Sample records for existing experimental techniques

  1. The Coordinate Orthogonality Check (corthog)

    NASA Astrophysics Data System (ADS)

    Avitabile, P.; Pechinsky, F.

    1998-05-01

    A new technique referred to as the coordinate orthogonality check (CORTHOG) helps to identify how each physical degree of freedom contributes to the overall orthogonality relationship between analytical and experimental modal vectors on a mass-weighted basis. Using the CORTHOG technique together with the pseudo-orthogonality check (POC) clarifies where potential discrepancies exist between the analytical and experimental modal vectors. CORTHOG improves the understanding of the correlation (or lack of correlation) that exists between modal vectors. The CORTHOG theory is presented along with the evaluation of several cases to show the use of the technique.

  2. Masonry structures built with fictile tubules: Experimental and numerical analyses

    NASA Astrophysics Data System (ADS)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  3. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    NASA Astrophysics Data System (ADS)

    Al Saadi, Hamza Salim Mohammed; Mohandas, Hoby P.; Namasivayam, Aravind

    2017-01-01

    One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC) beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP). For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  4. Prediction of physical protein protein interactions

    NASA Astrophysics Data System (ADS)

    Szilágyi, András; Grimm, Vera; Arakaki, Adrián K.; Skolnick, Jeffrey

    2005-06-01

    Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.

  5. Three year evaluation of I-40 crack and seat experimental project

    DOT National Transportation Integrated Search

    1989-10-01

    In 1986, Project I-40-3(31) was rehabilitated using crack and seat techniques and overlaying with a 4-inch HMAC overlay. The crack and seat technique was utilized to prevent reflection cracking in the HMAC overlay caused by joints in the existing JPC...

  6. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  7. Robust volcano plot: identification of differential metabolites in the presence of outliers.

    PubMed

    Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro

    2018-04-11

    The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .

  8. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  9. Operational Evaluation of Self-Paced Instruction in U.S. Army Training.

    DTIC Science & Technology

    1979-01-01

    one iteration of each course, and the on -going refinement and adjustment of managerial techniques. Research Approach A quasi - experimental approach was...research design employed experimental and control groups , posttest only with non-random groups . The design dealt with the six major areas identified as...course on Interpersonal Communications were conducted in the conventional, group -paced manner. Experimental course materials. Wherever possible, existing

  10. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1974-01-01

    Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  11. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities. [cryogenic traonics wind tunnel

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  12. Numerical model updating technique for structures using firefly algorithm

    NASA Astrophysics Data System (ADS)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  13. Locality-Aware CTA Clustering For Modern GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ang; Song, Shuaiwen; Liu, Weifeng

    2017-04-08

    In this paper, we proposed a novel clustering technique for tapping into the performance potential of a largely ignored type of locality: inter-CTA locality. We first demonstrated the capability of the existing GPU hardware to exploit such locality, both spatially and temporally, on L1 or L1/Tex unified cache. To verify the potential of this locality, we quantified its existence in a broad spectrum of applications and discussed its sources of origin. Based on these insights, we proposed the concept of CTA-Clustering and its associated software techniques. Finally, We evaluated these techniques on all modern generations of NVIDIA GPU architectures. Themore » experimental results showed that our proposed clustering techniques could significantly improve on-chip cache performance.« less

  14. A processing centre for the CNES CE-GPS experimentation

    NASA Technical Reports Server (NTRS)

    Suard, Norbert; Durand, Jean-Claude

    1994-01-01

    CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.

  15. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  16. Propagation-based x-ray phase contrast imaging using an iterative phase diversity technique

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2018-03-01

    Through the use of a phase diversity technique, we demonstrate a near-field in-line x-ray phase contrast algorithm that provides improved object reconstruction when compared to our previous iterative methods for a homogeneous sample. Like our previous methods, the new technique uses the sample refractive index distribution during the reconstruction process. The technique complements existing monochromatic and polychromatic methods and is useful in situations where experimental phase contrast data is affected by noise.

  17. Chapter 15: Disease Gene Prioritization

    PubMed Central

    Bromberg, Yana

    2013-01-01

    Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases. PMID:23633938

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolen, James; Harris, Philip; Marzani, Simone

    Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.

  19. Foucault, Counselling and the Aesthetics of Existence

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2005-01-01

    Michel Foucault was drawn late in life to study the "arts of the self" in Greco-Roman culture as a basis, following Nietzsche, for what he called an "aesthetics of existence." By this, he meant a set of creative and experimental processes and techniques by which an individual turns him- or herself into a work of art. For Nietzsche, it was above…

  20. Plans for Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; hide

    2011-01-01

    This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies

  1. The BAPE 2 balloon-borne CO2

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.; Walker, H. E.; Peruso, C. J.; Johnson, E. H.; Klein, B. J.; Mcelroy, J. H.

    1972-01-01

    The systems and techniques which were utilized in the experiment to establish an air-to-ground CO2 laser heterodyne link are described along with the successes and problems encountered when the heterodyne receiver and laser transmitter package were removed from the controlled environment of the laboratory. Major topics discussed include: existing systems and the underlying principles involved in their operation; experimental techniques and optical alignment methods which were found to be useful; theoretical calculations of signal strengths expected under a variety of test conditions and in actual flight; and the experimental results including problems encountered and their possible solutions.

  2. GRID and Multiphonon States

    PubMed Central

    Robinson, S. J.

    2000-01-01

    The development of the GRID technique for determining nuclear level lifetimes of excited low-spin states populated in thermal neutron capture reactions has resulted in the ability to perform detailed studies of proposed multiphonon excitations for the first time. This paper discusses the experimental evidence for multiphonon excitations determined using the GRID technique. In deformed nuclei several good examples of γγKπ = 4+ excitations have been established, whereas the experimental evidence gathered on Kπ= 0+ bands is contradictory, and any interpretations will likely involve the mixing of several different configurations. In vibrational nuclei the GRID technique has helped to establish the existence of multiple quadrupole phonon excitations in 114Cd, and an almost complete set of quadrupole-octupole coupled states in 144Nd. PMID:27551594

  3. Strain gage measurement errors in the transient heating of structural components

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1993-01-01

    Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.

  4. Energy and carbon accounting to compare bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    To compare the utility of current and future biofuels and biofuel feedstocks in an objective manner can be extremely challenging. This challenge exists because agricultural data are inherently variable, experimental techniques are cropdependent,and the literatures usually report relative, rather tha...

  5. Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2013-01-01

    This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop.

  6. Laboratory investigations of earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Xia, Kaiwen

    In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.

  7. Experimental study of various techniques to protect ice-rich cut slopes.

    DOT National Transportation Integrated Search

    2014-08-01

    Cut slopes are usually required to achieve roadway design grades in the ice-rich permafrost areas in Alaska. However, excavation and exposure of a cut slope destroy the existing thermal balance and result in degradation of ice-rich permafrost. Enviro...

  8. Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure

    DOE PAGES

    Dolen, James; Harris, Philip; Marzani, Simone; ...

    2016-05-26

    Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.

  9. Deformations of the gyroid and Lidinoid minimal surfaces using flat structures

    NASA Astrophysics Data System (ADS)

    Weyhaupt, Adam

    2015-03-01

    Mathematically, the challenge in proving the existence of a purported triply periodic minimal surface is in computing parameter values that depend on a system of equations defined by elliptic integrals. This is generally very difficult. In the presence of some symmetry, however, a technique developed by Weber and Wolf can reduce these elliptic integrals to basic algebra and geometry of polygons. These techniques can easily prove the existence of some surfaces and the presence of a family of solutions. Families of surfaces are important mathematically, but recent work by Seddon, et. al., experimentally confirms that these families of surfaces can occur physically as well. In this talk, we give a brief overview of the technique and show how it can be applied to prove the existence of several families of surfaces, including lower symmetry variants of the gyroid and Lidinoid such as the rG, rPD, tG, and rL. We also conjecture a map of the moduli space of triply periodic minimal surfaces of genus 3.

  10. Writing a technical note.

    PubMed

    Ng, K H; Peh, W C G

    2010-02-01

    A technical note is a short article giving a brief description of a specific development, technique or procedure, or it may describe a modification of an existing technique, procedure or device applicable to medicine. The technique, procedure or device described should have practical value and should contribute to clinical diagnosis or management. It could also present a software tool, or an experimental or computational method. Technical notes are variously referred to as technical innovations or technical developments. The main criteria for publication will be the novelty of concepts involved, the validity of the technique and its potential for clinical applications.

  11. Communication: Electron ionization of DNA bases.

    PubMed

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  12. Experimental Designs and Psychometric Techniques for the Study of Ride Quality

    DOT National Transportation Integrated Search

    1977-05-01

    A major variable in both the cost of any new transportation system and rider acceptance of the system is the ride quality of its vehicles. At this time, there exists no set of objective criteria which would allow the transportation system designer to...

  13. Variability of residual stresses and superposition effect in multipass grinding of high-carbon high-chromium steel

    NASA Astrophysics Data System (ADS)

    Karabelchtchikova, Olga; Rivero, Iris V.

    2005-02-01

    The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.

  14. [Aging explosive detection using terahertz time-domain spectroscopy].

    PubMed

    Meng, Kun; Li, Ze-ren; Liu, Qiao

    2011-05-01

    Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.

  15. Prospects of a baryon instability search in neutron-antineutron oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efremenko, Yu.; Kamyshkov, Yu.

    1996-12-31

    The purpose of this article is to review the current status and the future prospects for an experimental neutron-antineutron transition search. Traditional and new experimental techniques are discussed here. In the n {r_arrow} {anti n} search in experiments at existing reactors, it would be possible to increase the discovery potential up to four orders of magnitude for vacuum n {r_arrow} {anti n} transitions relative to the existing experimental level or to achieve the limit of {tau}{sub n-{anti n}{sup {approximately}}} 10{sup 10}s.. With dedicated future reactors and an ultimate experimental layout, it might be possible to reach the limit of 10{supmore » 11}s. Significant progress in an intranuclear n {r_arrow} {anti n} transition search expected to be made during the next decade by the SuperKamiokande and Icarus detectors. It can be matched, or even exceeded, in a new alternative approach, where unstable long-lived isotopes of technetium are searched in non radioactive deep-mined ores.« less

  16. Communication: Electron ionization of DNA bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less

  17. Solving and Learning Soft Temporal Constraints: Experimental Scenario and Examples

    NASA Technical Reports Server (NTRS)

    Rossi, F.; Venable, K. B.; Sperduti, A.; Khatib, L.; Morris, P.; Morris, R.; Koga, Dennis (Technical Monitor)

    2001-01-01

    Soft temporal constraint problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. However, sometimes such local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preference use machine learning techniques which learn the local preferences from the global ones. In this paper we describe the existing framework for both solving and learning preferences in temporal constraint problems, the implemented modules, the experimental scenario, and preliminary results on some examples.

  18. New gas phase inorganic ion cluster species and their atmospheric implications

    NASA Technical Reports Server (NTRS)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-01-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  19. Thermodynamic properties of nitrogen gas derived from measurements of sound speed. [for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Younglove, B.; Mccarty, R. D.

    1979-01-01

    A virial equation of state for nitrogen was determined by use of newly measured speed-of-sound data and existing pressure-density-temperature data in a multiproperty-fitting technique. The experimental data taken were chosen to optimize the equation of state for a pressure range of 0 to 10 atm and for a temperature range of 60 to 350 K. Comparisons are made for thermodynamic properties calculated both from the new equation and from existing equations of state.

  20. Atomistic determination of flexoelectric properties of crystalline dielectrics

    NASA Astrophysics Data System (ADS)

    Maranganti, R.; Sharma, P.

    2009-08-01

    Upon application of a uniform strain, internal sublattice shifts within the unit cell of a noncentrosymmetric dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectricity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has both bulk and surface contributions: the strength of the bulk contribution can be characterized by means of a material property tensor called the bulk flexoelectric tensor. Several recent studies suggest that strain-gradient induced polarization may be responsible for a variety of interesting and anomalous electromechanical phenomena in materials including electromechanical coupling effects in nonuniformly strained nanostructures, “dead layer” effects in nanocapacitor systems, and “giant” piezoelectricity in perovskite nanostructures among others. In this work, adopting a lattice dynamics based microscopic approach we provide estimates of the flexoelectric tensor for certain cubic crystalline ionic salts, perovskite dielectrics, III-V and II-VI semiconductors. We compare our estimates with experimental/theoretical values wherever available and also revisit the validity of an existing empirical scaling relationship for the magnitude of flexoelectric coefficients in terms of material parameters. It is interesting to note that two independent groups report values of flexoelectric properties for perovskite dielectrics that are orders of magnitude apart: Cross and co-workers from Penn State have carried out experimental studies on a variety of materials including barium titanate while Catalan and co-workers from Cambridge used theoretical ab initio techniques as well as experimental techniques to study paraelectric strontium titanate as well as ferroelectric barium titanate and lead titanate. We find that, in the case of perovskite dielectrics, our estimates agree to an order of magnitude with the experimental and theoretical estimates for strontium titanate. For barium titanate however, while our estimates agree to an order of magnitude with existing ab initio calculations, there exists a large discrepancy with experimental estimates. The possible reasons for the observed deviations are discussed.

  1. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  2. Masonry Vaults Subjected To Horizontal Loads: Experimental and Numerical Investigations to Evaluate the Effectiveness of A GFRM Reinforcement

    NASA Astrophysics Data System (ADS)

    Gattesco, Natalino; Boem, Ingrid

    2017-10-01

    The paper investigates the effectiveness of a modern reinforcement technique based on a Glass Fiber-Reinforced Mortar (GFRM) for the enhancement of the performances of existing masonry vaults subjected to horizontal seismic actions. In fact, the authors recently evidenced, through numerical simulations, that the typical simplified loading patterns generally adopted in the literature for the experimental tests, based on concentrated vertical loads at 1/4 of the span, are not reliable for such a purpose, due to an unrealistic stress distribution. Thus, experimental quasi-static cyclic tests on full-scale masonry vaults based on a specific setup, designed to apply a horizontal load pattern proportional to the mass, were performed. Three samples were tested: an unreinforced vault, a vault reinforced at the extrados and a vault reinforced at the intrados. The experimental results demonstrated the technique effectiveness in both strength and ductility. Moreover, numerical simulations were performed by adopting a simplified FE, smear-crack model, evidencing the good reliability of the prediction by comparison with the experimental results.

  3. Classification of biological micro-objects using optical coherence tomography: in silico study

    PubMed Central

    Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter RT

    2017-01-01

    We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system’s objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results. PMID:28856039

  4. Classification of biological micro-objects using optical coherence tomography: in silico study.

    PubMed

    Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter Rt

    2017-08-01

    We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system's objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results.

  5. Three-Dimensional Dynamic Deformation Measurements Using Stereoscopic Imaging and Digital Speckle Photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prentice, H. J.; Proud, W. G.

    2006-07-28

    A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less

  6. Study of advanced techniques for determining the long-term performance of components

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was conducted of techniques having the capability of determining the performance and reliability of components for spacecraft liquid propulsion applications for long term missions. The study utilized two major approaches; improvement in the existing technology, and the evolution of new technology. The criteria established and methods evolved are applicable to valve components. Primary emphasis was placed on the propellants oxygen difluoride and diborane combination. The investigation included analysis, fabrication, and tests of experimental equipment to provide data and performance criteria.

  7. A numerical study of mixing in supersonic combustors with hypermixing injectors

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1993-01-01

    A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Average Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.

  8. A numerical study of mixing in supersonic combustors with hypermixing injectors

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1992-01-01

    A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.

  9. A System for English Vocabulary Acquisition Based on Code-Switching

    ERIC Educational Resources Information Center

    Mazur, Michal; Karolczak, Krzysztof; Rzepka, Rafal; Araki, Kenji

    2016-01-01

    Vocabulary plays an important part in second language learning and there are many existing techniques to facilitate word acquisition. One of these methods is code-switching, or mixing the vocabulary of two languages in one sentence. In this paper the authors propose an experimental system for computer-assisted English vocabulary learning in…

  10. A summary and evaluation of semi-empirical methods for the prediction of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.

    1979-01-01

    Existing prediction techniques are compiled and described. The descriptions include input and output parameter lists, required equations and graphs, and the range of validity for each part of the prediction procedures. Examples are provided illustrating the analysis procedure and the degree of agreement with experimental results.

  11. Application of additive laser technologies in the gas turbine blades design process

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.

    2017-11-01

    An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.

  12. REFOLDdb: a new and sustainable gateway to experimental protocols for protein refolding.

    PubMed

    Mizutani, Hisashi; Sugawara, Hideaki; Buckle, Ashley M; Sangawa, Takeshi; Miyazono, Ken-Ichi; Ohtsuka, Jun; Nagata, Koji; Shojima, Tomoki; Nosaki, Shohei; Xu, Yuqun; Wang, Delong; Hu, Xiao; Tanokura, Masaru; Yura, Kei

    2017-04-24

    More than 7000 papers related to "protein refolding" have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource - "REFOLDdb" that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest. We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource. REFOLDdb contains 1877 entries as of March 17 th , 2017, and is freely available at http://p4d-info.nig.ac.jp/refolddb/ . REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.

  13. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Chuang, Kuo-Chih; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-01

    This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  14. Determining the semantic similarities among Gene Ontology terms.

    PubMed

    Taha, Kamal

    2013-05-01

    We present in this paper novel techniques that determine the semantic relationships among GeneOntology (GO) terms. We implemented these techniques in a prototype system called GoSE, which resides between user application and GO database. Given a set S of GO terms, GoSE would return another set S' of GO terms, where each term in S' is semantically related to each term in S. Most current research is focused on determining the semantic similarities among GO ontology terms based solely on their IDs and proximity to one another in the GO graph structure, while overlooking the contexts of the terms, which may lead to erroneous results. The context of a GO term T is the set of other terms, whose existence in the GO graph structure is dependent on T. We propose novel techniques that determine the contexts of terms based on the concept of existence dependency. We present a stack-based sort-merge algorithm employing these techniques for determining the semantic similarities among GO terms.We evaluated GoSE experimentally and compared it with three existing methods. The results of measuring the semantic similarities among genes in KEGG and Pfam pathways retrieved from the DBGET and Sanger Pfam databases, respectively, have shown that our method outperforms the other three methods in recall and precision.

  15. a Theoretical and Experimental Investigation of 1/F Noise in the Alpha Decay Rates of AMERICIUM-241.

    NASA Astrophysics Data System (ADS)

    Pepper, Gary T.

    New experimental methods and data analysis techniques were used to investigate the hypothesis of the existence of 1/f noise in a alpha particle emission rates for ^{241}Am. Experimental estimates of the flicker floor were found to be almost two orders of magnitude less than Handel's theoretical prediction and previous measurements. The existence of a flicker floor for ^{57}Co decay, a process for which no charged particles are emitted, indicate that instrumental instability is likely responsible for the values of the flicker floor obtained. The experimental results and the theoretical arguments presented indicate that a re-examination of Handel's theory of 1/f noise is appropriate. Methods of numerical simulation of noise processes with a 1/f^{rm n} power spectral density were developed. These were used to investigate various statistical aspects of 1/f ^{rm n} noise. The probability density function for the Allan variance was investigated in order to establish confidence limits for the observations made. The effect of using grouped (correlated) data, for evaluating the Allan variance, was also investigated.

  16. Optical Characterization of Pulse Laser Deposition of Thin Film of Hard Materials Using RHEED and AFM Techniques (DURIP)

    DTIC Science & Technology

    2011-09-26

    determine g-factor of the atomic system, it is convenient experimentally to fix 0 and to find the resonance magnetic field Hres corresponding to the...given frequency ( Hres = res/). In ferromagnetic materials, there exist strong internal anisotropic magnetic fields, which are caused by the magnetic

  17. The negative ions of strontium and barium

    NASA Astrophysics Data System (ADS)

    Garwan, M. A.; Kilius, L. R.; Litherland, A. E.; Nadeau, M.-J.; Zhao, X.-L.

    1990-12-01

    Recent theoretical calculations have predicted a tendency toward higher electron affinities for heavier alkaline elements. Experimental evidence has been obtained for the existence of strontium and barium negative ions created from pure elements in a caesium sputter ion source. Accelerator mass spectrometric techniques were employed to resolve the above elemental negative ions from the interfering molecular species.

  18. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  19. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  20. Application of laser differential confocal technique in back vertex power measurement for phoropters

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli

    2012-10-01

    A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.

  1. Modeling of switching regulator power stages with and without zero-inductor-current dwell time

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Yu, Y.

    1979-01-01

    State-space techniques are employed to derive accurate models for the three basic switching converter power stages: buck, boost, and buck/boost operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without dwell time as a special case of the discontinuous-current mode when the dwell time vanishes. Abrupt changes of system behavior, including a reduction of the system order when the dwell time appears, are shown both analytically and experimentally. Merits resulting from the present modeling technique in comparison with existing modeling techniques are illustrated.

  2. Investigating existing medical CT segmentation techniques within automated baggage and package inspection

    NASA Astrophysics Data System (ADS)

    Megherbi, Najla; Breckon, Toby P.; Flitton, Greg T.

    2013-10-01

    3D Computed Tomography (CT) image segmentation is already well established tool in medical research and in routine daily clinical practice. However, such techniques have not been used in the context of 3D CT image segmentation for baggage and package security screening using CT imagery. CT systems are increasingly used in airports for security baggage examination. We propose in this contribution an investigation of the current 3D CT medical image segmentation methods for use in this new domain. Experimental results of 3D segmentation on real CT baggage security imagery using a range of techniques are presented and discussed.

  3. EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS

    PubMed Central

    Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M

    2009-01-01

    A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the biomechanical behaviour of aneurysms using experimental techniques. PMID:19595622

  4. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  5. Laser SRS tracker for reverse prototyping tasks

    NASA Astrophysics Data System (ADS)

    Kolmakov, Egor; Redka, Dmitriy; Grishkanich, Aleksandr; Tsvetkov, Konstantin

    2017-10-01

    According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.

  6. A study of the electromagnetic interaction between planetary bodies and the solar wind

    NASA Technical Reports Server (NTRS)

    Schwartz, K.

    1971-01-01

    Theoretical and computational techniques were developed for calculating the time dependent electromagnetic response of a radially inhomogeneous moon. The techniques were used to analyze the experimental data from the LSM (lunar surface magnetometer) thus providing an in-depth diagnostic of the Lunar interior. The theory was also incorporated into an existing computer code designed to calculate the thermal evolution of planetary bodies. The program will provide a tool for examining the effect of heating from the TE mode (poloidal magnetic field) as well as the TM mode (toroidal magnetic field).

  7. Three-dimensional x-ray inspection of food products

    NASA Astrophysics Data System (ADS)

    Graves, Mark; Batchelor, Bruce G.; Palmer, Stephen C.

    1994-09-01

    Modern food production techniques operate at high speed and sometimes fill several containers simultaneously; individual containers never become available for inspection by conventional x- ray systems. There is a constant demand for improved methods for detecting foreign bodies, such as glass, plastic, wood, stone, animal remains, etc. These requirements lead to significant problems with existing inspection techniques, which are susceptible to noise and are unable to detect long thin contaminants reliably. Experimental results demonstrate these points. The paper proposes the use of two x-ray inspection systems, with orthogonal beams to overcome these difficulties.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.

    Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus atmore » a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.« less

  9. Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization

    NASA Astrophysics Data System (ADS)

    Zhao, Jin; Han-Ming, Zhang; Bin, Yan; Lei, Li; Lin-Yuan, Wang; Ai-Long, Cai

    2016-03-01

    Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).

  10. Quantum simulation of a quantum stochastic walk

    NASA Astrophysics Data System (ADS)

    Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.

    2017-03-01

    The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.

  11. A critical review on tablet disintegration.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2016-09-01

    Tablet disintegration is an important factor for drug release and can be modified with excipients called tablet disintegrants. Tablet disintegrants act via different mechanisms and the efficacy of these excipients is influenced by various factors. In this review, the existing literature on tablet disintegration is critically reviewed. Potential disintegration mechanisms, as well as impact factors on the disintegration process will be discussed based on experimental evidence. Search terms for Scopus and Web of Science included "tablet disintegration", "mechanism tablet disintegration", "superdisintegrants", "disintegrants", "swelling force", "disintegration force", "disintegration mechanisms", as well as brand names of commonly applied superdisintegrants. References of identified papers were screened as well. Experimental data supports swelling and shape recovery as main mechanisms of action of disintegrants. Other tablet excipients and different manufacturing techniques greatly influence the disintegration process. The use of different excipients, experimental setups and manufacturing techniques, as well as the demand for original research led to a distinct patchwork of knowledge. Broader, more systematic approaches are necessary not only to structure the past but also future findings.

  12. Classification of high dimensional multispectral image data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1993-01-01

    A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.

  13. Image steganalysis using Artificial Bee Colony algorithm

    NASA Astrophysics Data System (ADS)

    Sajedi, Hedieh

    2017-09-01

    Steganography is the science of secure communication where the presence of the communication cannot be detected while steganalysis is the art of discovering the existence of the secret communication. Processing a huge amount of information takes extensive execution time and computational sources most of the time. As a result, it is needed to employ a phase of preprocessing, which can moderate the execution time and computational sources. In this paper, we propose a new feature-based blind steganalysis method for detecting stego images from the cover (clean) images with JPEG format. In this regard, we present a feature selection technique based on an improved Artificial Bee Colony (ABC). ABC algorithm is inspired by honeybees' social behaviour in their search for perfect food sources. In the proposed method, classifier performance and the dimension of the selected feature vector depend on using wrapper-based methods. The experiments are performed using two large data-sets of JPEG images. Experimental results demonstrate the effectiveness of the proposed steganalysis technique compared to the other existing techniques.

