiconductor Heterostructures Using Digitally Accessible Electronic-Structure Data
NASA Astrophysics Data System (ADS)
Shapera, Ethan; Schleife, Andre
Semiconductor sandwich structures, so-called heterojunctions, are at the heart of modern applications with tremendous societal impact: Light-emitting diodes shape the future of lighting and solar cells are promising for renewable energy. However, their computer-based design is hampered by the high cost of electronic structure techniques used to select materials based on alignment of valence and conduction bands and to evaluate excited state properties. We describe, validate, and demonstrate an open source Python framework which rapidly screens existing online databases and user-provided data to find combinations of suitable, previously fabricated materials for optoelectronic applications. The branch point energy aligns valence and conduction bands of different materials, requiring only the bulk density functional theory band structure. We train machine learning algorithms to predict the dielectric constant, electron mobility, and hole mobility with material descriptors available in online databases. Using CdSe and InP as emitting layers for LEDs and CH3NH3PbI3 and nanoparticle PbS as absorbers for solar cells, we demonstrate our broadly applicable, automated method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Jiang, Rui; Ran, S.
2014-01-31
We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe 2As 2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks belowmore » the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.« less
Katano, Satoshi; Wei, Tao; Sasajima, Takumi; Kasama, Ryuhei; Uehara, Yoichi
2018-06-21
We have used scanning tunneling microscopy (STM) to elucidate the nanoscale electronic structures of graphene oxide (GO). The unreduced GO layer was imaged using STM without reduction processes when deposited on a Au(111) surface covered with an octanethiolate self-assembled monolayer (C8S-SAM). The STM image of the GO sheet exhibits a grainy structure having a thickness of about 1 nm, which is in good agreement with the previous results obtained using atomic force microscopy (AFM). We found that the C8S-SAM suppresses the adsorption of water remaining on the substrate, which would be important to accomplish the nanoscale imaging of the unreduced GO by STM. Furthermore, we successfully detected the π and π* states localized in the GO sheet using scanning tunneling spectroscopy (STS). The π-π* gap energy and the gap center are not uniform within the GO sheet, indicating the existence of various sizes of the sp2 domain and evidence for the local electronic doping by the substituents.
NASA Astrophysics Data System (ADS)
Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.
2017-01-01
Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.
Papež, Václav; Denaxas, Spiros; Hemingway, Harry
2017-01-01
Electronic Health Records are electronic data generated during or as a byproduct of routine patient care. Structured, semi-structured and unstructured EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the development of precision medicine approaches at scale. A main EHR use-case is defining phenotyping algorithms that identify disease status, onset and severity. Phenotyping algorithms utilize diagnoses, prescriptions, laboratory tests, symptoms and other elements in order to identify patients with or without a specific trait. No common standardized, structured, computable format exists for storing phenotyping algorithms. The majority of algorithms are stored as human-readable descriptive text documents making their translation to code challenging due to their inherent complexity and hinders their sharing and re-use across the community. In this paper, we evaluate the two key Semantic Web Technologies, the Web Ontology Language and the Resource Description Framework, for enabling computable representations of EHR-driven phenotyping algorithms.
Arbitrary electron acoustic waves in degenerate dense plasmas
NASA Astrophysics Data System (ADS)
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
Martin, Aiden A.; Bahm, Alan; Bishop, James; ...
2015-12-15
Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.
Mesh electronics: a new paradigm for tissue-like brain probes.
Hong, Guosong; Yang, Xiao; Zhou, Tao; Lieber, Charles M
2018-06-01
Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J
2016-12-27
The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.
NASA Astrophysics Data System (ADS)
Phan, The-Long; Ho, T. A.; Dang, N. T.; Nguyen, Manh Cuong; Dao, Van-Duong
2017-07-01
We prepared well-aligned Zn1-x Mn x O:yP nanocolumns (x = 0-0.02, and y = 0 and 1 mol%) on SiO2/Si(0 0 1) substrates by using pulsed laser deposition (PLD) and then investigated their electronic structure and optical and magnetic properties at room temperature. The analyses of x-ray photoelectron and x-ray absorption fine structure spectra revealed Mn2+ and/or P ions existing in nanocolumns, where Mn2+ ions are situated in the Zn2+ site of the ZnO-wurtzite structure. Although the incorporation of Mn2+ and/or P ions did not form secondary phases, as confirmed by x-ray and electron diffraction patterns, more lattice defects were created, and consequently changed the band-gap energy as well as the electron-phonon interactions in the nanocolumns. Magnetization versus magnetic-field measurements revealed that all the samples exhibited FM order. In particular, the (Mn, P) co-doping with x = 0.02 and y = 1 remarkably enhanced the magnetic moment up to 2.92 µ B/Mn. Based on the results obtained from analyzing the electronic structures, UV-Vis absorption and resonant Raman scattering spectra, and theoretical calculations, we believe that the enhancement of the FM order in (Mn, P)-doped ZnO nanocolumns is due to exchange interactions taking place between vacancy-mediated Mn2+ ions.
Tran, V H; Sahakyan, M
2017-11-17
Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.
Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser
Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...
2016-11-04
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less
NASA Astrophysics Data System (ADS)
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-01
Tin niobate photocatalysts with the phase structures of froodite (SnNb2O6) and pyrochlore (Sn2Nb2O7) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb2O6 to Sn2Nb2O7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn4+ species in Sn2Nb2O7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb2O6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H2 evolution compared with the sample of Sn2Nb2O7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O2 -•, and OH• active species dominate the photodegradation of methyl orange.
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-23
Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.
NASA Astrophysics Data System (ADS)
Iyorzor, B. E.; Babalola, M. I.; Adetunji, B. I.; Bakare, F. O.
2018-05-01
The structural, electronic and mechanical properties of Be{S}1-xT{e}x are studied within the concentration range of 0≤slant x≤slant 1 using first-principles plane–wave Pseudopotential density functional theory (DFT) approach. We have used generalized gradient approximation (GGA) to treat the exchange-correlation potentials. The elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, and Zener’s anisotropic factors are calculated. The results were found to be in agreement with other available theoretical and experimental values. It was also observed that the existence and increase of Tellurium concentration decreases the hardness of the alloy.
NASA Astrophysics Data System (ADS)
Petrova, Jasmina; Romanova, Julia; Madjarova, Galia; Ivanova, Anela; Tadjer, Alia; Gospodinova, Natalia
A number of studies prove the existence of magnetically active states in polyaniline and claim polaronic nature of conductivity, but the molecular structure of polarons and bipolarons with account of the solvent effect has not been exhausted. Alongside with conductivity, the optical and magnetic properties of the polymer related to its practical application could be rationalized by the elucidation of this problem. The purpose of this chapter is the assessment of the degree of protonation on the spatial and electronic structure of hydrated polyaniline oligomers. Neutral and protonated emeraldine octamers are modeled to this end. UHF, UBLYP, and UB3LYP with 6-31G* basis set were employed for optimization of the geometry in aqueous medium (PCM). Various structural parameters: bond lengths, valence, and torsion angles, were analyzed and compared. The distribution of Mulliken and NBO charge density and Mulliken atomic spin density was discussed.
Information storage at the molecular level - The design of a molecular shift register memory
NASA Technical Reports Server (NTRS)
Beratan, David N.; Onuchic, Jose Nelson; Hopfield, J. J.
1989-01-01
The control of electron transfer rates is discussed and a molecular shift register memory at the molecular level is described. The memory elements are made up of molecules which can exist in either an oxidized or reduced state and the bits can be shifted between the cells with photoinduced electron transfer reactions. The device integrates designed molecules onto a VLSI substrate. A control structure to modify the flow of information along a shift register is indicated schematically.
Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics
NASA Astrophysics Data System (ADS)
Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo
2017-08-01
The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.
NASA Astrophysics Data System (ADS)
Yan, X.; Chen, Xing-Qiu; Michor, H.; Wolf, W.; Witusiewicz, V. T.; Bauer, E.; Podloucky, R.; Rogl, P.
2018-03-01
By combining theoretical density functional theory (DFT) and experimental studies, structural and magnetic phase stabilities and electronic structural, elastic, and vibrational properties of the Laves-phase compound NbMn2 have been investigated for the C14, C15, and C36 crystal structures. At low temperatures C14 is the ground-state structure, with ferromagnetic and antiferromagnetic orderings being degenerate in energy. The degenerate spin configurations result in a rather large electronic density of states at Fermi energy for all magnetic cases, even for the spin-polarized DFT calculations. Based on the DFT-derived phonon dispersions and densities of states, temperature-dependent free energies were derived for the ferromagnetic and antiferromagnetic C14 phase, demonstrating that the spin-configuration degeneracy possibly exists up to finite temperatures. The heat of formation Δ298H0=-45.05 ±3.64 kJ (molf .u .NbMn2) -1 was extracted from drop isoperibolic calorimetry in a Ni bath. The DFT-derived enthalpy of formation of NbMn2 is in good agreement with the calorimetric measurements. Second-order elastic constants for NbMn2 as well as for related compounds were calculated.
Teaching with Social Media: Disrupting Present Day Public Education
ERIC Educational Resources Information Center
Meabon Bartow, Susan
2014-01-01
Because social technologies present illuminating educational, ethical, economic, and structural challenges to existing constructions of public education, they catalyze a fundamental examination of what public education should look like and be like in a democracy. Given their performances in other arenas, mobile and electronic technologies have the…
Direct, experimental evidence of the Fermi surface in YBa2Cu3O(7-x)
NASA Astrophysics Data System (ADS)
Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Howell, R. H.; Sterne, P. A.; Solal, F. R.; Fluss, M. J.
1991-04-01
We report new measurements of the electron positron momentum spectra of YBa2Cu3O(7-x) performed with ultra-high statistical precision. These data differ from previous results in two significant respects: They show the D(sub 2) symmetry appropriate for untwinned crystals and, more importantly, they show unmistakable, statistically significant, discontinuities that are evidence of a major Fermi surface section. These results provide a partial answer to a question of special significance to the study of high temperature superconductors i.e., the distribution of the electrons in the material, the electronic structure. Special consideration has been given both experimentally and theoretically to the existence and shape of a Fermi surface in the materials and to the superconducting gap. There are only three experimental techniques that can provide details of the electronic structure at useful resolutions. They are angular correlation of positron annihilation radiation, ACAR, angle resolved photo emission, PE, and de Haas van Alphen measurements.
NASA Astrophysics Data System (ADS)
Halder, S.; Bhuyan, S.; Das, S. N.; Sahoo, S.; Choudhary, R. N. P.; Das, P.; Parida, K.
2017-12-01
A lead-free dielectric material [Bi(Zn2/3Ta1/3)O3] has been prepared using a solid state reaction technique at high-temperature. The resistive, conducting and capacitive characteristics of the prepared electronic material have been studied in different experimental conditions. The determination of basic crystal parameters and reflection indices confirm the development of polycrystalline compound with orthorhombic crystal structure. The study of frequency-temperature dependence of ac conductivity illustrates the nature and conduction mechanism of the material. On the basis of observed impedance data and detailed dielectric analysis, the existence of non-Debye type relaxation has been affirmed. The electronic charge carriers of compound have short range order that has been validated from the complex modulus and impedance spectrum. The detailed studies of resistive, capacitive, microstructural characteristics of the prepared material provide some useful data for considering the material as an electronic component for fabrication of devices.
NASA Astrophysics Data System (ADS)
Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.
2017-12-01
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Gaalon, G.
1962-01-01
The structure of the blue emission at the temperature of liquid nitrogen was studied using improved apparatus. The observations were carried to the temperature of liquid He in order to deduce the mechanism of the recombination of the free carriers. Before analysis of the light emitted by CdS single crystals exposed to electron bombardment and before a description of the experimental apparatus, the interaction of electron beams with the crystal and the resultant formation of free carriers are studied theoretically. The experimental study showed that the structure of the emission situated at the absorption limit, obtained by electron bombardment, doesmore » not differ basically from that observed under uv irradiation. However, the existence at 4 deg K of radiation (not observed with uv irradiation) with wave lengths less than 4.856 A was shown. (J.S.R.)« less
Communication: Finding destructive interference features in molecular transport junctions.
Reuter, Matthew G; Hansen, Thorsten
2014-11-14
Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples.
A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope
Lee, Byeongchan; Lee, Geun Woo
2016-01-01
Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements. PMID:27762334
XML and its impact on content and structure in electronic health care documents.
Sokolowski, R.; Dudeck, J.
1999-01-01
Worldwide information networks have the requirement that electronic documents must be easily accessible, portable, flexible and system-independent. With the development of XML (eXtensible Markup Language), the future of electronic documents, health care informatics and the Web itself are about to change. The intent of the recently formed ASTM E31.25 subcommittee, "XML DTDs for Health Care", is to develop standard electronic document representations of paper-based health care documents and forms. A goal of the subcommittee is to work together to enhance existing levels of interoperability among the various XML/SGML standardization efforts, products and systems in health care. The ASTM E31.25 subcommittee uses common practices and software standards to develop the implementation recommendations for XML documents in health care. The implementation recommendations are being developed to standardize the many different structures of documents. These recommendations are in the form of a set of standard DTDs, or document type definitions that match the electronic document requirements in the health care industry. This paper discusses recent efforts of the ASTM E31.25 subcommittee. PMID:10566338
Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)
NASA Astrophysics Data System (ADS)
Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team
A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.
Incoherent Scatter Radar Studies of Daytime Plasma Lines
NASA Astrophysics Data System (ADS)
Djuth, Frank T.; Carlson, Herbert C.; Zhang, Liwei D.
2018-03-01
First results from wideband (electron phase energies of 5-51 eV), high-resolution (0.1 eV) spectral measurements of photoelectron-enhanced plasma lines made with the 430 MHz radar at Arecibo Observatory are presented. In the F region, photoelectrons produced by solar EUV line emissions (He II and Mg IX) give rise to plasma line spectral peaks/valleys. These and other structures occur within an enhancement zone extending from electron phase energies of 14-27 eV in both the bottomside and topside ionosphere. However, photoelectron-thermal electron Coulomb energy losses can lead to a broadened spectral structure with no resolved peaks in the topside ionosphere. The plasma line energy spectra obtained in the enhancement zone exhibit a unique relation in that phase energy is dependent on pitch angle; this relation does not exist in any other part of the energy spectrum. Moreover, large fluctuations in the difference frequency between the upshifted and downshifted plasma lines are evident in the 14-27 eV energy interval. At high phase energies near 51 eV the absolute intensities of photoelectron-excited Langmuir waves are much larger than those predicted by existing theory. The new measurements call for a revision/improvement of plasma line theory in several key areas.
New polytypes of LPSO structures in an Mg-Co-Y alloy
NASA Astrophysics Data System (ADS)
Jin, Q. Q.; Shao, X. H.; Hu, X. B.; Peng, Z. Z.; Ma, X. L.
2017-01-01
The magnesium alloys containing long-period stacking ordered (LPSO) structures exhibit excellent mechanical properties. Each LPSO structure is known to contain either AB‧C‧A or AB‧C building block and feature its own stacking sequences. By atomic-scale high-angle annular dark field scanning transmission electron microscopy, we find the co-existence of AB‧C‧A and AB‧C building block in a single LPSO structure of the as-cast Mg92Co2Y6 (at.%) alloy, leading to the formation of six new polytypes of the LPSO structures determined as 29H, 51R, 60H, 72R, 102R and 192R. The lattice parameter of each LPSO structure is derived as ? and ? (n presents the number of basal layers in a unit cell). The stacking sequences and the space groups of these newly identified LPSO structures are proposed based on the electron diffraction and atomic-scale aberration-corrected high-resolution images. A random distribution of Co/Y elements in the basal planes of AB‧C‧A and AB‧C structural units is also observed and discussed.
NASA Astrophysics Data System (ADS)
Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia
2017-10-01
LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.
Low frequency solitons and double layers in a magnetized plasma with two temperature electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R.; Bharuthram, R.; Singh, S. V.
2012-12-15
Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to bemore » 49 mV/m which is in agreement of the Viking observations in this region.« less
Theoretical investigation of existence of meta-stability in iron and cobalt clusters
NASA Astrophysics Data System (ADS)
Berry, Habte Dulla; Zhang, Qinfang; Wang, Baolin
2018-03-01
Nowadays considerable attention has been given for researches on magnetic properties of transition metal clusters (specifically FeN and CoN). This is because these clusters offer big hopes for the possibility of presenting significant magnetic anisotropy energy which is critical for technological applications. This study intends to find out the causes for the existence of the two states (ground and meta-stable) in Iron and Cobalt clusters. The study also explains the role of valence electrons for the existence of magnetism in the two states by using the concept of ionization potential, electron dipole polarizabilities, chemical hardness and softness of the clusters. Assuming that, when all itinerant electrons are at s-level and also at the d-level (ns = n andns → 0.) the ground state and meta-stable state energies with distinct energy minima are (Egs = l / 2 n +εc n - 2μB hn andEms =εd n - gμB hn) respectively. The findings also showed that polarizability of small cluster of the specified elements are increased compared with the bulk value, which means that there is an effective increase in the cluster radius due to the spilling out of the electronic charge. Furthermore, it is obvious that 4s electrons are more delocalized than the 3d electrons so that they spill out more than the 3d electrons. This leads to the conclusion that 4s electrons are primarily responsible for the enhanced polarizabilities and for shell structure effects. This indicates that polarizability at the meta-stable state is less than that of the ground state i.e. the meta-stable state loses its s electron. Therefore the two minima represent a ground state of configuration 3 d↑5 3 d↓ 2 + δ 4s 2 - δ with energy Egs and meta-stable state of configuration 3 d↑5 3 d↓ 3 + δ 4s 1 - δ with energy Ems for Co clusters and a ground state configuration 3 d↑5 3 d↓ 1 + δ 4s 2 - δ with energy Egs an meta-stable state of configuration 3 d↑5 3 d↓ 2 + δ 4s 1 - δ with energy Ems for Fe clusters. Hence, the existence of the two states (meta-stable & ground state) is due to the large disproportion in electronic configurations of the two clusters at their respective states. Furthermore, the chemical hardness and softness of the clusters also provide evidence for the existence of stability of the two states depending on the cluster size.
Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...
2017-09-01
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
Evidence of van Hove singularities in ordered grain boundaries of graphene.
Ma, Chuanxu; Sun, Haifeng; Zhao, Yeliang; Li, Bin; Li, Qunxiang; Zhao, Aidi; Wang, Xiaoping; Luo, Yi; Yang, Jinlong; Wang, Bing; Hou, J G
2014-06-06
It has long been under debate whether the electron transport performance of graphene could be enhanced by the possible occurrence of van Hove singularities in grain boundaries. Here, we provide direct experimental evidence to confirm the existence of van Hove singularity states close to the Fermi energy in certain ordered grain boundaries using scanning tunneling microscopy. The intrinsic atomic and electronic structures of two ordered grain boundaries, one with alternative pentagon and heptagon rings and the other with alternative pentagon pair and octagon rings, are determined. It is firmly verified that the carrier concentration and, thus, the conductance around ordered grain boundaries can be significantly enhanced by the van Hove singularity states. This finding strongly suggests that a graphene nanoribbon with a properly embedded ordered grain boundary can be a promising structure to improve the performance of graphene-based electronic devices.
Probing topological protection using a designer surface plasmon structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Gao, Zhen; Shi, Xihang
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
Probing topological protection using a designer surface plasmon structure
Gao, Fei; Gao, Zhen; Shi, Xihang; ...
2016-05-20
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
NASA Astrophysics Data System (ADS)
Chan, Lie Ping
The understanding of the electronic structure of the high-T_{c} superconductors could be important for a full theoretical description of the mechanism behind superconductivity in these materials. In this thesis, we present our measurements of the positron -electron momentum distributions of the cuprate superconductors Bi_2Sr_2CaCu _2O_8, Tl _2Ba_2Ca _2Cu_3O_ {10}, and the organic superconductor kappa-(BEDT)_2Cu(NCS) _2. We use the positron Two-dimensional Angular Correlation of Annihilation Radiation technique to make the measurements on single crystals and compare our high-statistics data with band structure calculations to determine the existence and nature of the respective Fermi surfaces. The spectra from unannealed Bi _2Sr_2CaCu _2O_8 exhibit effects of the superlattice modulation in the BiO_2 layers, and a theoretical understanding of the modulation effects on the electronic band structure is required to interpret these spectra. Since the present theory does not consider the modulation, we have developed a technique to remove the modulation effects from our spectra, and the resultant data when compared with the positron -electron momentum distribution calculation, yield features consistent with the predicted CuO_2 and BiO_2 Fermi surfaces. In the data from unannealed Tl_2Ba _2Ca_2Cu_3 O_{10}, we only observe indications of the TlO Fermi surfaces, and attribute the absence of the predicted CuO_2 Fermi surfaces to the poor sample quality. In the absence of positron-electron momentum calculations for kappa-(BEDT)_2Cu(NCS) _2, we compare our data to electronic band structure calculations, and observed features suggestive of the predicted Fermi surface contributions from the BEDT cation layers. A complete positron-electron calculation for kappa-(BEDT)_2 Cu(NCS)_2 is required to understand the positron wavefunction effects in this material.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Preface: Special Topic on Frontiers in Molecular Scale Electronics
NASA Astrophysics Data System (ADS)
Evers, Ferdinand; Venkataraman, Latha
2017-03-01
The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.