  14. Visibility enhancement of color images using Type-II fuzzy membership function

    NASA Astrophysics Data System (ADS)

    Singh, Harmandeep; Khehra, Baljit Singh

    2018-04-01

    Images taken in poor environmental conditions decrease the visibility and hidden information of digital images. Therefore, image enhancement techniques are necessary for improving the significant details of these images. An extensive review has shown that histogram-based enhancement techniques greatly suffer from over/under enhancement issues. Fuzzy-based enhancement techniques suffer from over/under saturated pixels problems. In this paper, a novel Type-II fuzzy-based image enhancement technique has been proposed for improving the visibility of images. The Type-II fuzzy logic can automatically extract the local atmospheric light and roughly eliminate the atmospheric veil in local detail enhancement. The proposed technique has been evaluated on 10 well-known weather degraded color images and is also compared with four well-known existing image enhancement techniques. The experimental results reveal that the proposed technique outperforms others regarding visible edge ratio, color gradients and number of saturated pixels.

  15. Scattering Tools for Nanostructure Phonon Engineering

    DTIC Science & Technology

    2013-09-25

    characterization of phonons in nanomaterials, such as Raman scattering, are sensitive only to phonon modes with wavevectors of extremely small magnitude...Fundamentally the wavevectors that can be probed by Raman scattering are limited by the small momentum of photons in the visible spectrum. Our work...serious characterization challenge because existing experimental techniques for the characterization of phonons in nanomaterials, such as Raman

  16. Observations of large parallel electric fields in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1976-01-01

    Rocket borne measurements employing a double probe technique were used to gather evidence for the existence of electric fields in the auroral ionosphere having components parallel to the magnetic field direction. An analysis of possible experimental errors leads to the conclusion that no known uncertainties can account for the roughly 10 mV/m parallel electric fields that are observed.

  17. Quantitative Structure-Activity Relationships for Organophosphate Enzyme Inhibition (Briefing Charts)

    DTIC Science & Technology

    2011-09-22

    OPs) are a group of pesticides that inhibit enzymes such as acetylcholinesterase. Numerous OP structural variants exist and toxicity data can be...and human toxicity studies especially for OPs lacking experimental data. 15. SUBJECT TERMS QSAR Organophosphates...structure and mechanism of toxicity c) Linking QSAR and OP PBPK/PD 2. Methods a) Physiochemical Descriptors b) Regression Techniques 3. Results a

  18. Dynamic Photorefractive Memory and its Application for Opto-Electronic Neural Networks.

    NASA Astrophysics Data System (ADS)

    Sasaki, Hironori

    This dissertation describes the analysis of the photorefractive crystal dynamics and its application for opto-electronic neural network systems. The realization of the dynamic photorefractive memory is investigated in terms of the following aspects: fast memory update, uniform grating multiplexing schedules and the prevention of the partial erasure of existing gratings. The fast memory update is realized by the selective erasure process that superimposes a new grating on the original one with an appropriate phase shift. The dynamics of the selective erasure process is analyzed using the first-order photorefractive material equations and experimentally confirmed. The effects of beam coupling and fringe bending on the selective erasure dynamics are also analyzed by numerically solving a combination of coupled wave equations and the photorefractive material equation. Incremental recording technique is proposed as a uniform grating multiplexing schedule and compared with the conventional scheduled recording technique in terms of phase distribution in the presence of an external dc electric field, as well as the image gray scale dependence. The theoretical analysis and experimental results proved the superiority of the incremental recording technique over the scheduled recording. Novel recirculating information memory architecture is proposed and experimentally demonstrated to prevent partial degradation of the existing gratings by accessing the memory. Gratings are circulated through a memory feed back loop based on the incremental recording dynamics and demonstrate robust read/write/erase capabilities. The dynamic photorefractive memory is applied to opto-electronic neural network systems. Module architecture based on the page-oriented dynamic photorefractive memory is proposed. This module architecture can implement two complementary interconnection organizations, fan-in and fan-out. The module system scalability and the learning capabilities are theoretically investigated using the photorefractive dynamics described in previous chapters of the dissertation. The implementation of the feed-forward image compression network with 900 input and 9 output neurons with 6-bit interconnection accuracy is experimentally demonstrated. Learning of the Perceptron network that determines sex based on input face images of 900 pixels is also successfully demonstrated.

  19. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous phantoms, such as the MIRD phantom and its physical representation, Mr. ADAM. The results indicated that the Reciprocity Theorem is valid within an average range of uncertainty of 8%.

  20. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    PubMed

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  1. Classification of bladder cancer cell lines using Raman spectroscopy: a comparison of excitation wavelength, sample substrate and statistical algorithms

    NASA Astrophysics Data System (ADS)

    Kerr, Laura T.; Adams, Aine; O'Dea, Shirley; Domijan, Katarina; Cullen, Ivor; Hennelly, Bryan M.

    2014-05-01

    Raman microspectroscopy can be applied to the urinary bladder for highly accurate classification and diagnosis of bladder cancer. This technique can be applied in vitro to bladder epithelial cells obtained from urine cytology or in vivo as an optical biopsy" to provide results in real-time with higher sensitivity and specificity than current clinical methods. However, there exists a high degree of variability across experimental parameters which need to be standardised before this technique can be utilized in an everyday clinical environment. In this study, we investigate different laser wavelengths (473 nm and 532 nm), sample substrates (glass, fused silica and calcium fluoride) and multivariate statistical methods in order to gain insight into how these various experimental parameters impact on the sensitivity and specificity of Raman cytology.

  2. New analytical technique for carbon dioxide absorption solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive indexmore » models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.« less

  3. Paper simulation techniques in user requirements analysis for interactive computer systems

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1979-01-01

    This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task

  4. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  5. Supershear Rayleigh Waves at a Soft Interface

    NASA Astrophysics Data System (ADS)

    Le Goff, Anne; Cobelli, Pablo; Lagubeau, Guillaume

    2013-06-01

    We report on the experimental observation of waves at a liquid foam surface propagating faster than the bulk shear waves. The existence of such waves has long been debated, but the recent observation of supershear events in a geophysical context has inspired us to search for their existence in a model viscoelastic system. An optimized fast profilometry technique allows us to observe on a liquid foam surface the waves triggered by the impact of a projectile. At high impact velocity, we show that the expected subshear Rayleigh waves are accompanied by faster surface waves that can be identified as supershear Rayleigh waves.

  6. Advanced Computational Techniques for Hypersonic Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1996-01-01

    CFD has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow us to perform simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.

  7. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  8. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Measurements of acoustic surface waves on fluid-filled porous rocks

    NASA Astrophysics Data System (ADS)

    Adler, Laszlo; Nagy, Peter B.

    1994-09-01

    Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.

  10. Online optimization of storage ring nonlinear beam dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  11. A modal separation measurement technique for broadband noise propagating inside circular ducts

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Johnston, J. P.

    1981-01-01

    A measurement technique which separates broadband noise propagating inside circular ducts into the acoustic duct modes is developed. The technique is also applicable to discrete frequency noise. The acoustic modes are produced by weighted combinations of the instantaneous outputs of microphones spaced around the duct circumference. The technique is compared with the cross spectral density approach presently available and found to have certain advantages, and disadvantages. Considerable simplification of both the new technique and the cross spectral density approach occurs when no correlation exists between different circumferential mode orders. The properties leading to uncorrelated modes and experimental tests which verify this condition are discussed. The modal measurement technique is applied to the case of broadband noise generated by flow through a coaxial obstruction (nozzle or orifice) in a pipe. Different circumferential mode orders are shown to be uncorrelated for this type of noise source.

  12. Comparison of competing segmentation standards for X-ray computed topographic imaging using Lattice Boltzmann techniques

    NASA Astrophysics Data System (ADS)

    Larsen, J. D.; Schaap, M. G.

    2013-12-01

    Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.

  13. 3D shape measurement of moving object with FFT-based spatial matching

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  14. Neutron assay in mixed radiation fields with a 6Li-loaded plastic scintillator

    NASA Astrophysics Data System (ADS)

    Balmer, M. J. I.; Gamage, K. A. A.; Taylor, G. C.

    2015-08-01

    A novel technique for assay of thermal and fast neutrons in a 6Li-loaded plastic scintillator is presented. Existing capture-gated thermal neutron detection techniques were evaluated with the 6Li-loaded plastic scintillator studied in this work. Using simulations and experimental work, shortcomings in its performance were highlighted. As a result, it was proposed that by separating the combined fast and thermal neutron events from gamma events, using established pulse shape discrimination techniques, the thermal neutron events could then be assayed. Experiments were conducted at the National Physical Laboratory, Teddington, performing neutron assays with seven different neutron fields using the proposed technique. For each field, thermal and fast neutron content was estimated and were shown to corroborate with the seven synthesised fields.

  15. Thermal characterization assessment of rigid and flexible water models in a nanogap using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Akıner, Tolga; Mason, Jeremy; Ertürk, Hakan

    2017-11-01

    The thermal properties of the TIP3P and TIP5P water models are investigated using equilibrium and non-equilibrium molecular dynamics techniques in the presence of solid surfaces. The performance of the non-equilibrium technique for rigid molecules is found to depend significantly on the distribution of atomic degrees of freedom. An improved approach to distribute atomic degrees of freedom is proposed for which the thermal conductivity of the TIP5P model agrees more closely with equilibrium molecular dynamics and experimental results than the existing state of the art.

  16. A Summary of Data and Findings from the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Chwalowski, Pawel.; Heeg, Jennifer; Wieseman, Carol D.

    2012-01-01

    This paper summarizes data and findings from the first Aeroelastic Prediction Workshop (AePW) held in April, 2012. The workshop has been designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems, and to identify computational and experimental areas needing additional research and development. For this initial workshop, three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations and results from all of these computations were compared at the workshop. Keywords: Unsteady Aerodynamics, Aeroelasticity, Computational Fluid Dynamics, Transonic Flow, Separated Flow.

  17. Fuel-injector/air-swirl characterization

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.; Bennett, J. C.

    1985-01-01

    The objectives of this program are to establish an experimental data base documenting the behavior of gas turbine engine fuel injector sprays as the spray interacts with the swirling gas flow existing in the combustor dome, and to conduct an assessment of the validity of current analytical techniques for predicting fuel spray behavior. Emphasis is placed on the acquisition of data using injector/swirler components which closely resemble components currently in use in advanced aircraft gas turbine engines, conducting tests under conditions that closely simulate or closely approximate those developed in actual combustors, and conducting a well-controlled experimental effort which will comprise using a combination of low-risk experiments and experiments requiring the use of state-of-the-art diagnostic instrumentation. Analysis of the data is to be conducted using an existing, TEACH-type code which employs a stochastic analysis of the motion of the dispersed phase in the turbulent continuum flow field.

  18. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  19. Experimental Investigations of Non-Stationary Properties In Radiometer Receivers Using Measurements of Multiple Calibration References

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.

  20. Vibration Based Crack Detection in a Rotating Disk. Part 2; Experimental Results

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Haase, Wayne C.; Baaklini, George

    2005-01-01

    This paper describes the experimental results concerning the detection of a crack in a rotating disk. The goal was to utilize blade tip clearance and shaft vibration measurements to monitor changes in the system's center of mass and/or blade deformation behaviors. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Here, a notch was used to simulate an actual crack. The vibration based experimental results failed to identify the existence of a notch when utilizing the approach described above, even with a rather large, circumferential notch (l.2 in.) located approximately mid-span on the disk (disk radius = 4.63 in. with notch at r = 2.12 in.). This was somewhat expected, since the finite element based results in Part 1 of this study predicted changes in blade tip clearance as well as center of mass shifts due to a notch to be less than 0.001 in. Therefore, the small changes incurred by the notch could not be differentiated from the mechanical and electrical noise of the rotor system. Although the crack detection technique of interest failed to identify the existence ofthe notch, the vibration data produced and captured here will be utilized in upcoming studies that will focus on different data mining techniques concerning damage detection in a disk.

  1. Neutron flux characterization of californium-252 Neutron Research Facility at the University of Texas - Pan American by nuclear analytical technique

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad

    2014-03-01

    In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.

  2. Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2011-03-01

    To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.

  3. Speed scanning system based on solid-state microchip laser for architectural planning

    NASA Astrophysics Data System (ADS)

    Redka, Dmitriy; Grishkanich, Alexsandr S.; Kolmakov, Egor; Tsvetkov, Konstantin

    2017-10-01

    According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.

  4. Coordinate measuring system based on microchip lasers for reverse prototyping

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Grishkanich, Alexsandr S.; Redka, Dmitriy; Tsvetkov, Konstantin

    2017-02-01

    According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.

  5. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  6. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    PubMed

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of structural response data using discrete modal filters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1991-01-01

    The application of reciprocal modal vectors to the analysis of structural response data is described. Reciprocal modal vectors are constructed using an existing experimental modal model and an existing frequency response matrix of a structure, and can be assembled into a matrix that effectively transforms the data from the physical space to a modal space within a particular frequency range. In other words, the weighting matrix necessary for modal vector orthogonality (typically the mass matrix) is contained within the reciprocal model matrix. The underlying goal of this work is mostly directed toward observing the modal state responses in the presence of unknown, possibly closed loop forcing functions, thus having an impact on both operating data analysis techniques and independent modal space control techniques. This study investigates the behavior of reciprocol modal vectors as modal filters with respect to certain calculation parameters and their performance with perturbed system frequency response data.

  8. Effective evaluation of privacy protection techniques in visible and thermal imagery

    NASA Astrophysics Data System (ADS)

    Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael

    2017-09-01

    Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.

  9. Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine.

    PubMed

    Riccardi, Annalisa; Fernández-Navarro, Francisco; Carloni, Sante

    2014-10-01

    In this paper, the well known stagewise additive modeling using a multiclass exponential (SAMME) boosting algorithm is extended to address problems where there exists a natural order in the targets using a cost-sensitive approach. The proposed ensemble model uses an extreme learning machine (ELM) model as a base classifier (with the Gaussian kernel and the additional regularization parameter). The closed form of the derived weighted least squares problem is provided, and it is employed to estimate analytically the parameters connecting the hidden layer to the output layer at each iteration of the boosting algorithm. Compared to the state-of-the-art boosting algorithms, in particular those using ELM as base classifier, the suggested technique does not require the generation of a new training dataset at each iteration. The adoption of the weighted least squares formulation of the problem has been presented as an unbiased and alternative approach to the already existing ELM boosting techniques. Moreover, the addition of a cost model for weighting the patterns, according to the order of the targets, enables the classifier to tackle ordinal regression problems further. The proposed method has been validated by an experimental study by comparing it with already existing ensemble methods and ELM techniques for ordinal regression, showing competitive results.

  10. Nanomechanical effects of light unveil photons momentum in medium

    PubMed Central

    Verma, Gopal; Chaudhary, Komal; Singh, Kamal P.

    2017-01-01

    Precision measurement on momentum transfer between light and fluid interface has many implications including resolving the intriguing nature of photons momentum in a medium. For example, the existence of Abraham pressure of light under specific experimental configuration and the predictions of Chau-Amperian formalism of optical momentum for TE and TM polarizations remain untested. Here, we quantitatively and cleanly measure nanomehanical dynamics of water surface excited by radiation pressure of a laser beam. We systematically scanned wide range of experimental parameters including long exposure times, angle of incidence, spot size and laser polarization, and used two independent pump-probe techniques to validate a nano- bump on the water surface under all the tested conditions, in quantitative agreement with the Minkowski’s momentum of light. With careful experiments, we demonstrate advantages and limitations of nanometer resolved optical probing techniques and narrow down actual manifestation of optical momentum in a medium. PMID:28198468

  11. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis

    PubMed Central

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-01-01

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526

  12. Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions

    NASA Astrophysics Data System (ADS)

    Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.

    2016-08-01

    In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.

  13. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  14. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  15. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.

    PubMed

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-04-21

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.

  16. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  17. Application of a Navier-Stokes Solver to the Analysis of Multielement Airfoils and Wings Using Multizonal Grid Techniques

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.; Biedron, Robert T.; Whitlock, Mark

    1995-01-01

    A computational study was performed to determine the predictive capability of a Reynolds averaged Navier-Stokes code (CFL3D) for two-dimensional and three-dimensional multielement high-lift systems. Three configurations were analyzed: a three-element airfoil, a wing with a full span flap and a wing with a partial span flap. In order to accurately model these complex geometries, two different multizonal structured grid techniques were employed. For the airfoil and full span wing configurations, a chimera or overset grid technique was used. The results of the airfoil analysis illustrated that although the absolute values of lift were somewhat in error, the code was able to predict reasonably well the variation with Reynolds number and flap position. The full span flap analysis demonstrated good agreement with experimental surface pressure data over the wing and flap. Multiblock patched grids were used to model the partial span flap wing. A modification to an existing patched- grid algorithm was required to analyze the configuration as modeled. Comparisons with experimental data were very good, indicating the applicability of the patched-grid technique to analyses of these complex geometries.

  18. A New Adaptive Framework for Collaborative Filtering Prediction

    PubMed Central

    Almosallam, Ibrahim A.; Shang, Yi

    2010-01-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix’s system. PMID:21572924

  19. A New Adaptive Framework for Collaborative Filtering Prediction.

    PubMed

    Almosallam, Ibrahim A; Shang, Yi

    2008-06-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.

  20. Space charge distributions in insulating polymers: A new non-contacting way of measurement.

    PubMed

    Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L

    2015-04-01

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  1. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  2. Global Design Optimization for Aerodynamics and Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)

    2000-01-01

    Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.

  3. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  4. Guided wave technique for non-destructive testing of StifPipe

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel K.; Nguyen, Chi H.; Ehsani, Mohammad; Kundu, Tribikram

    2015-03-01

    The newly-developed StifPipe® is an effective technology for repair and strengthening of existing pipes and culverts. The wall of this pipe consists of a lightweight honeycomb core with carbon or glass fiber reinforced polymer (FRP) applied to the skin. The presence of the hollow honeycomb introduces challenges in the nondestructive testing (NDT) of this pipe. In this study, it is investigated if guided waves, excited by PZT (Lead ZirconateTitanate) transducer can detect damages in the honeycomb layer of the StifPipe®. Multiple signal processing techniques are used for in-depth study and understanding of the recorded signals. The experimental technique for damage detection in StifPipe® material is described and the obtained results are presented in this paper.

  5. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  6. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  7. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  8. The Future of Pharmaceutical Manufacturing Sciences

    PubMed Central

    2015-01-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993

  9. The Future of Pharmaceutical Manufacturing Sciences.

    PubMed

    Rantanen, Jukka; Khinast, Johannes

    2015-11-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    NASA Astrophysics Data System (ADS)

    Zatschler, S.; COBRA Collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  11. Simulating muscular thin films using thermal contraction capabilities in finite element analysis tools.

    PubMed

    Webster, Victoria A; Nieto, Santiago G; Grosberg, Anna; Akkus, Ozan; Chiel, Hillel J; Quinn, Roger D

    2016-10-01

    In this study, new techniques for approximating the contractile properties of cells in biohybrid devices using Finite Element Analysis (FEA) have been investigated. Many current techniques for modeling biohybrid devices use individual cell forces to simulate the cellular contraction. However, such techniques result in long simulation runtimes. In this study we investigated the effect of the use of thermal contraction on simulation runtime. The thermal contraction model was significantly faster than models using individual cell forces, making it beneficial for rapidly designing or optimizing devices. Three techniques, Stoney׳s Approximation, a Modified Stoney׳s Approximation, and a Thermostat Model, were explored for calibrating thermal expansion/contraction parameters (TECPs) needed to simulate cellular contraction using thermal contraction. The TECP values were calibrated by using published data on the deflections of muscular thin films (MTFs). Using these techniques, TECP values that suitably approximate experimental deflections can be determined by using experimental data obtained from cardiomyocyte MTFs. Furthermore, a sensitivity analysis was performed in order to investigate the contribution of individual variables, such as elastic modulus and layer thickness, to the final calibrated TECP for each calibration technique. Additionally, the TECP values are applicable to other types of biohybrid devices. Two non-MTF models were simulated based on devices reported in the existing literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Buoyancy-based Method of Determining Fat Levels in Drosophila.

    PubMed

    Hazegh, Kelsey E; Reis, Tânia

    2016-11-01

    Drosophila melanogaster is a key experimental system in the study of fat regulation. Numerous techniques currently exist to measure levels of stored fat in Drosophila, but most are expensive and/or laborious and have clear limitations. Here, we present a method to quickly and cheaply determine organismal fat levels in L3 Drosophila larvae. The technique relies on the differences in density between fat and lean tissues and allows for rapid detection of fat and lean phenotypes. We have verified the accuracy of this method by comparison to body fat percentage as determined by neutral lipid extraction and gas chromatography coupled with mass spectrometry (GCMS). We furthermore outline detailed protocols for the collection and synchronization of larvae as well as relevant experimental recipes. The technique presented below overcomes the major shortcomings in the most widely used lipid quantitation methods and provides a powerful way to quickly and sensitively screen L3 larvae for fat regulation phenotypes while maintaining the integrity of the larvae. This assay has wide applications for the study of metabolism and fat regulation using Drosophila.

  13. Molecular Modeling of a Probe in 2D IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cooper, Anthony; Larini, Luca

    Proteins must adopt a precise three dimensional structure in the folding process in order to perform its designated function. Although much has been learned about folding, there are still many details in structural dynamics that are difficult to characterize by existing experimental techniques. In order to overcome these challenges, novel infrared and fluorescent spectroscopic techniques have recently been employed to probe the molecular structure at the atomistic scale. These techniques rely on the spectroscopic properties of the nitrile group attached to a phenylalanine. In this study, we model this probe and we compute its properties in different solvents. This is done by performing Molecular Dynamics simulations with a PheCN solvated in water, urea and TMAO. We measure the decay rate of the vibrational stretching of the CN group in order to characterize the effects of different solvents on the local structure of the molecule. This data can be used to identify non-trivial conformational changes of the protein in the folding process. Preliminary results show agreement with current experimental data on 2D IR spectroscopy.

  14. Microstructural Effects on Initiation Behavior in HMX

    NASA Astrophysics Data System (ADS)

    Molek, Christopher; Welle, Eric; Hardin, Barrett; Vitarelli, Jim; Wixom, Ryan; Samuels, Philip

    Understanding the role microstructure plays on ignition and growth behavior has been the subject of a significant body of research within the detonation physics community. The pursuit of this understanding is important because safety and performance characteristics have been shown to strongly correlate to particle morphology. Historical studies have often correlated bulk powder characteristics to the performance or safety characteristics of pressed materials. We believe that a clearer and more relevant correlation is made between the pressed microstructure and the observed detonation behavior. This type of assessment is possible, as techniques now exist for the quantification of the pressed microstructures. Our talk will report on experimental efforts that correlate directly measured microstructural characteristics to initiation threshold behavior of HMX based materials. The internal microstructures were revealed using an argon ion cross-sectioning technique. This technique enabled the quantification of density and interface area of the pores within the pressed bed using methods of stereology. These bed characteristics are compared to the initiation threshold behavior of three HMX based materials using an electric gun based test method. Finally, a comparison of experimental threshold data to supporting theoretical efforts will be made.

  15. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when themore » bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.« less

  16. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  17. Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator.

    PubMed

    Lee, Aram; Mills, Thomas; Xu, Yong

    2015-03-23

    We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing.

  18. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  19. Sterile neutrinos as the origin of dark and baryonic matter.

    PubMed

    Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail

    2013-02-08

    We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities.

  20. FOR LOVE OR REWARD? CHARACTERISING PREFERENCES FOR GIVING TO PARENTS IN AN EXPERIMENTAL SETTING*

    PubMed Central

    Porter, Maria; Adams, Abi

    2017-01-01

    Understanding the motivations behind intergenerational transfers is an important and active research area in economics. The existence and responsiveness of familial transfers have consequences for the design of intra and intergenerational redistributive programmes, particularly as such programmes may crowd out private transfers amongst altruistic family members. Yet, despite theoretical and empirical advances in this area, significant gaps in our knowledge remain. In this article, we advance the current literature by shedding light on both the motivation for providing intergenerational transfers, and on the nature of preferences for such giving behaviour, by using experimental techniques and revealed preference methods. PMID:29151611

  1. The Taguchi Method Application to Improve the Quality of a Sustainable Process

    NASA Astrophysics Data System (ADS)

    Titu, A. M.; Sandu, A. V.; Pop, A. B.; Titu, S.; Ciungu, T. C.

    2018-06-01

    Taguchi’s method has always been a method used to improve the quality of the analyzed processes and products. This research shows an unusual situation, namely the modeling of some parameters, considered technical parameters, in a process that is wanted to be durable by improving the quality process and by ensuring quality using an experimental research method. Modern experimental techniques can be applied in any field and this study reflects the benefits of interacting between the agriculture sustainability principles and the Taguchi’s Method application. The experimental method used in this practical study consists of combining engineering techniques with experimental statistical modeling to achieve rapid improvement of quality costs, in fact seeking optimization at the level of existing processes and the main technical parameters. The paper is actually a purely technical research that promotes a technical experiment using the Taguchi method, considered to be an effective method since it allows for rapid achievement of 70 to 90% of the desired optimization of the technical parameters. The missing 10 to 30 percent can be obtained with one or two complementary experiments, limited to 2 to 4 technical parameters that are considered to be the most influential. Applying the Taguchi’s Method in the technique and not only, allowed the simultaneous study in the same experiment of the influence factors considered to be the most important in different combinations and, at the same time, determining each factor contribution.

  2. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  3. Three-dimensional shape optimization of a cemented hip stem and experimental validations.

    PubMed

    Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi

    2015-03-01

    This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.

  4. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Karl Johnson

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. Newmore » materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.« less

  5. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy

    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM propellants. The case study consists of the National Aeronautics and Space Administration's (NASA) Exploration Systems Architecture Study (ESAS) Lunar Surface Access Module (LSAM). The results of this study show that the use of HEDM propellants instead of hypergolic propellants can lower the gross weight of the LSAM and may be an attractive alternative to the current baseline hypergolic propellant choice.

  6. Parameter estimation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of road conditions is important. An algorithm to predict the SOC in time intervals as small as 5 ms is of critical demand. In such cases, the conventional non-linear estimation procedure is not time-effective. There exist methodologies in the literature, such as those based on fuzzy logic; however, these techniques require a lot of computational storage space. Consequently, it is not possible to implement such techniques on a micro-chip for integration as a part of a real-time device. The Extended Kalman Filter (EKF) based approach presented in this work is a first step towards developing an efficient method to predict online, the State of Charge of a lithium ion cell based on an electrochemical model. The final part of the dissertation focuses on incorporating uncertainty in parameter values into electrochemical models using the polynomial chaos theory (PCT).

  7. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  8. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  9. Photon Strength Function at Low Energies in 95Mo

    DOE PAGES

    Wiedeking, M.; Bernstein, L. A.; Allmond, J. M.; ...

    2014-05-01

    A new and model-independent experimental method has been developed to determine the energy dependence of the photon strength function. It is designed to study statistical feeding from the quasi continuum to individual low-lying discrete levels. This new technique is presented and results for 95Mo are compared to data from the University of Oslo. In particular, questions regarding the existence of the low-energy enhancement in the photon strength function are addressed.

  10. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  11. Magnetic particle-mediated magnetoreception

    PubMed Central

    Shaw, Jeremy; Boyd, Alastair; House, Michael; Woodward, Robert; Mathes, Falko; Cowin, Gary; Saunders, Martin; Baer, Boris

    2015-01-01

    Behavioural studies underpin the weight of experimental evidence for the existence of a magnetic sense in animals. In contrast, studies aimed at understanding the mechanistic basis of magnetoreception by determining the anatomical location, structure and function of sensory cells have been inconclusive. In this review, studies attempting to demonstrate the existence of a magnetoreceptor based on the principles of the magnetite hypothesis are examined. Specific attention is given to the range of techniques, and main animal model systems that have been used in the search for magnetite particulates. Anatomical location/cell rarity and composition are identified as two key obstacles that must be addressed in order to make progress in locating and characterizing a magnetite-based magnetoreceptor cell. Avenues for further study are suggested, including the need for novel experimental, correlative, multimodal and multidisciplinary approaches. The aim of this review is to inspire new efforts towards understanding the cellular basis of magnetoreception in animals, which will in turn inform a new era of behavioural research based on first principles. PMID:26333810

  12. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.

    PubMed

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2009-01-06

    In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.

  13. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L.

    2015-04-15

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. Thesemore » predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.« less

  14. Models for randomly distributed nanoscopic domains on spherical vesicles

    NASA Astrophysics Data System (ADS)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  15. Single-molecule techniques in biophysics: a review of the progress in methods and applications.

    PubMed

    Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J M; Leake, Mark C

    2018-02-01

    Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.

  16. Single-molecule techniques in biophysics: a review of the progress in methods and applications

    NASA Astrophysics Data System (ADS)

    Miller, Helen; Zhou, Zhaokun; Shepherd, Jack; Wollman, Adam J. M.; Leake, Mark C.

    2018-02-01

    Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in ‘force spectroscopy’ techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.

  17. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  18. Evidence for consciousness-related anomalies in random physical systems

    NASA Astrophysics Data System (ADS)

    Radin, Dean I.; Nelson, Roger D.

    1989-12-01

    Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.

  19. Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2014-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.

  20. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    PubMed Central

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  1. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force.

    PubMed

    Reed Johnson, F; Lancsar, Emily; Marshall, Deborah; Kilambi, Vikram; Mühlbacher, Axel; Regier, Dean A; Bresnahan, Brian W; Kanninen, Barbara; Bridges, John F P

    2013-01-01

    Stated-preference methods are a class of evaluation techniques for studying the preferences of patients and other stakeholders. While these methods span a variety of techniques, conjoint-analysis methods-and particularly discrete-choice experiments (DCEs)-have become the most frequently applied approach in health care in recent years. Experimental design is an important stage in the development of such methods, but establishing a consensus on standards is hampered by lack of understanding of available techniques and software. This report builds on the previous ISPOR Conjoint Analysis Task Force Report: Conjoint Analysis Applications in Health-A Checklist: A Report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. This report aims to assist researchers specifically in evaluating alternative approaches to experimental design, a difficult and important element of successful DCEs. While this report does not endorse any specific approach, it does provide a guide for choosing an approach that is appropriate for a particular study. In particular, it provides an overview of the role of experimental designs for the successful implementation of the DCE approach in health care studies, and it provides researchers with an introduction to constructing experimental designs on the basis of study objectives and the statistical model researchers have selected for the study. The report outlines the theoretical requirements for designs that identify choice-model preference parameters and summarizes and compares a number of available approaches for constructing experimental designs. The task-force leadership group met via bimonthly teleconferences and in person at ISPOR meetings in the United States and Europe. An international group of experimental-design experts was consulted during this process to discuss existing approaches for experimental design and to review the task force's draft reports. In addition, ISPOR members contributed to developing a consensus report by submitting written comments during the review process and oral comments during two forum presentations at the ISPOR 16th and 17th Annual International Meetings held in Baltimore (2011) and Washington, DC (2012). Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Experimental search for hidden photon CDM in the eV mass range with a dish antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, J.; Horie, T.; Inoue, Y.

    2015-09-15

    A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter χ of ∼6×10{sup −12} for the hidden photon mass m{sub γ}=3.1±1.2 eV.

  3. Light Scattering from Rough Surfaces. Appendix. Angular Correlation of Speckle Patterns. Draft

    DTIC Science & Technology

    1994-06-01

    For his demonstrations of the various experimental techniques, I owe thanks to Andrew Sant. Also, on behalf of all students writing (and written) up ...less controllable, radar set up . 1.1.1 Theoretical Models This section will present some of the theoretical models which exist for determining the...centre of a turntable set up to spin at :300 revolutions per minute. While the turntable is stationary, photoresist is applied to the centre of the

  4. Laser-self-mixing interferometry for mechatronics applications.

    PubMed

    Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano

    2009-01-01

    We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems.

  5. Co-culture systems and technologies: taking synthetic biology to the next level

    PubMed Central

    Goers, Lisa; Freemont, Paul; Polizzi, Karen M.

    2014-01-01

    Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell–cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. PMID:24829281

  6. Exploring a Multiphysics Resolution Approach for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Estupinan Donoso, Alvaro Antonio; Peters, Bernhard

    2018-06-01

    Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.

  7. Measurement of Net Fluxes of Ammonium and Nitrate at the Surface of Barley Roots Using Ion-Selective Microelectrodes 1

    PubMed Central

    Henriksen, Gordon H.; Raman, D. Raj; Walker, Larry P.; Spanswick, Roger M.

    1992-01-01

    Net fluxes of NH4+ and NO3− into roots of 7-day-old barley (Hordeum vulgare L. cv Prato) seedlings varied both with position along the root axis and with time. These variations were not consistent between replicate plants; different roots showed unique temporal and spatial patterns of uptake. Axial scans of NH4+ and NO3− net fluxes were conducted along the apical 7 centimeters of seminal roots of intact barley seedlings in solution culture using ion-selective microelectrodes in the unstirred layer immediately external to the root surface. Theoretically derived relationships between uptake and concentration gradients, combined with experimental observations of the conditions existing in our experimental system, permitted evaluation of the contribution of bulk water flow to ion movement in the unstirred layer, as well as a measure of the spatial resolution of the microelectrode flux estimation technique. Finally, a method was adopted to assess the accuracy of this technique. PMID:16668947

  8. IMAGE-GUIDED TREATMENT USING AN X-RAY THERAPY UNIT AND GOLD NANOPARTICLES: TEST OF CONCEPT.

    PubMed

    Le Loirec, Cindy; Chambellan, Dominique; Tisseur, David

    2016-06-01

    Gold nanoparticles (GNPs) have the potential to enhance the radiation dose locally in conjunction with kV X-rays used for radiation therapy. As for other radiotherapy modalities, the absorbed dose needs to be controlled. To do that, it is an advantage to know the distribution of GNPs. However, no effective imaging tool exists to determine the GNP distribution in vivo. Various approaches have been proposed to determine the concentration of GNPs and its distribution in a tumour and in other organs and tissues. X-ray fluorescence computed tomography (XFCT) is a promising imaging technique to do that. A new experimental device based on the XFCT technique allowing the in vivo control of GNP radiotherapy treatments is proposed. As a test of concept, experimental acquisitions and Monte Carlo simulations were performed to determine the performance that a XFCT detector has to fulfil. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    PubMed

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  10. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    NASA Astrophysics Data System (ADS)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  11. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  12. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  13. Fourier-Mellin moment-based intertwining map for image encryption

    NASA Astrophysics Data System (ADS)

    Kaur, Manjit; Kumar, Vijay

    2018-03-01

    In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.

  14. An experimental study of nonlinear dynamic system identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1990-01-01

    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  15. Techniques for detecting the Cherenkov light from cascade showers in water

    NASA Astrophysics Data System (ADS)

    Khomyakov, V. A.; Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.

    2018-01-01

    The NEVOD Cherenkov water detector (CWD) features a denser lattice of sensitive elements than the existing large-scale CWDs, whereby the spatial distribution of Cherenkov light from cascade showers is sampled with a superior resolution of 0.5 m, which is close to one radiation length for water (36 cm). The experimental techniques for investigating the Cherenkov light generated by particle cascades in water is proposed. The dependence of light intensity on the depth of shower development is for the first time measured at different distances from the shower axis. The results are compared with the Cherenkov light distributions predicted by various model descriptions for the scattering of cascade particles.

  16. ATMOS Spacelab 1 science investigation

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Smith, M. A. H.; Twitty, J. T.; Russell, J. M., III

    1979-01-01

    Existing infrared spectra from high speed interferometer balloon flights were analyzed and experimental analysis techniques applicable to similar data from the ATMOS experiment (Spacelab 3) were investigated. Specific techniques under investigation included line-by-line simulation of the spectra to aid in the identification of absorbing gases, simultaneous retrieval of pressure and temperature profiles using carefully chosen pairs of CO2 absorption lines, and the use of these pressures and temperatures in the retrieval of gas concentration profiles for many absorbing species. A search for a new absorption features was also carried out, and special attention was given to identification of absorbing gases in spectral bandpass regions to be measured by the halogen occultation experiment.

  17. BGFit: management and automated fitting of biological growth curves.

    PubMed

    Veríssimo, André; Paixão, Laura; Neves, Ana Rute; Vinga, Susana

    2013-09-25

    Existing tools to model cell growth curves do not offer a flexible integrative approach to manage large datasets and automatically estimate parameters. Due to the increase of experimental time-series from microbiology and oncology, the need for a software that allows researchers to easily organize experimental data and simultaneously extract relevant parameters in an efficient way is crucial. BGFit provides a web-based unified platform, where a rich set of dynamic models can be fitted to experimental time-series data, further allowing to efficiently manage the results in a structured and hierarchical way. The data managing system allows to organize projects, experiments and measurements data and also to define teams with different editing and viewing permission. Several dynamic and algebraic models are already implemented, such as polynomial regression, Gompertz, Baranyi, Logistic and Live Cell Fraction models and the user can add easily new models thus expanding current ones. BGFit allows users to easily manage their data and models in an integrated way, even if they are not familiar with databases or existing computational tools for parameter estimation. BGFit is designed with a flexible architecture that focus on extensibility and leverages free software with existing tools and methods, allowing to compare and evaluate different data modeling techniques. The application is described in the context of bacterial and tumor cells growth data fitting, but it is also applicable to any type of two-dimensional data, e.g. physical chemistry and macroeconomic time series, being fully scalable to high number of projects, data and model complexity.

  18. Development of a simplified optical technique for the simultaneous measurement of particle size distribution and velocity

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Existing techniques were surveyed, an experimental procedure was developed, a laboratory test model was fabricated, limited data were recovered for proof of principle, and the relationship between particle size distribution and amplitude measurements was illustrated in an effort to develop a low cost, simplified optical technique for measuring particle size distributions and velocities in fluidized bed combustors and gasifiers. A He-Ne laser illuminated Rochi Rulings (range 10 to 500 lines per inch). Various samples of known particle size distributions were passed through the fringe pattern produced by the rulings. A photomultiplier tube converted light from the fringe volume to an electrical signal which was recorded using an oscilloscope and camera. The signal amplitudes were correlated against the known particle size distributions. The correlation holds true for various samples.

  19. 3D shape measurement of automotive glass by using a fringe reflection technique

    NASA Astrophysics Data System (ADS)

    Skydan, O. A.; Lalor, M. J.; Burton, D. R.

    2007-01-01

    In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.

  20. Requirements for Calibration in Noninvasive Glucose Monitoring by Raman Spectroscopy

    PubMed Central

    Lipson, Jan; Bernhardt, Jeff; Block, Ueyn; Freeman, William R.; Hofmeister, Rudy; Hristakeva, Maya; Lenosky, Thomas; McNamara, Robert; Petrasek, Danny; Veltkamp, David; Waydo, Stephen

    2009-01-01

    Background In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration). Method By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics–physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm. Results For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges. Conclusions Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial. PMID:20144354

  1. Laser-Self-Mixing Interferometry for Mechatronics Applications

    PubMed Central

    Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano

    2009-01-01

    We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems. PMID:22412324

  2. Experimental search for hidden photon CDM in the eV mass range with a dish antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, J.; Horie, T.; Minowa, M.

    2015-09-01

    A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter χ of ∼ 6× 10{sup −12} for the hidden photon mass m{sub γ} = 3.1 ± 1.2 eV.

  3. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  4. Theoretical assessment of bonaccordite formation in pressurized water reactors

    DOE PAGES

    Rak, Zsolt; O'Brien, Chris; Shin, Dongwon; ...

    2016-03-04

    The free energy of formation of bonaccordite (Ni 2FeBO 5) as a function of temperature has been calculated using a technique that combines first principles calculations with experimental free energies of formation of aqueous species. The results suggest that bonaccordite formation from aqueous metal ions (Ni 2+ andFe 3+) and boric acid is thermodynamically favorable at elevated temperature and pH that have been predicted to exist at the CRUD-clad interface in deposits thicker than 60 μm.

  5. Dielectric millimeter waveguides. Volume 1

    NASA Astrophysics Data System (ADS)

    Yeh, Cavour

    1988-03-01

    This report summarizes the result of the research carried out for the Postdoctoral Task E-6-7108 administered by the University of Dayton under contract F30602-81-C-0206 with RADC. The primary objectives of this research program were to learn whether there exists a dielectric waveguide configuration which offers a lower loss figure than a circular dielectric rod and to establish an experimental technique to measure the guiding characteristics of waves on dielectric structures. These objectives were met. Future research areas are also described in this report.

  6. Theoretical assessment of bonaccordite formation in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Rak, Zs; O'Brien, C. J.; Shin, D.; Andersson, A. D.; Stanek, C. R.; Brenner, D. W.

    2016-06-01

    The free energy of formation of bonaccordite (Ni2FeBO5) as a function of temperature has been calculated using a technique that combines first principles calculations with experimental free energies of formation of aqueous species. The results suggest that bonaccordite formation from aqueous metal ions (Ni2+ andFe3+) and boric acid is thermodynamically favorable at elevated temperature and pH that have been predicted to exist at the CRUD-clad interface in deposits thicker than 60 μm.

  7. Evidence for highly selective neuronal tuning to whole words in the "visual word form area".

    PubMed

    Glezer, Laurie S; Jiang, Xiong; Riesenhuber, Maximilian

    2009-04-30

    Theories of reading have posited the existence of a neural representation coding for whole real words (i.e., an orthographic lexicon), but experimental support for such a representation has proved elusive. Using fMRI rapid adaptation techniques, we provide evidence that the human left ventral occipitotemporal cortex (specifically the "visual word form area," VWFA) contains a representation based on neurons highly selective for individual real words, in contrast to current theories that posit a sublexical representation in the VWFA.

  8. Computer tomography of flows external to test models

    NASA Technical Reports Server (NTRS)

    Prikryl, I.; Vest, C. M.

    1982-01-01

    Computer tomographic techniques for reconstruction of three-dimensional aerodynamic density fields, from interferograms recorded from several different viewing directions were studied. Emphasis is on the case in which an opaque object such as a test model in a wind tunnel obscures significant regions of the interferograms (projection data). A method called the Iterative Convolution Method (ICM), existing methods in which the field is represented by a series expansions, and analysis of real experimental data in the form of aerodynamic interferograms are discussed.

  9. The influence of the insertion technique on the pullout force of pedicle screws: an experimental study.

    PubMed

    Chatzistergos, Panagiotis E; Sapkas, George; Kourkoulis, Stavros K

    2010-04-20

    The pullout strength of a typical pedicle screw was evaluated experimentally for different screw insertion techniques. OBJECTIVE.: To conclude whether the self-tapping insertion technique is indeed the optimum one for self-tapping screws, with respect to the pullout strength. It is reported in the literature that the size of the pilot-hole significantly influences the pullout strength of a self-tapping screw. In addition it is accepted that an optimum value of the diameter of the pilot-hole exists. For non self-tapping screw insertion it is reported that undertapping of the pilot-hole can increase its pullout strength. Finally it is known that in some cases orthopedic surgeons open the threaded holes, using another screw instead of a tap. A typical commercial self-tapping pedicle screw was inserted into blocks of Solid Rigid Polyurethane Foam (simulating osteoporotic cancellous bone), following different insertion techniques. The pullout force was measured according to the ASTM-F543-02 standard. The screw was inserted into previously prepared holes of different sizes, either threaded or cylindrical, to conclude whether an optimum size of the pilot-hole exists and whether tapping can increase the pullout strength. The case where the tapping is performed using another screw was also studied. For screw insertion with tapping, decreasing the outer radius of the threaded hole from 1.00 to 0.87 of the screw's outer radius increased the pullout force 9%. For insertion without tapping, decreasing the pilot-hole's diameter from 0.87 to 0.47 of the screw's outer diameter increased its pullout force 75%. Finally, tapping using another screw instead of a tap, gave results similar to those of conventional tapping. Undertapping of a pilot-hole either using a tap or another screw can increase the pullout strength of self-tapping pedicle screws.

  10. Regular Topologies for Gigabit Wide-Area Networks. Volume 1

    NASA Technical Reports Server (NTRS)

    Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul

    1994-01-01

    In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE.

  11. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    PubMed

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  12. Physiotherapists use a small number of behaviour change techniques when promoting physical activity: A systematic review comparing experimental and observational studies.

    PubMed

    Kunstler, Breanne E; Cook, Jill L; Freene, Nicole; Finch, Caroline F; Kemp, Joanne L; O'Halloran, Paul D; Gaida, James E

    2018-06-01

    Physiotherapists promote physical activity as part of their practice. This study reviewed the behaviour change techniques physiotherapists use when promoting physical activity in experimental and observational studies. Systematic review of experimental and observational studies. Twelve databases were searched using terms related to physiotherapy and physical activity. We included experimental studies evaluating the efficacy of physiotherapist-led physical activity interventions delivered to adults in clinic-based private practice and outpatient settings to individuals with, or at risk of, non-communicable diseases. Observational studies reporting the techniques physiotherapists use when promoting physical activity were also included. The behaviour change techniques used in all studies were identified using the Behaviour Change Technique Taxonomy. The behaviour change techniques appearing in efficacious and inefficacious experimental interventions were compared using a narrative approach. Twelve studies (nine experimental and three observational) were retained from the initial search yield of 4141. Risk of bias ranged from low to high. Physiotherapists used seven behaviour change techniques in the observational studies, compared to 30 behaviour change techniques in the experimental studies. Social support (unspecified) was the most frequently identified behaviour change technique across both settings. Efficacious experimental interventions used more behaviour change techniques (n=29) and functioned in more ways (n=6) than did inefficacious experimental interventions (behaviour change techniques=10 and functions=1). Physiotherapists use a small number of behaviour change techniques. Less behaviour change techniques were identified in observational studies compared to experimental studies, suggesting physiotherapists use less BCTs clinically than experimentally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Integrative Systems Biology for Data Driven Knowledge Discovery

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2015-01-01

    Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756

  14. Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    van der Straeten, Erik; Beck, Christian

    2009-09-01

    We report a general technique to study a given experimental time series with superstatistics. Crucial for the applicability of the superstatistics concept is the existence of a parameter β that fluctuates on a large time scale as compared to the other time scales of the complex system under consideration. The proposed method extracts the main superstatistical parameters out of a given data set and examines the validity of the superstatistical model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach is illustrated using real experimental data. We study two examples, velocity time series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some stock market indices.

  15. Sliceable transponders for metro-access transmission links

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Madsen, P.; Spolitis, S.; Vegas Olmos, J. J.; Tafur Monroy, I.

    2015-01-01

    This paper presents a solution for upgrading optical access networks by reusing existing electronics or optical equipment: sliceable transponders using signal spectrum slicing and stitching back method after direct detection. This technique allows transmission of wide bandwidth signals from the service provider (OLT - optical line terminal) to the end user (ONU - optical network unit) over an optical distribution network (ODN) via low bandwidth equipment. We show simulation and experimental results for duobinary signaling of 1 Gbit/s and 10 Gbit/s waveforms. The number of slices is adjusted to match the lowest analog bandwidth of used electrical devices and scale from 2 slices to 10 slices. Results of experimental transmission show error free signal recovery by using post forward error correction with 7% overhead.

  16. Trypanosoma cruzi in the opossum Didelphis marsupialis: an indirect fluorescent antibody test for the diagnosis and follow-up of natural and experimental infections.

    PubMed

    Jansen, A M; Moriearty, P L; Castro, B G; Deane, M P

    1985-01-01

    The use of an indirect fluorescent antibody test (IFAT) performed in a "sandwich" technique has demonstrated: (i) the usefulness of the test for the diagnosis of Trypanosoma cruzi infection in the opossum Didelphis marsupialis; (ii) the existence of differences in the serological response of the opossum, that were related to the parasite strain and were clearly evident during the follow-up of experimental infections in laboratory born specimens; (iii) that, despite a good correlation between serological and parasitological examinations, IFAT was the most sensitive diagnostic test used, followed by xenodiagnosis; and, (iv) that in general, the opossum D. marsupialis seems to be a good responder to T. cruzi antigens.

  17. Detecting technology of biophotons

    NASA Astrophysics Data System (ADS)

    Ma, Junfu; Zhu, Zhaohui; Zhu, Yanbin

    2002-03-01

    A key technique of detecting the ultra-weak photon emission from biological system (UPE) is to change the light signal of an extremely weak level into electric signal of a considerable level when the photo-electric detecting system were be applied. This paper analyzed the difficult for detecting the ultra-weak photon emission from biological system (UPE) mainly is in the absence of high sensitivity detector in UV-visible-infra spectra region. An experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300 nm to 1060 nm has were tested. The test result show the UPE of living biological system exists in wide spectra region from UV- visible to infrared.

  18. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS 2 , black phosphorous and silicene.

  19. ENFIN--A European network for integrative systems biology.

    PubMed

    Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan

    2009-11-01

    Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.

  20. Detailed heat/mass transfer distributions in a rotating two pass coolant channel with engine-near cross section and smooth walls.

    PubMed

    Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R

    2001-05-01

    This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.

  1. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  2. First-Principles Prediction of Liquid/Liquid Interfacial Tension.

    PubMed

    Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S

    2014-08-12

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.

  3. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    DOE PAGES

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; ...

    2017-11-03

    Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less

  4. Computer Assisted Design, Prediction, and Execution of Economical Organic Syntheses

    NASA Astrophysics Data System (ADS)

    Gothard, Nosheen Akber

    The synthesis of useful organic molecules via simple and cost-effective routes is a core challenge in organic chemistry. In industry or academia, organic chemists use their chemical intuition, technical expertise and published procedures to determine an optimal pathway. This approach, not only takes time and effort, but also is cost prohibitive. Many potential optimal routes scratched on paper fail to get experimentally tested. In addition, with new methods being discovered daily are often overlooked by established techniques. This thesis reports a computational technique that assist the discovery of economical synthetic routes to useful organic targets. Organic chemistry exists as a network where chemicals are connected by reactions, analogous to citied connected by roads in a geographic map. This network topology of organic reactions in the network of organic chemistry (NOC) allows the application of graph-theory to devise algorithms for synthetic optimization of organic targets. A computational approach comprised of customizable algorithms, pre-screening filters, and existing chemoinformatic techniques is capable of answering complex questions and perform mechanistic tasks desired by chemists such as optimization of organic syntheses. One-pot reactions are central to modern synthesis since they save resources and time by avoiding isolation, purification, characterization, and production of chemical waste after each synthetic step. Sometimes, such reactions are identified by chance or, more often, by careful inspection of individual steps that are to be wired together. Algorithms are used to discover one-pot reactions and validated experimentally. Which demonstrate that the computationally predicted sequences can indeed by carried out experimentally in good overall yields. The experimental examples are chosen to from small networks of reactions around useful chemicals such as quinoline scaffolds, quinoline-based inhibitors of phosphoinositide 3-kinase delta (PI3Kdelta) enzyme, and thiophene derivatives. In this way, we replace individual synthetic connections with two-, three-, or even four-step one-pot sequences. Lastly, the computational method is utilized to devise hypothetical synthetic route to popular pharmaceutical drugs like NaproxenRTM and TaxolRTM. The algorithmically generated optimal pathways are evaluated with chemistry logic. By applying labor/cost factor It was revealed that not all shorter synthesis routes are economical, sometimes "Longest way round is the shortest way home" lengthier routes are found to be more economical and environmentally friendly.