Improved protein surface comparison and application to low-resolution protein structure data
2010-01-01
Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy. PMID:21172052
New Results About the Earth’s Van Allen Radiation Belts
NASA Astrophysics Data System (ADS)
Baker, Daniel
2015-01-01
The first great scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or 'belts', of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies showed that electrons in the energy range 100 keV < E< 1 MeV often populated both the inner and outer zones with a pronounced 'slot' region relatively devoid of energetic electrons existing between them. This two-belt structure for the Van Allen moderate-energy electron component was explained as being due to strong interactions of electrons with electromagnetic waves just inside the cold plasma (plasmapause) boundary. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed wholly unexpected properties of the radiation belts, especially at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the Relativistic Electron-Proton Telescope (REPT) experiment on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are not due to a physical boundary within Earth's intrinsic magnetic field. Neither is it likely that human-generated electromagnetic transmitter wave fields might produce such effects. Rather, we conclude from these unique measurements that slow natural inward radial diffusion combined with weak, but persistent, wave-particle pitch angle scattering deep inside the Earth's magnetosphere can conspire to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {submore » e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.« less
Strain solitons and topological defects in bilayer graphene
Alden, Jonathan S.; Tsen, Adam W.; Huang, Pinshane Y.; Hovden, Robert; Brown, Lola; Park, Jiwoong; Muller, David A.; McEuen, Paul L.
2013-01-01
Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene [Oostinga JB, et al. (2007) Nature Materials 7:151–157]. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them. Theorists have recently proposed that novel electronic states exist at these boundaries [Vaezi A, et al. (2013) arXiv:1301.1690; Zhang F, et al. (2013) arXiv:1301.4205], but very little is known about their structural properties. Here we use electron microscopy to measure with nanoscale and atomic resolution the widths, motion, and topological structure of soliton boundaries and related topological defects in bilayer graphene. We find that each soliton consists of an atomic-scale registry shift between the two graphene layers occurring over 6–11 nm. We infer the minimal energy barrier to interlayer translation and observe soliton motion during in situ heating above 1,000 °C. The abundance of these structures across a variety of samples, as well as their unusual properties, suggests that they will have substantial effects on the electronic and mechanical properties of bilayer graphene. PMID:23798395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternal, O.; Heber, B.; Kopp, A.
The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and couldmore » not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.« less
An Exploratory Study of Software Cost Estimating at the Electronic Systems Division.
1976-07-01
action’. to improve the software cost Sestimating proces., While thin research was limited to the M.nD onvironment, the same types of problema may exist...Methods in Social Science. Now York: Random House, 1969. 57. Smith, Ronald L. Structured Programming Series (Vol. XI) - Estimating Software Project
Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M
2018-08-01
Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.
Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate
Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, M. F.; Fekete, Paula
2016-01-01
We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below , the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor’s surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice. PMID:26883086
Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers
NASA Technical Reports Server (NTRS)
Blankenship, R. E.
1994-01-01
Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.
Organizational strategy, structure, and process.
Miles, R E; Snow, C C; Meyer, A D; Coleman, H J
1978-07-01
Organizational adaptation is a topic that has received only limited and fragmented theoretical treatment. Any attempt to examine organizational adaptation is difficult, since the process is highly complex and changeable. The proposed theoretical framework deals with alternative ways in which organizations define their product-market domains (strategy) and construct mechanisms (structures and processes) to pursue these strategies. The framework is based on interpretation of existing literature and continuing studies in four industries (college textbook publishing, electronics, food processing, and health care).
Semantic Analysis of Email Using Domain Ontologies and WordNet
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Keller, Richard M.
2005-01-01
The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.
Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor
2016-08-01
Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology.
XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots
NASA Astrophysics Data System (ADS)
Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.
2013-04-01
The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.
Positive Ion Induced Solidification of He4
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Lebedev, V.; Weis, A.
2009-03-01
We have observed bulk solidification of He4 induced by nucleation on positive alkali ions in pressurized superfluid helium. The ions are extracted into the liquid from alkali-doped solid He by a static electric field. The experiments prove the existence of charged particles in a solid structure composed of doped He that was recently shown to coexist with superfluid helium below the He solidification pressure. This supports our earlier suggestion that the Coulomb interaction of positive ions surrounded by a solid He shell (snowballs) and electrons trapped in spherical cavities (electron bubbles), together with surface tension, is responsible for the stability of that structure against melting. We have determined the density of charges in the sample by two independent methods.
Ponec, Robert; Ramos-Cordoba, Eloy; Salvador, Pedro
2013-03-07
The electronic structure of the trinuclear symmetric complex [(tmedaCu)3S2 ](3+), whose Cu3S2 core represents a model of the active site of metalloenzymes involved in biological processes, has been in recent years the subject of vigorous debate. The complex exists as an open-shell triplet, and discussions concerned the question whether there is a direct S-S bond in the [Cu3S2](3+) core, whose answer is closely related to the problem of the formal oxidation state of Cu atoms. In order to contribute to the elucidation of the serious differences in the conclusions of earlier studies, we report in this study the detailed comprehensive analysis of the electronic structure of the [Cu3S2](3+) core using the methodologies that are specifically designed to address three particular aspects of the bonding in the core of the above complex, namely, the presence and/or absence of direct S-S bond, the existence and the nature of spin-spin interactions among the atoms in the core, and the formal oxidation state of Cu atoms in the core. Using such a combined approach, it was possible to conclude that the picture of bonding consistently indicates the existence of a weak direct two-center-three-electron (2c-3e) S-S bond, but at the same time, the observed lack of any significant local spin in the core of the complex is at odds with the suggested existence of antiferromagnetic coupling among the Cu and S atoms, so that the peculiarities of the bonding in the complex seem to be due to extensive delocalization of the unpaired spin in the [Cu3S2](3+) core. Finally, a scrutiny of the effective atomic hybrids and their occupations points to a predominant formal Cu(II) oxidation state, with a weak contribution of partial Cu(I) character induced mainly by the partial flow of electrons from S to Cu atoms and high delocalization of the unpaired spin in the [Cu3S2](3+) core.
Double layers and double wells in arbitrary degenerate plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2014-01-01
The structural, electronic, magnetic and optical properties of Co-based Heusler compounds, Co2CrZ (Z = Si, Ge), are studied using first-principle density functional theory. The calculations are performed within the generalized gradient approximation. Our calculated structural parameters at 0 GPa agree well with previous available results. The calculated magnetic moment agrees well with the Slater-Pauling (SP) rule. We have studied the effect of pressure on the electronic and magnetic properties of Co2CrSi and Co2CrGe. With an increase in applied pressure, a decrease in cell volume is observed. Under application of external pressure, the valence band and conduction band are shifted downward which leads to a modification of electronic structure. There exists an indirect band gap along Γ-X for both the alloys. Co2CrSi and Co2CrGe retain 100% spin polarization up to 60 and 50 GPa, respectively. The local magnetic moments of the Co and Si (Ge) atoms increase with an increase in pressure whereas the local magnetic moment of the Cr atom decreases. In addition, the optical properties such as dielectric function, absorption spectra, optical conductivity and energy loss function of these alloys have also been investigated. To our knowledge this is the first theoretical prediction of the pressure dependence of the structural, electronic, magnetic and optical properties of Co2CrSi and Co2CrGe.
Ground-state properties of rare-earth metals: an evaluation of density-functional theory.
Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V
2014-10-15
The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin; Chen, Yongjin; Han, Xiaodong, E-mail: wzhang0@mail.xjtu.edu.cn, E-mail: ema@jhu.edu, E-mail: xdhan@bjut.edu.cn
Disorder-induced electron localization and metal-insulator transitions (MITs) have been a very active research field starting from the seminal paper by Anderson half a century ago. However, pure Anderson insulators are very difficult to identify due to ubiquitous electron-correlation effects. Recently, an MIT has been observed in electrical transport measurements on the crystalline state of phase-change GeSbTe compounds, which appears to be exclusively disorder driven. Subsequent density functional theory simulations have identified vacancy disorder to localize electrons at the Fermi level. Here, we report a direct atomic scale chemical identification experiment on the rocksalt structure obtained upon crystallization of amorphous Ge{submore » 2}Sb{sub 2}Te{sub 5}. Our results confirm the two-sublattice structure resolving the distribution of chemical species and demonstrate the existence of atomic disorder on the Ge/Sb/vacancy sublattice. Moreover, we identify a gradual vacancy ordering process upon further annealing. These findings not only provide a structural underpinning of the observed Anderson localization but also have implications for the development of novel multi-level data storage within the crystalline phases.« less
Collective electron driven linac for high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1983-08-01
A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less
Electronic transport properties of nanostructured MnSi-films
NASA Astrophysics Data System (ADS)
Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.
2018-05-01
MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.
Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.
Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E
2017-03-03
We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
Electron elevator: Excitations across the band gap via a dynamical gap state
Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...
2016-01-27
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less
Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.
Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A
2016-01-29
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.
Synthesis and interface characterization of CNTs on graphene
NASA Astrophysics Data System (ADS)
Zhou, Changjian; Senegor, Richard; Baron, Zachary; Chen, Yihan; Raju, Salahuddin; Vyas, Anshul A.; Chan, Mansun; Chai, Yang; Yang, Cary Y.
2017-02-01
Carbon nanotubes (CNTs) and graphene are potential candidates for future interconnect materials. CNTs are promising on-chip via interconnect materials due to their readily formed vertical structures, their current-carrying capacity, which is much larger than existing on-chip interconnect materials such as copper and tungsten, and their demonstrated ability to grow in patterned vias with sub-50 nm widths; meanwhile, graphene is suitable for horizontal interconnects. However, they both present the challenge of having high-resistance contacts with other conductors. An all-carbon structure is proposed in this paper, which can be formed using the same chemical vapor deposition method for both CNTs and graphene. Vertically aligned CNTs are grown directly on graphene with an Fe or Ni catalyst. The structural characteristics of the graphene and the grown CNTs are analyzed using Raman spectroscopy and electron microscopy techniques. The CNT-graphene interface is studied in detail using transmission electron microscopic analysis of the CNT-graphene heterostructure, which suggests C-C bonding between the two materials. Electrical measurement results confirm the existence of both a lateral conduction path within graphene and a vertical conduction path in the CNT-graphene heterostructure, giving further support to the C-C bonding at the CNT-graphene interface and resulting in potential applications for all-carbon interconnects.
Synthesis and interface characterization of CNTs on graphene.
Zhou, Changjian; Senegor, Richard; Baron, Zachary; Chen, Yihan; Raju, Salahuddin; Vyas, Anshul A; Chan, Mansun; Chai, Yang; Yang, Cary Y
2017-02-03
Carbon nanotubes (CNTs) and graphene are potential candidates for future interconnect materials. CNTs are promising on-chip via interconnect materials due to their readily formed vertical structures, their current-carrying capacity, which is much larger than existing on-chip interconnect materials such as copper and tungsten, and their demonstrated ability to grow in patterned vias with sub-50 nm widths; meanwhile, graphene is suitable for horizontal interconnects. However, they both present the challenge of having high-resistance contacts with other conductors. An all-carbon structure is proposed in this paper, which can be formed using the same chemical vapor deposition method for both CNTs and graphene. Vertically aligned CNTs are grown directly on graphene with an Fe or Ni catalyst. The structural characteristics of the graphene and the grown CNTs are analyzed using Raman spectroscopy and electron microscopy techniques. The CNT-graphene interface is studied in detail using transmission electron microscopic analysis of the CNT-graphene heterostructure, which suggests C-C bonding between the two materials. Electrical measurement results confirm the existence of both a lateral conduction path within graphene and a vertical conduction path in the CNT-graphene heterostructure, giving further support to the C-C bonding at the CNT-graphene interface and resulting in potential applications for all-carbon interconnects.
Final Technical Report - Nuclear Studies with Intermediate Energy Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine
During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at bothmore » the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.« less
Rossignol, Evan D.; Yang, Jie E.; Bullitt, Esther
2015-01-01
Replication of the poliovirus genome is localized to cytoplasmic replication factories that are fashioned out of a mixture of viral proteins, scavenged cellular components, and new components that are synthesized within the cell due to viral manipulation/up-regulation of protein and phospholipid synthesis. These membranous replication factories are quite complex, and include markers from multiple cytoplasmic cellular organelles. This review focuses on the role of electron microscopy in advancing our understanding of poliovirus RNA replication factories. Structural data from the literature provide the basis for interpreting a wide range of biochemical studies that have been published on virus-induced lipid biosynthesis. In combination, structural and biochemical experiments elucidate the dramatic membrane remodeling that is a hallmark of poliovirus infection. Temporal and spatial membrane modifications throughout the infection cycle are discussed. Early electron microscopy studies of morphological changes following viral infection are re-considered in light of more recent data on viral manipulation of lipid and protein biosynthesis. These data suggest the existence of distinct subcellular vesicle populations, each of which serves specialized roles in poliovirus replication processes. PMID:26473912
NASA Astrophysics Data System (ADS)
Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.
1996-06-01
Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.
Rangachari, Pavani
2014-12-01
Despite the federal policy momentum towards "meaningful use" of Electronic Health Records, the healthcare organizational literature remains replete with reports of unintended adverse consequences of implementing Electronic Health Records, including: increased work for clinicians, unfavorable workflow changes, and unexpected changes in communication patterns & practices. In addition to being costly and unsafe, these unintended adverse consequences may pose a formidable barrier to "meaningful use" of Electronic Health Records. Correspondingly, it is essential for hospital administrators to understand and detect the causes of unintended adverse consequences, to ensure successful implementation of Electronic Health Records. The longstanding Technology-in-Practice framework emphasizes the role of human agency in enacting structures of technology use or "technologies-in-practice." Given a set of unintended adverse consequences from health information technology implementation, this framework could help trace them back to specific actions (types of technology-in-practice) and institutional conditions (social structures). On the other hand, the more recent Knowledge-in-Practice framework helps understand how information and communication technologies ( e.g. , social knowledge networking systems) could be implemented alongside existing technology systems, to create new social structures, generate new knowledge-in-practice, and transform technology-in-practice. Therefore, integrating the two literature streams could serve the dual purpose of understanding and overcoming unintended adverse consequences of Electronic Health Record implementation. This paper seeks to: (1) review the theoretical literatures on technology use & implementation, and identify a framework for understanding & overcoming unintended adverse consequences of implementing Electronic Health Records; (2) outline a broad project proposal to test the applicability of the framework in enabling "meaningful use" of Electronic Health Records in a healthcare context; and (3) identify strategies for successful implementation of Electronic Health Records in hospitals & health systems, based on the literature review and application.
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, Kevin Jerome
Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less
NASA Astrophysics Data System (ADS)
Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi
2011-04-01
We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.
Winkelman, Warren J; Leonard, Kevin J
2004-01-01
There are constraints embedded in medical record structure that limit use by patients in self-directed disease management. Through systematic review of the literature from a critical perspective, four characteristics that either enhance or mitigate the influence of medical record structure on patient utilization of an electronic patient record (EPR) system have been identified: environmental pressures, physician centeredness, collaborative organizational culture, and patient centeredness. An evaluation framework is proposed for use when considering adaptation of existing EPR systems for online patient access. Exemplars of patient-accessible EPR systems from the literature are evaluated utilizing the framework. From this study, it appears that traditional information system research and development methods may not wholly capture many pertinent social issues that arise when expanding access of EPR systems to patients. Critically rooted methods such as action research can directly inform development strategies so that these systems may positively influence health outcomes.
NASA Astrophysics Data System (ADS)
Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao
2017-11-01
We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.
The Crimean Solar Maximum Year Workshop, selected reports
NASA Technical Reports Server (NTRS)
Emslie, A. G.; Gaizauskas, V.; Wu, S. T.
1980-01-01
Problems associated with the transport of energy and acceleration of charged particles in solar flares are considered. Existing theories are compared with observation with a view to either discriminating between rival theories (such as whether hard X-rays are emitted by thermal or nonthermal bremsstrahlung), constraining existing theories (such as deduction of the number of nonthermal electrons present from spectroscopic diagnostics in the soft X-ray part of the spectrum), or suggesting theories (such as attempting to explain the observed spatial structure of microwave emission relative to alpha).
Relativistic R -matrix calculations for the electron-impact excitation of neutral molybdenum
NASA Astrophysics Data System (ADS)
Smyth, R. T.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.; Ramsbottom, C. A.; Ballance, C. P.
2017-10-01
A recent PISCES-B Mod experiment [Nishijima et al., J. Phys. B 43, 225701 (2010), 10.1088/0953-4075/43/22/225701] has revealed up to a factor of 5 discrepancy between measurement and the two existing theoretical models [Badnell et al., J. Phys. B 29, 3683 (1996), 10.1088/0953-4075/29/16/014; Bartschat et al., J. Phys. B 35, 2899 (2002), 10.1088/0953-4075/35/13/305], providing important diagnostics for Mo i. In the following paper we address this issue by employing a relativistic atomic structure and R -matrix scattering calculations to improve upon the available models for future applications and benchmark results against a recent Compact Toroidal Hybrid experiment [Hartwell et al., Fusion Sci. Technol. 72, 76 (2017), 10.1080/15361055.2017.1291046]. We determine the atomic structure of Mo i using grasp0, which implements the multiconfigurational Dirac-Fock method. Fine structure energies and radiative transition rates are presented and compared to existing experimental and theoretical values. The electron-impact excitation of Mo i is investigated using the relativistic R -matrix method and the parallel versions of the Dirac atomic R -matrix codes. Electron-impact excitation cross sections are presented and compared to the few available theoretical cross sections. Throughout, our emphasis is on improving the results for the z 1,2,3o5P →a S52,z 2,3,4o7P → a S73 and y 2,3,4o7P → a S73 electric dipole transitions of particular relevance for diagnostic work.
Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alinejad, H.; Sobhanian, S.; Mahmoodi, J.
2006-01-15
A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equationmore » has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.« less
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-06-01
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00495c
Sobolewski, Andrzej L.; Domcke, Wolfgang; Hättig, C.
2005-01-01
The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20–23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson–Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson–Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic 1π π * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson–Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing 1π π * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs. PMID:16330778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Small amplitude propagation and quasielastic head-on collision of ion-acoustic solitary waves (IASWs) are investigated in a degenerate Thomas-Fermi electron-positron-ion magnetized plasma using extended Poincare-Lighthill-Kuo reductive perturbation method for both ultrarelativistic and nonrelativistic electron/positron degeneracy cases. It is observed that both bright- and dark-type solitary shapes can exist in such plasma, depending on two critical values. The shape of ion-acoustic solitary structures as well as sign of their collision phase shifts are both determined by the same critical values. It is further revealed that relativistic degeneracy of electrons/positrons has significant effect on the propagation as well as interaction of IASWs.
Quantum chemistry study on the open end of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Hou, Shimin; Shen, Ziyong; Zhao, Xingyu; Xue, Zengquan
2003-05-01
Geometrical and electronic structures of open-ended single-walled carbon nanotubes (SWCNTs) are calculated using density functional theory (DFT) with hybrid functional (B3LYP) approximation. Due to different distances between carbon atoms along the edge, reconstruction occurs at the open end of the (4,4) armchair SWCNT, i.e., triple bonds are formed in the carbon atom pairs at the mouth; however, for the (6,0) zigzag SWCNT, electrons in dangling bonds still remain at 'no-bonding' states. The ionization potential (IP) of both (4,4) and (6,0) SWCNTs is increased by their negative intrinsic dipole moments, and localized electronic states existed at both of their open ends.
Distorted allotropes of bi-benzene: vibronic interactions and electronic excitations
NASA Astrophysics Data System (ADS)
Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.
2017-05-01
Bi-benzene - chemically bound two benzene molecules in stuck position is studied both analytically and numerically. There are several allotropes of bi-benzene having different geometry. The reason of the existence of sundry distorted structures is the pseudo-Jahn-Teller effect. The parameters of vibronic couplings causing distortions are found. For the calculation of these parameters both, the vibronic coupling of carbon atoms in different C6 rings and the vibronic coupling in the rings are considered. The contribution of the distortion of C6-planes to the latter coupling is also found. The energies of all the electronic states of π-electrons in all bi-benzene allotropes are determined by using the calculated vibronic interaction parameters.