  5. Rethinking developmental toxicity testing: Evolution or revolution?

    PubMed

    Scialli, Anthony R; Daston, George; Chen, Connie; Coder, Prägati S; Euling, Susan Y; Foreman, Jennifer; Hoberman, Alan M; Hui, Julia; Knudsen, Thomas; Makris, Susan L; Morford, LaRonda; Piersma, Aldert H; Stanislaus, Dinesh; Thompson, Kary E

    2018-06-01

    Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach. © 2018 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.

  6. An R package for the integrated analysis of metabolomics and spectral data.

    PubMed

    Costa, Christopher; Maraschin, Marcelo; Rocha, Miguel

    2016-06-01

    Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as nuclear magnetic resonance, gas or liquid chromatography, mass spectrometry, infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Laser intensity modulated real time monitoring cell growth sensor for bioprocess applications

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Babu, P. Ravindra; Devi, V. Rama; Maunika, T.; Soujanya, P.; Kishore, P. V. N.; Dinakar, D.

    2016-04-01

    This article proposes an optical method for monitoring the growth of Escherichia coli in Luria Bertani medium and Saccharomyces cereviciae in YPD. Suitable light is selected which on interaction with the analyte under consideration, gets adsorption / scattered. Required electronic circuitry is designed to drive the laser source and to detect the intensity of light using Photo-detector. All these components are embedded and arranged in a proper way and monitored the growth of the microbs in real time. The sensors results are compared with standard techniques such as colorimeter, Nephelometer and hemocytometer. The experimental results are in good agreement with the existed techniques and well suitable for real time monitoring applications of the growth of the microbs.

  8. Analysis of airfoil transitional separation bubbles

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1984-01-01

    A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.

  9. Cleaning up with genomics: applying molecular biology to bioremediation.

    PubMed

    Lovley, Derek R

    2003-10-01

    Bioremediation has the potential to restore contaminated environments inexpensively yet effectively, but a lack of information about the factors controlling the growth and metabolism of microorganisms in polluted environments often limits its implementation. However, rapid advances in the understanding of bioremediation are on the horizon. Researchers now have the ability to culture microorganisms that are important in bioremediation and can evaluate their physiology using a combination of genome-enabled experimental and modelling techniques. In addition, new environmental genomic techniques offer the possibility for similar studies on as-yet-uncultured organisms. Combining models that can predict the activity of microorganisms that are involved in bioremediation with existing geochemical and hydrological models should transform bioremediation from a largely empirical practice into a science.

  10. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  11. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  12. Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

    PubMed Central

    Pastoret, Marie-Hélène; Bühler, Julia; Weiger, Roland

    2017-01-01

    PURPOSE To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (± SD). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS Dimensional changes compared to reference values varied between -74.01 and 32.57 µm (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth. PMID:28874996

  13. An Analog Macroscopic Technique for Studying Molecular Hydrodynamic Processes in Dense Gases and Liquids.

    PubMed

    Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G

    2017-12-04

    An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.

  14. Volumetric velocimetry for fluid flows

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  15. Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques

    NASA Astrophysics Data System (ADS)

    Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.

    2000-11-01

    The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.

  16. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  17. Mobile robot self-localization system using single webcam distance measurement technology in indoor environments.

    PubMed

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-27

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.

  18. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques.

    PubMed

    Chen, Shyi-Ming; Manalu, Gandhi Maruli Tua; Pan, Jeng-Shyang; Liu, Hsiang-Chuan

    2013-06-01

    In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization (PSO) techniques. First, we fuzzify the historical training data of the main factor and the secondary factor, respectively, to form two-factors second-order fuzzy logical relationships. Then, we group the two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, we obtain the optimal weighting vector for each fuzzy-trend logical relationship group by using PSO techniques to perform the forecasting. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index and the NTD/USD exchange rates. The experimental results show that the proposed method gets better forecasting performance than the existing methods.

  19. Mobile Robot Self-Localization System Using Single Webcam Distance Measurement Technology in Indoor Environments

    PubMed Central

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-01

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment. PMID:24473282

  20. Steering optical comb frequencies by rotating the polarization state

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Zhang, Xiaofei; Yan, Lulu; Zhang, Pan; Rao, Bingjie; Han, Wei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2017-12-01

    Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator technique. In additional, this technique exhibits less side-effect than traditional frequency control methods.

  1. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzolani, Federico M.

    2008-07-08

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the developmentmore » of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements.« less

  2. Experimental progress in positronium laser physics

    NASA Astrophysics Data System (ADS)

    Cassidy, David B.

    2018-03-01

    The field of experimental positronium physics has advanced significantly in the last few decades, with new areas of research driven by the development of techniques for trapping and manipulating positrons using Surko-type buffer gas traps. Large numbers of positrons (typically ≥106) accumulated in such a device may be ejected all at once, so as to generate an intense pulse. Standard bunching techniques can produce pulses with ns (mm) temporal (spatial) beam profiles. These pulses can be converted into a dilute Ps gas in vacuum with densities on the order of 107 cm-3 which can be probed by standard ns pulsed laser systems. This allows for the efficient production of excited Ps states, including long-lived Rydberg states, which in turn facilitates numerous experimental programs, such as precision optical and microwave spectroscopy of Ps, the application of Stark deceleration methods to guide, decelerate and focus Rydberg Ps beams, and studies of the interactions of such beams with other atomic and molecular species. These methods are also applicable to antihydrogen production and spectroscopic studies of energy levels and resonances in positronium ions and molecules. A summary of recent progress in this area will be given, with the objective of providing an overview of the field as it currently exists, and a brief discussion of some future directions.

  3. Digression and Value Concatenation to Enable Privacy-Preserving Regression.

    PubMed

    Li, Xiao-Bai; Sarkar, Sumit

    2014-09-01

    Regression techniques can be used not only for legitimate data analysis, but also to infer private information about individuals. In this paper, we demonstrate that regression trees, a popular data-analysis and data-mining technique, can be used to effectively reveal individuals' sensitive data. This problem, which we call a "regression attack," has not been addressed in the data privacy literature, and existing privacy-preserving techniques are not appropriate in coping with this problem. We propose a new approach to counter regression attacks. To protect against privacy disclosure, our approach introduces a novel measure, called digression , which assesses the sensitive value disclosure risk in the process of building a regression tree model. Specifically, we develop an algorithm that uses the measure for pruning the tree to limit disclosure of sensitive data. We also propose a dynamic value-concatenation method for anonymizing data, which better preserves data utility than a user-defined generalization scheme commonly used in existing approaches. Our approach can be used for anonymizing both numeric and categorical data. An experimental study is conducted using real-world financial, economic and healthcare data. The results of the experiments demonstrate that the proposed approach is very effective in protecting data privacy while preserving data quality for research and analysis.

  4. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-25

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify themore » dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  5. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI 2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to bettermore » identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  6. Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics

    PubMed Central

    Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas

    2014-01-01

    Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727

  7. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory.

    PubMed

    Olivieri, Alejandro C

    2005-08-01

    Sensitivity and selectivity are important figures of merit in multiway analysis, regularly employed for comparison of the analytical performance of methods and for experimental design and planning. They are especially interesting in the second-order advantage scenario, where the latter property allows for the analysis of samples with a complex background, permitting analyte determination even in the presence of unsuspected interferences. Since no general theory exists for estimating the multiway sensitivity, Monte Carlo numerical calculations have been developed for estimating variance inflation factors, as a convenient way of assessing both sensitivity and selectivity parameters for the popular parallel factor (PARAFAC) analysis and also for related multiway techniques. When the second-order advantage is achieved, the existing expressions derived from net analyte signal theory are only able to adequately cover cases where a single analyte is calibrated using second-order instrumental data. However, they fail for certain multianalyte cases, or when third-order data are employed, calling for an extension of net analyte theory. The results have strong implications in the planning of multiway analytical experiments.

  8. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

    PubMed

    Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad

    2018-04-01

    A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.

  9. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin.

    PubMed

    White, Claire E; Provis, John L; Proffen, Thomas; Riley, Daniel P; van Deventer, Jannie S J

    2010-04-07

    Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale.

  10. Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions.

    PubMed

    Ma, Liheng; Zhan, Dejun; Jiang, Guangwen; Fu, Sihua; Jia, Hui; Wang, Xingshu; Huang, Zongsheng; Zheng, Jiaxing; Hu, Feng; Wu, Wei; Qin, Shiqiao

    2015-09-01

    The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.

  11. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  12. Property-driven functional verification technique for high-speed vision system-on-chip processor

    NASA Astrophysics Data System (ADS)

    Nshunguyimfura, Victor; Yang, Jie; Liu, Liyuan; Wu, Nanjian

    2017-04-01

    The implementation of functional verification in a fast, reliable, and effective manner is a challenging task in a vision chip verification process. The main reason for this challenge is the stepwise nature of existing functional verification techniques. This vision chip verification complexity is also related to the fact that in most vision chip design cycles, extensive efforts are focused on how to optimize chip metrics such as performance, power, and area. Design functional verification is not explicitly considered at an earlier stage at which the most sound decisions are made. In this paper, we propose a semi-automatic property-driven verification technique. The implementation of all verification components is based on design properties. We introduce a low-dimension property space between the specification space and the implementation space. The aim of this technique is to speed up the verification process for high-performance parallel processing vision chips. Our experimentation results show that the proposed technique can effectively improve the verification effort up to 20% for the complex vision chip design while reducing the simulation and debugging overheads.

  13. Tomographic Aperture-Encoded Particle Tracking Velocimetry: A New Approach to Volumetric PIV

    NASA Astrophysics Data System (ADS)

    Troolin, Dan; Boomsma, Aaron; Lai, Wing; Pothos, Stamatios; Fluid Mechanics Research Instruments Team

    2016-11-01

    Volumetric velocity fields are useful in a wide variety of fluid mechanics applications. Several types of three-dimensional imaging methods have been used in the past to varying degrees of success, for example, 3D PTV (Maas et al., 1993), DDPIV (Peireira et al., 2006), Tomographic PIV (Elsinga, 2006), and V3V (Troolin and Longmire, 2009), among others. Each of these techniques has shown advantages and disadvantages in different areas. With the advent of higher resolution and lower noise cameras with higher stability levels, new techniques are emerging that combine the advantages of the existing techniques. This talk describes a new technique called Tomographic Aperture-Encoded Particle Tracking Velocimetry (TAPTV), in which segmented triangulation and diameter tolerance are used to achieve three-dimensional particle tracking with extremely high particle densities (on the order of ppp = 0.2 or higher) without the drawbacks normally associated with ghost particles (for example in TomoPIV). The results are highly spatially-resolved data with very fast processing times. A detailed explanation of the technique as well as plots, movies, and experimental considerations will be discussed.

  14. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less

  15. Co-culture systems and technologies: taking synthetic biology to the next level.

    PubMed

    Goers, Lisa; Freemont, Paul; Polizzi, Karen M

    2014-07-06

    Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell-cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura

    NASA Astrophysics Data System (ADS)

    Lourenço Neto, M.; Agra, K. L.; Suassuna Filho, J.; Jorge, F. E.

    2018-03-01

    Time-dependent density functional theory (TDDFT) calculations of electronic transitions have been widely used to determine molecular structures. The excitation wavelengths and oscillator strengths obtained with the hybrid exchange-correlation functional B3LYP in conjunction with the ADZP basis set are employed to simulate the UV-Vis spectra of eight phenolic acids. Experimental and theoretical UV-Vis spectra reported previously in the literature are compared with our results. The fast, sensitive and non-destructive technique of photoacoustic spectroscopy (PAS) is used to determine the UV-Vis spectra of four Brazilian tropical fresh fruits in natura. Then, the PAS along with the TDDFT results are for the first time used to investigate and identify the presence of phenolic acids in the fruits studied in this work. This theoretical method with this experimental technique show to be a powerful and cheap tool to detect the existence of phenolic acids in fruits, vegetables, cereals, and grains. Comparison with high performance liquid chromatography results, when available, is also carried out.

  17. Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work coversmore » the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.« less

  18. Cavitation in liquid cryogens. 2: Hydrofoil

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1973-01-01

    Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

  19. Gluconeogenesis in the ruminant fetus: evaluation of conflicting evidence from radiotracer and other experimental techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, R.L.

    1982-01-01

    Conflicting evidence exists as to whether the gluconeogenetic process is active in the late gestation fetal lamb. In vitro evidence based on measurements of enzyme activity and substrate flux into glucose indicates that the capacity for gluconeogenesis exists in fetal liver. The in vivo conversion of (/sup 14/C)lactate and (/sup 14/C)alanine into glucose in the lamb fetus has been demonstrated. Lactate and alanine account for 49 and 2.3% of the fetal glucose pool, respectively. Although gluconeogenesis can occur in the fetal lamb, alterations in net rates of umbilical uptake of glucose or lactate, fetal blood glucose concentrations, fetal or maternalmore » glucose replacement rates, or maternal nutrition may alter the observed rates of fetal gluconeogenesis.« less

  20. The controversial nuclear matrix: a balanced point of view.

    PubMed

    Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L

    2002-10-01

    The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.

  1. Remote sensing of wet lands in irrigated areas

    NASA Technical Reports Server (NTRS)

    Ham, H. H.

    1972-01-01

    The use of airborne remote sensing techniques to: (1) detect drainage problem areas, (2) delineate the problem in terms of areal extent, depth to the water table, and presence of excessive salinity, and (3) evaluate the effectiveness of existing subsurface drainage facilities, is discussed. Experimental results show that remote sensing, as demonstrated in this study and as presently constituted and priced, does not represent a practical alternative as a management tool to presently used visual and conventional photographic methods in the systematic and repetitive detection and delineation of wetlands.

  2. Contact angle determination procedure and detection of an invisible surface film

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Grat, R.

    1990-01-01

    The contact angle value, i.e., the tangent angle of liquid resting on a planar solid surface, is a basic parameter which can be applied to a wide range of applications. The goal is to provide a basic understanding of the contact angle measurement technique and to present a simple illustration that can be applied as a quality control method; namely, detection of a surface contaminant which exists on a surface that appears clean to the unaided eye. The equipment and experimental procedures are detailed.

  3. Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Henderson, H. R.; Hilton, D. A.

    1974-01-01

    A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data.

  4. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.

    PubMed

    Neptune, R R

    2000-05-01

    Computer modeling and simulation of human movement plays an increasingly important role in sport and rehabilitation, with applications ranging from sport equipment design to understanding pathologic gait. The complex dynamic interactions within the musculoskeletal and neuromuscular systems make analyzing human movement with existing experimental techniques difficult but computer modeling and simulation allows for the identification of these complex interactions and causal relationships between input and output variables. This article provides an overview of computer modeling and simulation and presents an example application in the field of rehabilitation.

  5. The O H stretching band in ice Ih derived via eV neutron spectroscopy on VESUVIO using the new very low angle detector bank

    NASA Astrophysics Data System (ADS)

    Perelli-Cippo, E.; Gorini, G.; Tardocchi, M.; Andreani, C.; Pietropaolo, A.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2006-06-01

    Strong demand exists for an experimental facility enabling new experimental investigations on condensed matter systems based on epithermal neutron scattering at high energy and low momentum transfers. This need will be met by the very low angle detector (VLAD) bank, to be installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The equipment will operate in the scattering angular range 1°<2θ<5°. Scattering measurements from a polycrystalline ice sample using a VLAD prototype demonstrates the effectiveness of the detection technique adopted for the construction of the full detector array. The resulting density of states in ice is 9±2 atoms/cell, in agreement with previous measurements.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, G.R.B.; Vanderborgh, N.E.

    Experimental and theoretical analyses show that uncontrolled water invasion during underground coal conversion (UCC) is harmful at all stages of UCC. By contrast, if water invasion is prevented, coal porosity can be created for further processing, pyrolysis can yield uniform hydrocarbon products, gasification can produce a uniform product, coal is fully consumed (not bypassed) during combustion, and environmental problems are minimized. In all cases the experimental results are supportive of the theory of underground coal processing presented. We see no insurmountable technical problems existing for a staged underground coal conversion process, but we emphasize that all concepts in underground coalmore » processing depend critically upon control of water influx. It is important that techniques for measuring and controlling water flow be developed if this technology is to make a contribution to the Nation's energy supply.« less

  7. An experimental investigation of nacelle-pylon installation on an unswept wing at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Compton, W. B., III

    1984-01-01

    A wind tunnel investigation was conducted to determine the aerodynamic interference associated with the installation of a long duct, flow-through nacelle on a straight unswept untapered supercritical wing. Experimental data was obtained for the verification of computational prediction techniques. The model was tested in the 16-Foot Transonic Tunnel at Mach numbers from 0.20 to 0.875 and at angles of attack from about 0 deg to 5 deg. The results of the investigation show that strong viscous and compressibility effects are present at the transonic Mach numbers. Numerical comparisons show that linear theory is adequate for subsonic Mach number flow prediction, but is inadequate for prediction of the extreme flow conditions that exist at the transonic Mach numbers.

  8. Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats

    2015-01-01

    This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.

  9. Chromatographic peak deconvolution of constitutional isomers by multiple-reaction-monitoring mass spectrometry.

    PubMed

    Trapp, Oliver

    2010-02-12

    Highly efficient and sophisticated separation techniques are available to analyze complex compound mixtures with superior sensitivities and selectivities often enhanced by a 2nd dimension, e.g. a separation technique or spectroscopic and spectrometric techniques. For enantioselective separations numerous chiral stationary phases (CSPs) exist to cover a broad range of chiral compounds. Despite these advances enantioselective separations can become very challenging for mixtures of stereolabile constitutional isomers, because the on-column interconversion can lead to completely overlapping peak profiles. Typically, multidimensional separation techniques, e.g. multidimensional GC (MDGC), using an achiral 1st separation dimension and transferring selected analytes to a chiral 2nd separation are the method of choice to approach such problems. However, this procedure is very time consuming and only predefined sections of peaks can be transferred by column switching to the second dimension. Here we demonstrate for stereolabile 1,2-dialkylated diaziridines a technique to experimentally deconvolute overlapping gas chromatographic elution profiles of constitutional isomers based on multiple-reaction-monitoring MS (MRM-MS). The here presented technique takes advantage of different fragmentation probabilities and pathways to isolate the elution profile of configurational isomers. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Control designs for low-loss active magnetic bearings: Theory and implementation

    NASA Astrophysics Data System (ADS)

    Wilson, Brian Christopher David

    Active Magnetic Bearings (AMB) have been proposed for use in Electromechanical Flywheel Batteries. In these devices, kinetic energy is stored in a magnetically levitated flywheel which spins in a vacuum. The AMB eliminates all mechanical losses, however, electrical loss, which is proportional to the square of the magnetic flux, is still significant. For efficient operation, the flux bias, which is typically introduced into the electromagnets to improve the AMB stiffness, must be reduced, preferably to zero. This zero-bias (ZB) mode of operation cripples the classical control techniques which are customarily used and nonlinear control is required. As a compromise between AMB stiffness and efficiency, a new flux bias scheme is proposed called the generalized complementary flux condition (gcfc). A flux-bias dependent trade-off exists between AMB stiffness, power consumption, and power loss. This work theoretically develops and experimentally verifies new low-loss AMB control designs which employ the gcfc condition. Particular attention is paid to the removal of the singularity present in the standard nonlinear control techniques when operating in ZB. Experimental verification is conduced on a 6-DOF AMB reaction wheel. Practical aspects of the gcfc implementation such as flux measurement and flux-bias implementation with voltage mode amplifiers using IR compensation are investigated. Comparisons are made between the gcfc bias technique and the standard constant-flux-sum (cfs) bias method. Under typical operating circumstances, theoretical analysis and experimental data show that the new gcfc bias scheme is more efficient in producing the control flux required for rotor stabilization than the ordinary cfs bias strategy.

  11. MEMS-based platforms for mechanical manipulation and characterization of cells

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Wang, Wenhui; Ru, Changhai; Sun, Yu; Liu, Xinyu

    2017-12-01

    Mechanical manipulation and characterization of single cells are important experimental techniques in biological and medical research. Because of the microscale sizes and highly fragile structures of cells, conventional cell manipulation and characterization techniques are not accurate and/or efficient enough or even cannot meet the more and more demanding needs in different types of cell-based studies. To this end, novel microelectromechanical systems (MEMS)-based technologies have been developed to improve the accuracy, efficiency, and consistency of various cell manipulation and characterization tasks, and enable new types of cell research. This article summarizes existing MEMS-based platforms developed for cell mechanical manipulation and characterization, highlights their specific design considerations making them suitable for their designated tasks, and discuss their advantages and limitations. In closing, an outlook into future trends is also provided.

  12. A nonlinear model for gas chromatograph systems

    NASA Technical Reports Server (NTRS)

    Feinberg, M. P.

    1975-01-01

    Fundamental engineering design techniques and concepts were studied for the optimization of a gas chromatograph-mass spectrometer chemical analysis system suitable for use on an unmanned, Martian roving vehicle. Previously developed mathematical models of the gas chromatograph are found to be inadequate for predicting peak heights and spreading for some experimental conditions and chemical systems. A modification to the existing equilibrium adsorption model is required; the Langmuir isotherm replaces the linear isotherm. The numerical technique of Crank-Nicolson was studied for use with the linear isotherm to determine the utility of the method. Modifications are made to the method eliminate unnecessary calculations which result in an overall reduction of the computation time of about 42 percent. The Langmuir isotherm is considered which takes into account the composition-dependent effects on the thermodynamic parameter, mRo.

  13. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  14. Different mixing techniques in experimental mesocosms—does mixing affect plankton biomass and community composition?

    PubMed Central

    Striebel, Maren; Kirchmaier, Leo; Hingsamer, Peter

    2014-01-01

    Over the past four decades, mesocosm studies have been successfully used for a wide range of applications and have provided a lot of information on trophic interactions and biogeochemical cycling of aquatic ecosystem. However, the setup of such mesocosms (e.g., dimensions and duration of experiments) needs to be adapted to the relevant biological processes being investigated. Mixing of the water column is an important factor to be considered in mesocosm experiments because enclosing water in an artificial chamber always alters the mixing regime. Various approaches have been applied to generate mixing in experimental ecosystems, including pure mechanical mixing (e.g., using a disc), airlifts, bubbling with compressed air, and pumping. In this study, we tested different mixing techniques for outdoor mesocosms and their impact on plankton biomass and community composition. We compared mesocosms mixed with a disc, an airlift-system, and bubbling, and used a nonactively mixed mesocosm as a control. We investigated phytoplankton, ciliate, and zooplankton communities during a 19-d mesocosm experiment. Based on our results, we concluded that mechanical mixing with a disc was the most effective technique due to the undertow produced by lowering and lifting the disc. While no mixing technique affected seston biomass, zooplankton biomass was highest in the treatments mixed with the disc. The airlift treatments had the lowest relative share of small flagellates. However, no further differences in phytoplankton community composition occurred and no differences in zooplankton community composition existed between all actively mixed treatments. PMID:25729335

  15. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques

    NASA Astrophysics Data System (ADS)

    Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.

    2018-01-01

    The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper

  16. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  17. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    NASA Astrophysics Data System (ADS)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-12-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.

  18. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 (+/-) 1 MW/sq m was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate was analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads.

  19. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Imaging Electrical Conductivity of Biological Tissue: A Tutorial Review

    PubMed Central

    Li, Xu; Yu, Kai; He, Bin

    2016-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. With the existence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in these years. First, the physical mechanisms underlying MAT-MI imaging are described including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction (MAET-MI) is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue. PMID:27542088

  20. Heart involvement in cystic fibrosis: A specific cystic fibrosis-related myocardial changes?

    PubMed

    Labombarda, Fabien; Saloux, Eric; Brouard, Jacques; Bergot, Emmanuel; Milliez, Paul

    2016-09-01

    Cystic fibrosis is a complex multi-systemic chronic disease characterized by progressive organ dysfunction with development of fibrosis, possibly affecting the heart. Over the last four decades pathological, experimental, and clinical evidence points towards the existence of a specific myocardial involvement in cystic fibrosis. Multi-modality cardiac imaging, especially recent echocardiographic techniques, evidenced diastolic and/or systolic ventricular dysfunction in cystic fibrosis leading to the concept of a cystic fibrosis-related cardiomyopathy. Hypoxemia and inflammation are among the most important factors for heart involvement in cystic fibrosis. Cystic Fibrosis Transmembrane Regulator was found to be involved in the regulation of cardiomyocyte contraction and may also account for cystic fibrosis-related myocardial dysfunction. This review, mainly focused on echocardiographic studies, seeks to synthesize the existing literature for and against the existence of heart involvement in cystic fibrosis, its mechanisms and prognostic implications. Careful investigation of the heart function may be helpful for risk stratification and therapeutic decisions in patients with cystic fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis.

    PubMed

    Tucker, George; Loh, Po-Ru; Berger, Bonnie

    2013-10-04

    Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely possible. Fruitful future directions may include investigating more sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein complex prediction methods.

  2. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  3. Online and offline experimental techniques for polycyclic aromatic hydrocarbons recovery and measurement.