Development of clinical contents model markup language for electronic health records.
Yun, Ji-Hyun; Ahn, Sun-Ju; Kim, Yoon
2012-09-01
To develop dedicated markup language for clinical contents models (CCM) to facilitate the active use of CCM in electronic health record systems. Based on analysis of the structure and characteristics of CCM in the clinical domain, we designed extensible markup language (XML) based CCM markup language (CCML) schema manually. CCML faithfully reflects CCM in both the syntactic and semantic aspects. As this language is based on XML, it can be expressed and processed in computer systems and can be used in a technology-neutral way. CCML HAS THE FOLLOWING STRENGTHS: it is machine-readable and highly human-readable, it does not require a dedicated parser, and it can be applied for existing electronic health record systems.
Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer
NASA Astrophysics Data System (ADS)
Yang, Haw; Luo, Guobin; Karnchanaphanurach, Pallop; Louie, Tai-Man; Rech, Ivan; Cova, Sergio; Xun, Luying; Xie, X. Sunney
2003-10-01
Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.
Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.
2017-01-01
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713
Research in Computational Astrobiology
NASA Technical Reports Server (NTRS)
Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.
2003-01-01
We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.
Ion-wake field inside a glass box.
Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S; Hyde, Truell W
2016-09-01
The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures as well as their sizes and shapes. In this paper, the electronic confinement of the glass box is mapped, and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box, and its vertical and horizontal extents are measured.
Haemagglutination and surface structures in strains of Clostridium spiroforme.
Baldassarri, L; Pantosti, A; Caprioli, A; Mastrantonio, P; Donelli, G
1989-07-01
Five strains of Clostridium spiroforme were examined for their surface properties. All strains were able to agglutinate human erythrocytes. Electron microscopy showed a ruthenium red-positive capsule mediating the attachment of bacteria to erythrocytes. Two strains, showing the lowest degree of haemagglutination, exhibited an additional external layer of filamentous structures, possibly interfering with the agglutinating activity. In spite of their agglutinating ability, the C. spiroforme strains did not show surface hydrophobicity, thus suggesting the possible existence of a new type of clostridial adhesin.
Hassett, Michael J; Uno, Hajime; Cronin, Angel M; Carroll, Nikki M; Hornbrook, Mark C; Ritzwoller, Debra
2017-12-01
Recurrent cancer is common, costly, and lethal, yet we know little about it in community-based populations. Electronic health records and tumor registries contain vast amounts of data regarding community-based patients, but usually lack recurrence status. Existing algorithms that use structured data to detect recurrence have limitations. We developed algorithms to detect the presence and timing of recurrence after definitive therapy for stages I-III lung and colorectal cancer using 2 data sources that contain a widely available type of structured data (claims or electronic health record encounters) linked to gold-standard recurrence status: Medicare claims linked to the Cancer Care Outcomes Research and Surveillance study, and the Cancer Research Network Virtual Data Warehouse linked to registry data. Twelve potential indicators of recurrence were used to develop separate models for each cancer in each data source. Detection models maximized area under the ROC curve (AUC); timing models minimized average absolute error. Algorithms were compared by cancer type/data source, and contrasted with an existing binary detection rule. Detection model AUCs (>0.92) exceeded existing prediction rules. Timing models yielded absolute prediction errors that were small relative to follow-up time (<15%). Similar covariates were included in all detection and timing algorithms, though differences by cancer type and dataset challenged efforts to create 1 common algorithm for all scenarios. Valid and reliable detection of recurrence using big data is feasible. These tools will enable extensive, novel research on quality, effectiveness, and outcomes for lung and colorectal cancer patients and those who develop recurrence.
Carbohydrate structure: the rocky road to automation.
Agirre, Jon; Davies, Gideon J; Wilson, Keith S; Cowtan, Kevin D
2017-06-01
With the introduction of intuitive graphical software, structural biologists who are not experts in crystallography are now able to build complete protein or nucleic acid models rapidly. In contrast, carbohydrates are in a wholly different situation: scant automation exists, with manual building attempts being sometimes toppled by incorrect dictionaries or refinement problems. Sugars are the most stereochemically complex family of biomolecules and, as pyranose rings, have clear conformational preferences. Despite this, all refinement programs may produce high-energy conformations at medium to low resolution, without any support from the electron density. This problem renders the affected structures unusable in glyco-chemical terms. Bringing structural glycobiology up to 'protein standards' will require a total overhaul of the methodology. Time is of the essence, as the community is steadily increasing the production rate of glycoproteins, and electron cryo-microscopy has just started to image them in precisely that resolution range where crystallographic methods falter most. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J
2015-11-10
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.
Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; ...
2014-08-20
Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF 4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li + ion in thismore » model electrolyte. By generating linear combinations of the computed spectra of Li +-associating and free PC molecules and comparing to the experimental spectrum, we find a Li +–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less
Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.
Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin
2016-06-01
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.
2014-01-01
It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092
Poincaré analysis of wave motion in ultrarelativistic electron-ion plasmas.
Lehmann, G; Spatschek, K H
2011-03-01
Based on a relativistic Maxwell-fluid description, the existence of ultrarelativistic laser-induced periodic waves in an electron-ion plasma is investigated. Within a one-dimensional propagation geometry nonlinear coupling of the electromagnetic and electrostatic components occurs that makes the fourth-order problem nonintegrable. A Hamiltonian description is derived, and the manifolds of periodic solutions are studied by Poincaré section plots. The influence of ion motion is investigated in different intensity regimes. For ultrarelativistic laser intensities the phase-space structures change significantly compared to the weakly relativistic case. Ion motion becomes very important such that finally electron-ion plasmas in the far-ultrarelativistic regime behave similarly to electron-positron plasmas. The characteristic new types of periodic solutions of the system are identified and discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
...; Willingness To Pay Survey for Sec. 316(b) Existing Facilities Cooling Water Intake Structures (New) AGENCY... information about the electronic docket, go to http://www.regulations.gov . Title: Willingness to Pay Survey... associated stated preference survey will be used to estimate values (willingness to pay, or WTP) derived by...
NASA Technical Reports Server (NTRS)
Alt, Shannon
2016-01-01
Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.
Solid-phase diffusion mechanism for GaAs nanowire growth.
Persson, Ann I; Larsson, Magnus W; Stenström, Stig; Ohlsson, B Jonas; Samuelson, Lars; Wallenberg, L Reine
2004-10-01
Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.
Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.
2017-01-15
The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.
NASA Astrophysics Data System (ADS)
Li, Chun-Mei; Yang, Rui; Johansson, Börje; Vitos, Levente
2016-12-01
The composition-dependent crystal structure, volume, elastic constants, and electronic structure of δ -Pu1 -xMx (M =Ga and Al,0 ≤x ≤0.1 ) alloys are systematically studied by using first-principles EMTO-CPA calculations. It is shown that the fcc and L 12 structures co-exist in the alloys with x ≤0.04 whereas for x >0.04 , the L 12 structure is more and more preferable and around x =0.1 , it tends to be stabilized alone. The evaluated V ˜x of the L 12 structure, being negative deviation from Vegard's law, turns out to be in good agreement with the experimental result. For x ≤0.04 , the estimated E , G , ν , and Θ of both the fcc and L 12 structures are in line with the measured data, whereas when x >0.04 , only those of the L 12 structure are close to the experimental results. The electronic hybridization between Pu and M atoms is dominated by Pu for the s ,d , and f states but M for the p state. The strong interactions between Pu and M atoms in the same site of the L 12 structure should be responsible for its relative stability in the alloys with x >0.04 . The electron-phonon coupling further decreases the phase stability of δ -Pu1 -xMx with increasing x .
Intrinsic charge trapping in amorphous oxide films: status and challenges
NASA Astrophysics Data System (ADS)
Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.
2018-06-01
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.
Jeffries, C D
1975-09-19
In Ge and Si, and also in Ge-Si alloys (74), there is extensive evidence for the stable binding of electrons and holes into a cold plasma of constant density, which undergoes a phase separation. Liquid metallic drops 1 to 300 microm in size are formed, with lifetimes ranging from 0.1 to 600 microsec. For Ge a surprising amount is known: the phase diagram, the surface energy, the work function, the decay kinetics. Much less is known for Si. There is good agreement between theoretical and experimental values of the liquid density, the critical density, the critical temperature, and the binding energy. The stability of the liquid phase is strikingly dependent on band structure. The multivalley structure and mass anisotropy of Si, Ge, and Ge-Si, together with their indirect band gap, are no doubt responsible for the observed stability in these crystals. In the similar semiconductor gallium phosphide, drops have not yet been observed, most likely because the high impurity content traps the excitons. In gallium arsenide the existence of drops is controversial (75). Undoubtedly drops will be found to exist in other semiconductors, perhaps at even higher temperatures. This is an exciting field for the experimentalist; new phenomena are being rapidly discovered, usually before they are predicted. For the theorist, the electron-hole drop is of high intrinsic interest. It represents the first example of a quantum liquid of constant density in a periodic crystal lattice. A number of challenging experimental and theoretical problems remain.
Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.
López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A
2005-05-12
Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.
Facilitating the openEHR approach - organizational structures for defining high-quality archetypes.
Kohl, Christian Dominik; Garde, Sebastian; Knaup, Petra
2008-01-01
Using openEHR archetypes to establish an electronic patient record promises rapid development and system interoperability by using or adopting existing archetypes. However, internationally accepted, high quality archetypes which enable a comprehensive semantic interoperability require adequate development and maintenance processes. Therefore, structures have to be created involving different health professions. In the following we present a model which facilitates and governs distributed but cooperative development and adoption of archetypes by different professionals including peer reviews. Our model consists of a hierarchical structure of professional committees and descriptions of the archetype development process considering these different committees.
NASA Astrophysics Data System (ADS)
Bruff, M.; Jaynes, A. N.; Zhao, H.; Malaspina, D.
2017-12-01
The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the simulated innermost plasmapause location. More recent work using high resolution Van Allen Probe satellite data has found a more complex relationship. The aim of this project was to provide a systematic study of the location and dynamics of the plasmapause compared to the MeV electrons in the outer radiation belt. We used spin-averaged electron flux data from the Relativistic Electron Proton Telescope (REPT) and density data derived from the EFW instrument on the Van Allen Probe satellites. We analyzed these data to determine the standoff distance of the location of peak electron flux of the outer belt MeV electrons from the plasmapause. We found that the location of peak flux was consistently outside but within ΔL=2.5 from the innermost location of the plasmapause at enhancement times, with an average standoff distance ΔL=1.0 +/- 0.5. This is consistent with the current model of chorus enhancement and previous observations of chorus activity. Finally, we identified "three-belt" structure events where a second outer belt formed and found a repeated pattern of plasmapause dynamics associated with specific changes in electron flux required to generate and sustain these structures. This study is significant to improving our understanding of how the plasmasphere under differing conditions can both shield Earth from or worsen the impacts of geomagnetic activity.
Bonanni, Pablo Sebastián; Massazza, Diego; Busalmen, Juan Pablo
2013-07-07
Geobacter sulfurreducens bacteria grow on biofilms and have the particular ability of using polarized electrodes as the final electron acceptor of their respiratory chain. In these biofilms, electrons are transported through distances of more than 50 μm before reaching the electrode. The way in which electrons are transported across the biofilm matrix through such large distances remains under intense discussion. None of the two mechanisms proposed for explaining the process, electron hopping through outer membrane cytochromes and metallic like conduction through conductive PilA filaments, can account for all the experimental evidence collected so far. Aiming at providing new elements for understanding the basis for electron transport, in this perspective article we present a modelled structure of Geobacter pilus. Its analysis in combination with already existing experimental evidence gives support to the proposal of the "stepping stone" mechanism, in which the combined action of pili and cytochromes allows long range electron transport through the biofilm.
Ateya, Mohammad B; Delaney, Brendan C; Speedie, Stuart M
2016-01-11
An increasing number of clinical trials are conducted in primary care settings. Making better use of existing data in the electronic health records to identify eligible subjects can improve efficiency of such studies. Our study aims to quantify the proportion of eligibility criteria that can be addressed with data in electronic health records and to compare the content of eligibility criteria in primary care with previous work. Eligibility criteria were extracted from primary care studies downloaded from the UK Clinical Research Network Study Portfolio. Criteria were broken into elemental statements. Two expert independent raters classified each statement based on whether or not structured data items in the electronic health record can be used to determine if the statement was true for a specific patient. Disagreements in classification were discussed until 100 % agreement was reached. Statements were also classified based on content and the percentages of each category were compared to two similar studies reported in the literature. Eligibility criteria were retrieved from 228 studies and decomposed into 2619 criteria elemental statements. 74 % of the criteria elemental statements were considered likely associated with structured data in an electronic health record. 79 % of the studies had at least 60 % of their criteria statements addressable with structured data likely to be present in an electronic health record. Based on clinical content, most frequent categories were: "disease, symptom, and sign", "therapy or surgery", and "medication" (36 %, 13 %, and 10 % of total criteria statements respectively). We also identified new criteria categories related to provider and caregiver attributes (2.6 % and 1 % of total criteria statements respectively). Electronic health records readily contain much of the data needed to assess patients' eligibility for clinical trials enrollment. Eligibility criteria content categories identified by our study can be incorporated as data elements in electronic health records to facilitate their integration with clinical trial management systems.
Duda, V I; Suzina, N E; Dmitriev, V V
2001-01-01
Anaerobacter polyendosporus cells do not have typical mesosomes. However, the analysis of this anaerobic multispore bacterium by electron microscopic cryofractography showed that its cytoplasmic membrane contains specific intramembrane structures in the form of flat lamellar inverted lipid membranes tenths of nanometers to several microns in size. It was found that these structures are located in the hydrophobic interior between the outer and inner leaflets of the cytoplasmic membrane and do not contain intramembrane particles that are commonly present on freeze-fracture replicas. The flat inverted lipid membranes were revealed in bacterial cells cultivated under normal growth conditions, indicating the existence of a complex-type compartmentalization in biological membranes, which manifests itself in the formation of intramembrane compartments having the appearance of vesicles and inverted lipid membranes.
Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2 heterostructure
NASA Astrophysics Data System (ADS)
Du, X.; Wang, Z. Y.; Huang, G. Q.
2016-11-01
The spin-polarized band structures of the Pb(111)/MoTe2 heterostructure are studied by the first-principles calculations. Due to strong spin-orbit coupling and space inversion asymmetry, large Rashba spin splitting of electronic bands appears in this hybrid system. The spin splitting is completely out-of-plane and opposite at \\bar{K} and {\\bar{K}}\\prime points. Rashba spin splitting also appears along the in-plane momentum direction around the \\bar{{{Γ }}} point due to the existence of surface potential gradient induced by charge transfer at interface. Furthermore, our calculations show that the spin-polarized bands closely approach the Fermi level in Pb/MoTe2 heterostructure, showing that this heterostructure may be a good candidate in valleytronics or spintronics.
Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, Parvin; Mottaghizadeh, Marzieh
2012-06-15
By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less
Local Descriptors of Dynamic and Nondynamic Correlation.
Ramos-Cordoba, Eloy; Matito, Eduard
2017-06-13
Quantitatively accurate electronic structure calculations rely on the proper description of electron correlation. A judicious choice of the approximate quantum chemistry method depends upon the importance of dynamic and nondynamic correlation, which is usually assesed by scalar measures. Existing measures of electron correlation do not consider separately the regions of the Cartesian space where dynamic or nondynamic correlation are most important. We introduce real-space descriptors of dynamic and nondynamic electron correlation that admit orbital decomposition. Integration of the local descriptors yields global numbers that can be used to quantify dynamic and nondynamic correlation. Illustrative examples over different chemical systems with varying electron correlation regimes are used to demonstrate the capabilities of the local descriptors. Since the expressions only require orbitals and occupation numbers, they can be readily applied in the context of local correlation methods, hybrid methods, density matrix functional theory, and fractional-occupancy density functional theory.
NASA Astrophysics Data System (ADS)
Sienkiewicz-Gromiuk, Justyna
2018-01-01
The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.
Simulation of electron transport during electron-beam-induced deposition of nanostructures
Jeschke, Harald O; Valentí, Roser
2013-01-01
Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747
Considering Governance for Patient Access to E-Medical Records.
Day, Karen; Wells, Susan
2015-01-01
People having access to their medical records could have a transformative improvement effect on healthcare delivery and use. Our research aimed to explore the concerns and attitudes of giving people electronic access to their medical records through patient portals. We conducted 28 semi-structured interviews with 30 people, asking questions about portal design, organisational implications and governance. We report the findings of the governance considerations raised during the interviews. These revealed that (1) there is uncertainty about the possible design and extent of giving people access to their medical records to view/use, (2) existing policies about patient authentication, proxy, and privacy require modification, and (3) existing governance structures and functions require further examination and adjustment. Future research should include more input from patients and health informaticians.
Writing Electron Dot Structures: Abstract of Issue 9905M
NASA Astrophysics Data System (ADS)
Magnell, Kenneth R.
1999-10-01
Writing Electron Dot Structures is a computer program for Mac OS that provides drill with feedback for students learning to write electron dot structures. While designed for students in the first year of college general chemistry it may also be used by high school chemistry students. A systematic method similar to that found in many general chemistry texts is employed:
Screens from Writing Electron Dot Structures Hardware and Software Requirements
Hardware and software requirements for Writing Electron Dot Structures are shown in Table 1. Ordering and Information Journal of Chemical Education Software (or JCE Software) is a publication of the Journal of Chemical Education. There is an order form inserted in this issue that provides prices and other ordering information. If this card is not available or if you need additional information, contact: JCE Software, University of WisconsinMadison, 1101 University Avenue, Madison, WI 53706-1396; phone; 608/262-5153 or 800/991-5534; fax: 608/265-8094; email: jcesoft@chem.wisc.edu. Information about all of our publications (including abstracts, descriptions, updates) is available from our World Wide Web site at: http://JChemEd.chem.wisc.edu/JCESoft/
Soft X-ray emission spectroscopy of liquids and lithium batterymaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustsson, Andreas
2004-01-01
Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed tomore » view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and orbital mixing between water molecules upon hydrogen bonding. Apart from the four-hydrogen-bonding structure in water, a structure where one hydrogen bond is broken could be separated and identified. The soft x-ray emission study of methanol showed the existence of ring and chain formations in the liquid phase and the dominating structures are formed of 6 and 8 molecules. Upon mixing of the two liquids, a segregation at the molecular level was found and the formation of new structures, which could explain the unexpected low increase of the entropy.« less
Recent developments of the in situ wet cell technology for transmission electron microscopies.
Chen, Xin; Li, Chang; Cao, Hongling
2015-03-21
In situ wet cells for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) allow studying structures and processes in a liquid environment with high temporal and spatial resolutions, and have been attracting increasing research interests in many fields. In this review, we highlight the structural and functional developments of the wet cells for TEM and STEM. One of the key features of the wet cells is the sealing technique used to isolate the liquid sample from the TEM/STEM vacuum environments, thus the existing in situ wet cells are grouped by different sealing methods. In this study, the advantages and shortcomings of each type of in situ wet cells are discussed, the functional developments of different wet cells are presented, and the future trends of the wet cell technology are addressed. It is suggested that in the future the in situ wet cell TEM/STEM technology will have an increasing impact on frontier nanoscale research.
Artificial two-dimensional polar metal at room temperature.
Cao, Yanwei; Wang, Zhen; Park, Se Young; Yuan, Yakun; Liu, Xiaoran; Nikitin, Sergey M; Akamatsu, Hirofumi; Kareev, M; Middey, S; Meyers, D; Thompson, P; Ryan, P J; Shafer, Padraic; N'Diaye, A; Arenholz, E; Gopalan, Venkatraman; Zhu, Yimei; Rabe, Karin M; Chakhalian, J
2018-04-18
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3 /SrTiO 3 /LaTiO 3 . A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation, electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.
Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Haixia; Institute of Solid State Physics, Shanxi Datong University, Datong 037009; Fang, Dangqi
2015-02-14
The structural, electronic, and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) with Stone–Wales (SW) defects were investigated using first-principles calculations. We found that two types of SW defects (named SW-Ι and SW-ΙΙ) exist in ZSiNRs. The SW defect was found to be the most stable at the edge of the ZSiNR, independently of the defect orientation, even more stable than it is in an infinite silicene sheet. In addition, the ZSiNRs can transition from semiconductor to metal or half-metal by modifying the SW defect location and concentration. For the same defect concentration, the band structures influenced by the SW-Ι defectmore » are more distinct than those influenced by the SW-ΙΙ when the SW defect is at the edge. The present study suggests the possibility of tuning the electronic properties of ZSiNRs using the SW defects and might motivate their potential application in nanoelectronics and spintronics.« less
Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides
NASA Astrophysics Data System (ADS)
Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf
2018-02-01
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.
A photoelectron imaging and quantum chemistry study of the deprotonated indole anion.
Parkes, Michael A; Crellin, Jonathan; Henley, Alice; Fielding, Helen H
2018-05-29
Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.
Artificial two-dimensional polar metal at room temperature
Cao, Yanwei; Wang, Zhen; Park, Se Young; ...
2018-04-18
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3/SrTiO 3/LaTiO 3. A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation,more » electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Lastly, our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.« less
Artificial two-dimensional polar metal at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yanwei; Wang, Zhen; Park, Se Young
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3/SrTiO 3/LaTiO 3. A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation,more » electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Lastly, our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.« less
Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2
NASA Astrophysics Data System (ADS)
Kolobov, A. V.; Fons, P.; Tominaga, J.
2016-09-01
Reversible polymorphism of monolayer transition-metal dichalcogenides (TMDC) has currently attracted much attention from both academic and applied perspectives. Of special interest is MoTe2, where the stable semiconducting 2 H and metastable (semi)metallic 1 T' phases have a rather small energy difference implying the low-energy cost of such a transition. In this work, using first-principles calculations, we demonstrate that there exists a previously unknown phase of MoTe2, namely a distorted trigonal prismatic phase with alternating shorter and longer bonds and bond angles, that is formed in the electronically excited state due to population inversion. This phase, which is unstable and decays to the ground 2 H state after cessation of the excitation, is metallic and can act to lower the energy barrier on the way to the metastable 1 T' phase. Our findings indicate that there exists a previously unexplored route of ultrafast local and selective band-structure control in monolayer TMDC using electronic excitation, which will significantly broaden the application spectrum of these materials.
The ion-acoustic soliton: A gas-dynamic viewpoint
NASA Astrophysics Data System (ADS)
McKenzie, J. F.
2002-03-01
The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1
Highly-stretchable 3D-architected Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Jiang, Yanhui; Wang, Qiming
2016-09-01
Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.
Highly-stretchable 3D-architected Mechanical Metamaterials.
Jiang, Yanhui; Wang, Qiming
2016-09-26
Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.
Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall
NASA Astrophysics Data System (ADS)
Maggi, C. F.; Frassinetti, L.; Horvath, L.; Lunniss, A.; Saarelma, S.; Wilson, H.; Flanagan, J.; Leyland, M.; Lupelli, I.; Pamela, S.; Urano, H.; Garzotti, L.; Lerche, E.; Nunes, I.; Rimini, F.; Contributors, JET
2017-11-01
The pedestal structure of type I ELMy H-modes has been analysed for JET with the ITER-like Wall (JET-ILW). The electron pressure pedestal width is independent of ρ * and increases proportionally to √β pol,PED. Additional broadening of the width is observed, at constant β pol, PED, with increasing ν * and/or neutral gas injection and the contribution of atomic physics effects in setting the pedestal width cannot as yet be ruled out. Neutral penetration alone does not determine the shape of the edge density profile in JET-ILW. The ratio of electron density to electron temperature scale lengths in the edge transport barrier region, η e, is of order 2-3 within experimental uncertainties. Existing understanding, represented in the stationary linear peeling-ballooning mode stability and the EPED pedestal structure models, is extended to the dynamic evolution between ELM crashes in JET-ILW, in order to test the assumptions underlying these two models. The inter-ELM temporal evolution of the pedestal structure in JET-ILW is not unique, but depends on discharge conditions, such as heating power and gas injection levels. The strong reduction in p e,PED with increasing D 2 gas injection at high power is primarily due to clamping of \
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritzmann, Andrew M.; Dieterich, Johannes M.; Carter, Emily A.
2016-01-01
Reducing operating temperatures is a key step in making solid oxide fuel cell (SOFC) technology viable. A promising strategy for accomplishing this goal is employing mixed ion–electron conducting (MIEC) cathodes. La 1-xSr xCo 1-yFe yO 3-δ (LSCF) is the most widely employed MIEC cathode material; however, rational optimization of the composition of LSCF requires fundamental insight linking its electronic structure to its defect chemistry. To provide the necessary insight, density functional theory plus U (DFT+U) calculations are used to investigate the electronic structure of LSCF (xSr = 0.50, yCo = 0.25). The DFT+U calculations show that LSCF has a significantly different electronic structure than La 1-xSr xFeO 3 because of the addition of cobalt, but that minimal electronic structure differences exist between La 0.5Sr 0.5Co 0.25Fe 0.75O 3 and La 0.5Sr 0.5Co 0.5Fe 0.5O 3. The oxygen vacancy (Vmore » $$-\\atop{o}$$) formation energy (ΔEf,vac) is calculated for V$$-\\atop{o}$$ residing in different local environments within La 0.5Sr 0.5Co 0.25Fe 0.75O 3. These results show that Co-V$$-\\atop{o}$$-Co configurations have the highest ΔEf,vac, while Co-V$$-\\atop{o}$$-Fe have the lowest ΔEf,vac and may act as traps for V$$-\\atop{o}$$. We conclude that compositions with more Fe than Co are preferred because the additional Co-V$$-\\atop{o}$$-Co sites would lead to higher overall ΔEf,vac (and lower V$$-\\atop{o}$$ concentrations), while the trapping strength of the Image Co-V$$-\\atop{o}$$-Fe sites is relatively weak (~0.3 eV).« less
Yan, Dongpeng; Lu, Jun; Ma, Jing; Wei, Min; Wang, Xinrui; Evans, David G; Duan, Xue
2010-05-18
The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.
Lateral engineering of surface states - towards surface-state nanoelectronics.
García de Abajo, F J; Cordón, J; Corso, M; Schiller, F; Ortega, J E
2010-05-01
Patterned metal surfaces can host electron quantum waves that display interference phenomena over distances of a few nanometres, thus providing excellent information carriers for future atomic-scale devices. Here we demonstrate that collimation and waveguiding of surface electrons can be realized in silver-induced strain dislocation networks on Cu(111) surfaces, as a conceptual proof-of-principle of surface-state nanoelectronics (SSNE). The Ag/Cu(111) system exhibits featured surface bands with gaps at the Fermi energy, which are basic requirements for a potential SSNE material. We establish a solid analogy between the behavior of surface-state electrons and surface plasmons in patterned metal surfaces, thus facilitating the transfer of existing knowledge on plasmonic structures to the new scenario presented by engineered electronic surface-state nanostructures, with the advantage of a 1000-fold reduction in wavelength and geometrical parameters.
Gamble While You Gamble: Electronic Games in Ontario Charitable Gaming Centres.
Harrigan, Kevin; Brown, Dan; MacLaren, Vance
Electronic Bingo games have recently appeared in Ontario Charitable Gaming Centres. Here we summarize the characteristics of this novel form of electronic gambling, and give a detailed characterization of one game. We contend that these games have structural characteristics that make them similar to modern Electronic Gaming Machines (EGMs) that feature multiline slots games. These features include a fast and continuous gaming experience, with player adjustable win size and reinforcement rate, a high frequency of losses disguised as wins, and highly salient near misses. Some of these games also have bonus rounds and provide players with a list of recent wins. We conclude that provincial and state gaming authorities should be aware that the placement of Bingo EGMs in existing Bingo facilities may increase problem gambling among an already well-established community of Bingo enthusiasts.
Thermoelectric Properties of 2D Ni 3(HITP) 2 and 3D Cu 3(BTC) 2 MOFs: First-Principles Studies
He, Yuping; Talin, A. Alec; Allendorf, Mark D.
2017-08-08
Metal organic frameworks (MOFs) have recently attracted great attentions for the thermoelectric (TE) applications, owing to their intrinsic low thermal conductivity, but their TE efficiencies are still low due to the poor electronic transport properties. Here, various synthetic strategies have been designed to optimize the electronic properties of MOFs. Using a series of first principle calculations and band theory, we explore the effect of structural topology and redox matching between the metal and coordinated atoms on the TE transport properties. In conclusion, the presented results provide a fundamental guidance for optimizing electronic charge transport of existing MOFs, and for designingmore » yet to be discovered conductive MOFs for thermoelectric applications.« less
EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.
Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B
2017-12-01
The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons
NASA Astrophysics Data System (ADS)
Ahmadi, Abrishami S.; Nouri, Kadijani M.
2014-06-01
In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.
Thermoelectric Properties of 2D Ni 3(HITP) 2 and 3D Cu 3(BTC) 2 MOFs: First-Principles Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yuping; Talin, A. Alec; Allendorf, Mark D.
Metal organic frameworks (MOFs) have recently attracted great attentions for the thermoelectric (TE) applications, owing to their intrinsic low thermal conductivity, but their TE efficiencies are still low due to the poor electronic transport properties. Here, various synthetic strategies have been designed to optimize the electronic properties of MOFs. Using a series of first principle calculations and band theory, we explore the effect of structural topology and redox matching between the metal and coordinated atoms on the TE transport properties. In conclusion, the presented results provide a fundamental guidance for optimizing electronic charge transport of existing MOFs, and for designingmore » yet to be discovered conductive MOFs for thermoelectric applications.« less
Development of Clinical Contents Model Markup Language for Electronic Health Records
Yun, Ji-Hyun; Kim, Yoon
2012-01-01
Objectives To develop dedicated markup language for clinical contents models (CCM) to facilitate the active use of CCM in electronic health record systems. Methods Based on analysis of the structure and characteristics of CCM in the clinical domain, we designed extensible markup language (XML) based CCM markup language (CCML) schema manually. Results CCML faithfully reflects CCM in both the syntactic and semantic aspects. As this language is based on XML, it can be expressed and processed in computer systems and can be used in a technology-neutral way. Conclusions CCML has the following strengths: it is machine-readable and highly human-readable, it does not require a dedicated parser, and it can be applied for existing electronic health record systems. PMID:23115739
Starch-assisted synthesis and optical properties of ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei
Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis)more » spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.« less
NASA Astrophysics Data System (ADS)
Donnadieu, P.; Dénoyer, F.
1996-11-01
A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.
Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.
2016-01-01
Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213
The origin of incipient ferroelectricity in lead telluride
Jiang, M. P.; Trigo, M.; Savić, I.; ...
2016-07-22
The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV–VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instabilitymore » and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Lastly, our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.« less
Enhancement of low-energy electron emission in 2D radioactive films
NASA Astrophysics Data System (ADS)
Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J.; Lewis, Emily A.; Lucci, Felicia R.; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E. Charles H.
2015-09-01
High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.
NASA Astrophysics Data System (ADS)
Hussain, S.; Mahmood, S.
2018-01-01
Low frequency magnetosonic wave excitations are investigated in semiconductor hole-electron plasmas. The quantum mechanical effects such as Fermi pressure, quantum tunneling, and exchange-correlation of holes and electrons in the presence of the magnetic field are considered. The two fluid quantum magnetohydrodynamic model is used to study magnetosonic wave dynamics, while electric and magnetic fields are coupled via Maxwell equations. The dispersion relation of the magnetosonic wave in electron-hole semiconductor plasma propagating in the perpendicular direction of the magnetic field is obtained, and its dispersion effects are discussed. The Korteweg-de Vries equation (KdV) for magnetosonic solitons is derived by employing the reductive perturbation method. For numerical analysis, the plasma parameters are taken from the semiconductors such as GaAs, GaSb, GaN, and InP already existing in the literature. It is found that the phase velocity of the magnetosonic wave is increased with the inclusion of exchange-correlation force in the model. The soliton dip structures of the magnetosonic wave in GaN semiconductor plasma are obtained, which satisfy the quantum plasma conditions for electron and hole fluids. The magnetosonic soliton dip structures move with speed less than the magnetosonic wave phase speed in the lab frame. The effects of exchange-correlation force in the model and variations of magnetic field intensity and electron/hole density on the magnetosonic wave dip structures are also investigated numerically for illustration.
Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas
2013-01-01
Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047
The Sternheimer-GW method and the spectral signatures of plasmonic polarons
NASA Astrophysics Data System (ADS)
Giustino, Feliciano
During the past three decades the GW method has emerged among the most promising electronic structure techniques for predictive calculations of quasiparticle band structures. In order to simplify the GW work-flow while at the same time improving the calculation accuracy, we developed the Sternheimer-GW method. In Sternheimer-GW both the screened Coulomb interaction and the electron Green's function are evaluated by using exclusively occupied Kohn-Sham states, as in density-functional perturbation theory. In this talk I will review the basics of Sternheimer-GW, and I will discuss two recent applications to semiconductors and superconductors. In the case of semiconductors we calculated complete energy- and momentum-resolved spectral functions by combining Sternheimer-GW with the cumulant expansion approach. This study revealed the existence of band structure replicas which arise from electron-plasmon interactions. In the case of superconductors we calculated the Coulomb pseudo-potential from first principles, and combined this approach with the Eliashberg theory of the superconducting critical temperature. This work was supported by the Leverhulme Trust (RL-2012-001), the European Research Council (EU FP7/ERC 239578), the UK Engineering and Physical Sciences Research Council (EP/J009857/1), and the Graphene Flagship (EU FP7/604391).
Lifetime of a Chemically Bound Helium Compound
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.
Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Samrat; Morgan, Dane; Uberuaga, Blas P.
Electronic structure calculations were performed to study the role of misfit dislocations on the structure and chemistry of a metal/oxide interface. We found that a chemical imbalance exists at the misfit dislocation which leads to dramatic changes in the point defect content at the interface – stabilizing the structure requires removing as much as 50% of the metal atoms and insertion of a large number of oxygen interstitials. The exact defect composition that stabilizes the interface is sensitive to the external oxygen partial pressure. We relate the preferred defect structure at the interface to a competition between chemical and strainmore » energies as defects are introduced.« less
Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces
Choudhury, Samrat; Morgan, Dane; Uberuaga, Blas P.
2014-10-17
Electronic structure calculations were performed to study the role of misfit dislocations on the structure and chemistry of a metal/oxide interface. We found that a chemical imbalance exists at the misfit dislocation which leads to dramatic changes in the point defect content at the interface – stabilizing the structure requires removing as much as 50% of the metal atoms and insertion of a large number of oxygen interstitials. The exact defect composition that stabilizes the interface is sensitive to the external oxygen partial pressure. We relate the preferred defect structure at the interface to a competition between chemical and strainmore » energies as defects are introduced.« less
NASA Astrophysics Data System (ADS)
Kolesnikova, Inna N.; Putkov, Andrei E.; Rykov, Anatolii N.; Shishkov, Igor F.
2018-06-01
The equilibrium (re) molecular structure of thiobenzamide along with rh1 structure has been determined in gas phase using gas electron-diffraction (GED) at about 127 °C and quantum-chemical calculations (QC). Rovibrational distance corrections to the thermal averaged GED structure have been computed with anharmonic force constants obtained at the MP2/cc-pVTZ level of theory. According to the results of GED and QC thiobenzamide exists as mixture of two non-planar enantiomers of C1 symmetry. The selected equilibrium geometrical parameters of thiobenzamide (re, Å and ∠e, deg) are the following: (Cdbnd S) = 1.641(4), (Csbnd N) = 1.352(2), (Csbnd C) = 1.478(9), (Cdbnd C)av = 1.395(2), CCN = 114.7(5), CCS = 123.4(5), C2C1C7S = 31(4), C6C1C7N = 29(4). The structure of thiobenzamide in the gas phase is markedly different to that in the literature for the single crystal. The differences between the gas and the solid structures are ascribed to the presence of intermolecular hydrogen bonding in the solid phase.
On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes
NASA Astrophysics Data System (ADS)
Catalán, J.
2003-07-01
An alternative model to that of the inversion of the states 1Bu and 2Ag is proposed for interpreting the photophysics of the α,ω-diphenylpolyenes. This model is based upon the existence of two chemical structures with Bu symmetry, which may be ascribed to the same excited electronic state 1Bu. One of the two chemical structures corresponds to the Franck-Condon structure with conjugated single and double bonds for the polyene chain, and another consists of a nearly equivalent series of partial double bonds along the polyene chain. The latter relaxed structure is consistent with the observation of high torsional energy barriers and low photoisomerization quantum yields for diphenylhexatriene in the singlet excited state manifold. Interestingly, such a simple quantum model as that of the particle in a one-dimensional box provides quite an accurate description of the absorption spectroscopic properties of these major compounds. This is partly the result of the most stable structures for these compounds being of the all-trans type; such structures increase in length as additional ethylene units are added, which makes them very similar to a one-dimensional box becoming increasingly longer.
Strain engineering of atomic and electronic structures of few-monolayer-thick GaN
NASA Astrophysics Data System (ADS)
Kolobov, A. V.; Fons, P.; Saito, Y.; Tominaga, J.; Hyot, B.; André, B.
2017-07-01
Two-dimensional (2D) semiconductors possess the potential to ultimately minimize the size of devices and concomitantly drastically reduce the corresponding energy consumption. In addition, materials in their atomic-scale limit often possess properties different from their bulk counterparts paving the way to conceptually novel devices. While graphene and 2D transition-metal dichalcogenides remain the most studied materials, significant interest also exists in the fabrication of atomically thin structures from traditionally 3D semiconductors such as GaN. While in the monolayer limit GaN possesses a graphenelike structure and an indirect band gap, it was recently demonstrated that few-layer GaN acquires a Haeckelite structure in the direction of growth with an effectively direct gap. In this work, we demonstrate the possibility of strain engineering of the atomic and electronic structure of few-monolayer-thick GaN structures, which opens new avenues for their practical application in flexible nanoelectronics and nano-optoelectronics. Our simulations further suggest that due to the weak van der Waals-like interaction between a substrate and an overlayer, the use of a MoS2 substrate may be a promising route to fabricate few-monolayer Haeckelite GaN experimentally.
Kim, J H; Ferziger, R; Kawaloff, H B; Sands, D Z; Safran, C; Slack, W V
2001-01-01
Even the most extensive hospital information system cannot support all the complex and ever-changing demands associated with a clinical database, such as providing department or personal data forms, and rating scales. Well-designed clinical dialogue programs may facilitate direct interaction of patients with their medical records. Incorporation of extensive and loosely structured clinical data into an existing medical record system is an essential step towards a comprehensive clinical information system, and can best be achieved when the practitioner and the patient directly enter the contents. We have developed a rapid prototyping and clinical conversational system that complements the electronic medical record system, with its generic data structure and standard communication interfaces based on Web technology. We believe our approach can enhance collaboration between consumer-oriented and provider-oriented information systems.
NASA Astrophysics Data System (ADS)
Yang, Fujun; Ma, Yinhang; Tao, Nan; He, Xiaoyuan
2017-06-01
Due to its multi properties, including excellent stiffness-to-weight and strength-to-weight ratios, closed-cell aluminum and its alloy foams become candidate materials for use in many high-technology industries, such as the automotive and aerospace industries. For the efficient use of closed-cell foams in structural applications, it is necessary and important to detailly understand their mechanical characteristics. In this paper, the nonlinear vibration responses of the cantilever beams of closed-cell aluminum foams were investigated by use of electronic speckle pattern interferometry (ESPI). The nonlinear resonant mode shapes of testing specimens under harmonic excitation were measured. It is first time to obtain from the experimental results that there exist super-harmonic responses when the cantilever beams of closed-cell aluminum foam were forced to vibrate, which was caused by its specific cellular structures.
Lundell, Katie A; Zhang, Xinxing; Boldyrev, Alexander I; Bowen, Kit H
2017-12-22
The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl 2 H 4 - cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl 2 H 4 - cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si 2 H 4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and electrochemical properties of La 0.8Sr 0.2Ga 1-xFe xO 3
NASA Astrophysics Data System (ADS)
Mori, Kazuhiro; Onodera, Yohei; Kiyanagi, Ryoji; Richardson, James W.; Itoh, Keiji; Sugiyama, Masaaki; Kamiyama, Takashi; Fukunaga, Toshiharu
2009-02-01
Mixed ionic-electronic conductor of Fe doped lanthanum gallate, La 0.8Sr 0.2Ga 1-xFe xO 3, has been studied by the dc four-probe method and the neutron powder diffraction. In the electrical conductivity measurement at RT, insulator-metal transition-like phenomenon was observed at around x˜0.35; this suggests an existence of the percolation limit for the electronic conductivity. Simultaneously, a bond length between O atoms, lO-O, in a MO 6 octahedron (M dbnd Ga 1-xFe x) drastically expands over x˜0.4, according to the result of crystal structure refinement based on the hexagonal phase. Such a drastic expansion in the lO-O would induce the decrease in the oxygen ionic conductivity.
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
Precise Nanoelectronics with Adatom Chains
NASA Technical Reports Server (NTRS)
Yamada, Toshishige
1999-01-01
Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.