    PubMed

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-01

    The implementation of techniques aimed at improving engine performance and reducing particulate matter (PM) pollutant emissions is strongly influenced by the limited understanding of the polycyclic aromatic hydrocarbons (PAH) formation chemistry, in combustion devices, that produces the PM emissions. New experimental results which examine the formation of multi-ring compounds are required. The present investigation focuses on two techniques for such an experimental examination by recovery of PAH compounds from a typical combustion oriented experimental apparatus. The online technique discussed constitutes an optimal solution but not always feasible approach. Nevertheless, a detailed description of a new online sampling system is provided which can serve as reference for future applications to different experimental set-ups. In comparison, an offline technique, which is sometimes more experimentally feasible but not necessarily optimal, has been studied in detail for the recovery of a variety of compounds with different properties, including naphthalene, biphenyl, and iodobenzene. The recovery results from both techniques were excellent with an error in the total carbon balance of around 10% for the online technique and an uncertainty in the measurement of the single species of around 7% for the offline technique. Although both techniques proved to be suitable for measurement of large PAH compounds, the online technique represents the optimal solution in view of the simplicity of the corresponding experimental procedure. On the other hand, the offline technique represents a valuable solution in those cases where the online technique cannot be implemented.

  4. Direct, experimental evidence of the Fermi surface in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Howell, R. H.; Sterne, P. A.; Solal, F. R.; Fluss, M. J.

    1991-04-01

    We report new measurements of the electron positron momentum spectra of YBa2Cu3O(7-x) performed with ultra-high statistical precision. These data differ from previous results in two significant respects: They show the D(sub 2) symmetry appropriate for untwinned crystals and, more importantly, they show unmistakable, statistically significant, discontinuities that are evidence of a major Fermi surface section. These results provide a partial answer to a question of special significance to the study of high temperature superconductors i.e., the distribution of the electrons in the material, the electronic structure. Special consideration has been given both experimentally and theoretically to the existence and shape of a Fermi surface in the materials and to the superconducting gap. There are only three experimental techniques that can provide details of the electronic structure at useful resolutions. They are angular correlation of positron annihilation radiation, ACAR, angle resolved photo emission, PE, and de Haas van Alphen measurements.

  5. Experimental evidence of low-density liquid water upon rapid decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Shen, Guoyin

    2018-01-01

    Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter. PMID:29440411

  6. Studying light-harvesting models with superconducting circuits.

    PubMed

    Potočnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas

    2018-03-02

    The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10 5 . We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.

  7. Magneto-electronic phase separation in doped cobaltites

    NASA Astrophysics Data System (ADS)

    He, Chunyong

    This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase. Finally, through magenetometry and SANS, the magneto-crystalline anisotropy of highly doped LSCO is studied and the easy and hard magnetization axes are determined.

  8. {1 1 1} facet growth laws and grain competition during silicon crystallization

    NASA Astrophysics Data System (ADS)

    Stamelou, V.; Tsoutsouva, M. G.; Riberi-Béridot, T.; Reinhart, G.; Regula, G.; Baruchel, J.; Mangelinck-Noël, N.

    2017-12-01

    Directional solidification from mono-crystalline Si seeds having different orientations along the growth direction is studied. Due to the frequent twinning phenomenon, new grains soon nucleate during growth. The grain competition is then characterized in situ by imaging the dynamic evolution of the grain boundaries and of the corresponding grain boundary grooves that are formed at the solid-liquid interface. To perform this study, an experimental investigation based on Bridgman solidification technique coupled with in situ X-ray imaging is conducted in an original device: GaTSBI (Growth at high Temperature observed by X-ray Synchrotron Beam Imaging). Imaging characterisation techniques using X-ray synchrotron radiation at ESRF (European Synchrotron Radiation Facility, Grenoble, France) are applied during the solidification to study the growth dynamics. Facetted/facetted grain boundary grooves only are studied due to their importance in the grain competition because of their implication in the twinning mechanism. The maximum undercooling inside the groove is calculated from the groove depth knowing the local temperature gradient. Additionally, thanks to dynamic X-ray images, the global solid-liquid interface growth rate and the normal growth rate of the {1 1 1} facets existing at the grooves and at the edges are measured. From these measurements, experimental growth laws that correlate the normal velocity of the {1 1 1} facets with the maximum undercooling of the groove are extracted and compared to existing theoretical models. Finally, the experimental laws found for the contribution to the undercooling of the {1 1 1} facets are in good agreement with the theoretical model implying nucleation and growth eased by the presence of dislocations. Moreover, it is shown that, for the same growth parameters, the undercooling at the level of the facets (always lower than 1 K) is higher at the edges so that there is a higher probability of twin nucleation at the edges which is in agreement with the grain structure development characterised in the present experiments as well as in the literature.

  9. Terahertz microfluidic sensing using a parallel-plate waveguide sensor.

    PubMed

    Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M

    2012-08-30

    Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides, asymmetric split-ring resonators, and photonic band gap structures integrated into parallel-plate waveguides. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index.

  10. One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.

    PubMed

    Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz

    2009-07-15

    The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.

  11. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    NASA Astrophysics Data System (ADS)

    Heard, W.; Song, B.; Williams, B.; Martin, B.; Sparks, P.; Nie, X.

    2018-01-01

    This review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior of geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Uniqueness and limitations for each experimental technique are also discussed.

  12. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    DOE PAGES

    Heard, W.; Song, B.; Williams, B.; ...

    2018-01-03

    Here, this review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior ofmore » geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Finally, uniqueness and limitations for each experimental technique are also discussed.« less

  13. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, W.; Song, B.; Williams, B.

    Here, this review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior ofmore » geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Finally, uniqueness and limitations for each experimental technique are also discussed.« less

  14. N-Sulfinylimine compounds, R-NSO: a chemistry family with strong temperament

    NASA Astrophysics Data System (ADS)

    Romano, R. M.; Della Védova, C. O.

    2000-04-01

    In this review, an update on the structural properties and theoretical studies of N-sulfinylimine compounds (R-NSO) is reported. They were deduced using several experimental techniques: gas-electron diffraction (GED), X-ray diffraction, 17O NMR, ultraviolet-visible absorption spectroscopy (UV-Vis), FTIR (including matrix studies of molecular randomisation) and Raman (including pre-resonant Raman spectra). Data are compared with those obtained by theoretical calculations. With these tools, excited state geometry using the time-dependent theory was calculated for these kinds of compounds. The existence of pre-resonant Raman effect was reported recently for R-NSO compounds. The configuration of R-NSO compounds was checked for this series confirming the existence of only one syn configuration. This finding is corroborated by theoretical calculations. The method of preparation is also summarised.

  15. Stretchable Kirigami Polyvinylidene Difluoride Thin Films for Energy Harvesting: Design, Analysis, and Performance

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    2018-02-01

    Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Mark

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less

  17. InterPred: A pipeline to identify and model protein-protein interactions.

    PubMed

    Mirabello, Claudio; Wallner, Björn

    2017-06-01

    Protein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modeling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modeling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment. InterPred source code can be downloaded from http://wallnerlab.org/InterPred Proteins 2017; 85:1159-1170. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Charge transfer complex between 2,3-diaminopyridine with chloranilic acid. Synthesis, characterization and DFT, TD-DFT computational studies

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2018-05-01

    New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.

  19. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  20. Compressive residual strength of graphite/epoxy laminates after impact

    NASA Technical Reports Server (NTRS)

    Guy, Teresa A.; Lagace, Paul A.

    1992-01-01

    The issue of damage tolerance after impact, in terms of the compressive residual strength, was experimentally examined in graphite/epoxy laminates using Hercules AS4/3501-6 in a (+ or - 45/0)(sub 2S) configuration. Three different impactor masses were used at various velocities and the resultant damage measured via a number of nondestructive and destructive techniques. Specimens were then tested to failure under uniaxial compression. The results clearly show that a minimum compressive residual strength exists which is below the open hole strength for a hole of the same diameter as the impactor. Increases in velocity beyond the point of minimum strength cause a difference in the damage produced and cause a resultant increase in the compressive residual strength which asymptotes to the open hole strength value. Furthermore, the results show that this minimum compressive residual strength value is independent of the impactor mass used and is only dependent upon the damage present in the impacted specimen which is the same for the three impactor mass cases. A full 3-D representation of the damage is obtained through the various techniques. Only this 3-D representation can properly characterize the damage state that causes the resultant residual strength. Assessment of the state-of-the-art in predictive analysis capabilities shows a need to further develop techniques based on the 3-D damage state that exists. In addition, the need for damage 'metrics' is clearly indicated.

  1. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  2. Acoustic Streaming and Heat and Mass Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Gopinath, A.

    1996-01-01

    A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.

  3. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  4. A Vibration-Based Strategy for Health Monitoring of Offshore Pipelines' Girth-Welds

    PubMed Central

    Razi, Pejman; Taheri, Farid

    2014-01-01

    This study presents numerical simulations and experimental verification of a vibration-based damage detection technique. Health monitoring of a submerged pipe's girth-weld against an advancing notch is attempted. Piezoelectric transducers are bonded on the pipe for sensing or actuation purposes. Vibration of the pipe is excited by two means: (i) an impulsive force; (ii) using one of the piezoelectric transducers as an actuator to propagate chirp waves into the pipe. The methodology adopts the empirical mode decomposition (EMD), which processes vibration data to establish energy-based damage indices. The results obtained from both the numerical and experimental studies confirm the integrity of the approach in identifying the existence, and progression of the advancing notch. The study also discusses and compares the performance of the two vibration excitation means in damage detection. PMID:25225877

  5. Flat-plate techniques for measuring reflectance of macro-algae (Ulva curvata)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Thomsen, Mads Solgaard; Schwarzschild, Arthur

    2012-01-01

    We tested the consistency and accuracy of flat-plate spectral measurements (400–1000 nm) of the marine macrophyte Ulva curvata. With sequential addition of Ulva thallus layers, the reflectance progressively increased from 6% to 9% with six thalli in the visible (VIS) and from 5% to 19% with ten thalli in the near infrared (NIR). This progressive increase was simulated by a mathematical calculation based on an Ulva thallus diffuse reflectance weighted by a transmittance power series. Experimental and simulated reflectance differences that were particularly high in the NIR most likely resulted from residual water and layering structure unevenness in the experimental progression. High spectral overlap existed between fouled and non-fouled Ulva mats and the coexistent lagoon mud in the VIS, whereas in the NIR, spectral contrast was retained but substantially dampened by fouling.

  6. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE PAGES

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; ...

    2017-01-11

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  7. PDB_REDO: automated re-refinement of X-ray structure models in the PDB.

    PubMed

    Joosten, Robbie P; Salzemann, Jean; Bloch, Vincent; Stockinger, Heinz; Berglund, Ann-Charlott; Blanchet, Christophe; Bongcam-Rudloff, Erik; Combet, Christophe; Da Costa, Ana L; Deleage, Gilbert; Diarena, Matteo; Fabbretti, Roberto; Fettahi, Géraldine; Flegel, Volker; Gisel, Andreas; Kasam, Vinod; Kervinen, Timo; Korpelainen, Eija; Mattila, Kimmo; Pagni, Marco; Reichstadt, Matthieu; Breton, Vincent; Tickle, Ian J; Vriend, Gert

    2009-06-01

    Structural biology, homology modelling and rational drug design require accurate three-dimensional macromolecular coordinates. However, the coordinates in the Protein Data Bank (PDB) have not all been obtained using the latest experimental and computational methods. In this study a method is presented for automated re-refinement of existing structure models in the PDB. A large-scale benchmark with 16 807 PDB entries showed that they can be improved in terms of fit to the deposited experimental X-ray data as well as in terms of geometric quality. The re-refinement protocol uses TLS models to describe concerted atom movement. The resulting structure models are made available through the PDB_REDO databank (http://www.cmbi.ru.nl/pdb_redo/). Grid computing techniques were used to overcome the computational requirements of this endeavour.

  8. Protein-protein interaction predictions using text mining methods.

    PubMed

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis

    2015-03-01

    It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Detecting magnetic ordering with atomic size electron probes

    DOE PAGES

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; ...

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  10. DROP: Detecting Return-Oriented Programming Malicious Code

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Xiao, Hai; Shen, Xiaobin; Yin, Xinchun; Mao, Bing; Xie, Li

    Return-Oriented Programming (ROP) is a new technique that helps the attacker construct malicious code mounted on x86/SPARC executables without any function call at all. Such technique makes the ROP malicious code contain no instruction, which is different from existing attacks. Moreover, it hides the malicious code in benign code. Thus, it circumvents the approaches that prevent control flow diversion outside legitimate regions (such as W ⊕ X ) and most malicious code scanning techniques (such as anti-virus scanners). However, ROP has its own intrinsic feature which is different from normal program design: (1) uses short instruction sequence ending in "ret", which is called gadget, and (2) executes the gadgets contiguously in specific memory space, such as standard GNU libc. Based on the features of the ROP malicious code, in this paper, we present a tool DROP, which is focused on dynamically detecting ROP malicious code. Preliminary experimental results show that DROP can efficiently detect ROP malicious code, and have no false positives and negatives.

  11. A Review of Computational Methods for Finding Non-Coding RNA Genes

    PubMed Central

    Abbas, Qaisar; Raza, Syed Mansoor; Biyabani, Azizuddin Ahmed; Jaffar, Muhammad Arfan

    2016-01-01

    Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs. However, the diverse CI approaches lack a definitive classification framework to take advantage of past studies. A few review papers have attempted to summarize CI approaches, but focused on the particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the existing bodies of research and discuss concisely the technical merits of various techniques. Lastly, we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the development of new computational tools. PMID:27918472

  12. Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection.

    PubMed

    Ferreira, Anselmo; Felipussi, Siovani C; Alfaro, Carlos; Fonseca, Pablo; Vargas-Munoz, John E; Dos Santos, Jefersson A; Rocha, Anderson

    2016-07-20

    The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterwards, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex datasets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature show the effectiveness of the proposed method and its suitability for real-world applications.

  13. A new coherent demodulation technique for land-mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Yoshida, Shousei; Tomita, Hideho

    1990-01-01

    An advanced coherent demodulation technique is described for land mobile satellite (LMS) communications. The proposed technique features a combined narrow/wind band dual open loop carrier phase estimator, which is effectively able to compensate the fast carrier phase fluctuation by fading with sacrificing a phase slip rate. Also included is the realization of quick carrier and clock reacquisition after shadowing by taking open loop structure. Its bit error rate (BER) performance is superior to that of existing detection schemes, showing a BER of 1 x 10(exp -2) at 6.3 dB E sub b/N sub o over the Rician channel with 10 dB C/M and 200 Hz (1/16 modulation rate) fading pitch f sub d for QPSK. The proposed scheme consists of a fast response carrier recovery and a quick bit timing recovery with an interpolation. An experimental terminal model was developed to evaluate its performance at fading conditions. The results are quite satisfactory, giving prospects for future LMS applications.

  14. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Astrophysics Data System (ADS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-09-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  15. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  16. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.

    PubMed

    Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A

    2012-05-01

    This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.

  17. Damage identification in beams using speckle shearography and an optimal spatial sampling

    NASA Astrophysics Data System (ADS)

    Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.

    2016-10-01

    Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.

  18. The development of experimental techniques for the study of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Widnall, S. E.; Harris, W. L.; Lee, Y. C. A.; Drees, H. M.

    1974-01-01

    The features of existing wind tunnels involved in noise studies are discussed. The acoustic characteristics of the MIT low noise open jet wind tunnel are obtained by employing calibration techniques: one technique is to measure the decay of sound pressure with distance in the far field; the other technique is to utilize a speaker, which was calibrated, as a sound source. The sound pressure level versus frequency was obtained in the wind tunnel chamber and compared with the corresponding calibrated values. Fiberglas board-block units were installed on the chamber interior. The free field was increased significantly after this treatment and the chamber cut-off frequency was reduced to 160 Hz from the original designed 250 Hz. The flow field characteristics of the rotor-tunnel configuration were studied by using flow visualization techniques. The influence of open-jet shear layer on the sound transmission was studied by using an Aeolian tone as the sound source. A dynamometer system was designed to measure the steady and low harmonics of the rotor thrust. A theoretical Mach number scaling formula was developed to scale the rotational noise and blade slap noise data of model rotors to full scale helicopter rotors.

  19. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    PubMed

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  20. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    PubMed

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  1. NMF-Based Image Quality Assessment Using Extreme Learning Machine.

    PubMed

    Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun

    2017-01-01

    Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.

  2. Effect of External Post-tensioning in Retrofitting of RC Beams

    NASA Astrophysics Data System (ADS)

    Manisekar, R.

    2018-05-01

    There are large number of existing concrete bridges in distressed condition in India and other countries, and they need retrofitting solutions. External post-tensioning is a prime technique for bridge retrofitting. It is being applied for retrofitting of bridges in India and other countries. Although the technique is becoming popular in retrofitting, various issues regarding performance of post-retrofitting behaviour need to be studied in detail. RC beam specimens of rectangular section were distressed by means of cracks to a certain limit, and were retrofitted by external post-tensioning. Retrofitted specimens were tested to fail to study the post-retrofitting behaviour. Retrofitting has increased the ultimate load carrying capacity by 81% with reference to the control beam, and recovered the deflection. This paper intends to report the results of the experimental investigations, and conclusions.

  3. Numerical study of spherical Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Yang, R.-J.

    1989-01-01

    A new technique to simulate Taylor vortices in a spherical gap between a rotating inner sphere and a stationary outer one has been developed and tested. Paths leading to zero-, one-, and two-vortex flows are designed heuristically. Fictitious symmetric boundaries near the equator are imposed, and the choice of the location of the fictitious boundaries is determined by either one- or two-vortex flow being stimulated. The imposition of one or two fictitious boundaries during the initial calculation generates the state suitable for one-or two-vortex flow to exist. After removing the fictitious boundaries, the flow settles down into its own attractor. Using this method, the three steady flow modes can be simulated by using a half domain. The technique can converge to desired flows very fast, and its results show excellent agreement with experimental ones.

  4. Approximate heating analysis for the windward-symmetry plane of Shuttle-like bodies at large angle of attack

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.

    1981-01-01

    An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.

  5. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  6. New measurement and evaluation of the excitation function of 64Ni(p,n) reaction for the production of 64Cu

    NASA Astrophysics Data System (ADS)

    Adam Rebeles, R.; Van den Winkel, P.; Hermanne, A.; Tárkányi, F.

    2009-02-01

    One of the radioisotopes for which a growing interest exists in nuclear medicine is 64Cu. Its branched decay makes it suitable for both diagnostic and therapeutic purposes. Activation cross sections of the proton induced reaction on enriched 64Ni have been studied using the stacked foil technique up to 24 MeV. The experimental cross sections are compared with values available from literature. Thick target yields, based on the discrete measured values of the cross sections are calculated and allow a better estimation of the optimum production parameters.

  7. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  8. Flight testing of airbreathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hicks, John W.

    1993-01-01

    Using the scramjet engine as the prime example of a hypersonic airbreathing concept, this paper reviews the history of and addresses the need for hypersonic flight tests. It also describes how such tests can contribute to the development of airbreathing technology. Aspects of captive-carry and free-flight concepts are compared. An incremental flight envelope expansion technique for manned flight vehicles is also described. Such critical issues as required instrumentation technology and proper scaling of experimental devices are addressed. Lastly, examples of international flight test approaches, existing programs, or concepts currently under study, development, or both, are given.

  9. Fetal-maternal interface: a chronicle of allogeneic coexistence.

    PubMed

    Pujal, Josep-Maria; Roura, Santiago; Muñoz-Marmol, Ana M; Mate, Jose-Luis; Bayes-Genis, Antoni

    2012-01-01

    The existence of allogeneic cells within an individual has been demonstrated in multiple fields such as hematopoietic stem cell or solid organ transplantation, non-depleted blood transfusions and the most common form which is bidirectional maternal-fetal cell trafficking, whereby cells from the fetus pass through the placental barrier. In order to graphically illustrate this early natural phenomenon that initiates the journey of a child's cells within the mother's blood and other tissues, we used a new procedure in microscopy imaging generating Large Scale Panoramic Pictures (LSPP). This technique can also be extended to explore a broad diversity of experimental models.

  10. Non-imaged based method for matching brains in a common anatomical space for cellular imagery.

    PubMed

    Midroit, Maëllie; Thevenet, Marc; Fournel, Arnaud; Sacquet, Joelle; Bensafi, Moustafa; Breton, Marine; Chalençon, Laura; Cavelius, Matthias; Didier, Anne; Mandairon, Nathalie

    2018-04-22

    Cellular imagery using histology sections is one of the most common techniques used in Neuroscience. However, this inescapable technique has severe limitations due to the need to delineate regions of interest on each brain, which is time consuming and variable across experimenters. We developed algorithms based on a vectors field elastic registration allowing fast, automatic realignment of experimental brain sections and associated labeling in a brain atlas with high accuracy and in a streamlined way. Thereby, brain areas of interest can be finely identified without outlining them and different experimental groups can be easily analyzed using conventional tools. This method directly readjusts labeling in the brain atlas without any intermediate manipulation of images. We mapped the expression of cFos, in the mouse brain (C57Bl/6J) after olfactory stimulation or a non-stimulated control condition and found an increased density of cFos-positive cells in the primary olfactory cortex but not in non-olfactory areas of the odor-stimulated animals compared to the controls. Existing methods of matching are based on image registration which often requires expensive material (two-photon tomography mapping or imaging with iDISCO) or are less accurate since they are based on mutual information contained in the images. Our new method is non-imaged based and relies only on the positions of detected labeling and the external contours of sections. We thus provide a new method that permits automated matching of histology sections of experimental brains with a brain reference atlas. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1982-01-01

    The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

  12. Superfluid 3He—the Early Days

    NASA Astrophysics Data System (ADS)

    Lee, D. M.; Leggett, A. J.

    2011-08-01

    A history is given of liquid 3He research from the time when 3He first became available following World War II through 1972 when the discovery of the superfluid phases was made. The Fermi liquid nature was established early on, and the Landau Fermi liquid theory provided a framework for understanding the interactions between the Fermions (quasiparticles). The theory's main triumph was to predict zero sound, which was soon discovered experimentally. Experimental techniques are treated, including adiabatic demagnetization, dilution refrigerator technology, and Pomeranchuk cooling. A description of the superfluid 3He discovery experiments using the latter two of these techniques is given. While existing theories provided a basis for understanding the newly discovered superfluid phases in terms of ℓ>0 Cooper pairs, the unexpected stability of the A phase in the high- P, high- T region of the phase diagram needed for its explanation a creative leap beyond the BCS paradigm. The use of sum rules to interpret some of the unusual magnetic resonance in liquid 3He is discussed. Eventually a complete theory of the spin dynamics of superfluid 3He was developed, which predicted many of the exciting phenomena subsequently discovered.

  13. Performance analysis and enhancement for visible light communication using CMOS sensors

    NASA Astrophysics Data System (ADS)

    Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Fang, Liangtao; Liu, Xiaowei; Chen, Yingcong

    2018-03-01

    Complementary Metal-Oxide-Semiconductor (CMOS) sensors are widely used in mobile-phone and cameras. Hence, it is attractive if these camera can be used as the receivers of visible light communication (VLC). Using the rolling shutter mechanism can increase the data rate of VLC based on CMOS camera, and different techniques have been proposed to improve the demodulation of the rolling shutter mechanism. However, these techniques are too complexity. In this work, we demonstrate and analyze the performance of the VLC link using CMOS camera for different LED luminaires for the first time in our knowledge. Experimental evaluation to compare their bit-error-rate (BER) performances and demodulation are also performed, and it can be summarized that just need to change the LED luminaire with more uniformity light output, the blooming effect would not exist; which not only can reduce the complexity of the demodulation but also enhance the communication quality. In addition, we propose and demonstrate to use contrast limited adaptive histogram equalization to extend the transmission distance and mitigate the influence of the background noise. And the experimental results show that the BER can be decreased by an order of magnitude by using the proposed method.

  14. Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials

    NASA Astrophysics Data System (ADS)

    Gresch, Dominik; Autès, Gabriel; Yazyev, Oleg V.; Troyer, Matthias; Vanderbilt, David; Bernevig, B. Andrei; Soluyanov, Alexey A.

    2017-02-01

    The intense theoretical and experimental interest in topological insulators and semimetals has established band structure topology as a fundamental material property. Consequently, identifying band topologies has become an important, but often challenging, problem, with no exhaustive solution at the present time. In this work we compile a series of techniques, some previously known, that allow for a solution to this problem for a large set of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for relevant Bloch states, and it works at all levels of materials modeling: continuous k .p models, tight-binding models, and ab initio calculations. We apply the method to compute and identify Chern, Z2, and crystalline topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for high-throughput screening of materials databases for compounds with nontrivial topologies. We expect that our work will allow researchers to (a) identify topological materials optimal for experimental probes, (b) classify existing compounds, and (c) reveal materials that host novel, not yet described, topological states.

  15. SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology

    PubMed Central

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240

  16. Baseline-free damage detection in composite plates based on the reciprocity principle

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Zeng, Liang; Lin, Jing

    2018-01-01

    Lamb wave based damage detection techniques have been widely used in composite structures. In particular, these techniques usually rely on reference signals, which are significantly influenced by the operational and environmental conditions. To solve this issue, this paper presents a baseline-free damage inspection method based on the reciprocity principle. If a localized nonlinear scatterer exists along the wave path, the reciprocity breaks down. Through estimating the loss of reciprocity, the delamination could be detected. A reciprocity index (RI), which compares the discrepancy between the signal received in transducer B when emitting from transducer A and the signal received in A when the same source is located in B, is established to quantitatively analyze the reciprocity. Experimental results show that the RI value of a damaged path is much higher than that of a healthy path. In addition, the effects of the parameters of excitation signal (i.e., central frequency and bandwidth) and the position of delamination on the RI value are discussed. Furthermore, a RI based probabilistic imaging algorithm is proposed for detecting delamination damage of composite plates without reference signals. Finally, the effectiveness of this baseline-free damage detection method is validated by an experimental example.