Spin-orbit driven magnetic insulating state with J eff=1/2 character in a 4d oxide
Calder, S.; Li, Ling; Okamoto, Satoshi; ...
2015-11-30
The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr 4RhO 6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogousmore » J eff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with J eff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr 4RhO 6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous J eff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with J eff=12 character.« less
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip
2016-04-01
X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.
Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe; Paulus, Beate; Hege, Hans-Christian; Schild, Axel
2016-06-15
ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wavefunction, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT possesses routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Enigma of the Respiratory Chain Supercomplex.
Milenkovic, Dusanka; Blaza, James N; Larsson, Nils-Göran; Hirst, Judy
2017-04-04
Respiratory chain dysfunction plays an important role in human disease and aging. It is now well established that the individual respiratory complexes can be organized into supercomplexes, and structures for these macromolecular assemblies, determined by electron cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes exist remains an enigma. The widely held view that they enhance catalysis by channeling substrates is challenged by both structural and biophysical information. Here, we evaluate and discuss data and hypotheses on the structures, roles, and assembly of respiratory-chain supercomplexes and propose a future research agenda to address unanswered questions. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis
2017-03-01
The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.
NASA Astrophysics Data System (ADS)
Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.
2016-06-01
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.
Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials
NASA Astrophysics Data System (ADS)
Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.
2018-05-01
The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.
Sun, Z; Wang, Q; Fedorov, A V; Zheng, H; Mitchell, J F; Dessau, D S
2011-07-19
Electronic phases with stripe patterns have been intensively investigated for their vital roles in unique properties of correlated electronic materials. How these real-space patterns affect the conductivity and other properties of materials (which are usually described in momentum space) is one of the major challenges of modern condensed matter physics. By studying the electronic structure of La(2-2x)Sr(1+2x)Mn(2)O(7) (x ∼ 0.59) and in combination with earlier scattering measurements, we demonstrate the variation of electronic properties accompanying the melting of so-called bi-stripes in this material. The static bi-stripes can strongly localize the electrons in the insulating phase above T(c) ∼ 160 K, while the fraction of mobile electrons grows, coexisting with a significant portion of localized electrons when the static bi-stripes melt below T(c). The presence of localized electrons below T(c) suggests that the melting bi-stripes exist as a disordered or fluctuating counterpart. From static to melting, the bi-stripes act as an atomic-scale electronic valve, leading to a "colossal" metal-insulator transition in this material.
Winkelman, Warren J.; Leonard, Kevin J.
2004-01-01
There are constraints embedded in medical record structure that limit use by patients in self-directed disease management. Through systematic review of the literature from a critical perspective, four characteristics that either enhance or mitigate the influence of medical record structure on patient utilization of an electronic patient record (EPR) system have been identified: environmental pressures, physician centeredness, collaborative organizational culture, and patient centeredness. An evaluation framework is proposed for use when considering adaptation of existing EPR systems for online patient access. Exemplars of patient-accessible EPR systems from the literature are evaluated utilizing the framework. From this study, it appears that traditional information system research and development methods may not wholly capture many pertinent social issues that arise when expanding access of EPR systems to patients. Critically rooted methods such as action research can directly inform development strategies so that these systems may positively influence health outcomes. PMID:14633932
Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7
NASA Astrophysics Data System (ADS)
Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo
2017-10-01
We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.
Quantum spin Hall state in monolayer 1T '-WTe 2
Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...
2017-06-26
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less
Quantum spin Hall state in monolayer 1T '-WTe 2
Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...
2017-06-26
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less
Temperature-driven topological transition in 1T'-MoTe2
NASA Astrophysics Data System (ADS)
Berger, Ayelet Notis; Andrade, Erick; Kerelsky, Alexander; Edelberg, Drew; Li, Jian; Wang, Zhijun; Zhang, Lunyong; Kim, Jaewook; Zaki, Nader; Avila, Jose; Chen, Chaoyu; Asensio, Maria C.; Cheong, Sang-Wook; Bernevig, Bogdan A.; Pasupathy, Abhay N.
2018-01-01
The topology of Weyl semimetals requires the existence of unique surface states. Surface states have been visualized in spectroscopy measurements, but their connection to the topological character of the material remains largely unexplored. 1T'-MoTe2, presents a unique opportunity to study this connection. This material undergoes a phase transition at 240 K that changes the structure from orthorhombic (putative Weyl semimetal) to monoclinic (trivial metal), while largely maintaining its bulk electronic structure. Here, we show from temperature-dependent quasiparticle interference measurements that this structural transition also acts as a topological switch for surface states in 1T'-MoTe2. At low temperature, we observe strong quasiparticle scattering, consistent with theoretical predictions and photoemission measurements for the surface states in this material. In contrast, measurements performed at room temperature show the complete absence of the scattering wavevectors associated with the trivial surface states. These distinct quasiparticle scattering behaviors show that 1T'-MoTe2 is ideal for separating topological and trivial electronic phenomena via temperature-dependent measurements.
Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System
König, Dirk; Gutsch, Sebastian; Gnaser, Hubert; Wahl, Michael; Kopnarski, Michael; Göttlicher, Jörg; Steininger, Ralph; Zacharias, Margit; Hiller, Daniel
2015-01-01
Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P. PMID:25997696
Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.
Zhou, Si; Zhao, Jijun
2016-04-28
Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.
Defect levels of semi-insulating CdMnTe:In crystals
NASA Astrophysics Data System (ADS)
Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.
2011-06-01
Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.
Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ
NASA Astrophysics Data System (ADS)
Massidda, S.
1990-07-01
We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.
Kimia, Amir A; Savova, Guergana; Landschaft, Assaf; Harper, Marvin B
2015-07-01
Electronically stored clinical documents may contain both structured data and unstructured data. The use of structured clinical data varies by facility, but clinicians are familiar with coded data such as International Classification of Diseases, Ninth Revision, Systematized Nomenclature of Medicine-Clinical Terms codes, and commonly other data including patient chief complaints or laboratory results. Most electronic health records have much more clinical information stored as unstructured data, for example, clinical narrative such as history of present illness, procedure notes, and clinical decision making are stored as unstructured data. Despite the importance of this information, electronic capture or retrieval of unstructured clinical data has been challenging. The field of natural language processing (NLP) is undergoing rapid development, and existing tools can be successfully used for quality improvement, research, healthcare coding, and even billing compliance. In this brief review, we provide examples of successful uses of NLP using emergency medicine physician visit notes for various projects and the challenges of retrieving specific data and finally present practical methods that can run on a standard personal computer as well as high-end state-of-the-art funded processes run by leading NLP informatics researchers.
The nano-architecture of the axonal cytoskeleton.
Leterrier, Christophe; Dubey, Pankaj; Roy, Subhojit
2017-12-01
The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.
Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.
2015-01-01
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115
Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J
1982-01-01
The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351
A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB
NASA Astrophysics Data System (ADS)
Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang
2018-04-01
The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.
Plasma waves in the magnetic hole
NASA Technical Reports Server (NTRS)
Lin, Naiguo; Kellogg, P. J.; MacDowall, R.; Balogh, A.; Forsyth, R. J.; Phillips, J. L.; Pick, M.
1995-01-01
Magnetic holes in the solar wind, which are characterized by isolated local depressions in the magnetic field magnitude, have been observed previously. The Unified Radio and Plasma Wave (URAP) instrument of Ulysses has found that within such magnetic structures, electrostatic waves at kHz frequency and ultralow frequency electromagnetic waves are often excited and seen as short duration wave bursts. Most of these bursts occur near the ambient electron plasma frequency, which suggests that the waves are Langmuir waves. Such waves are usually excited by electron streams. Some evidence of the streaming of energetic electrons required for exciting Langmuir waves has been observed. These electrons may have originated at sources near the Sun, which would imply that the magnetic structures containing the waves would exist as long channels formed by field and plasma conditions near the Sun. On the other hand, the electrons could be suprathermal 'tails' from wave collapse processes occurring near the spacecraft. In either case, the Langmuir waves excited in the magnetic holes provide a measurement of the plasma density inside the holes. Low frequency electromagnetic waves, having frequencies of a fraction of the local electron cyclotron frequency, sometimes accompany the Langmuir waves observed in magnetic holes. Waves excited in this frequency range are very likely to be whistler-mode waves. They may have been excited by an electron temperature anisotropy which has been observed in the vicinity of the magnetic holes or generated through the decay of Langmuir waves.
Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.
2009-09-01
We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.
Mechanisms of transport and electron transfer at conductive polymer/liquid interfaces
NASA Astrophysics Data System (ADS)
Ratcliff, Erin
Organic semiconductors (OSCs) have incredible prospects for next-generation, flexible electronic devices including bioelectronics, thermoelectrics, opto-electronics, and energy storage and conversion devices. Yet many fundamental challenges still exist. First, solution processing prohibits definitive control over microstructure, which is fundamental for controlling electrical, ionic, and thermal transport properties. Second, OSCs generally suffer from poor electrical conductivities due to a combination of low carriers and low mobility. Third, polymeric semiconductors have potential-dependent, dynamically evolving electronic and chemical states, leading to complex interfacial charge transfer properties in contact with liquids. This talk will focus on the use of alternative synthetic strategies of oxidative chemical vapor deposition and electrochemical deposition to control physical, electronic, and chemical structure. We couple our synthetic efforts with energy-, time-, and spatially resolved spectroelectrochemical and microscopy techniques to understand the critical interfacial chemistry-microstructure-property relationships: first at the macroscale, and then moving towards the nanoscale. In particular, approaches to better understand electron transfer events at polymer/liquid interfaces as a function of: 1.) chemical composition; 2.) electronic density of states (DOS); and 3.) crystallinity and microstructure will be discussed.
Simulating Pressure Profiles for the Free-Electron Laser Photoemission Gun Using Molflow+
NASA Astrophysics Data System (ADS)
Song, Diego; Hernandez-Garcia, Carlos
2012-10-01
The Jefferson Lab Free Electron Laser (FEL) generates tunable laser light by passing a relativistic electron beam generated in a high-voltage DC electron gun with a semiconducting photocathode through a magnetic undulator. The electron gun is in stringent vacuum conditions in order to guarantee photocathode longevity. Considering an upgrade of the electron gun, this project consists of simulating pressure profiles to determine if the novel design meets the electron gun vacuum requirements. The method of simulation employs the software Molflow+, developed by R. Kersevan at the Organisation Europ'eene pour la Recherche Nucl'eaire (CERN), which uses the test-particle Monte Carlo method to simulate molecular flows in 3D structures. Pressure is obtained along specified chamber axes. Results are then compared to measured pressure values from the existing gun for validation. Outgassing rates, surface area, and pressure were found to be proportionally related. The simulations indicate that the upgrade gun vacuum chamber requires more pumping compared to its predecessor, while it holds similar vacuum conditions. The ability to simulate pressure profiles through tools like Molflow+, allows researchers to optimize vacuum systems during the engineering process.
Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun
2015-11-24
Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less
Reid, B L
1995-06-01
This paper treats evidence for an increasing recognition of a force with intangible properties in biosystems with special reference to its ability to transport electrons at near 0 degree Kelvin. It is implied that such force, whose demonstration at these temperatures is an experimental contrivance to emphasise its strictly quantal status, can be operative at room temperature. A discussion is entered as to a mode for delivery of intangible energy from demonstrable non-local origins, locally to the cell to provide for structure and function. Extensive use is made of theory of the structure of the photon from de Broglie and others to accommodate a co-existence of real (electromagnetic) and quantal (intangible) fields within the photon and to discuss how such co-existence may have been copied or otherwise made manifest in a macroscopic structure such as the cell. Cell function is then viewed as concurrent real and intangible effects following stimuli derived from perturbation of the real or electromagnetic component.
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Deka, Utpal; Prasad K, Shyam; Okram, G. S.; Sanjeev, Ganesh; Chandra Petwal, Vikash; Verma, Vijay Pal; Dwivedi, Jishnu
2018-07-01
The study of electronic and magnetic properties of electron beam (EB) irradiated PrCoO3 manganites is presented in this communication. The diffraction data confirms that pristine as well as electron beam irradiated samples are single phased and they crystalize at orthorhombic distorted structure with Pbnm space group. The electrical resistivity of all the samples reveals semiconducting behavior. Small polaron hopping model is appropriately employed to investigate the semiconducting nature of the pristine and EB irradiated samples. The Seebeck coefficient (S) data of the pristine sample exhibits colossally high positive value (about 300 mV/K) and substantial decrease in S value is noticed in the irradiated samples. The high temperature analysis of thermopower data validates the small polaron hopping model. The magnetic measurements display possible existence of super-paramagnetic characteristics in the samples.
Electrical Matching at Metal/Molecule Contacts for Efficient Heterogeneous Charge Transfer.
Sato, Shino; Iwase, Shigeru; Namba, Kotaro; Ono, Tomoya; Hara, Kenji; Fukuoka, Atsushi; Uosaki, Kohei; Ikeda, Katsuyoshi
2018-02-27
In a metal/molecule hybrid system, unavoidable electrical mismatch exists between metal continuum states and frontier molecular orbitals. This causes energy loss in the electron conduction across the metal/molecule interface. For efficient use of energy in a metal/molecule hybrid system, it is necessary to control interfacial electronic structures. Here we demonstrate that electrical matching between a gold substrate and π-conjugated molecular wires can be obtained by using monatomic foreign metal interlayers, which can change the degree of d-π* back-donation at metal/anchor contacts. This interfacial control leads to energy level alignment between the Fermi level of the metal electrode and conduction molecular orbitals, resulting in resonant electron conduction in the metal/molecule hybrid system. When this method is applied to molecule-modified electrocatalysts, the heterogeneous electrochemical reaction rate is considerably improved with significant suppression of energy loss at the internal electron conduction.
Structural and Developmental Disparity in the Tentacles of the Moon Jellyfish Aurelia sp.1
Gold, David A.; Nakanishi, Nagayasu; Hensley, Nicholai M.; Cozzolino, Kira; Tabatabaee, Mariam; Martin, Michelle; Hartenstein, Volker; Jacobs, David K.
2015-01-01
Tentacles armed with stinging cells (cnidocytes) are a defining trait of the cnidarians, a phylum that includes sea anemones, corals, jellyfish, and hydras. While cnidarian tentacles are generally characterized as structures evolved for feeding and defense, significant variation exists between the tentacles of different species, and within the same species across different life stages and/or body regions. Such diversity suggests cryptic distinctions exist in tentacle function. In this paper, we use confocal and transmission electron microscopy to contrast the structure and development of tentacles in the moon jellyfish, Aurelia species 1. We show that polyp oral tentacles and medusa marginal tentacles display markedly different cellular and muscular architecture, as well as distinct patterns of cellular proliferation during growth. Many structural differences between these tentacle types may reflect biomechanical solutions to different feeding strategies, although further work would be required for a precise mechanistic understanding. However, differences in cell proliferation dynamics suggests that the two tentacle forms lack a conserved mechanism of development, challenging the textbook-notion that cnidarian tentacles can be homologized into a conserved bauplan. PMID:26241309
Structural and Developmental Disparity in the Tentacles of the Moon Jellyfish Aurelia sp.1.
Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Cozzolino, Kira; Tabatabaee, Mariam; Martin, Michelle; Hartenstein, Volker; Jacobs, David K
2015-01-01
Tentacles armed with stinging cells (cnidocytes) are a defining trait of the cnidarians, a phylum that includes sea anemones, corals, jellyfish, and hydras. While cnidarian tentacles are generally characterized as structures evolved for feeding and defense, significant variation exists between the tentacles of different species, and within the same species across different life stages and/or body regions. Such diversity suggests cryptic distinctions exist in tentacle function. In this paper, we use confocal and transmission electron microscopy to contrast the structure and development of tentacles in the moon jellyfish, Aurelia species 1. We show that polyp oral tentacles and medusa marginal tentacles display markedly different cellular and muscular architecture, as well as distinct patterns of cellular proliferation during growth. Many structural differences between these tentacle types may reflect biomechanical solutions to different feeding strategies, although further work would be required for a precise mechanistic understanding. However, differences in cell proliferation dynamics suggests that the two tentacle forms lack a conserved mechanism of development, challenging the textbook-notion that cnidarian tentacles can be homologized into a conserved bauplan.
Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling
NASA Astrophysics Data System (ADS)
Balcerzak, T.; Szałowski, K.; Jaščur, M.
2018-04-01
Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.
NASA Astrophysics Data System (ADS)
Paldus, J.; Li, X.
1992-10-01
Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.
Miniband-related 1.4–1.8 μm luminescence of Ge/Si quantum dot superlattices
Cirlin, GE; Tonkikh, AA; Zakharov, ND; Werner, P; Gösele, U; Tomm, JW; Elsaesser, T
2006-01-01
The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4–1.8 µm range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 µm.
Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma
NASA Astrophysics Data System (ADS)
M. Nouri, Kadijani; Zareamoghaddam, H.
2013-11-01
In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells
Wen, Jianguo; Miller, Dean J.; Chen, Wei; ...
2014-06-20
Here, traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/ PC 61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC 61BM polymeric solar cells at multiple length scales and expands ourmore » understanding of optimal device performance providing insight for the design of even higher performance cells.« less
NASA Astrophysics Data System (ADS)
Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle
2007-01-01
Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.
Structural Health Monitoring of Large Structures
NASA Technical Reports Server (NTRS)
Kim, Hyoung M.; Bartkowicz, Theodore J.; Smith, Suzanne Weaver; Zimmerman, David C.
1994-01-01
This paper describes a damage detection and health monitoring method that was developed for large space structures using on-orbit modal identification. After evaluating several existing model refinement and model reduction/expansion techniques, a new approach was developed to identify the location and extent of structural damage with a limited number of measurements. A general area of structural damage is first identified and, subsequently, a specific damaged structural component is located. This approach takes advantage of two different model refinement methods (optimal-update and design sensitivity) and two different model size matching methods (model reduction and eigenvector expansion). Performance of the proposed damage detection approach was demonstrated with test data from two different laboratory truss structures. This space technology can also be applied to structural inspection of aircraft, offshore platforms, oil tankers, ridges, and buildings. In addition, its applications to model refinement will improve the design of structural systems such as automobiles and electronic packaging.
NASA Astrophysics Data System (ADS)
Nam, Gwang-Hee; Baek, Seong-Ho; Cho, Chang-Hee; Park, Il-Kyu
2014-09-01
We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator exhibits stable output voltage up to 3.04 V with alternating current output characteristics.We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator exhibits stable output voltage up to 3.04 V with alternating current output characteristics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02318h
Pathways for tailoring the magnetostructural behavior of FeRh-based systems
NASA Astrophysics Data System (ADS)
Barua, Radhika
2014-03-01
The prediction of phase transition temperatures in functional materials provides dual benefits of supplying insight into fundamental drivers underlying the phase transition, as well as enabling new and improved technological applications that employ the material. In this work, studies focused on understanding the magnetostructural phase transition of FeRh as a function of elemental substitution, provides guidance for tailoring phase transitions in this compound, with possible extensions to other intermetallic-based magnetostructural compounds. Clear trends in the magnetostructural temperatures (Tt) of alloys of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals), as reported in literature since 1961, were identified and confirmed as a function of the valence band electron concentration ((s + d) electrons/atom) of the system. It is observed that substitution of 3 dor 4 delements (x <= 6.5 at%) into B2-ordered FeRh compounds causes Ttto increase to a maximum around a critical valence band electron concentration (ev *) of 8.50 electrons/atom and then decrease. Substitution of 5 delements echoes this trend but with an overall increase in Ttand a shift in ev * to 8.52 electrons/atom. For ev>8.65 electrons/atom, FeRh-based alloys cease to adopt the B2-ordered crystallographic structure in favor of the chemically disordered A1-type structure or the ordered L10-type structure. This phenomenological model has been confirmed through synthesis and characterization of FeRh alloys with Cu, Ni and Au additions. The success of this model in confirming existing data trends in chemically-substituted FeRh and predicting new composition-transition temperature correlations emphasizes the strong interplay between the electronic spin configuration, the electronic band structure, and crystal lattice of this system. Further these results provide pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh-based systems for potential technological applications. Research was performed under the auspices of the U.S. Department of Energy (Contract No. DE-SC0005250).
Model for intensity calculation in electron guns
NASA Astrophysics Data System (ADS)
Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.
2007-04-01
The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.
Croll, Tristan I; Smith, Brian J; Margetts, Mai B; Whittaker, Jonathan; Weiss, Michael A; Ward, Colin W; Lawrence, Michael C
2016-03-01
Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding. Copyright © 2016 Elsevier Ltd. All rights reserved.
MMM: A toolbox for integrative structure modeling.
Jeschke, Gunnar
2018-01-01
Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.
The PSML format and library for norm-conserving pseudopotential data curation and interoperability
NASA Astrophysics Data System (ADS)
García, Alberto; Verstraete, Matthieu J.; Pouillon, Yann; Junquera, Javier
2018-06-01
Norm-conserving pseudopotentials are used by a significant number of electronic-structure packages, but the practical differences among codes in the handling of the associated data hinder their interoperability and make it difficult to compare their results. At the same time, existing formats lack provenance data, which makes it difficult to track and document computational workflows. To address these problems, we first propose a file format (PSML) that maps the basic concepts of the norm-conserving pseudopotential domain in a flexible form and supports the inclusion of provenance information and other important metadata. Second, we provide a software library (libPSML) that can be used by electronic structure codes to transparently extract the information in the file and adapt it to their own data structures, or to create converters for other formats. Support for the new file format has been already implemented in several pseudopotential generator programs (including ATOM and ONCVPSP), and the library has been linked with SIESTA and ABINIT, allowing them to work with the same pseudopotential operator (with the same local part and fully non-local projectors) thus easing the comparison of their results for the structural and electronic properties, as shown for several example systems. This methodology can be easily transferred to any other package that uses norm-conserving pseudopotentials, and offers a proof-of-concept for a general approach to interoperability.
Photoemission and Auger-electron spectroscopic study of the Chevrel-phase compound FexMo6S8
NASA Astrophysics Data System (ADS)
Fujimori, A.; Sekita, M.; Wada, H.
1986-05-01
The electronic structure of the Chevrel-phase compound FexMo6S8 has been studied by photoemission and Auger-electron spectroscopy. Core-level shifts suggest a large charge transfer from the Fe atoms to the Mo6S8 clusters and a small Mo-to-S charge transfer within the cluster. Line-shape asymmetry in the core levels indicates that the density of states (DOS) at the Fermi level has a finite S 3p component as well as the dominant Mo 3d character. Satellite structure and exchange splitting in the Fe core levels point to weak Fe 3d-S 3p hybridization in spite of the short Fe-S distances comparable to that in FeS. The x-ray and ultraviolet valence-band photoemission spectra and the Mo 4d partial DOS obtained by deconvoluting the Mo M4,5VV Auger spectrum are compared with existing band-structure calculations, and the Mo 4d-S 3p bonding character, the structure of the Mo 4d-derived conduction band etc., are discussed. In particular, it is shown that the conduction-band structure is sensitive to the noncubic distortion of the crystal through changes in the intercluster Mo 4d-S 3p hybridization. A pronounced final-state effect is found in the Mo M4,5N2,3V Auger spectrum and is attributed to strong 4p-4d intershell coupling.
Zombie states for description of structure and dynamics of multi-electron systems
NASA Astrophysics Data System (ADS)
Shalashilin, Dmitrii V.
2018-05-01
Canonical Coherent States (CSs) of Harmonic Oscillator have been extensively used as a basis in a number of computational methods of quantum dynamics. However, generalising such techniques for fermionic systems is difficult because Fermionic Coherent States (FCSs) require complicated algebra of Grassmann numbers not well suited for numerical calculations. This paper introduces a coherent antisymmetrised superposition of "dead" and "alive" electronic states called here Zombie State (ZS), which can be used in a manner of FCSs but without Grassmann algebra. Instead, for Zombie States, a very simple sign-changing rule is used in the definition of creation and annihilation operators. Then, calculation of electronic structure Hamiltonian matrix elements between two ZSs becomes very simple and a straightforward technique for time propagation of fermionic wave functions can be developed. By analogy with the existing methods based on Canonical Coherent States of Harmonic Oscillator, fermionic wave functions can be propagated using a set of randomly selected Zombie States as a basis. As a proof of principles, the proposed Coupled Zombie States approach is tested on a simple example showing that the technique is exact.
The linearly scaling 3D fragment method for large scale electronic structure calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhengji; Meza, Juan; Lee, Byounghak
2009-07-28
The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less
The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhengji; Meza, Juan; Lee, Byounghak
2009-06-26
The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) atmore » OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.« less
Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics
NASA Astrophysics Data System (ADS)
Farahbakhsh, Nasim
A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).
Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations
NASA Astrophysics Data System (ADS)
Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.
2018-04-01
The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.
NASA Astrophysics Data System (ADS)
Xia, Xiuli; Shao, Yuanzhi
2018-02-01
We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.
NASA Astrophysics Data System (ADS)
Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio
2008-07-01
The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.
Structure and organization of heteromeric AMPA-type glutamate receptors.
Herguedas, Beatriz; García-Nafría, Javier; Cais, Ondrej; Fernández-Leiro, Rafael; Krieger, James; Ho, Hinze; Greger, Ingo H
2016-04-29
AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling. Copyright © 2016, American Association for the Advancement of Science.
Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan
2009-05-13
The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.
NASA Astrophysics Data System (ADS)
Suetin, D. V.; Shein, I. R.
2018-02-01
Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.
On the release of cppxfel for processing X-ray free-electron laser images.
Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K; Stuart, David Ian
2016-06-01
As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel , a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.
Electrical Control of Metallic Heavy-Metal-Ferromagnet Interfacial States
NASA Astrophysics Data System (ADS)
Bi, Chong; Sun, Congli; Xu, Meng; Newhouse-Illige, Ty; Voyles, Paul M.; Wang, Weigang
2017-09-01
Voltage-control effects provide an energy-efficient means of tailoring material properties, especially in highly integrated nanoscale devices. However, only insulating and semiconducting systems can be controlled so far. In metallic systems, there is no electric field due to electron screening effects and thus no such control effect exists. Here, we demonstrate that metallic systems can also be controlled electrically through ionic rather than electronic effects. In a Pt /Co structure, the control of the metallic Pt /Co interface can lead to unprecedented control effects on the magnetic properties of the entire structure. Consequently, the magnetization and perpendicular magnetic anisotropy of the Co layer can be independently manipulated to any desired state, the efficient spin toques can be enhanced about 3.5 times, and the switching current can be reduced about one order of magnitude. This ability to control a metallic system may be extended to control other physical phenomena.
NASA Astrophysics Data System (ADS)
Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.
2017-04-01
The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
Zhang, W. -L.; Richard, P.; van Roekeghem, A.; ...
2016-10-31
We performed an angle-resolved photoemission spectroscopy study of BaMn 2As 2 and BaMn 2Sb 2, which are isostructural to the parent compound BaFe 2As 2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly k z-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play amore » role in tuning the electronic correlations in these compounds.« less
Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries
Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk
2013-01-01
Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452
Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell
NASA Astrophysics Data System (ADS)
Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.
2017-07-01
Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenikhina, Y.; Romanenko, A.; Kwon, J.
Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level.more » We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake.« less
Trenikhina, Y.; Romanenko, A.; Kwon, J.; ...
2015-04-21
Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120°C baking. Furthermore, we demonstrate that adding 800°C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120°C bake level.more » We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120°C bake.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenikhina, Y., E-mail: yuliatr@fnal.gov; Fermi National Accelerator Laboratory, Batavia, Illinois 60510; Romanenko, A., E-mail: aroman@fnal.gov
Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. Wemore » also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.« less
On the release of cppxfel for processing X-ray free-electron laser images
Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K.; ...
2016-05-11
As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Herecppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set.Cppxfelis released with the hope that the unique and useful elements of this package can be repurposed formore » existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.« less
NASA Astrophysics Data System (ADS)
Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.
2018-05-01
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.
Three-dimensional graphdiyne as a topological nodal-line semimetal
NASA Astrophysics Data System (ADS)
Nomura, Takafumi; Habe, Tetsuro; Sakamoto, Ryota; Koshino, Mikito
2018-05-01
We study the electronic band structure of three-dimensional ABC-stacked (rhombohedral) graphdiyne, which is a new planar carbon allotrope recently fabricated. Using first-principles calculation, we show that the system is a nodal-line semimetal, in which the conduction band and valence band cross at a closed ring in the momentum space. We derive the minimum tight-binding model and the low-energy effective Hamiltonian in a 4 ×4 matrix form. The nodal line is protected by a nontrivial winding number, and it ensures the existence of the topological surface state in a finite-thickness slab. The Fermi surface of the doped system exhibits a peculiar, self-intersecting hourglass structure, which is quite different from the torus or pipe shape in the previously proposed nodal semimetals. Despite its simple configuration, three-dimensional graphdiyne offers unique electronic properties distinct from any other carbon allotropes.
Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong
2015-06-07
The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.
Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; ...
2016-11-21
Beta-gallium oxide (β-Ga 2O 3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga 2O 3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality β-Ga 2O 3 films on (0001) sapphire and (–201) Ga 2O 3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. As a result, there is a strong temperature dependencemore » to the phase formation, morphology, and electronic properties of β-Ga 2O 3 from 350 to 550 °C.« less
Hydrothermal epitaxy and resultant properties of EuTiO3 films on SrTiO3(001) substrate
2014-01-01
We report a novel epitaxial growth of EuTiO3 films on SrTiO3(001) substrate by hydrothermal method. The morphological, structural, chemical, and magnetic properties of these epitaxial EuTiO3 films were examined by scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffractometry, X-ray photoelectron spectroscopy, and superconducting quantum interference device magnetometry, respectively. As-grown EuTiO3 films with a perovskite structure were found to show an out-of-plane lattice shrinkage and room-temperature ferromagnetism, possibly resulting from an existence of Eu3+. Postannealing at 1,000°C could reduce the amount of Eu3+, relax the out-of-plane lattice shrinkage, and impact the magnetic properties of the films. PACS 81.10.Aj; 81.15.-z; 61.05.-a PMID:24948889
Detection principles of biological and chemical FET sensors.
Kaisti, Matti
2017-12-15
The seminal importance of detecting ions and molecules for point-of-care tests has driven the search for more sensitive, specific, and robust sensors. Electronic detection holds promise for future miniaturized in-situ applications and can be integrated into existing electronic manufacturing processes and technology. The resulting small devices will be inherently well suited for multiplexed and parallel detection. In this review, different field-effect transistor (FET) structures and detection principles are discussed, including label-free and indirect detection mechanisms. The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed. This is followed by an analysis of electrolyte interfaces and their influence on sensor operation. Finally, the fundamentals of different detection mechanisms are reviewed and some detection schemes are discussed. In the conclusion, current commercial efforts are briefly considered. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Development of Markup Language for Medical Record Charting: A Charting Language.
Jung, Won-Mo; Chae, Younbyoung; Jang, Bo-Hyoung
2015-01-01
Nowadays a lot of trials for collecting electronic medical records (EMRs) exist. However, structuring data format for EMR is an especially labour-intensive task for practitioners. Here we propose a new mark-up language for medical record charting (called Charting Language), which borrows useful properties from programming languages. Thus, with Charting Language, the text data described in dynamic situation can be easily used to extract information.
JPRS Report, Science & Technology, China.
1992-08-20
nature of the nuclear medium. QCD [quantum chromodynamic] lattice gauge calculations have predicted the existence of a new phase of the nuclear medium...and A106 octahedra; the atoms Nb and Al are located at the vacants of the octahedra, but a fraction of Al in the lattice is replaced by Nb atoms, and...superlattice and quantum-well lattice dynamics and electron structure, transport processes in superlattice low-dimensionality systems, semiconductor
Highly-stretchable 3D-architected Mechanical Metamaterials
Jiang, Yanhui; Wang, Qiming
2016-01-01
Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity. PMID:27667638
Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs
NASA Astrophysics Data System (ADS)
He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei
2008-09-01
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.
SDSL-ESR-based protein structure characterization.
Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A
2010-03-01
As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.
Multi-level modeling of total ionizing dose in a-silicon dioxide: First principles to circuits
NASA Astrophysics Data System (ADS)
Nicklaw, Christopher J.
Oxygen vacancies have long been known to be the dominant intrinsic defect in amorphous SiO2. They exist, in concentrations dependent on processing conditions, as neutral defects in thermal oxides without usually causing any significant deleterious effects, with some spatial and energy distribution. During irradiation they can capture holes and become positively charged E '-centers, contributing to device degradation. Over the years, a considerable database has been amassed on the dynamics of E' -centers in bulk SiO2 films, and near the interface under different irradiation and annealing conditions. Theoretical calculations so far have revealed the basic properties of prototype oxygen vacancies, primarily as they behave in either a crystalline quartz environment, or in small clusters that serve as a substitute for a real amorphous structure. To date at least three categories of E'-centers, existing at or above room temperature, have been observed in SiO2. The unifying feature is an unpaired electron on a threefold coordinated silicon atom, having the form O3 ≡ Si·. Feigl et al. identified the E'1 -center in crystalline quartz as a trapped hole on an oxygen vacancy, which causes an asymmetrical relaxation, resulting in a paramagnetic center. The unpaired electron in the E'1 -center is localized on the three-fold coordinated Si atoms, while the hole is localized on the other Si atom. Results from an ab initio statistical simulation examination of the behaviors of oxygen vacancies, within amorphous structures, identify a new form of the E'-center, the E'g5 and help in the understanding of the underlying physical mechanisms involved in switched-bias annealing, and electron paramagnetic resonance (EPR) studies. The results also suggest a common border trap, induced by trapped holes in SiO2, is a hole trapped at an oxygen vacancy defect, which can be compensated by an electron, as originally proposed by Lelis and co-workers at Harry Diamond Laboratories. This dissertation provides new insights into the basic mechanisms of a-SiO2 defects, and provides a link between basic mechanisms and Electronic Design Automation (EDA) tools, providing an enhanced design flow for radiation-resistant electronics.
NASA Astrophysics Data System (ADS)
Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang
2017-04-01
The nonuniform and unhomogenous structure of biochar including defects could affect the adsorption performance of biochars. Biochar and graphene nanosheet (GNS) composites (BG) were prepared by simple dip coating method following thermal route of bamboo wood biomass at three different temperatures (300, 500, 700°C), in addition to biochars. The morphology and structural composition of biochars and BG composites were examined by scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller surface area with N2 and CO2, Raman spectroscopy, Fourier Transformed Infrared spectroscopy, X-ray Photoelectron spectroscopy, Thermogravimetric analysis and CHN elemental analysis. It was found that GNS ( 1µm, 0.1% mass) provided higher thermal stability, porous structure, and relatively higher surface area (N2 and CO2), to BG composites. BG composites portrayed the existence of GNS bearing cavities and evidently increased the graphitic structure. The adsorption capabilities of biochars and BG composites towards dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP) as model phthalic acid esters (PAEs) were examined by batch sorption technique. The BG composites exhibited the increased adsorption capacity comparatively to biochars. The aromatic sheets of biochars and GNS on biochars dominated the π-π EDA (electron donor-acceptor) interaction for ring structure of DMP molecule in addition to pore-diffusion mechanism, whereas adsorption of DBP was attributed to hydrophobicity. Our results suggest that surface composition and morphology of biochars can be regulated with GNS and may enhance their adsorption capacity, thus could be considered for effective environmental remediation of various organic contaminants.
Bogan, Michael J
2013-04-02
Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
NASA Astrophysics Data System (ADS)
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-01
We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Gu, Jiande; Wang, Jing; Leszczynski, Jerzy
2014-01-30
Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.
Structure and magnetic properties of Fe-doped ZnO prepared by the sol-gel method.
Liu, Huilian; Yang, Jinghai; Zhang, Yongjun; Yang, Lili; Wei, Maobin; Ding, Xue
2009-04-08
Zn(0.97)Fe(0.03)O nanoparticles were synthesized by the sol-gel method. X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed that the samples had pure ZnO wurtzite structure and Fe ions were well incorporated into the ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS) showed that both Fe(2+) and Fe(3+) existed in Zn(0.97)Fe(0.03)O. The result of x-ray absorption near-edge structure (XANES) further testified that Fe ions took the place of Zn sites in our samples. Magnetic measurements indicated that Zn(0.97)Fe(0.03)O was ferromagnetic at room temperature.
Structural Aspects LiNbO3 Nanoparticles and Their Ferromagnetic Properties
Diaz-Moreno, Carlos A.; Farias-Mancilla, Rurik; Elizalde-Galindo, Jose T.; González-Hernández, Jesus; Hurtado-Macias, Abel; Bahena, Daniel; José-Yacamán, Miguel; Ramos, Manuel
2014-01-01
We present a solid-state synthesis of ferromagnetic lithium niobate nanoparticles (LiNbO3) and their corresponding structural aspects. In order to investigate the effect of heat treatments, two batches of samples with a heat-treated (HT) and non-heat-treated (nHT) reduction at 650 °C in 5% of hydrogen/argon were considered to investigate the multiferroic properties and their corresponding structural aspects; using magnetometry and scanning transmission electron microscopy (STEM). Results indicate the existence of ferromagnetic domains with a magnetic moment per unit cell of 5.24 × 10−3 μB; caused mainly due to voids and defects on the nanoparticle surface, as confirmed by STEM measurements. PMID:28788242
Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor
2018-01-01
Insulin receptor (IR) signaling plays a critical role in the regulation of metabolism and growth in multicellular organisms. IRs are unique among receptor tyrosine kinases in that they exist exclusively as covalent (αβ)2 homodimers at the cell surface. Transmembrane signaling by the IR can therefore not be based on ligand-induced dimerization as such but must involve structural changes within the existing receptor dimer. In this study, using glycosylated full-length human IR reconstituted into lipid nanodiscs, we show by single-particle electron microscopy that insulin binding to the dimeric receptor converts its ectodomain from an inverted U-shaped conformation to a T-shaped conformation. This structural rearrangement of the ectodomain propagates to the transmembrane domains, which are well separated in the inactive conformation but come close together upon insulin binding, facilitating autophosphorylation of the cytoplasmic kinase domains. PMID:29453311
Saba, N; Mohammad, F; Pervaiz, M; Jawaid, M; Alothman, O Y; Sain, M
2017-04-01
Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Heidelmann, Markus; Barthel, Juri; Cox, Gerhard; Weirich, Thomas E
2014-10-01
The atomic structure of Cs0.44[Nb2.54W2.46O14] closely resembles the structure of the most active catalyst for the synthesis of acrylic acid, the M1 phase of Mo10V2(4+)Nb2TeO42-x. Consistently with observations made for the latter compound, the high-angle electron scattering signal recorded by scanning transmission electron microscopy shows a significant intensity variation, which repeats periodically with the projected crystallographic unit cell. The occupation factors for the individual mixed Nb/W atomic columns are extracted from the observed intensity variations. For this purpose, experimental images and simulated images are compared on an identical intensity scale, which enables a quantification of the cation distribution. According to our analysis specific sites possess low tungsten concentrations of 25%, whereas other sites have tungsten concentrations above 70%. These findings allow us to refine the existing structure model of the target compound, which has until now described a uniform distribution of the niobium and tungsten atoms in the unit cell, showing that the similarity between Cs0.44[Nb2.54W2.46O14] and the related catalytic compounds also extends to the level of the cation segregation.
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2011-02-14
A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.
Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems
NASA Astrophysics Data System (ADS)
Stepanenko, A. A.; Volkova, D. O.; Igoshev, P. A.; Katanin, A. A.
2017-11-01
We study a question of the presence of Kohn points, yielding at low temperatures nonanalytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectra of some threedimensional systems. In particular, we consider a one-band model on face-centered cubic lattice with hopping between the nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2, and the two-band model on body-centered cubic lattice, modeling the dispersion of chromium. For the former model, it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model, we show the existence of the lines of Kohn points, yielding maximum susceptibility, whose position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.
Volume change measurements of rice by environmental scanning electron microscopy and stereoscopy.
Tang, Xiaohu; De Rooij, Mario; De Jong, Liesbeth
2007-01-01
The measurement of volume change, which is induced by changing the relative humidity, is performed on rice by using environmental scanning electron microscope (ESEM) and stereoscopy techniques. The typical DeltaV% approximately RH curve of rice in both sorption and desorption can be categorized into three regions: low, intermediate, and high dependence on relative humidity from low- to high-relative humidity. The volume changes faster for rice samples with lower crystallinity, which is because the amorphous component is easier to absorb moisture than the crystalline component. The volume change behavior in various relative humidity environments is comparable with rice isotherm curve in sorption process though discrepancies exist in desorption, which are thought to be the presence of small pores and microstructure changes at high relative humidity. The volume in the desorption branch is less than that in the sorption branch at the same relative humidity, which can be attributed to the collapse of interior structures, existence of small pores, surface topography loss, and amylose leach.