  17. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow

    PubMed Central

    Webb, R. Chad; Ma, Yinji; Krishnan, Siddharth; Li, Yuhang; Yoon, Stephen; Guo, Xiaogang; Feng, Xue; Shi, Yan; Seidel, Miles; Cho, Nam Heon; Kurniawan, Jonas; Ahad, James; Sheth, Niral; Kim, Joseph; Taylor VI, James G.; Darlington, Tom; Chang, Ken; Huang, Weizhong; Ayers, Joshua; Gruebele, Alexander; Pielak, Rafal M.; Slepian, Marvin J.; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.

    2015-01-01

    Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities. PMID:26601309

  18. Generating One Biometric Feature from Another: Faces from Fingerprints

    PubMed Central

    Ozkaya, Necla; Sagiroglu, Seref

    2010-01-01

    This study presents a new approach based on artificial neural networks for generating one biometric feature (faces) from another (only fingerprints). An automatic and intelligent system was designed and developed to analyze the relationships among fingerprints and faces and also to model and to improve the existence of the relationships. The new proposed system is the first study that generates all parts of the face including eyebrows, eyes, nose, mouth, ears and face border from only fingerprints. It is also unique and different from similar studies recently presented in the literature with some superior features. The parameter settings of the system were achieved with the help of Taguchi experimental design technique. The performance and accuracy of the system have been evaluated with 10-fold cross validation technique using qualitative evaluation metrics in addition to the expanded quantitative evaluation metrics. Consequently, the results were presented on the basis of the combination of these objective and subjective metrics for illustrating the qualitative properties of the proposed methods as well as a quantitative evaluation of their performances. Experimental results have shown that one biometric feature can be determined from another. These results have once more indicated that there is a strong relationship between fingerprints and faces. PMID:22399877

  19. SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.

    PubMed

    Youn, Seongwook

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  20. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..

  1. The Impact of Threat Appeals on Fear Arousal and Driver Behavior: A Meta-Analysis of Experimental Research 1990–2011

    PubMed Central

    Carey, Rachel N.; McDermott, Daragh T.; Sarma, Kiran M.

    2013-01-01

    The existing empirical research exploring the impact of threat appeals on driver behavior has reported inconsistent findings. In an effort to provide an up-to-date synthesis of the experimental findings, meta-analytic techniques were employed to examine the impact of threat-based messages on fear arousal and on lab-based indices of driving behavior. Experimental studies (k = 13, N = 3044), conducted between 1990 and 2011, were included in the analyses. The aims of the current analysis were (a) to examine whether or not the experimental manipulations had a significant impact on evoked fear, (b) to examine the impact of threat appeals on three distinct indices of driving, and (c) to identify moderators and mediators of the relationship between fear and driving outcomes. Large effects emerged for the level of fear evoked, with experimental groups reporting increased fear arousal in comparison to control groups (r = .64, n = 619, p<.01). The effect of threat appeals on driving outcomes, however, was not significant (r = .03, p = .17). This analysis of the experimental literature indicates that threat appeals can lead to increased fear arousal, but do not appear to have the desired impact on driving behavior. We discuss these findings in the context of threat-based road safety campaigns and future directions for experimental research in this area. PMID:23690955

  2. The impact of threat appeals on fear arousal and driver behavior: a meta-analysis of experimental research 1990-2011.

    PubMed

    Carey, Rachel N; McDermott, Daragh T; Sarma, Kiran M

    2013-01-01

    The existing empirical research exploring the impact of threat appeals on driver behavior has reported inconsistent findings. In an effort to provide an up-to-date synthesis of the experimental findings, meta-analytic techniques were employed to examine the impact of threat-based messages on fear arousal and on lab-based indices of driving behavior. Experimental studies (k = 13, N = 3044), conducted between 1990 and 2011, were included in the analyses. The aims of the current analysis were (a) to examine whether or not the experimental manipulations had a significant impact on evoked fear, (b) to examine the impact of threat appeals on three distinct indices of driving, and (c) to identify moderators and mediators of the relationship between fear and driving outcomes. Large effects emerged for the level of fear evoked, with experimental groups reporting increased fear arousal in comparison to control groups (r = .64, n = 619, p<.01). The effect of threat appeals on driving outcomes, however, was not significant (r = .03, p = .17). This analysis of the experimental literature indicates that threat appeals can lead to increased fear arousal, but do not appear to have the desired impact on driving behavior. We discuss these findings in the context of threat-based road safety campaigns and future directions for experimental research in this area.

  3. Thermal management of VECSELs by front surface direct liquid cooling

    NASA Astrophysics Data System (ADS)

    Smyth, Conor J. C.; Mirkhanov, Shamil; Quarterman, Adrian H.; Wilcox, Keith G.

    2016-03-01

    Efficient thermal management is vital for VECSELs, affecting the output power and several aspects of performance of the device. Presently there exist two distinct methods of effective thermal management which both possess their merits and disadvantages. Substrate removal of the VECSEL gain chip has proved a successful method in devices emitting at a wavelength near 1μm. However for other wavelengths the substrate removal technique has proved less effective primarily due to the thermal impedance of the distributed Bragg reflectors. The second method of thermal management involves the use of crystalline heat spreaders bonded to the gain chip surface. Although this is an effective thermal management scheme, the disadvantages are additional loss and the etalon effect that filters the gain spectrum, making mode locking more difficult and normally resulting in multiple peaks in the spectrum. There are considerable disadvantages associated with both methods attributed to heatspreader cost and sample processing. It is for these reasons that a proposed alternative, front surface liquid cooling, has been investigated in this project. Direct liquid cooling involves flowing a temperature-controlled liquid over the sample's surface. In this project COMSOL was used to model surface liquid cooling of a VECSEL sample in order to investigate and compare its potential thermal management with current standard thermal management techniques. Based on modelling, experiments were carried out in order to evaluate the performance of the technique. While modelling suggests that this is potentially a mid-performance low cost alternative to existing techniques, experimental measurements to date do not reflect the performance predicted from modelling.

  4. Biometric feature embedding using robust steganography technique

    NASA Astrophysics Data System (ADS)

    Rashid, Rasber D.; Sellahewa, Harin; Jassim, Sabah A.

    2013-05-01

    This paper is concerned with robust steganographic techniques to hide and communicate biometric data in mobile media objects like images, over open networks. More specifically, the aim is to embed binarised features extracted using discrete wavelet transforms and local binary patterns of face images as a secret message in an image. The need for such techniques can arise in law enforcement, forensics, counter terrorism, internet/mobile banking and border control. What differentiates this problem from normal information hiding techniques is the added requirement that there should be minimal effect on face recognition accuracy. We propose an LSB-Witness embedding technique in which the secret message is already present in the LSB plane but instead of changing the cover image LSB values, the second LSB plane will be changed to stand as a witness/informer to the receiver during message recovery. Although this approach may affect the stego quality, it is eliminating the weakness of traditional LSB schemes that is exploited by steganalysis techniques for LSB, such as PoV and RS steganalysis, to detect the existence of secrete message. Experimental results show that the proposed method is robust against PoV and RS attacks compared to other variants of LSB. We also discussed variants of this approach and determine capacity requirements for embedding face biometric feature vectors while maintain accuracy of face recognition.

  5. Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Mubin, Marizan; Saad, Ismail

    2016-01-01

    In the existing electroencephalogram (EEG) signals peak classification research, the existing models, such as Dumpala, Acir, Liu, and Dingle peak models, employ different set of features. However, all these models may not be able to offer good performance for various applications and it is found to be problem dependent. Therefore, the objective of this study is to combine all the associated features from the existing models before selecting the best combination of features. A new optimization algorithm, namely as angle modulated simulated Kalman filter (AMSKF) will be employed as feature selector. Also, the neural network random weight method is utilized in the proposed AMSKF technique as a classifier. In the conducted experiment, 11,781 samples of peak candidate are employed in this study for the validation purpose. The samples are collected from three different peak event-related EEG signals of 30 healthy subjects; (1) single eye blink, (2) double eye blink, and (3) eye movement signals. The experimental results have shown that the proposed AMSKF feature selector is able to find the best combination of features and performs at par with the existing related studies of epileptic EEG events classification.

  6. Promoter Sequences Prediction Using Relational Association Rule Mining

    PubMed Central

    Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely

    2012-01-01

    In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233

  7. Yield stress materials in soft condensed matter

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien

    2017-07-01

    A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.

  8. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.

    PubMed

    Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua

    2011-05-15

    High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.

  9. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Srinivasan, Ramakrishna; Gustaveson, Mark B.

    1990-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower frequencies, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselage lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cutoff, and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations.

  10. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbin, G.; Wollenberg, H.; Wilson, C.

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce themore » duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.« less

  11. Max-margin multiattribute learning with low-rank constraint.

    PubMed

    Zhang, Qiang; Chen, Lin; Li, Baoxin

    2014-07-01

    Attribute learning has attracted a lot of interests in recent years for its advantage of being able to model high-level concepts with a compact set of midlevel attributes. Real-world objects often demand multiple attributes for effective modeling. Most existing methods learn attributes independently without explicitly considering their intrinsic relatedness. In this paper, we propose max margin multiattribute learning with low-rank constraint, which learns a set of attributes simultaneously, using only relative ranking of the attributes for the data. By learning all the attributes simultaneously through low-rank constraint, the proposed method is able to capture their intrinsic correlation for improved learning; by requiring only relative ranking, the method avoids restrictive binary labels of attributes that are often assumed by many existing techniques. The proposed method is evaluated on both synthetic data and real visual data including a challenging video data set. Experimental results demonstrate the effectiveness of the proposed method.

  12. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    PubMed Central

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3) developing and maintaining pertinent databases, and (4) providing necessary education and training. PMID:27096131

  13. Experimental determination of useful resistance value during pasta dough kneading

    NASA Astrophysics Data System (ADS)

    Podgornyj, Yu I.; Martynova, T. G.; Skeeba, V. Yu; Kosilov, A. S.; Chernysheva, A. A.; Skeeba, P. Yu

    2017-10-01

    There is a large quantity of materials produced in the form of dry powder or low humidity granulated masses in the modern market, and there is a need to develop new manufacturing machinery and to renew the existing facilities involved in the production of various loose mixtures. One of the machinery upgrading tasks is enhancing its performance. In view of the fact that experimental research is not feasible in full-scale samples, an experimental installation was to be constructed. The article contains its kinematic scheme and the 3D model. The angle of the kneading blade location, the volume of the loose mixture, rotating frequency and the number of the work member double passes were chosen as variables to carry out the experiment. The technique of the experiment, which includes two stages for the rotary and reciprocating movement of the work member, was proposed. The results of the experimental data processing yield the correlations between the load characteristics of the mixer work member and the angle of the blade, the volume of the mixture and the work member rotating frequency, allowing for the recalculation of loads for this type machines.

  14. Experimental determination of entanglement with a single measurement.

    PubMed

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  15. Discrimination between closed and open forms of lipases using electrophoretic techniques.

    PubMed

    Miled, N; Riviere, M; Cavalier, J F; Buono, G; Berti, L; Verger, R

    2005-03-15

    The enhanced catalytic activity of lipases is often associated with structural changes. The three-dimensional (3D) structures showed that the covalently inhibited lipases exist under their open conformations, in contrast to their native closed forms. We studied the inhibition of various lipases--human and dog gastric lipases, human pancreatic lipase, and Humicola lanuginosa lipase--by the octyl-undecyl phosphonate inhibitor, and we measured the subsequent modifications of their respective electrophoretic mobility. Furthermore, the experimental values of the isoelectric points found for the native (closed) and inhibited (open) lipases are in agreement with theoretical calculations based on the electrostatic potential. We concluded that there is a significant difference in the isoelectric points between the closed (native) and open (inhibited) conformations of the four lipases investigated. Thus, analysis of the electrophoretic pattern is proposed as an easy experimental tool to differentiate between a closed and an open form of a given lipase.

  16. Influence of rotation on the near-wake development behind an impulsively started circular cylinder

    NASA Astrophysics Data System (ADS)

    Coutanceau, M.; Menard, C.

    1985-09-01

    A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.

  17. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    NASA Astrophysics Data System (ADS)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  18. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  19. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins.

    PubMed

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E

    2017-02-13

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.

  20. Survey of existing underground openings for in-situ experimental facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.; Graf, A.; Strisower, B.

    1981-07-01

    In an earlier project, a literature search identified 60 underground openings in crystalline rock capable of providing access for an in-situ experimental facility to develop geochemical and hydrological techniques for evaluating sites for radioactive waste isolation. As part of the current project, discussions with state geologists, owners, and operators narrowed the original group to 14. Three additional sites in volcanic rock and one site in granite were also identified. Site visits and application of technical criteria, including the geologic and hydrologic settings and depth, extent of the rock unit, condition, and accessibility of underground workings, determined four primary candidate sites:more » the Helms Pumped Storage Project in grandiodorite of the Sierra Nevada, California; the Tungsten Queen Mine in Precambrian granodiorite of the North Carolina Piedmont; the Mount Hope Mine in Precambrian granite and gneiss of northern New Jersey; and the Minnamax Project in the Duluth gabbro complex of northern Minnesota.« less

  1. Experimental determination of the x-ray atomic fundamental parameters of nickel

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.; Hönicke, P.; Müller, M.; Unterumsberger, R.; Beckhoff, B.; Hoszowska, J.; Dousse, J.-Cl; Błachucki, W.; Ito, Y.; Yamashita, M.; Fukushima, S.

    2018-02-01

    The x-ray atomic properties of nickel (Ni) were investigated in a unique approach combining different experimental techniques to obtain new, useful and reliable values of atomic fundamental parameters for x-ray spectrometric purposes and for comparison with theoretical predictions. We determined the mass attenuation coefficients in an energy range covering the L- and K-absorption edges, the K-shell fluorescence yield and the Kβ/Kα and Kβ1, 3/Kα1, 2 transition probability ratios. The obtained line profiles and linewidths of the Kα and Kβ transitions in Ni can be considered as the contribution of the satellite lines arising from the [KM] shake processes suggested by Deutsch et al (1995 Phys. Rev. A 51 283) and Ito et al (2016 Phys. Rev. A 94 042506). Comparison of the new data with several databases showed good agreement, but also discrepancies were found with existing tabulated values.

  2. Neural-network quantum state tomography

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe

    2018-05-01

    The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.

  3. Experimental investigation of flow field around the elastic flag flapping in periodic state

    NASA Astrophysics Data System (ADS)

    Jia, Yongxia; Jia, Lichao; Su, Zhuang; Yuan, Huijing

    2018-05-01

    The flapping of a flag in the wind is a classical fluid-structure problem that concerns the interaction of elastic bodies with ambient fluid. We focus on the desirable experimental results of the flow around the flapping flag. By immersing the elastic yet self-supporting heavy flag into water flow, we use particle image velocimetry (PIV) techniques to obtain the whole flow field around the midspan of the flag interacting with a fluid in periodic state. A unique PIV image processing method is used to measure near-wall flow velocities around a moving elastic flag. There exists a thin flow circulation region on the suction side of the flag in periodic state. This observation suggests that viscous flow models may be needed to improve the theoretical predictions of the flapping flag in periodic state, especially in a large amplitude.

  4. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.

    PubMed

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.

  5. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy

    PubMed Central

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242

  6. Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously

    NASA Astrophysics Data System (ADS)

    Ma, Yungui; Liu, Yichao; Raza, Muhammad; Wang, Yudong; He, Sailing

    2014-11-01

    Invisible cloaks have been widely explored in many different physical systems but usually for a single phenomenon for one device. In this Letter we make an experimental attempt to show a multidisciplinary framework that has the capability to simultaneously respond to two different physical excitations according to predetermined scenarios. As a proof of concept, we implement an electric-thermal bifunctional device that can guide both electric current and heat flux "across" a strong `scatterer' (air cavity) and restore their original diffusion directions as if nothing exists along the paths, thus rendering dual cloaking effects for objects placed inside the cavity. This bifunctional cloaking performance is also numerically verified for a line-source nonuniform excitation. Our results and the fabrication technique presented here will help broaden the current research scope for multiple disciplines and may pave a way to manipulate multiple flows and create new functional devices, e.g., for on-chip applications.

  7. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  8. Studies on Experimental Ontology and Knowledge Service Development in Bio-Environmental Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunliang

    2018-01-01

    The existing domain-related ontology and information service patterns are analyzed, and the main problems faced by the experimental scheme knowledge service were clarified. The ontology framework model for knowledge service of Bio-environmental Engineering was proposed from the aspects of experimental materials, experimental conditions and experimental instruments, and this ontology will be combined with existing knowledge organization systems to organize scientific and technological literatures, data and experimental schemes. With the similarity and priority calculation, it can improve the related domain research.

  9. Real-Time Condition Monitoring and Fault Diagnosis of Gear Train Systems Using Instantaneous Angular Speed (IAS) Analysis

    NASA Astrophysics Data System (ADS)

    Sait, Abdulrahman S.

    This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.

  10. Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication

    MedlinePlus

    ... Boost from Existing Medication Spotlight on Research Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication By Colleen Labbe, M.S. | March 1, 2013 A mouse hanging on a wire during a test of muscle strength. Mice with a mutant dystrophin gene, which ...

  11. Authenticity techniques for PACS images and records

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.

    1995-05-01

    Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.

  12. Solution and reasoning reuse in space planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Verfaillie, Gerard; Schiex, Thomas

    1994-01-01

    In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.

  13. Techniques for nothingness: Debate over the comparability of hypnosis and Zen in early-twentieth-century Japan.

    PubMed

    Wu, Yu-Chuan

    2017-12-01

    This paper explores a debate that took place in Japan in the early twentieth century over the comparability of hypnosis and Zen. The debate was among the first exchanges between psychology and Buddhism in Japan, and it cast doubt on previous assumptions that a clear boundary existed between the two fields. In the debate, we find that contemporaries readily incorporated ideas from psychology and Buddhism to reconstruct the experiences and concepts of hypnosis and Buddhist nothingness. The resulting new theories and techniques of nothingness were fruits of a fairly fluid boundary between the two fields. The debate, moreover, reveals that psychology tried to address the challenges and possibilities posed by religious introspective meditation and intuitive experiences in a positive way. In the end, however, psychology no longer regarded them as viable experimental or psychotherapeutic tools but merely as particular subjective experiences to be investigated and explained.

  14. Exploring the microbial biodegradation and biotransformation gene pool.

    PubMed

    Galvão, Teca Calcagno; Mohn, William W; de Lorenzo, Víctor

    2005-10-01

    Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.

  15. Cell-based therapies and imaging in cardiology.

    PubMed

    Bengel, Frank M; Schachinger, Volker; Dimmeler, Stefanie

    2005-12-01

    Cell therapy for cardiac repair has emerged as one of the most exciting and promising developments in cardiovascular medicine. Evidence from experimental and clinical studies is increasing that this innovative treatment will influence clinical practice in the future. But open questions and controversies with regard to the basic mechanisms of this therapy continue to exist and emphasise the need for specific techniques to visualise the mechanisms and success of therapy in vivo. Several non-invasive imaging approaches which aim at tracking of transplanted cells in the heart have been introduced. Among these are direct labelling of cells with radionuclides or paramagnetic agents, and the use of reporter genes for imaging of cell transplantation and differentiation. Initial studies have suggested that these molecular imaging techniques have great potential. Integration of cell imaging into studies of cardiac cell therapy holds promise to facilitate further growth of the field towards a broadly clinically useful application.

  16. A novel data hiding scheme for block truncation coding compressed images using dynamic programming strategy

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.

    2015-03-01

    Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.

  17. Guided SAR image despeckling with probabilistic non local weights

    NASA Astrophysics Data System (ADS)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  18. Compositional Verification of a Communication Protocol for a Remotely Operated Vehicle

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.; Munoz, Cesar A.

    2009-01-01

    This paper presents the specification and verification in the Prototype Verification System (PVS) of a protocol intended to facilitate communication in an experimental remotely operated vehicle used by NASA researchers. The protocol is defined as a stack-layered com- position of simpler protocols. It can be seen as the vertical composition of protocol layers, where each layer performs input and output message processing, and the horizontal composition of different processes concurrently inhabiting the same layer, where each process satisfies a distinct requirement. It is formally proven that the protocol components satisfy certain delivery guarantees. Compositional techniques are used to prove these guarantees also hold in the composed system. Although the protocol itself is not novel, the methodology employed in its verification extends existing techniques by automating the tedious and usually cumbersome part of the proof, thereby making the iterative design process of protocols feasible.

  19. Automated Analysis of Stateflow Models

    NASA Technical Reports Server (NTRS)

    Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier

    2017-01-01

    Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.

  20. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  1. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insightsmore » into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.« less

  2. A comparison of SAR ATR performance with information theoretic predictions

    NASA Astrophysics Data System (ADS)

    Blacknell, David

    2003-09-01

    Performance assessment of automatic target detection and recognition algorithms for SAR systems (or indeed any other sensors) is essential if the military utility of the system / algorithm mix is to be quantified. This is a relatively straightforward task if extensive trials data from an existing system is used. However, a crucial requirement is to assess the potential performance of novel systems as a guide to procurement decisions. This task is no longer straightforward since a hypothetical system cannot provide experimental trials data. QinetiQ has previously developed a theoretical technique for classification algorithm performance assessment based on information theory. The purpose of the study presented here has been to validate this approach. To this end, experimental SAR imagery of targets has been collected using the QinetiQ Enhanced Surveillance Radar to allow algorithm performance assessments as a number of parameters are varied. In particular, performance comparisons can be made for (i) resolutions up to 0.1m, (ii) single channel versus polarimetric (iii) targets in the open versus targets in scrubland and (iv) use versus non-use of camouflage. The change in performance as these parameters are varied has been quantified from the experimental imagery whilst the information theoretic approach has been used to predict the expected variation of performance with parameter value. A comparison of these measured and predicted assessments has revealed the strengths and weaknesses of the theoretical technique as will be discussed in the paper.

  3. Advanced technologies for cardiac valvular replacement, transcatheter innovations and reconstructive surgery.

    PubMed

    Jamieson, W R Eric

    2006-01-01

    Since the 2002 Surgical Technology International monograph on valvular prostheses, there have been significant developmental and investigative advances. Aortic bioprostheses and mechanical prostheses have undergone design changes to optimize hemodynamics and prevent patient-prosthesis mismatch to have a potential satisfactory influence on survival. There has been continual technological improvements striving to bring forward advances that improve the durability of bioprostheses and reduce the thrombogenicity of mechanical prostheses. There also has been a continuance to preserve biological tissue with glutaraldehyde, rather than clinically evaluate other cross-linking technologies, by controlling or retarding calcification with therapies to control phospholipids and residual aldehydes. The techniques of mitral valve reconstruction have now been well established and new annuloplasty rings have been designed for the potential of maintaining the anatomical and physiological characteristics of the mitral annulus. Several objectives exist for annuloplasty, namely remodeling of the length and shape of the dilated annulus, prevention of dilatation of the annulus, and support for the potentially fragile area after partial-leaflet resection. Currently, there exists an emergence of catheter-based therapies for management of aortic stenosis and mitral regurgitation. For management of selected populations with critical aortic stenosis, techniques for aortic valve substitution have been developed for both antegrade and retrograde catheter techniques, as well as apical transventricular implantation. Mitral regurgitation has been addressed by experimental transcoronary sinus, stent-like devices and transventricular, edge-to-edge leaflet devices. The devices, descriptions and pictorial images comprise this monograph.

  4. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing

    PubMed Central

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev

    2013-01-01

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491

  5. Structural damage diagnostics via wave propagation-based filtering techniques

    NASA Astrophysics Data System (ADS)

    Ayers, James T., III

    Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.

  6. Research on viscosity of metal at high pressure

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, F.; Ma, X.; Zhang, M.

    2016-11-01

    A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.

  7. Adsorption-induced deformation of nanoporous materials—A review

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Huber, Patrick; Bernstein, Noam

    2017-03-01

    When a solid surface accommodates guest molecules, they induce noticeable stresses to the surface and cause its strain. Nanoporous materials have high surface area and, therefore, are very sensitive to this effect called adsorption-induced deformation. In recent years, there has been significant progress in both experimental and theoretical studies of this phenomenon, driven by the development of new materials as well as advanced experimental and modeling techniques. Also, adsorption-induced deformation has been found to manifest in numerous natural and engineering processes, e.g., drying of concrete, water-actuated movement of non-living plant tissues, change of permeation of zeolite membranes, swelling of coal and shale, etc. In this review, we summarize the most recent experimental and theoretical findings on adsorption-induced deformation and present the state-of-the-art picture of thermodynamic and mechanical aspects of this phenomenon. We also reflect on the existing challenges related both to the fundamental understanding of this phenomenon and to selected applications, e.g., in sensing and actuation, and in natural gas recovery and geological CO2 sequestration.

  8. Feb 2008 - Feb 2009 Progress Report and Final Report for NA26215: Experimental Studies of High-Energy Processing of Proto-Planetary and Planetary Materials in the Early Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Stein B.

    2009-05-28

    The results of this project are the first experimental data on the behavior of metal-silicate mixtures under very high pressures and temperatures comparable to those of the putative Moon-forming impact experienced by Earth in its early history. Probably the most important outcome of this project was the discovery that metal-silicate interaction and equilibration during highly energetic transient events like impacts may be extremely fast and effective on relatively large scale that was not appreciated before. During the course of this project we have developed a technique for trapping supercritical melts produced in our experiments that allows studying chemical phenomena takingmore » place on a nanosecond timescales. Our results shed new light on the processes and conditions existed in the early Earth history, a subject of perennial interest of the humankind. The results of this project also provide important experimental constraints essential for development of the strategy and technology to mitigate imminent asteroid hazard.« less

  9. Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps

    NASA Astrophysics Data System (ADS)

    Gardner, William Geoffrey

    2011-12-01

    Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.

  10. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications

    NASA Astrophysics Data System (ADS)

    Benza, Vincenzo G.; Bassetti, Bruno; Dorfman, Kevin D.; Scolari, Vittore F.; Bromek, Krystyna; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2012-07-01

    Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.

  11. Effective thermal conductivity of isotropic polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavman, I.H.

    1998-07-01

    The effective thermal conductivity of tin powder filled high density polyethylene composites is investigated experimentally as a function of filler concentration and the measured values are compared with the existing theoretical and empirical models. Samples are prepared by compression molding process, up to 16% volumetric concentration of tin particles. The thermal conductivity is measured by a modified hot wire technique in a temperature range from about 0 to 70 C. Experimental results show a region of low particle content, up to about 10% volume concentration, where the increase in thermal conductivity is rather slow. The filler particles are dispersed inmore » the matrix material in this region, the thermal conductivity is best predicted by Maxwell`s model and Nielsen`s model with A = 1.5, {phi}{sub m} = 0.637. Whereas, at high filler concentrations, the filler particles tend to form agglomerates and conductive chains in the direction of heat flow resulting in a rapid increase in thermal conductivity. A model developed by Agari and Uno estimates the thermal conductivity in this region, using two experimentally determined constants.« less

  12. An event-based vibration control for a two-link flexible robotic arm: Numerical and experimental observations

    NASA Astrophysics Data System (ADS)

    Özer, Abdullah; Eren Semercigil, S.

    2008-06-01

    Flexible robot manipulators have numerous advantages over their rigid counterparts. They have increased payload-to-weight ratio, they run at higher speeds, use less energy and smaller actuators, and they are safer during interaction with their environments. On the other hand, light design combined with external effects result in components which can oscillate with excessive amplitudes. These oscillations cause deviation from the desired path and long idle periods between tasks in order to perform the intended operation safely and accurately. This paper is on an investigation into the effectiveness of a vibration control technique for a two-link flexible robotic arm. Variable stiffness control (VSC) technique is used to control the excessive oscillations. Owing to its dissipative nature, the technique is stable, it is relatively insensitive to significant parameter changes and suitable to be implemented on existing robots. This research considers that the source of the flexibility is either the joints or the links or both. Simulation results of the response of the arm are presented to show the versatility of the proposed control technique. Experiments are performed on a laboratory prototype and the results are presented to test the validity of simulations.

  13. A New Correction Technique for Strain-Gage Measurements Acquired in Transient-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1996-01-01

    Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.

  14. Unsupervised EEG analysis for automated epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  15. Decomposition Pathways of Titanium Isopropoxide Ti(OiPr)4: New Insights from UV-Photodissociation Experiments and Quantum Chemical Calculations.

    PubMed

    Ershov, Kirill S; Kochubei, Sergei A; Kiselev, Vitaly G; Baklanov, Alexey V

    2018-02-01

    The UV-photodissociation at 266 nm of a widely used TiO 2 precursor, titanium tetraisopropoxide (Ti(O i Pr) 4 , TTIP), was studied under molecular-beam conditions. Using the MS-TOF technique, atomic titanium and titanium(II) oxide (TiO) were detected among the most abundant photofragments. Experimental results were rationalized with the aid of quantum chemical calculations (DLPNO-CCSD(T) and DFT). Contrary to the existing data in the literature, the new four-centered acetone-elimination reaction was found to be the primary decomposition process of TTIP. According to computational results, the effective activation barrier of this channel was ∼49 kcal/mol, which was ∼13 kcal/mol lower than that of the competing propylene elimination. The former process, followed by the dissociative loss of an H atom, was a dominating channel of TTIP unimolecular decay. The sequential loss of isopropoxy moieties via these two-step processes was supposed to produce the experimentally observed titanium atoms. In turn, the combination of these reactions with propylene elimination can lead to another detected species, TiO. These results indicate that the existing mechanisms of TTIP thermal and photoinitiated decomposition in the chemical-vapor deposition (CVD) of titanium dioxide should be reconsidered.

  16. A simple method for comparing immunogold distributions in two or more experimental groups illustrated using GLUT1 labelling of isolated trophoblast cells.

    PubMed

    Mayhew, T M; Desoye, G

    2004-07-01

    Colloidal gold-labelling, combined with transmission electron microscopy, is a valuable technique for high-resolution immunolocalization of identified antigens in different subcellular compartments. Whilst the technique has been applied to placental tissues, few quantitative studies have been made. Subcellular compartments exist in three main categories (viz. organelles, membranes, filaments/tubules) and this affects the possibilities for quantification. Generally, gold particles are counted in order to compare either (a) compartments within an experimental group or (b) compartmental labelling distributions between groups. For the former, recent developments make it possible to test whether or not there is differential (nonrandom) labelling of compartments. The methods (relative labelling index and labelling density) are ideally suited to analysing label in one category of compartment (organelle or membrane or filament) but may be adapted to deal with a mixture of categories. They also require information about compartment size (e.g. profile area or trace length). Here, a simple and efficient method for drawing between-group comparisons of labelling distributions is presented. The method does not require information about compartment size or specimen magnification. It relies on multistage random sampling of specimens and unbiased counting of gold particles associated with different compartments. Distributions of observed gold counts in different experimental groups are compared by contingency table analysis with degrees of freedom for chi-squared (chi(2)) values being determined by the numbers of compartments and experimental groups. Compartmental values of chi(2)which contribute substantially to total chi(2)identify the principal subcellular sites of between-group differences. The method is illustrated using datasets from immunolabelling studies on the localization of GLUT1 glucose transporters in cultured human trophoblast cells exposed to different treatments.

  17. Exploring the Interplay between Rescue Drugs, Data Imputation, and Study Outcomes: Conceptual Review and Qualitative Analysis of an Acute Pain Data Set.

    PubMed

    Singla, Neil K; Meske, Diana S; Desjardins, Paul J

    2017-12-01

    In placebo-controlled acute surgical pain studies, provisions must be made for study subjects to receive adequate analgesic therapy. As such, most protocols allow study subjects to receive a pre-specified regimen of open-label analgesic drugs (rescue drugs) as needed. The selection of an appropriate rescue regimen is a critical experimental design choice. We hypothesized that a rescue regimen that is too liberal could lead to all study arms receiving similar levels of pain relief (thereby confounding experimental results), while a regimen that is too stringent could lead to a high subject dropout rate (giving rise to a preponderance of missing data). Despite the importance of rescue regimen as a study design feature, there exist no published review articles or meta-analysis focusing on the impact of rescue therapy on experimental outcomes. Therefore, when selecting a rescue regimen, researchers must rely on clinical factors (what analgesics do patients usually receive in similar surgical scenarios) and/or anecdotal evidence. In the following article, we attempt to bridge this gap by reviewing and discussing the experimental impacts of rescue therapy on a common acute surgical pain population: first metatarsal bunionectomy. The function of this analysis is to (1) create a framework for discussion and future exploration of rescue as a methodological study design feature, (2) discuss the interplay between data imputation techniques and rescue drugs, and (3) inform the readership regarding the impact of data imputation techniques on the validity of study conclusions. Our findings indicate that liberal rescue may degrade assay sensitivity, while stringent rescue may lead to unacceptably high dropout rates.

  18. Techniques in Experimental Mechanics Applicable to Forest Products Research

    Treesearch

    Leslie H. Groom; Audrey G. Zink

    1994-01-01

    The title of this publication-Techniques in Experimental Mechanics Applicable to Forest Products Research-is the theme of this plenary session from the 1994 Annual Meeting of the Forest Products Society (FPS). Although this session focused on experimental techniques that can be of assistance to researchers in the field of forest products, it is hoped that the...

  19. On-line damage detection in rotating machinery

    NASA Astrophysics Data System (ADS)

    Alkhalifa, Tareq Jawad

    This work is concerned with a set of techniques to detect internal defects in uniform circular discs (rotors). An internal defect is intentionally manufactured in stereolithographic discs by a rapid prototyping process using cured resin SL 5170 material. The analysis and results presented here are limited to a uniform circular disc, with internal defects, mounted on a uniform flexible circular shaft. The setup is comprised of a Bently Nevada rotor kit connected to a data acquisition system. The rotor consists of a disc and shaft that is supported by journal bearings and is coupled to a motor by a rubber joint. Damage produces localized changes in the strain energy, which is quantified to characterize the damage. Based on previous research, the Strain Energy Damage Index (SEDI) is utilized to localize the damage due to strain energy differences between damaged and undamaged modes. To accomplish the objective, this work covers three types of analysis: finite element analysis, vibration analysis, and experimental modal analysis. Finite element analysis (using SDRC Ideas software) is performed to develop a multi-degree-of-freedom (MDOF) rotor system with internal damage, and its dynamic characteristics are investigated. The analysis is performed for two different types damage cases: radial damage and circular damage. Parametric study for radial damage and random noise to undamaged disc have been investigated to predict the effect of noise in the damage detection. The developed on-line damage detection technique for rotating equipment incorporates and couples both vibration analysis and experimental modal analysis. The dynamic investigation of the rotating discs (with and without defect) is conducted by vibration signal analysis (using proximity sensors, data acquisition and LabView). The vibration analysis provides a unique vibration signature for the damaged disc, which indicates the existence of the damage. The vibration data are acquired at different running speeds (1000, 2500, 5000 rpm). Then the dynamic investigation of non-rotating discs (with and without defect) is conducted by experimental modal analysis (using STAR software). While the vibration analysis detects and indicates the existence of damage while the disc is rotating, experimental modal analysis (using STAR and MATLAB software) provides the localization of damage through the modal parameters for a non-rotating disc. Both of the experimental diagnostic algorithms are based on measurement of the dynamic behavior of the damaged disc. The results are compared with the reference, or baseline, one, obtained initially for an undamaged disc. (Abstract shortened by UMI.)

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delcamp, E.; Lagarde, B.; Polack, F.

    Though optimization softwares are commonly used in visible optical design, none seems to exist for soft X-ray optics. It is shown here that optimization techniques can be applied with some advantages to X-UV monochromator design. A merit function, suitable for minimizing the aberrations is proposed, and the general method of computation is described. Samples of the software inputs and outputs are presented, and compared to reference data. As an example of application to soft X-ray monochromator design, the optimization of the soft X-ray monochromator of the ESRF microscopy beamline is presented. Good agreement between the predicted resolution of a modifiedmore » PGM monochromator and experimental measurements is reported.« less

  1. A note on windowing for the waveform relaxation

    NASA Technical Reports Server (NTRS)

    Zhang, Hong

    1994-01-01

    The technique of windowing has been often used in the implementation of the waveform relaxations for solving ODE's or time dependent PDE's. Its efficiency depends upon problem stiffness and operator splitting. Using model problems, the estimates for window length and convergence rate are derived. The electiveness of windowing is then investigated for non-stiff and stiff cases respectively. lt concludes that for the former, windowing is highly recommended when a large discrepancy exists between the convergence rate on a time interval and the ones on its subintervals. For the latter, windowing does not provide any computational advantage if machine features are disregarded. The discussion is supported by experimental results.

  2. Probing magnetic order in CuFeO2 through nuclear forward scattering in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Strohm, C.; Lummen, T. T. A.; Handayani, I. P.; Roth, T.; Detlefs, C.; van der Linden, P. J. E. M.; van Loosdrecht, P. H. M.

    2013-08-01

    Determining the magnetic order of solids in high magnetic fields is technologically challenging. Here we probe the cascade of magnetic phase transitions in frustrated multiferroic CuFeO2 using nuclear forward scattering (NFS) in pulsed magnetic fields up to 30 T. Our results are in excellent agreement with detailed neutron diffraction experiments, currently limited to 15 T, while providing experimental confirmation of the proposed higher field phases for both H∥c and H⊥c. We thus establish NFS as a valuable tool for spin structure studies in very high fields, both complementing and expanding on the applicability of existing techniques.

  3. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  4. Highly sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2017-04-01

    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of 10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing.

  5. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  6. Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa

    DOE PAGES

    Fratanduono, D. E.; Celliers, P. M.; Braun, D. G.; ...

    2016-11-16

    We describe a new equation of state (EOS) experimental technique that enables the study of thermodynamic derivatives into the TPa regime and apply it to boron carbide (B4C). The data presented here are the first principal Hugoniot sound speed measurements reported using a laser-driven shock platform, providing a new means to explore the high-pressure off-Hugoniot response of opaque materials. Furthermore, the extended B4C Hugoniot suggests the presence of a new high-pressure phase, as recently predicted by molecular dynamics simulations, adding to the complexity of the existing phase diagram.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Cohen, Thomas D.; Coito, S.

    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. Consequently, it is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimentalmore » and theoretical issues concerning heavy exotic hadrons is presented.« less

  8. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    NASA Astrophysics Data System (ADS)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison ofmore » the experimental results with theory and simulations.« less

  10. Adjustable lossless image compression based on a natural splitting of an image into drawing, shading, and fine-grained components

    NASA Technical Reports Server (NTRS)

    Novik, Dmitry A.; Tilton, James C.

    1993-01-01

    The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.

  11. Salient regions detection using convolutional neural networks and color volume

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hai; Hou, Yingkun

    2018-03-01

    Convolutional neural network is an important technique in machine learning, pattern recognition and image processing. In order to reduce the computational burden and extend the classical LeNet-5 model to the field of saliency detection, we propose a simple and novel computing model based on LeNet-5 network. In the proposed model, hue, saturation and intensity are utilized to extract depth cues, and then we integrate depth cues and color volume to saliency detection following the basic structure of the feature integration theory. Experimental results show that the proposed computing model outperforms some existing state-of-the-art methods on MSRA1000 and ECSSD datasets.

  12. A hybrid modulation for the dissemination of weather data to aircraft

    NASA Technical Reports Server (NTRS)

    Akos, Dennis M.

    1991-01-01

    Ohio University is continuing to conduct research to improve its system for weather data dissemination to aircraft. The current experimental system transmit compressed weather radar reflectivity patterns from a ground based station to aircraft. Although an effective system, the limited frequency spectrum does not provide a channel for transmission. This introduces the idea of a hybrid modulation. The hybrid technique encodes weather data using phase modulation (PM) onto an existing aeronautical channel which employs amplitude modulation (AM) for voice signal transmission. Ideally, the two modulations are independent of one another. The planned implementation and basis of the system are the reviewed.

  13. Metallic Hydrogen - Potentially a High Energy Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Cole, John; Silvera, Ike

    2007-01-01

    Pure metallic hydrogen is predicted to have a specific impulse (Isp) of 1700 seconds, but the reaction temperature is too high for current engine materials. Diluting metallic hydrogen with liquid hydrogen can reduce the reaction temperature to levels compatible with current material limits and still provide an Isp greater than 900 s. Metallic hydrogen has not yet been produced on earth, but experimental techniques exist that may change this situation. This paper will provide a brief description of metallic hydrogen and the status of experiments that may soon produce detectable quantities of this material in the lab. Also provided are some characteristics for diluted metallic hydrogen engines and launch vehicles.

  14. Low-speed single-element airfoil synthesis

    NASA Technical Reports Server (NTRS)

    Mcmasters, J. H.; Henderson, M. L.

    1979-01-01

    The use of recently developed airfoil analysis/design computational tools to clarify, enrich and extend the existing experimental data base on low-speed, single element airfoils is demonstrated. A discussion of the problem of tailoring an airfoil for a specific application at its appropriate Reynolds number is presented. This problem is approached by use of inverse (or synthesis) techniques, wherein a desirable set of boundary layer characteristics, performance objectives, and constraints are specified, which then leads to derivation of a corresponding viscous flow pressure distribution. Examples are presented which demonstrate the synthesis approach, following presentation of some historical information and background data which motivate the basic synthesis process.

  15. Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage.

    PubMed

    Schafe, Glenn E; Doyère, Valérie; LeDoux, Joseph E

    2005-10-26

    Although it is believed that different types of memories are localized in discreet regions of the brain, concrete experimental evidence of the existence of such engrams is often elusive. Despite being one of the best characterized memory systems of the brain, the question of where fear memories are localized in the brain remains a hotly debated issue. Here, we combine site-specific behavioral pharmacology with multisite electrophysiological recording techniques to show that the lateral nucleus of the amygdala, long thought to be critical for the acquisition of fear memories, is also an essential locus of fear memory storage.

  16. Detection and localization of copy-paste forgeries in digital videos.

    PubMed

    Singh, Raahat Devender; Aggarwal, Naveen

    2017-12-01

    Amidst the continual march of technology, we find ourselves relying on digital videos to proffer visual evidence in several highly sensitive areas such as journalism, politics, civil and criminal litigation, and military and intelligence operations. However, despite being an indispensable source of information with high evidentiary value, digital videos are also extremely vulnerable to conscious manipulations. Therefore, in a situation where dependence on video evidence is unavoidable, it becomes crucial to authenticate the contents of this evidence before accepting them as an accurate depiction of reality. Digital videos can suffer from several kinds of manipulations, but perhaps, one of the most consequential forgeries is copy-paste forgery, which involves insertion/removal of objects into/from video frames. Copy-paste forgeries alter the information presented by the video scene, which has a direct effect on our basic understanding of what that scene represents, and so, from a forensic standpoint, the challenge of detecting such forgeries is especially significant. In this paper, we propose a sensor pattern noise based copy-paste detection scheme, which is an improved and forensically stronger version of an existing noise-residue based technique. We also study a demosaicing artifact based image forensic scheme to estimate the extent of its viability in the domain of video forensics. Furthermore, we suggest a simplistic clustering technique for the detection of copy-paste forgeries, and determine if it possess the capabilities desired of a viable and efficacious video forensic scheme. Finally, we validate these schemes on a set of realistically tampered MJPEG, MPEG-2, MPEG-4, and H.264/AVC encoded videos in a diverse experimental set-up by varying the strength of post-production re-compressions and transcodings, bitrates, and sizes of the tampered regions. Such an experimental set-up is representative of a neutral testing platform and simulates a real-world forgery scenario where the forensic investigator has no control over any of the variable parameters of the tampering process. When tested in such an experimental set-up, the four forensic schemes achieved varying levels of detection accuracies and exhibited different scopes of applicabilities. For videos compressed using QFs in the range 70-100, the existing noise residue based technique generated average detection accuracy in the range 64.5%-82.0%, while the proposed sensor pattern noise based scheme generated average accuracy in the range 89.9%-98.7%. For the aforementioned range of QFs, average accuracy rates achieved by the suggested clustering technique and the demosaicing artifact based approach were in the range 79.1%-90.1% and 83.2%-93.3%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Selecting Models for Measuring Change When True Experimental Conditions Do Not Exist.

    ERIC Educational Resources Information Center

    Fortune, Jim C.; Hutson, Barbara A.

    1984-01-01

    Measuring change when true experimental conditions do not exist is a difficult process. This article reviews the artifacts of change measurement in evaluations and quasi-experimental designs, delineates considerations in choosing a model to measure change under nonideal conditions, and suggests ways to organize models to facilitate selection.…

  18. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered. The agreement with experimental results for air interfaces is of particular interest because of discrepancies reported previously by another investigator who used data obtained from a different experimental technique. Results from one of the analytical methods differ significantly from the experimental data obtained here. The second analytical method provided data which approximate experimental results to within 30%. This is encouraging but it remains to be determined whether this method performs equally well for other source energies.

  19. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within experimental error with all data, except with the most recent value of C, which lies 10% lower.

  20. The effectiveness of learning material with Edmodo to enhance the level of student's probabilistic thinking

    NASA Astrophysics Data System (ADS)

    Sujadi, Imam; Kurniasih, Rini; Subanti, Sri

    2017-05-01

    In the era of 21st century learning, it needs to use technology as a learning media. Using Edmodo as a learning media is one of the options as the complement in learning process. However, this research focuses on the effectiveness of learning material using Edmodo. The aim of this research to determine whether the level of student's probabilistic thinking that use learning material with Edmodo is better than the existing learning materials (books) implemented to teach the subject of students grade 8th. This is quasi-experimental research using control group pretest and posttest. The population of this study was students grade 8 of SMPN 12 Surakarta and the sampling technique used random sampling. The analysis technique used to examine two independent sample using Kolmogorov-Smirnov test. The obtained value of test statistic is M=0.38, since 0.38 is the largest tabled critical one-tailed value M0.05=0.011. The result of the research is the learning materials with Edmodo more effectively to enhance the level of probabilistic thinking learners than the learning that use the existing learning materials (books). Therefore, learning material using Edmodo can be used in learning process. It can also be developed into another learning material through Edmodo.

  1. Terahertz Microfluidic Sensing Using a Parallel-plate Waveguide Sensor

    PubMed Central

    Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M.

    2012-01-01

    Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators 1,2. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides 3, asymmetric split-ring resonators 4, and photonic band gap structures integrated into parallel-plate waveguides 5. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide 6,7. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove 6,8. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index 9. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves 10. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index. PMID:22951593

  2. Superconducting Magnetometry for Cardiovascular Studies and AN Application of Adaptive Filtering.

    NASA Astrophysics Data System (ADS)

    Leifer, Mark Curtis

    Sensitive magnetic detectors utilizing Superconducting Quantum Interference Devices (SQUID's) have been developed and used for studying the cardiovascular system. The theory of magnetic detection of cardiac currents is discussed, and new experimental data supporting the validity of the theory is presented. Measurements on both humans and dogs, in both healthy and diseased states, are presented using the new technique, which is termed vector magnetocardiography. In the next section, a new type of superconducting magnetometer with a room temperature pickup is analyzed, and techniques for optimizing its sensitivity to low-frequency sub-microamp currents are presented. Performance of the actual device displays significantly improved sensitivity in this frequency range, and the ability to measure currents in intact, in vivo biological fibers. The final section reviews the theoretical operation of a digital self-optimizing filter, and presents a four-channel software implementation of the system. The application of the adaptive filter to enhancement of geomagnetic signals for earthquake forecasting is discussed, and the adaptive filter is shown to outperform existing techniques in suppressing noise from geomagnetic records.

  3. A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data

    NASA Astrophysics Data System (ADS)

    Bai, L.; Hong, W.; Cao, F.; Zhou, Y.

    2009-04-01

    In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.

  4. Vibrational Spectroscopy and Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  5. Tone-Based Command of Deep Space Probes using Ground Antennas

    NASA Technical Reports Server (NTRS)

    Bokulic, Robert S.; Jensen, J. Robert

    2008-01-01

    A document discusses a technique for enabling the reception of spacecraft commands at received signal levels as much as three orders of magnitude below those of current deep space systems. Tone-based commanding deals with the reception of commands that are sent in the form of precise frequency offsets using an open-loop receiver. The key elements of this technique are an ultrastable oscillator and open-loop receiver onboard the spacecraft, both of which are part of the existing New Horizons (Pluto flyby) communications system design. This enables possible flight experimentation for tone-based commanding during the long cruise of the spacecraft to Pluto. In this technique, it is also necessary to accurately remove Doppler shift from the uplink signal presented to the spacecraft. A signal processor in the spacecraft performs a discrete Fourier transform on the received signal to determine the frequency of the received signal. Due to the long-term drift in the oscillators and orbit prediction model, the system is likely to be implemented differentially, where changes in the uplink frequency convey the command information.

  6. Combined surface activated bonding using H-containing HCOOH vapor treatment for Cu/Adhesive hybrid bonding at below 200 °C

    NASA Astrophysics Data System (ADS)

    He, Ran; Fujino, Masahisa; Akaike, Masatake; Sakai, Taiji; Sakuyama, Seiki; Suga, Tadatomo

    2017-08-01

    Cu/adhesive hybrid bonding is an attractive approach to three-dimensional (3D) integration because it provides direct Cusbnd Cu vertical interconnects and high mechanical stability. However, Cu/adhesive hybrid bonding at below 200 °C is still challenging because of bonding temperature mismatch between Cusbnd Cu and polymer adhesives and lacking of effective adhesive-compatible Cu surface activation methods. In this paper, we investigate and demonstrate a ;Cu-first; hybrid bonding technique by using hydrogen(H)-containing formic acid (HCOOH) vapor prebonding surface treatment for the first time. In this technique, high-quality Cusbnd Cu bonding is obtained at 180-200 °C that is close to or even lower than the temperature of subsequent adhesive curing. We experimentally investigate the effects of the H-containing HCOOH vapor treatment for Cusbnd Cu bonding and cyclo-olefin polymer adhesive-adhesive bonding. This technique enables Cu/adhesive hybrid bonding at below 200 °C, promising smaller thermal stress, higher throughput, and lower cost comparing to the existing ;adhesive-first; hybrid bonding method.

  7. Experimental Verification of Bayesian Planet Detection Algorithms with a Shaped Pupil Coronagraph

    NASA Astrophysics Data System (ADS)

    Savransky, D.; Groff, T. D.; Kasdin, N. J.

    2010-10-01

    We evaluate the feasibility of applying Bayesian detection techniques to discovering exoplanets using high contrast laboratory data with simulated planetary signals. Background images are generated at the Princeton High Contrast Imaging Lab (HCIL), with a coronagraphic system utilizing a shaped pupil and two deformable mirrors (DMs) in series. Estimates of the electric field at the science camera are used to correct for quasi-static speckle and produce symmetric high contrast dark regions in the image plane. Planetary signals are added in software, or via a physical star-planet simulator which adds a second off-axis point source before the coronagraph with a beam recombiner, calibrated to a fixed contrast level relative to the source. We produce a variety of images, with varying integration times and simulated planetary brightness. We then apply automated detection algorithms such as matched filtering to attempt to extract the planetary signals. This allows us to evaluate the efficiency of these techniques in detecting planets in a high noise regime and eliminating false positives, as well as to test existing algorithms for calculating the required integration times for these techniques to be applicable.