NASA Astrophysics Data System (ADS)
Kuzuhara, Akio
2013-09-01
In order to investigate in detail the internal structure changes in virgin black human hair keratin fibers resulting from bleaching treatments, the structure of cross-sections at various depths of black human hair, which had been impossible due to high melanin grande content, was directly analyzed using Raman spectroscopy. The gauche-gauche-gauche (GGG) content of the sbnd SSsbnd groups existing from the cuticle region to the center of cortex region of the virgin black human hair remarkably decreased, while the gauche-gauche-trans and trans-gauche-trans contents were not changed by performing the excessive bleaching treatment. In particular, it was found that not only the β-sheet and/or random coil content, but also the α-helix content existing throughout the cortex region of virgin black human hair decreased. In addition, the transmission electron microscope observation shows that the proteins in the cell membrane complex, the cuticle and cortex of the virgin black human hair were remarkably eluted by performing the excessive bleaching treatment. From these experiments, the author concluded that the sbnd SSsbnd groups, which have a GGG conformation were decomposed and finally converted to cysteic acid, and the α-helix structure of some of the proteins existing in the keratin was changed to the random coil structure, or eluted from the cortex region, thereby leading to the reduction in the protein density of the virgin human hair after the excessive bleaching treatment.
The impact of shearing flows on electroactive biofilm formation, structure, and current generation
NASA Astrophysics Data System (ADS)
Jones, A.-Andrew; Buie, Cullen
2016-11-01
A special class of bacteria exist that directly produce electricity. First explored in 1911, these electroactive bacteria catalyze hydrocarbons and transport electrons directly to a metallic electron acceptor forming thicker biofilms than other species. Electroactive bacteria biofilms are thicker because they are not limited by transport of oxygen or other terminal electron acceptors. Electroactive bacteria can produce power in fuel cells. Power production is limited in fuel cells by the bacteria's inability to eliminate protons near the insoluble electron acceptor not utilized in the wild. To date, they have not been successfully evolved or engineered to overcome this limit. This limitation may be overcome by enhancing convective mass transport while maintaining substantial biomass within the biofilm. Increasing convective mass transport increases shear stress. A biofilm may respond to increased shear by changing biomass, matrix, or current production. In this study, a rotating disk electrode is used to separate nutrient from physical stress. This phenomenon is investigated using the model electroactive bacterium Geobacter sulfurreducens at nutrient loads comparable to flow-through microbial fuel cells. We determine biofilm structure experimentally by measuring the porosity and calculating the tortuosity from confocal microscope images. Biofilm adaptation for electron transport is quantified using electrical impedance spectroscopy. Our ultimate objective is a framework relating biofilm thickness, porosity, shear stress and current generation for the optimization of bioelectrochemical systems The Alfred P Sloan Foundation MPHD Program.
Transition metal oxides for organic electronics: energetics, device physics and applications.
Meyer, Jens; Hamwi, Sami; Kröger, Michael; Kowalsky, Wolfgang; Riedl, Thomas; Kahn, Antoine
2012-10-23
During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO(3) ), vanadium pent-oxide (V(2) O(5) ) or tungsten tri-oxide (WO(3) ) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.
2016-06-15
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less
Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA
NASA Astrophysics Data System (ADS)
Bordes, Julien; Incerti, Sébastien; Lampe, Nathanael; Bardiès, Manuel; Bordage, Marie-Claude
2017-05-01
When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (;option 2; and its improved version, ;option 4;). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as ;Geant4-DNA-CPA100;. In this study, ;Geant4-DNA-CPA100; was used to calculate low-energy electron dose-point kernels (DPKs) between 1 keV and 200 keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (;option 2; and ;option 4;), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with ;Geant4-DNA-CPA100; - the first set using Geant4‧s default settings, and the second using CPA100‧s original code default settings. A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1 keV and 10 keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA's existing models were always broader than those generated with ;Geant4-DNA-CPA100;. The discrepancies observed between the DPKs generated using Geant4-DNA's existing models and ;Geant4-DNA-CPA100; were caused solely by their different cross sections. The different scoring and interpolation methods used in CPA100 and Geant4 to calculate DPKs showed differences close to 3.0% near the source.
Hussain, Aftab M; Hussain, Muhammad M
2016-06-01
Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures
NASA Astrophysics Data System (ADS)
Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.
2018-06-01
In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.
NASA Astrophysics Data System (ADS)
Pham, Tuan Anh
2015-03-01
Photoelectrochemical cells offer a promising avenue for hydrogen production from water and sunlight. The efficiency of these devices depends on the electronic structure of the interface between the photoelectrode and liquid water, including the alignment between the semiconductor band edges and the water redox potential. In this talk, we will present the results of first principles calculations of semiconductor-water interfaces that are obtained with a combination of density functional theory (DFT)-based molecular dynamics simulations and many-body perturbation theory (MBPT). First, we will discuss the development of an MBPT approach that is aimed at improving the efficiency and accuracy of existing methodologies while still being applicable to complex heterogeneous interfaces consisting of hundreds of atoms. We will then present studies of the electronic structure of liquid water and aqueous solutions using MBPT, which represent an essential step in establishing a quantitative framework for computing the energy alignment at semiconductor-water interfaces. Finally, using a combination of DFT-based molecular dynamics simulations and MBPT, we will describe the relationship between interfacial structure, electronic properties of semiconductors and their reactivity in aqueous solutions through a number of examples, including functionalized Si surfaces and GaP/InP surfaces in contact with liquid water. T.A.P was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by the Lawrence Fellowship Program.
Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology.
Mizohata, Eiichi; Nakane, Takanori; Fukuda, Yohta; Nango, Eriko; Iwata, So
2018-04-01
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
NASA Astrophysics Data System (ADS)
Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.
2018-02-01
We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.
Reflected Charged Particle Populations around Dipolar Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey
2016-10-01
In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that the interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.
NASA Technical Reports Server (NTRS)
Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong
2007-01-01
A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.
REFLECTED CHARGED PARTICLE POPULATIONS AROUND DIPOLAR LUNAR MAGNETIC ANOMALIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deca, Jan; Divin, Andrey
2016-10-01
In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that themore » interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.« less
ERIC Educational Resources Information Center
Palme, Jacob
The four papers contained in this document provide: (1) a survey of computer based mail and conference systems; (2) an evaluation of systems for both individually addressed mail and group addressing through conferences and distribution lists; (3) a discussion of various methods of structuring the text data in existing systems; and (4) a…
Quasiparticles and charge transfer at the two surfaces of the honeycomb iridate Na2IrO3
NASA Astrophysics Data System (ADS)
Moreschini, L.; Lo Vecchio, I.; Breznay, N. P.; Moser, S.; Ulstrup, S.; Koch, R.; Wirjo, J.; Jozwiak, C.; Kim, K. S.; Rotenberg, E.; Bostwick, A.; Analytis, J. G.; Lanzara, A.
2017-10-01
Direct experimental investigations of the low-energy electronic structure of the Na2IrO3 iridate insulator are sparse and draw two conflicting pictures. One relies on flat bands and a clear gap, the other involves dispersive states approaching the Fermi level, pointing to surface metallicity. Here, by a combination of angle-resolved photoemission, photoemission electron microscopy, and x-ray absorption, we show that the correct picture is more complex and involves an anomalous band, arising from charge transfer from Na atoms to Ir-derived states. Bulk quasiparticles do exist, but in one of the two possible surface terminations the charge transfer is smaller and they remain elusive.
Investigation of the distribution of localised and extended states in amorphous MoOx
NASA Astrophysics Data System (ADS)
Dizayee, Wala; Ying, Minju; Griffin, Jonathan; Alqahtani, Mohammed S.; Buckley, Alastair; Fox, A. Mark; Gehring, Gillian A.
2018-05-01
Amorphous films of MoOx have both structural disorder and also chemical disorder for x<3. We have shown that this disorder can introduce localised states in thin films and have shown that the existence of localised states can be deduced from the XPS data that identifies the relevant occupations of different ionisation states of the Mo ions. This effect, which depends on both the oxygen concentration and the method of fabrication, is more important than electron-electron interactions in producing the observed localisation. We have also shown that magneto-optical dichroism is also a powerful technique to determine the energy distribution of localised and delocalised states.
Metallic cyanoacetylides of copper, silver and gold: generation and structural characterization.
Cabezas, Carlos; Barrientos, Carmen; Largo, Antonio; Guillemin, Jean-Claude; Alonso, J L
2016-10-19
The metallic cyanoacetylides CuCCCN, AgCCCN, and AuCCCN have been synthesized in the throat of a pulsed supersonic expansion by reaction of metal vapors, produced by laser ablation, and BrCCCN. Their pure rotational spectra in the (X 1 Σ + ) electronic ground state were observed by Fourier transform microwave spectroscopy in the 2-10 GHz frequency region. Importantly, the rotational spectroscopy constants determined from the analysis of the rotational spectra clearly established the existence of metal-CCCN arrangements for all the mentioned cyanoacetylides. A study of the chemical bonding by means of a topological analysis of the electron density helps to understand the preference for metal-C bonding over metal-N bonding.
A three-dimensional metal grid mesh as a practical alternative to ITO
NASA Astrophysics Data System (ADS)
Jang, Sungwoo; Jung, Woo-Bin; Kim, Choelgyu; Won, Phillip; Lee, Sang-Gil; Cho, Kyeong Min; Jin, Ming Liang; An, Cheng Jin; Jeon, Hwan-Jin; Ko, Seung Hwan; Kim, Taek-Soo; Jung, Hee-Tae
2016-07-01
The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics.The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03060b
Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment
Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...
2015-07-08
Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less
NASA Astrophysics Data System (ADS)
Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.
2018-02-01
We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.
NASA Astrophysics Data System (ADS)
Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang
2017-08-01
WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction
NASA Astrophysics Data System (ADS)
Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid
2017-12-01
The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.
A perturbative correction for electron-inertia in magnetized sheath structures
NASA Astrophysics Data System (ADS)
Gohain, Munmi; Karmakar, Pralay K.
2016-10-01
We propose a hydrodynamic model to study the equilibrium properties of planar plasma sheaths in two-component quasi-neutral magnetized plasmas. It includes weak but finite electron-inertia incorporated via a regular perturbation of the electronic fluid dynamics only relative to a new smallness parameter, δ, assessing the weak inertial-to-electromagnetic strengths. The zeroth-order perturbation around δ leads to the usual Boltzmann distribution law, which describes inertialess thermalized electrons. The forthwith next higher-order yields the modified Boltzmann law describing the putative lowest-order electron-inertial correction, which is applied meticulously to derive the local Bohm criterion for sheath formation. It is found to be influenced jointly by electron-inertial corrective effects, magnetic field and field orientation relative to the bulk plasma flow. We establish that the mutualistic action of electron-inertia amid gyro-kinetic effects slightly enhances the ion-flow Mach threshold value (typically, M i0 ⩾ 1.140), against the normal value of unity, confrontationally towards the sheath entrance. A numerical illustrative scheme is methodically constructed to see the parametric dependence of the new sheath properties on diverse problem arguments. The merits and demerits are highlighted in the light of the existing results conjointly with clear indication to future ameliorations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai
2013-07-15
We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less
Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A
2013-01-09
Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in
2015-08-14
Potassium 1,1′-dinitroamino-5,5′-bistetrazolate (K{sub 2}DNABT) is a nitrogen rich (50.3% by weight, K{sub 2}C{sub 2}N{sub 12}O{sub 4}) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K{sub 2}DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (b
Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3
NASA Astrophysics Data System (ADS)
Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.
2015-06-01
We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.
NASA Astrophysics Data System (ADS)
Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.
2014-05-01
The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.
NASA Astrophysics Data System (ADS)
Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki
2013-11-01
The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.
Growth, Crystal Structure, Theoretical Analysis and Properties of Te4+-Doped KTiOPO4
NASA Astrophysics Data System (ADS)
Liu, Lintao; Yao, Qian; Zhang, Junying; Dong, Weimin; Li, Jing; Wang, Jiyang; Boughton, Robert I.
2018-04-01
A single crystal of Te4+-doped KTiOPO4(Te:KTP) has been grown by the flux method. The electronic structure and density of states of KTiOPO4 (KTP) and Te:KTP were calculated from first principles. As the results reveal, there is no change in the space group or lattice structure of Te:KTP, but that some increase in lattice parameters occurred. The chemical composition of Te:KTP was analyzed using x-ray photoelectron spectroscopy (XPS). The possible existence of Ti3+ has been evaluated by measuring the electron paramagnetic resonance spectrum, and the results reveal that the ion is absent from this crystal. It was observed that Te4+ doping reduces the conductivity of the crystal from measurements of its conductivity at different temperatures and frequencies, indicating that Te:KTP has excellent electro-optical properties. The effect of Te4+ doping on the second harmonic generation in KTP was also studied. The thermal expansion, thermal diffusivity, thermal conductivity and specific heat capacity of KTP and Te:KTP were determined.
Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V
2009-11-18
Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.
Stable monolayer honeycomb-like structures of RuX2 (X =S,Se)
NASA Astrophysics Data System (ADS)
Ersan, Fatih; Cahangirov, Seymur; Gökoǧlu, Gökhan; Rubio, Angel; Aktürk, Ethem
2016-10-01
Recent studies show that several metal oxides and dichalcogenides (M X2) , which exist in nature, can be stable in two-dimensional (2D) form and each year several new M X2 structures are explored. The unstable structures in H (hexagonal) or T (octahedral) forms can be stabilized through Peierls distortion. In this paper, we propose new 2D forms of RuS2 and RuSe2 materials. We investigate in detail the stability, electronic, magnetic, optical, and thermodynamic properties of 2D Ru X2 (X =S,Se) structures from first principles. While their H and T structures are unstable, the distorted T structures (T'-Ru X2) are stable and have a nonmagnetic semiconducting ground state. The molecular dynamic simulations also confirm that T'-Ru X2 systems are stable even at 500 K without any structural deformation. T'-RuS2 and T'-RuSe2 have indirect band gaps with 0.745 eV (1.694 eV with HSE) and 0.798 eV (1.675 eV with HSE) gap values, respectively. We also examine their bilayer and trilayer forms and find direct and smaller band gaps. We find that AA stacking is more favorable than the AB configuration. The new 2D materials obtained can be good candidates with striking properties for applications in semiconductor electronic, optoelectronic devices, and sensor technology.
Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A
2014-09-10
In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less
Corrosion products of carbonation induced corrosion in existing reinforced concrete facades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka
Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less
Colletier, Jacques-Philippe; Sliwa, Michel; Gallat, François-Xavier; Sugahara, Michihiro; Guillon, Virginia; Schirò, Giorgio; Coquelle, Nicolas; Woodhouse, Joyce; Roux, Laure; Gotthard, Guillaume; Royant, Antoine; Uriarte, Lucas Martinez; Ruckebusch, Cyril; Joti, Yasumasa; Byrdin, Martin; Mizohata, Eiichi; Nango, Eriko; Tanaka, Tomoyuki; Tono, Kensuke; Yabashi, Makina; Adam, Virgile; Cammarata, Marco; Schlichting, Ilme; Bourgeois, Dominique; Weik, Martin
2016-03-03
Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.
Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.
1990-04-01
Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less
NASA Astrophysics Data System (ADS)
Sung, Baeckkyoung; Kim, Min Su; Lee, Byung-Cheon; Yoo, Jung Sun; Lee, Sang-Hee; Kim, Youn-Joong; Kim, Ki-Woo; Soh, Kwang-Sup
2008-02-01
There have been several reports on novel threadlike structures (NTSs) on the surfaces of the internal organs of rats and rabbits since their first observation by Bonghan Kim in 1963. To confirm this novel circulatory function, it is necessary to observe the flow of liquid through the NTS as well as the structurally corroborating channels in the NTS. In this article, we report on the measurement of the flow speed of Alcian blue solution in the NTSs on the organ surfaces of rabbits, and we present electron microscopic images depicting the cribrous cross-section with channels. The speed was measured as 0.3 ± 0.1 mm/s, and the flow distance was up to 12 cm. The flow was unidirectional, and the phase contrast microscopic images showed that the NTSs were strongly stained with Alcian blue. The ultrastructure of the NTSs revealed by cryo-scanning electron microscopy and high-voltage electron microscopy showed that (1) there were cell-like bodies and globular clumps of matter inside the sinus of the channel with thin strands of segregated zones which is a microscopic evidence of the liquid flow, (2) the sinuses have wall structures surrounded with extracellular matrices of collagenous fibers, and (3) there exists a cribriform structure of sinuses. To understand the mechanism for the circulation, a quantitative analysis of the flow speed has been undertaken applying a simplified windkessel model. In this analysis, it was shown that the liquid flow through the NTSs could be due to peristaltic motion of the NTS itself.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites
NASA Astrophysics Data System (ADS)
Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.
2017-10-01
In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.
Yu, Z L; Wang, D; Zhu, Z; Zhang, Z H
2015-10-07
The electronic and magnetic structures of graphene nanoribbons (GNRs) with various edge structures passivated by P atoms are investigated systematically, and compared with H passivation as well. GNRs with the entire reconstructed Klein edge or armchair edge are found to be nonmagnetic regardless of P or H passivation. However, if the edge of GNRs is a mixture of zigzag edge and reconstructed Klein edge, they are nonmagnetic for H passivation but significantly magnetic for P passivation, which could be attributed to the "charge transfer doping" effect. And the corresponding magnetic device shows a noticeable negative differential resistance phenomenon and an excellent spin filtering effect under AP configuration, which originate from the special energy band structure. The GNRs with zigzag edge, reconstructed Klein edge, or mixed edge shapes are all metals in the nonmagnetic state regardless of the H or P atoms involved. The relationship between the energy gap and the width in armchair-edged GNRs by P passivation with a dimer structure also satisfies the 3p periodicity, but different in detail from the case of H passivation. The calculated edge formation energy indicates that P-passivated GNRs are energetically more favorable, suggesting that they can stably exist in the experiment.
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
NASA Astrophysics Data System (ADS)
Liu, Pei; Han, Xiuli; Sun, Dongli; Wang, Qing
2018-03-01
In this research work, the structures, energies, electronic and defective properties of (0001), (10 1 bar 0) , (11 2 bar 0) and (10 1 bar 3) surfaces of Ti2AlN were investigated systematically by the first-principles calculations based on density functional theory. The (0001) and (10 1 bar 0) are polar surfaces and have different kinds of surface terminations, while the (11 2 bar 0) and (10 1 bar 3) are non-polar surfaces. The calculated results show that the Ti(Al)-, Al- terminated (0001) surfaces experience the least relaxation, and N- terminated (0001) surface experiences the greatest relaxation. The calculated surface energies of non-polar surfaces are independent on the constituent element chemical potential, while surface energies of polar surfaces are correlated with the constituent element chemical potential. It is found that the (0001)-Ti(Al), (0001)-Al, (10 1 bar 0) -TiAl and (10 1 bar 3) surface are stable under the condition of Ti- and Al- rich environments, the (0001)-N surface is the most stable one under the Ti- and Al- poor condition. The electronic structures of all the surfaces except (10 1 bar 3) are significantly influenced by structure relaxations. Furthermore, the monovacancy formation energies on the surface layer are lower than that in the bulk, the monovacancies are most difficult to exist on the (10 1 bar 3) surface among all the surfaces.
Theoretical and material studies on thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.; Brennan, K. F.
1986-01-01
A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2
Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...
2016-02-29
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less
Electron microscopy study of the iron meteorite Santa Catharina
NASA Technical Reports Server (NTRS)
Zhang, J.; Williams, D. B.; Goldstein, J. I.; Clarke, R. S., Jr.
1990-01-01
A characterization of the microstructural features of Santa Catharina (SC) from the millimeter to submicron scale is presented. The same specimen was examined using an optical microscope, a scanning electron microscope, an electron probe microanalyzer, and an analytical electron microscope. Findings include the fact that SC metal nodules may have different bulk Ni values, leading to different microstructures upon cooling; that SC USNM 6293 is the less corroded sample, as tetrataenite exists as less than 10 nm ordered domains throughout the entire fcc matrix (it is noted that this structure is the same as that of the Twin City meteorite and identical to clear taenite II in the retained taenite regions of the octahedrites); that SC USNM 3043 has a more complicated microstructure due to corrosion; and that the low Ni phase of the cloudy zone was selectively corroded in some areas and formed the dark regions, indicating that the SC meteorite corrosion process was electrochemical in nature and may involve Cl-containing akaganeite.
NASA Astrophysics Data System (ADS)
Shi, Yarui; Wei, Huiling; Liu, Yufang
2015-03-01
Tetraazaperopyrenes (TAPPs) derivatives are high-performance n-type organic semiconductor material families with the remarkable long-term stabilities. The charge carrier mobilities in TAPPs derivatives crystals were calculated by the density functional theory (DFT) method combined with the Marcus-Hush electron-transfer theory. The existence of considerable C-H…F-C bonding defines the conformation of the molecular structure and contributes to its stability. We illustrated how it is possible to control the electronic and charge-transport parameters of TAPPs derivatives as a function of the positions, a type of the substituents. It is found that the core substitution of TAPPs has a drastic influence on the charge-transport mobilities. The maximum electron mobility value of the core-brominated 2,9-bis (perfluoroalkyl)-substituted TAPPs is 0.521 cm2 V-1 s-1, which appear in the orientation angle 95° and 275°. The results demonstrate that the TAPPs with bromine substituents in ortho positions exhibit the best charge-transfer efficiency among the four different TAPP derivatives.
Dissipation of Turbulence in the Solar Wind as Measured by Cluster
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn
2012-01-01
Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.
Possible superconductivity in Sr₂IrO₄ probed by quasiparticle interference.
Gao, Yi; Zhou, Tao; Huang, Huaixiang; Wang, Qiang-Hua
2015-03-18
Based on the possible superconducting (SC) pairing symmetries recently proposed, the quasiparticle interference (QPI) patterns in electron- and hole-doped Sr₂IrO₄ are theoretically investigated. In the electron-doped case, the QPI spectra can be explained based on a model similar to the octet model of the cuprates while in the hole-doped case, both the Fermi surface topology and the sign of the SC order parameter resemble those of the iron pnictides and there exists a QPI vector resulting from the interpocket scattering between the electron and hole pockets. In both cases, the evolution of the QPI vectors with energy and their behaviors in the nonmagnetic and magnetic impurity scattering cases can well be explained based on the evolution of the constant-energy contours and the sign structure of the SC order parameter. The QPI spectra presented in this paper can be compared with future scanning tunneling microscopy experiments to test whether there are SC phases in electron- and hole-doped Sr₂IrO₄ and what the pairing symmetry is.
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2018-05-01
New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.
Mars Life? - Microscopic Tubular Structures
NASA Technical Reports Server (NTRS)
1996-01-01
This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller. The fossil-like structures were found in carbonate minerals formed along pre-existing fractures in the meteorite in a fashion similar to the way fossils occur in limestone on Earth, although on a microscopic scale.
More about arc-polarized structures in the solar wind
NASA Astrophysics Data System (ADS)
Haaland, S.; Sonnerup, B.; Paschmann, G.
2012-05-01
We report results from a Cluster-based study of the properties of 28 arc-polarized magnetic structures (also called rotational discontinuities) in the solar wind. These Alfvénic events were selected from the database created and analyzed by Knetter (2005) by use of criteria chosen to eliminate ambiguous cases. His studies showed that standard, four-spacecraft timing analysis in most cases lacks sufficient accuracy to identify the small normal magnetic field components expected to accompany such structures, leaving unanswered the question of their existence. Our study aims to break this impasse. By careful application of minimum variance analysis of the magnetic field (MVAB) from each individual spacecraft, we show that, in most cases, a small but significantly non-zero magnetic field component was present in the direction perpendicular to the discontinuity. In the very few cases where this component was found to be large, examination revealed that MVAB had produced an unusual and unexplained orientation of the normal vector. On the whole, MVAB shows that many verifiable rotational discontinuities (Bn ≠ 0) exist in the solar wind and that their eigenvalue ratio (EVR = intermediate/minimum variance) can be extremely large (up to EVR = 400). Each of our events comprises four individual spacecraft crossings. The events include 17 ion-polarized cases and 11 electron-polarized ones. Fifteen of the ion events have widths ranging from 9 to 21 ion inertial lengths, with two outliers at 46 and 54. The electron-polarized events are generally thicker: nine cases fall in the range 20-71 ion inertial lengths, with two outliers at 9 and 13. In agreement with theoretical predictions from a one-dimensional, ideal, Hall-MHD description (Sonnerup et al., 2010), the ion-polarized events show a small depression in field magnitude, while the electron-polarized ones tend to show a small enhancement. This effect was also predicted by Wu and Lee (2000). Judging only from the sense of the plasma flow across our DDs, their propagation appears to be sunward as often as anti-sunward. However, we argue that this result can be misleading as a consequence of the possible presence of magnetic islands within the DDs. How the rotational discontinuities come into existence, how they evolve with time, and what roles they play in the solar wind remain open questions.
NASA Technical Reports Server (NTRS)
Suleman, Naushadalli K.
1992-01-01
The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This sample will be used to assess the linearity of the magnetic field gradient and to ensure authentic image reconstruction. A second major task was to secure the computer capability to enable image reconstruction from projection data generated by the magnetic field gradients. To this end, commercially available and public domain software packages which perform inverse Fourier Transform and convoluted (filtered) back projection functions are being integrated into the existing EPR data processing system.
On behavior peculiarity of electron plasma
NASA Astrophysics Data System (ADS)
Gordeeva, N. M.; Yushkanov, A. A.
2018-03-01
The analysis of the analytical solution of the problem of the behavior of electron plasma in the AC electric field is fulfilled. Debye mode describes shielding of the external electric field in the plasma. The analysis of the region of existence of Debye mode, depending on the plasma parameters has been realized. A non-trivial dependence of the region of existence of Debye mode on the degree of degeneracy of the electron gas are revealed. For the case of nearly degenerate electron gas Debye mode has several areas of existence, depending on the frequency of the electric field.
Magnetosonic cnoidal waves and solitons in a magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Kaur, Nimardeep; Singh, Manpreet; Saini, N. S.
2018-04-01
An investigation of magnetosonic nonlinear periodic (cnoidal) waves is presented in a magnetized electron-ion-dust ( e -i -d ) plasma having cold dust fluid with inertialess warm ions and electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries equation. The dispersion relation for magnetosonic cnoidal waves is determined in the linear limit. The magnetosonic cnoidal wave solution is derived using the Sagdeev pseudopotential approach under the specific boundary conditions. There is the formation of only positive potential magnetosonic cnoidal waves and solitary structures in the high plasma-β limit. The effects of various plasma parameters, viz., plasma beta (β), σ (temperature ratio of electrons to ions), and μd (ratio of the number density of dust to electrons) on the characteristics of magnetosonic cnoidal waves are also studied numerically. The findings of the present investigation may be helpful in describing the characteristics of various nonlinear excitations in Earth's magnetosphere, solar wind, Saturn's magnetosphere, and space/astrophysical environments, where many space observations by various satellites confirm the existence of dust grains, highly energetic electrons, and high plasma-β.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it; Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris; Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
An improved design method for EPC middleware
NASA Astrophysics Data System (ADS)
Lou, Guohuan; Xu, Ran; Yang, Chunming
2014-04-01
For currently existed problems and difficulties during the small and medium enterprises use EPC (Electronic Product Code) ALE (Application Level Events) specification to achieved middleware, based on the analysis of principle of EPC Middleware, an improved design method for EPC middleware is presented. This method combines the powerful function of MySQL database, uses database to connect reader-writer with upper application system, instead of development of ALE application program interface to achieve a middleware with general function. This structure is simple and easy to implement and maintain. Under this structure, different types of reader-writers added can be configured conveniently and the expandability of the system is improved.
Toward intelligent information sysytem
NASA Astrophysics Data System (ADS)
Onodera, Natsuo
"Hypertext" means a concept of a novel computer-assisted tool for storage and retrieval of text information based on human association. Structure of knowledge in our idea processing is generally complicated and networked, but traditional paper documents merely express it in essentially linear and sequential forms. However, recent advances in work-station technology have allowed us to process easily electronic documents containing non-linear structure such as references or hierarchies. This paper describes concept, history and basic organization of hypertext, and shows the outline and features of existing main hypertext systems. Particularly, use of the hypertext database is illustrated by an example of Intermedia developed by Brown University.
Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.
Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall
2017-03-08
Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.
Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst
NASA Astrophysics Data System (ADS)
Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.
2017-08-01
A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.
FIB-SEM tomography of human skin telocytes and their extracellular vesicles
Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M
2015-01-01
We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591
Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator
NASA Astrophysics Data System (ADS)
Weinberg, Rebecca
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations
NASA Astrophysics Data System (ADS)
Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha
2016-05-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations.
Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha
2016-05-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and Performance of a Suprathermal Electron Spectrometer to Study Auroral Precipitations
NASA Technical Reports Server (NTRS)
Ogasawara, Keiichi; Grubbs, Guy, II; Michell, Robert G.; Samara, Maria; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jorg-Micha
2016-01-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for greater than 20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker F1at Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.
2016-05-15
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation tomore » read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.« less
Ultimate Atomic Bling: Nanotechnology of Diamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, Jeremy
2010-05-25
Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.
Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-01-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubry, S.
1992-09-01
At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors.
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-07-21
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaitsev, S. V., E-mail: szaitsev@issp.ac.ru; Akimov, I. A.; Langer, L.
2016-09-15
The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerrmore » signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.« less
Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio
Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less
Chowdhury, Chandra; Jahiruddin, Sheik; Datta, Ayan
2016-04-07
Phosphorene (Pn) is stabilized as a layered material like graphite, yet it possess a natural direct band gap (Eg = 2.0 eV). Interestingly, unlike graphene, Pn exhibits a much richer phase diagram which includes distorted forms like the stapler-clip (black Pn, α form) and chairlike (blue Pn, β form) structures. The existence of these phases is attributed to pseudo-Jahn-Teller (PJT) instability of planar hexagonal P6(6-) rings. In both cases, the condition for vibronic instability of the planar P6(6-) rings is satisfied. Doping with electron donors like tetrathiafulvalene and tetraamino-tetrathiafulvalene and electron acceptors like tetracyanoquinodimethane and tetracyanoethylene convert blue Pn into N-type and black Pn into efficient P-type semiconductors, respectively. Interestingly, pristine blue Pn, an indirect gap semiconductor, gets converted into a direct gap semiconductor on electron or hole doping. Because of comparatively smaller undulation in blue Pn (with respect to black Pn), the van der Waals interactions between the dopants and blue Pn is stronger. PJT distortions for two-dimensional phosphorus provides a unified understanding of structural features and chemical reactivity in its different phases.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Zhao, Yuan; Zhong, Lvling; Wang, Yang; Chai, Shouning; Yang, Tao; Han, Xuanli
2017-11-01
A Schiff base compound was used to prepare a Cu2S-Cu-TiO2 mesoporous carbon composite photocatalyst (Cu2S-Cu-TiO2/MC) by a simple precipitation-carbonization method with a carbonization temperature of 750 °C. X-ray diffraction and x-ray photoelectron spectroscopy studies show that Cu2S, Cu, and TiO2 exist in Cu2S-Cu-TiO2/MC in the form of nanometer-sized particles. Scanning electron microscope and transmission electron microscope images show that the composites form a spherical carbon structure inlaid with Cu2S and Cu and coated TiO2. The Brunauer-Emmett-Teller test shows that the material has a large specific surface area (76.14 m2/g) and mesoporous structure. UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy indicate that the recombination of photo-generated electrons and holes in the samples were inhibited. The composites show good degradation performance in a high concentration (300 mg/L) of methyl orange (MO) solution under visible light. The composites exhibit great potential in the treatment of dyes for wastewater treatment.
Energy and momentum relaxation of electrons in bulk and 2D GaN
NASA Astrophysics Data System (ADS)
Zanato, D.; Balkan, N.; Hill, G.; Schaff, W. J.
2004-10-01
We present our experimental and theoretical studies regarding the energy and momentum relaxation of hot electrons in n-type bulk GaN and AlGaN/GaN HEMT structures. We determine the non-equilibrium temperatures and the energy relaxation rates in the steady state using the mobility mapping technique together with the power balance conditions as described by us elsewhere [N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter 14 (2002) 3457]. We obtain the e-LO phonon scattering time of 8 fs and show that the power loss of electrons due to optical phonon emission agrees with the theoretical prediction. The drift velocity-field curves at high electric fields indicate that the drift velocity saturates at approximately 3×10 6 cm/s for the two-dimensional structure and 4×10 6 cm/s for the bulk material at 77 K. These values are much lower than those predicted by the existing theories. A critical analysis of the observations is given with a model taking into account of the non-drifting non-equilibrium phonon production.
NASA Astrophysics Data System (ADS)
Ji, H.; Yoo, J.; Dorfman, S. E.; Jara-Almonte, J.; Yamada, M.; Swanson, C.; Daughton, W. S.; Roytershteyn, V.; Kuwahata, A.; Ii, T.; Inomoto, M.; Ono, Y.; von Stechow, A.; Grulke, O.; Phan, T.; Mozer, F.; Bale, S. D.
2013-12-01
Despite its disruptive influences on the large-scale structures of space and solar plasmas, the crucial topological changes and associated dissipation during magnetic reconnection take place only near an X-line within thin singular layers. In the modern collisionless models where electrons and ions are allowed to move separately, it has been predicted that ions exhaust efficiently through a thicker, ion-scale dissipative layer while mobile electrons can evacuate through a thinner, electron-scale dissipation layer, allowing for efficient release of magnetic energy. While ion dissipation layers have been frequently detected, the existence of election layers near the X-line and the associated dissipation structures and mechanisms are still an open question, and will be a main subject of the coming MMS mission. In this presentation, we will summarize our efforts in the past a few years to study electron-scale dissipation in a well-controlled and well-diagnosed reconnecting current sheet in a laboratory plasma, with close comparisons with the state-of-the-art, 2D and 3D fully kinetic simulations. Key results include: (1) positive identification of electromagnetic waves detected at the current sheet center as long wave-length, lower-hybrid drift instabilities (EM-LHDI), (2) however, there is strong evidence that this EM-LHDI cannot provide the required force to support the reconnection electric field, (3) detection of 3D flux-rope-like magnetic structures during impulsive reconnection events, and (4) electrons are heated through non-classical mechanisms near the X-line with a small but clear temperature anisotropy. These results, unfortunately, do not resolve the outstanding discrepancies on electron layer thickness between best available experiments and fully kinetic simulations. To make further progress, we are continuously pushing in the both experimental and numerical frontiers. Experimentally, we started investigations on EM-LHDI and electron heating as a function of guide field strength and symmetry of reconnection geometry, with new attempts to measure non-thermal electrons and higher frequency fluctuations. Numerically, we started investigations of kinetic simulations at realistic ratios of electron plasma frequency to cyclotron frequency, and also at realistic ratios of ion mass to electron mass. The most updated results of these new projects will be presented with discussions on the relevance to space observations.
Picture This... Developing Standards for Electronic Images at the National Library of Medicine
Masys, Daniel R.
1990-01-01
New computer technologies have made it feasible to represent, store, and communicate high resolution biomedical images via electronic means. Traditional two dimensional medical images such as those on printed pages have been supplemented by three dimensional images which can be rendered, rotated, and “dissected” from any point of view. The library of the future will provide electronic access not only to words and numbers, but to pictures, sounds, and other nontextual information. There currently exist few widely-accepted standards for the representation and communication of complex images, yet such standards will be critical to the feasibility and usefulness of digital image collections in the life sciences. The National Library of Medicine is embarked on a project to develop a complete digital volumetric representation of an adult human male and female. This “Visible Human Project” will address the issue of standards for computer representation of biological structure.
PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R.
2016-02-10
The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and showmore » that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.« less
NASA Technical Reports Server (NTRS)
Coyne, L.; Hovatter, W.; Sweeney, M.
1983-01-01
Experimental data concerning emission of light upon dehydration as a function of preheating and pre-gamma-irradiation are correlated with reported studies of electron-spin resonance (ESR) activity after similar pretreatments. The effect of these pretreatments on the kaolin-promoted incorporation of glycine into peptide oligomers in a wet/cold, hot/dry fluctuating environment is compared to their effect on the ESR and luminescent signals. The existence of spectroscopically active centers appears to be loosely anticorrelated with reaction yield; these yields are increased by increasing the overall energy content of the material. It is concluded that some part of the chemical yield is produced by a mechanism involving intrinsic, excited electronic states of the clay crystal lattice. These states may be derived from thermally, interfacially, and/or mechanically induced charge reorganization within interspersed energy levels in the band structure of the material.
Axoglial contacts in the area postrema of the cat - An ultrastructural study
NASA Technical Reports Server (NTRS)
Damelio, Fernando E.; Gibbs, Michael A.; Mehler, William R.; Philpott, Delbert E.; Savage, Wayne
1986-01-01
Axoglial contacts were observed in an ultrastructural study of the area postrema of the cat. According to the disposition of the electron-dense projections attached to the adjoining membranes these contacts were classified as symmetrical or asymmetrical. The axon profiles contained aggregations of clear vesicles randomly distributed or grouped in clusters adjacent to the electron-dense projections. Dense core vesicles were occasionally seen. The neuroglial profiles were either astrocytic or ependymoglial in nature. The astrocytes showed a clear cytoplasm, polymorphous vesicles, mitochondria, glycogen granules, and bundles of filaments. The ependymal cells, in contrast, had a more electron-dense and granular appearance, tubular structures, irregular vesicular formations, profiles of smooth reticuloendoplasm, and filaments grouped in bundles or isolated in the cytoplasm. The possibility that these contacts might play a role in the chemical transfer from neurons to glial cells is discussed on the basis of existing biochemical data.
Equilibrium structure of the plasma sheet boundary layer-lobe interface
NASA Technical Reports Server (NTRS)
Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.
1990-01-01
Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.
A high-level object-oriented model for representing relationships in an electronic medical record.
Dolin, R. H.
1994-01-01
The importance of electronic medical records to improve the quality and cost-effectiveness of medical care continues to be realized. This growing importance has spawned efforts at defining the structure and content of medical data, which is heterogeneous, highly inter-related, and complex. Computer-assisted data modeling tools have greatly facilitated the process of representing medical data, however the complex inter-relationships of medical information can result in data models that are large and cumbersome to manipulate and view. This report presents a high-level object-oriented model for representing the relationships between objects or entities that might exist in an electronic medical record. By defining the relationship between objects at a high level and providing for inheritance, this model enables relating any medical entity to any other medical entity, even though the relationships were not directly specified or known during data model design. PMID:7949981
Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki
2016-01-01
The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092
NASA Astrophysics Data System (ADS)
Wendel, D. E.; Liu, Y. H.; Giles, B. L.; Torbert, R. B.
2017-12-01
For the first time, space flight technology exists to detect, in situ, violation of magnetic field line conservation. The violation of magnetic line conservation on scales smaller than the system size is a necessary and sufficient condition for magnetic reconnection. We demonstrate that violation of line conservation produces a detectable, structured signature in both particle-in-cell simulations of reconnection and in data from the Magnetospheric Multi-Scale mission. In particle-in-cell simulations of asymmetric reconnection, the quantity-which we call M-that identifies this violation achieves a significant value in electron skin depth-scale layers that extend from the electron diffusion region along the separatrices, with higher values emerging on the low density, high magnetic field side of the current sheet. In two MMS burst data intervals associated with detection of the electron diffusion region—one interval with antiparallel reconnecting fields and the other with a guide field-we determine the location and scale of M and of the diffusion region relative to electron outflows and the magnetic separatrices. We find that M exceeds measurement uncertainties both at the diffusion region and near the separatrices, where it attains its highest values in layered structures. The observed magnitude scales as the simulated magnitude after adjusting for the artificial parameters of the simulation. Bipolar forms of the quantity also appear further from the diffusion region, possibly associated with electron holes. The measure serves not only as a powerful diagnostic for magnetic reconnection, but reveals that electrons transport this signature of reconnection away from the x-line.
He, Yuping; Spataru, Catalin D; Léonard, Francois; Jones, Reese E; Foster, Michael E; Allendorf, Mark D; Alec Talin, A
2017-07-26
Two-dimensional (2D) materials have attracted much attention due to their novel properties. An exciting new class of 2D materials based on metal-organic frameworks (MOFs) has recently emerged, displaying high electrical conductivity, a rarity among organic nanoporous materials. The emergence of these materials raises intriguing questions about their fundamental electronic, optical, and thermal properties, but few studies exist in this regard. Here we present an atomistic study of the thermoelectric properties of crystalline 2D MOFs X 3 (HITP) 2 with X = Ni, Pd or Pt, and HITP = 2,3,6,7,10,11-hexaiminotriphenylene, using both ab initio transport models and classical molecular dynamics simulations. We find that these materials have a high Seebeck coefficient and low thermal conductivity, making them promising for thermoelectric applications. Furthermore, we explore the dependence of thermoelectric transport properties on the atomic structure by comparing the calculated band structure, band alignment, and electronic density of states of the three 2D MOFs, and find that the thermoelectric transport properties strongly depend on both the interaction between the ligands and the metal ions, and the d orbital splitting of the metal ions induced by the ligands. This demonstrates that selection of the metal ion is a powerful approach to control and enhance the thermoelectric properties. Interestingly we reveal an unexpected effect where, unlike for electrons, the thermal and electrical current may not be equally carried by the holes, leading to a significant deviation from the Wiedemann-Franz law. The results of this work provide fundamental guidance to optimize the existing 2D MOFs, and to design and discover new families of MOF-like materials for thermoelectric applications.