  8. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  9. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  10. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    NASA Astrophysics Data System (ADS)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  11. Parametric Model Based On Imputations Techniques for Partly Interval Censored Data

    NASA Astrophysics Data System (ADS)

    Zyoud, Abdallah; Elfaki, F. A. M.; Hrairi, Meftah

    2017-12-01

    The term ‘survival analysis’ has been used in a broad sense to describe collection of statistical procedures for data analysis. In this case, outcome variable of interest is time until an event occurs where the time to failure of a specific experimental unit might be censored which can be right, left, interval, and Partly Interval Censored data (PIC). In this paper, analysis of this model was conducted based on parametric Cox model via PIC data. Moreover, several imputation techniques were used, which are: midpoint, left & right point, random, mean, and median. Maximum likelihood estimate was considered to obtain the estimated survival function. These estimations were then compared with the existing model, such as: Turnbull and Cox model based on clinical trial data (breast cancer data), for which it showed the validity of the proposed model. Result of data set indicated that the parametric of Cox model proved to be more superior in terms of estimation of survival functions, likelihood ratio tests, and their P-values. Moreover, based on imputation techniques; the midpoint, random, mean, and median showed better results with respect to the estimation of survival function.

  12. Virtual environment assessment for laser-based vision surface profiling

    NASA Astrophysics Data System (ADS)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  13. Measurement of diffusion coefficients of VOCs for building materials: review and development of a calculation procedure.

    PubMed

    Haghighat, F; Lee, C S; Ghaly, W S

    2002-06-01

    The measurement and prediction of building material emission rates have been the subject of intensive research over the past decade, resulting in the development of advanced sensory and chemical analysis measurement techniques as well as the development of analytical and numerical models. One of the important input parameters for these models is the diffusion coefficient. Several experimental techniques have been applied to estimate the diffusion coefficient. An extensive literature review of the techniques used to measure this coefficient was carried out, for building materials exposed to volatile organic compounds (VOC). This paper reviews these techniques; it also analyses the results and discusses the possible causes of difference in the reported data. It was noted that the discrepancy between the different results was mainly because of the assumptions made in and the techniques used to analyze the data. For a given technique, the results show that there can be a difference of up to 700% in the reported data. Moreover, the paper proposes what is referred to as the mass exchanger method, to calculate diffusion coefficients considering both diffusion and convection. The results obtained by this mass exchanger method were compared with those obtained by the existing method considering only diffusion. It was demonstrated that, for porous materials, the convection resistance could not be ignored when compared with the diffusion resistance.

  14. Visualization of the wake behind a sliding bubble

    NASA Astrophysics Data System (ADS)

    O'Reilly Meehan, R.; Grennan, K.; Davis, I.; Nolan, K.; Murray, D. B.

    2017-10-01

    In this work, Schlieren measurements are presented for the wake of an air bubble sliding under a heated, inclined surface in quiescent water to provide new insights into the intricate sliding bubble wake structure and the associated convective cooling process. This is a two-phase flow configuration that is pertinent to thermal management solutions, where the fundamental flow physics have yet to be fully described. In this work, we present an experimental apparatus that enables high-quality Schlieren images for different bubble sizes and measurement planes. By combining these visualizations with an advanced bubble tracking technique, we can simultaneously quantify the symbiotic relationship that exists between the sliding bubble dynamics and its associated wake. An unstable, dynamic wake structure is revealed, consisting of multiple hairpin-shaped vortex structures interacting within the macroscopic area affected by the bubble. As vorticity is generated in the near wake, the bubble shape is observed to recoil and rebound. This also occurs normal to the surface and is particularly noticeable for larger bubble sizes, with a periodic ejection of material from the near wake corresponding to significant shape changes. These findings, along with their implications from a thermal management perspective, provide information on the rich dynamics of this natural flow that cannot be obtained using alternate experimental techniques.

  15. Thirst-dependent risk preferences in monkeys identify a primitive form of wealth.

    PubMed

    Yamada, Hiroshi; Tymula, Agnieszka; Louie, Kenway; Glimcher, Paul W

    2013-09-24

    Experimental economic techniques have been widely used to evaluate human risk attitudes, but how these measured attitudes relate to overall individual wealth levels is unclear. Previous noneconomic work has addressed this uncertainty in animals by asking the following: (i) Do our close evolutionary relatives share both our risk attitudes and our degree of economic rationality? And (ii) how does the amount of food or water one holds (a nonpecuniary form of "wealth") alter risk attitudes in these choosers? Unfortunately, existing noneconomic studies have provided conflicting insights from an economic point of view. We therefore used standard techniques from human experimental economics to measure monkey risk attitudes for water rewards as a function of blood osmolality (an objective measure of how much water the subjects possess). Early in training, monkeys behaved randomly, consistently violating first-order stochastic dominance and monotonicity. After training, they behaved like human choosers--technically consistent in their choices and weakly risk averse (i.e., risk averse or risk neutral on average)--suggesting that well-trained monkeys can serve as a model for human choice behavior. As with attitudes about money in humans, these risk attitudes were strongly wealth dependent; as the animals became "poorer," risk aversion increased, a finding incompatible with some models of wealth and risk in human decision making.

  16. Analysis of thermal radiation in coal-fired furnaces

    NASA Astrophysics Data System (ADS)

    Miles, Jonathan J.; Hammaker, Robert G.; Madding, Robert P.; Sunderland, J. E.

    1997-04-01

    Many utilities throughout the United States have added infrared scanning to their arsenal of techniques for inspection and predictive maintenance programs. Commercial infrared scanners are not designed, however, to withstand the searing interiors of boilers, which can exceed 2500 degrees Fahrenheit. Two high-temperature lenses designed to withstand the hostile environment inside a boiler for extended periods of time were developed by the EPRI M&D Center, thus permitting real-time measurement of steam tube temperatures and subsequent analysis of tube condition, inspection of burners, and identification of hot spots. A study was conducted by Sunderland Engineering, Inc. and EPRI M&D in order to characterize the radiative interactions that affect infrared measurements made inside a commercial, coal- fired, water-tube boiler. A comprehensive literature search exploring the existing record of results pertaining to analytical and experimental determination of radiative properties of coal-combustion byproducts was performed. An experimental component intended to provide data for characterization of the optical properties of hot combustion byproducts inside a coal-fired furnace was carried out. The results of the study indicate that hot gases, carbon particles, and fly ash, which together compose the medium inside a boiler, affect to varying degrees the transport of infrared radiation across a furnace. Techniques for improved infrared measurement across a coal-fired furnace are under development.

  17. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  18. Estimation of critical supersaturation solubility ratio for predicting diameters of dry particles prepared by air-jet atomization of solutions.

    PubMed

    Sapra, Mahak; Ugrani, Suraj; Mayya, Y S; Venkataraman, Chandra

    2017-08-15

    Air-jet atomization of solution into droplets followed by controlled drying is increasingly being used for producing nanoparticles for drug delivery applications. Nanoparticle size is an important parameter that influences the stability, bioavailability and efficacy of the drug. In air-jet atomization technique, dry particle diameters are generally predicted by using solute diffusion models involving the key concept of critical supersaturation solubility ratio (Sc) that dictates the point of crust formation within the droplet. As no reliable method exists to determine this quantity, the present study proposes an aerosol based method to determine Sc for a given solute-solvent system and process conditions. The feasibility has been demonstrated by conducting experiments for stearic acid in ethanol and chloroform as well as for anti-tubercular drug isoniazid in ethanol. Sc values were estimated by combining the experimentally observed particle and droplet diameters with simulations from a solute diffusion model. Important findings of the study were: (i) the measured droplet diameters systematically decreased with increasing precursor concentration (ii) estimated Sc values were 9.3±0.7, 13.3±2.4 and 18±0.8 for stearic acid in chloroform, stearic acid and isoniazid in ethanol respectively (iii) experimental results pointed at the correct interfacial tension pre-factor to be used in theoretical estimates of Sc and (iv) results showed a consistent evidence for the existence of induction time delay between the attainment of theoretical Sc and crust formation. The proposed approach has been validated by testing its predictive power for a challenge concentration against experimental data. The study not only advances spray-drying technique by establishing an aerosol based approach to determine Sc, but also throws considerable light on the interfacial processes responsible for solid-phase formation in a rapidly supersaturating system. Until satisfactory theoretical formulae for predicting CSS are developed, the present approach appears to offer the best option for engineering nanoparticle size through solute diffusion models. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Internal and surface phenomena in metal combustion

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.

  20. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    PubMed

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new potentially true human protein complexes were suggested as candidates for further validation using experimental techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  2. Software platform for simulation of a prototype proton CT scanner.

    PubMed

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  3. Presentation and Impact of Experimental Techniques in Chemistry

    ERIC Educational Resources Information Center

    Sojka, Zbigniew; Che, Michel

    2008-01-01

    Laboratory and practical courses, where students become familiar with experimental techniques and learn to interpret data and relate them to appropriate theory, play a vital role in chemical education. In the large panoply of currently available techniques, it is difficult to find a rational and easy way to classify the techniques in relation to…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z.

    Physicists are often expected to have a solid grounding in experimental design and statistical analysis, sometimes filling in when biostatisticians or other experts are not available for consultation. Unfortunately, graduate education on these topics is seldom emphasized and few opportunities for continuing education exist. Clinical physicists incorporate new technology and methods into their practice based on published literature. A poor understanding of experimental design and analysis could Result in inappropriate use of new techniques. Clinical physicists also improve current practice through quality initiatives that require sound experimental design and analysis. Academic physicists with a poor understanding of design and analysismore » may produce ambiguous (or misleading) results. This can Result in unnecessary rewrites, publication rejection, and experimental redesign (wasting time, money, and effort). This symposium will provide a practical review of error and uncertainty, common study designs, and statistical tests. Instruction will primarily focus on practical implementation through examples and answer questions such as: where would you typically apply the test/design and where is the test/design typically misapplied (i.e., common pitfalls)? An analysis of error and uncertainty will also be explored using biological studies and associated modeling as a specific use case. Learning Objectives: Understand common experimental testing and clinical trial designs, what questions they can answer, and how to interpret the results Determine where specific statistical tests are appropriate and identify common pitfalls Understand the how uncertainty and error are addressed in biological testing and associated biological modeling.« less

  5. Aluminum/hydrocarbon gel propellants: An experimental and theoretical investigation of secondary atomization and predicted rocket engine performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn Christopher

    1997-12-01

    Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.

  6. What We Have Learned About the Existing Trace Element Partitioning data During the Population Phase of traceDs

    NASA Astrophysics Data System (ADS)

    Nielsen, R. L.; Ghiorso, M. S.; Trischman, T.

    2015-12-01

    The database traceDs is designed to provide a transparent and accessible resource of experimental partitioning data. It now includes ~ 90% of all the experimental trace element partitioning data (~4000 experiments) produced over the past 45 years, and is accessible through a web based interface (using the portal lepr.ofm-research.org). We set a minimum standard for inclusion, with the threshold criteria being the inclusion of: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without knowledge of composition of the phases, and the temperature and pressure of formation/equilibration. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. In the process of populating the database, we have learned a number of things about the existing published experimental partitioning data. Most important are: ~ 20% of the papers do not satisfy one or more of the threshold criteria. The standard format for presenting data is the average. This was developed as the standard during the time where there were space constraints for publication in spite of fact that all the information can now be published as electronic supplements. The uncertainties that are published with the compositional data are often not adequately explained (e.g. 1 or 2 sigma, standard deviation of the average, etc.). We propose a new set of publication standards for experimental data that include the minimum criteria described above, the publication of all analyses with error based on peak count rates and background, plus information on the structural state of the mineral (e.g. orthopyroxene vs. pigeonite).

  7. Measuring saliency in images: which experimental parameters for the assessment of image quality?

    NASA Astrophysics Data System (ADS)

    Fredembach, Clement; Woolfe, Geoff; Wang, Jue

    2012-01-01

    Predicting which areas of an image are perceptually salient or attended to has become an essential pre-requisite of many computer vision applications. Because observers are notoriously unreliable in remembering where they look a posteriori, and because asking where they look while observing the image necessarily in uences the results, ground truth about saliency and visual attention has to be obtained by gaze tracking methods. From the early work of Buswell and Yarbus to the most recent forays in computer vision there has been, perhaps unfortunately, little agreement on standardisation of eye tracking protocols for measuring visual attention. As the number of parameters involved in experimental methodology can be large, their individual in uence on the nal results is not well understood. Consequently, the performance of saliency algorithms, when assessed by correlation techniques, varies greatly across the literature. In this paper, we concern ourselves with the problem of image quality. Specically: where people look when judging images. We show that in this case, the performance gap between existing saliency prediction algorithms and experimental results is signicantly larger than otherwise reported. To understand this discrepancy, we rst devise an experimental protocol that is adapted to the task of measuring image quality. In a second step, we compare our experimental parameters with the ones of existing methods and show that a lot of the variability can directly be ascribed to these dierences in experimental methodology and choice of variables. In particular, the choice of a task, e.g., judging image quality vs. free viewing, has a great impact on measured saliency maps, suggesting that even for a mildly cognitive task, ground truth obtained by free viewing does not adapt well. Careful analysis of the prior art also reveals that systematic bias can occur depending on instrumental calibration and the choice of test images. We conclude this work by proposing a set of parameters, tasks and images that can be used to compare the various saliency prediction methods in a manner that is meaningful for image quality assessment.

  8. Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin

    2017-01-02

    In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less

  9. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  10. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    PubMed

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  11. Critical overview of all available animal models for abdominal wall hernia research.

    PubMed

    Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D

    2017-10-01

    Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.

  12. EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments.

    PubMed

    Zhou, Bailing; Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu; Yang, Yuedong; Zhou, Yaoqi; Wang, Jihua

    2018-01-04

    Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments

    PubMed Central

    Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu

    2018-01-01

    Abstract Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. PMID:28985416

  14. Comparison of fresh fuel experimental measurements to MCNPX calculations using self-interrogation neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Charlton, William S.; Menlove, Howard O.; Swinhoe, Martyn T.

    2012-07-01

    A new non-destructive assay technique called Self-Interrogation Neutron Resonance Densitometry (SINRD) is currently being developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for Light Water Reactor (LWR) fuel assemblies. SINRD consists of four 235U fission chambers (FCs): bare FC, boron carbide shielded FC, Gd covered FC, and Cd covered FC. Ratios of different FCs are used to determine the amount of resonance absorption from 235U in the fuel assembly. The sensitivity of this technique is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. In this work, experimental measurements were performed in air with SINRD using a reference Pressurized Water Reactor (PWR) 15×15 low enriched uranium (LEU) fresh fuel assembly at LANL. The purpose of this experiment was to assess the following capabilities of SINRD: (1) ability to measure the effective 235U enrichment of the PWR fresh LEU fuel assembly and (2) sensitivity and penetrability to the removal of fuel pins from an assembly. These measurements were compared to Monte Carlo N-Particle eXtended transport code (MCNPX) simulations to verify the accuracy of the MCNPX model of SINRD. The reproducibility of experimental measurements via MCNPX simulations is essential to validating the results and conclusions obtained from the simulations of SINRD for LWR spent fuel assemblies.

  15. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

    NASA Astrophysics Data System (ADS)

    Chun, Chan; Haohua, Wen; Lanyuan, Lu; Jun, Fan

    2016-01-01

    Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins. Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).

  16. Using experimental modal analysis to assess the behaviour of timber elements

    NASA Astrophysics Data System (ADS)

    Kouroussis, Georges; Fekih, Lassaad Ben; Descamps, Thierry

    2018-03-01

    Timber frameworks are one of the most important and widespread types of structures. Their configurations and joints are usually complex and require a high level of craftsmanship to assemble. In the field of restoration, a good understanding of the structural behaviour is necessary and is often based on assessment techniques dedicated to wood characterisation. This paper presents the use of experimental modal analysis for finite element updating. To do this, several timber beams in a free supported condition were analysed in order to extract their bending natural characteristics (frequency, damping and mode shapes). Corresponding ABAQUS finite element models were derived which included the effects of local defects (holes, cracks and wood nodes), moisture and structural decay. To achieve the modal updating, additional simulations were performed in order to study the sensitivity of the mechanical parameters. With the intent to estimate their mechanical properties, a procedure of modal updating was carried out in MatLab with a Python script. This was created to extract the modal information from the ABAQUS modal analysis results to be compared with the experimental results. The updating was based on a minimum of unconstrained multivariable function using a derivative-free method. The objective function was selected from the conventional comparison tools (absolute or relative frequency difference, and/or modal assurance criterion). This testing technique was used to determine the dynamic mechanical properties of timber beams, such as the anisotropic Young's Moduli and damping ratio. To verify the modulus, a series of static 4-point bending tests and STS04 classifications were conducted. The results also revealed that local defects have a negligible influence on natural frequencies. The results demonstrate that this assessment tool offers an effective method to obtain the mechanical properties of timber elements, especially when on-site and non-destructive techniques are needed, for example when retrofitting an existing structure.

  17. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  18. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique

    NASA Astrophysics Data System (ADS)

    Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li

    2018-05-01

    Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.

  19. Can captive orangutans (Pongo pygmaeus abelii) be coaxed into cumulative build-up of techniques?

    PubMed

    Lehner, Stephan R; Burkart, Judith M; Schaik, Carel P van

    2011-11-01

    While striking cultural variation in behavior from one site to another has been described in chimpanzees and orangutans, cumulative culture might be unique to humans. Captive chimpanzees were recently found to be rather conservative, sticking to the technique they had mastered, even after more effective alternatives were demonstrated. Behavioral flexibility in problem solving, in the sense of acquiring new solutions after having learned another one earlier, is a vital prerequisite for cumulative build-up of techniques. Here, we experimentally investigate whether captive orangutans show such flexibility, and if so, whether they show techniques that cumulatively build up (ratchet) on previous ones after conditions of the task are changed. We provided nine Sumatran orangutans (Pongo pygmaeus abelii) with two types of transparent tubes partly filled with syrup, along with potential tools such as sticks, twigs, wood wool and paper. In the first phase, the orangutans could reach inside the tubes with their hands (Regular Condition), but in the following phase, tubes had been made too narrow for their hands to fit in (Restricted Condition 1), or in addition the setup lacked their favorite materials (Restricted Condition 2). The orangutans showed high behavioral flexibility, applying nine different techniques under the regular condition in total. Individuals abandoned preferred techniques and switched to different techniques under restricted conditions when this was advantageous. We show for two of these techniques how they cumulatively built up on earlier ones. This suggests that the near-absence of cumulative culture in wild orangutans is not due to a lack of flexibility when existing solutions to tasks are made impossible.

  20. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

  1. Improved near-field characteristics of phased arrays for assessing concrete and cementitious materials

    NASA Astrophysics Data System (ADS)

    Wooh, Shi-Chang; Azar, Lawrence

    1999-01-01

    The degradation of civil infrastructure has placed a focus on effective nondestructive evaluation techniques to correctly assess the condition of existing concrete structures. Conventional high frequency ultrasonic response are severely affected by scattering and material attenuation, resulting in weak and confusing signal returns. Therefore, low frequency ultrasonic transducers, which avoid this problem of wave attenuation, are commonly used for concrete with limited capabilities. The focus of this research is to ascertain some benefits and limitations of a low frequency ultrasonic phased array transducer. In this paper, we investigate a novel low-frequency ultrasonic phased array and the results of experimental feasibility test for practical condition assessment of concrete structures are reported.

  2. Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)

    2002-01-01

    We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.

  3. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes

    DOE PAGES

    Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.; ...

    2018-02-09

    Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

  4. Streamlined Genome Sequence Compression using Distributed Source Coding

    PubMed Central

    Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel

    2014-01-01

    We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552

  5. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.

    Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

  6. The causal relation between turbulent particle flux and density gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C.

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local andmore » instantaneous, as is sometimes assumed.« less

  7. Aerodynamic Design of Axial-flow Compressors. Volume III

    NASA Technical Reports Server (NTRS)

    Johnson, Irving A; Bullock, Robert O; Graham, Robert W; Costilow, Eleanor L; Huppert, Merle C; Benser, William A; Herzig, Howard Z; Hansen, Arthur G; Jackson, Robert J; Yohner, Peggy L; hide

    1956-01-01

    Chapters XI to XIII concern the unsteady compressor operation arising when compressor blade elements stall. The fields of compressor stall and surge are reviewed in Chapters XI and XII, respectively. The part-speed operating problem in high-pressure-ratio multistage axial-flow compressors is analyzed in Chapter XIII. Chapter XIV summarizes design methods and theories that extend beyond the simplified two-dimensional approach used previously in the report. Chapter XV extends this three-dimensional treatment by summarizing the literature on secondary flows and boundary layer effects. Charts for determining the effects of errors in design parameters and experimental measurements on compressor performance are given in Chapters XVI. Chapter XVII reviews existing literature on compressor and turbine matching techniques.

  8. Macromolecular assemblies in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.

    1990-01-01

    The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.

  9. Identifying and quantifying interactions in a laboratory swarm

    NASA Astrophysics Data System (ADS)

    Puckett, James; Kelley, Douglas; Ouellette, Nicholas

    2013-03-01

    Emergent collective behavior, such as in flocks of birds or swarms of bees, is exhibited throughout the animal kingdom. Many models have been developed to describe swarming and flocking behavior using systems of self-propelled particles obeying simple rules or interacting via various potentials. However, due to experimental difficulties and constraints, little empirical data exists for characterizing the exact form of the biological interactions. We study laboratory swarms of flying Chironomus riparius midges, using stereoimaging and particle tracking techniques to record three-dimensional trajectories for all the individuals in the swarm. We describe methods to identify and quantify interactions by examining these trajectories, and report results on interaction magnitude, frequency, and mutuality.

  10. Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemarie, Gabriel; Delande, Dominique; Chabe, Julien

    Using a cold atomic gas exposed to laser pulses - a realization of the chaotic quasiperiodic kicked rotor with three incommensurate frequencies - we study experimentally and theoretically the Anderson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wave function and the use of finite-size scaling techniques make it possible to unambiguously demonstrate the existence of a quantum phase transition and to measure its critical exponents. By taking proper account of systematic corrections to one-parameter scaling, we show the universality of the critical exponent {nu}=1.59{+-}0.01, which is found to be equal to the one previously computed for themore » Anderson model.« less

  11. Bifurcation analysis of nephron pressure and flow regulation

    NASA Astrophysics Data System (ADS)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    1996-09-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood pressure. The numerical analyses are supported by existing experimental results on anesthetized rats.

  12. Steel bridge retrofit evaluation

    NASA Astrophysics Data System (ADS)

    Prine, David W.

    1998-03-01

    The development of a retrofit design aimed at retarding or eliminating fatigue crack growth in a large bridge can be a very difficult and expensive procedure. Analytical techniques frequently do not provide sufficient accuracy when applied to complex structural details. The Infrastructure Technology Institute (ITI) of Northwestern University, under contract to the California Department of Transportation (Caltrans), recently applied experimental state-of-the-art NDE technology to the Interstate 80 bridge over the Sacramento River near Sacramento, California (Bryte Bend). Acoustic emission monitoring was applied in conjunction with strain gage monitoring to aid in characterizing the retrofits' effect on existing active fatigue cracks. The combined test results clearly showed that one retrofit design was superior to the other.

  13. Experimental evidence of phase coherence of magnetohydrodynamic turbulence in the solar wind: GEOTAIL satellite data.

    PubMed

    Koga, D; Chian, A C-L; Hada, T; Rempel, E L

    2008-02-13

    Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress.

  14. 3D printing cybersecurity: detecting and preventing attacks that seek to weaken a printed object by changing fill level

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2017-06-01

    Prior work by Zeltmann, et al. has demonstrated the impact of small defects and other irregularities on the structural integrity of 3D printed objects. It posited that such defects could be introduced intentionally. The current work looks at the impact of changing the fill level on object structural integrity. It considers whether the existence of an appropriate level of fill can be determined through visible light imagery-based assessment of a 3D printed object. A technique for assessing the quality and sufficiency of quantity of 3D printed fill material is presented. It is assessed experimentally and results are presented and analyzed.

  15. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  16. Issues and opportunities in exotic hadrons

    DOE PAGES

    Briceno, Raul A.; Cohen, Thomas D.; Coito, S.; ...

    2016-04-01

    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. Consequently, it is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimentalmore » and theoretical issues concerning heavy exotic hadrons is presented.« less

  17. Application of the Analogy Between Water Flow with a Free Surface and Two-dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Bitterly, Jack G

    1947-01-01

    The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  18. Application of the Analogy Between Water Flow with a Free Surface and Two-Dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Butterly, Jack G

    1947-01-01

    The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  19. Controlling sound radiation through an opening with secondary loudspeakers along its boundaries.

    PubMed

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun

    2017-10-17

    We propose a virtual sound barrier system that blocks sound transmission through openings without affecting access, light and air circulation. The proposed system applies active control technique to cancel sound transmission with a double layered loudspeaker array at the edge of the opening. Unlike traditional transparent glass windows, recently invented double-glazed ventilation windows and planar active sound barriers or any other metamaterials designed to reduce sound transmission, secondary loudspeakers are put only along the boundaries of the opening, which provides the possibility to make it invisible. Simulation and experimental results demonstrate its feasibility for broadband sound control, especially for low frequency sound which is usually hard to attenuate with existing methods.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennink, Ryan S.; Ferragut, Erik M.; Humble, Travis S.

    Modeling and simulation are essential for predicting and verifying the behavior of fabricated quantum circuits, but existing simulation methods are either impractically costly or require an unrealistic simplification of error processes. In this paper, we present a method of simulating noisy Clifford circuits that is both accurate and practical in experimentally relevant regimes. In particular, the cost is weakly exponential in the size and the degree of non-Cliffordness of the circuit. Our approach is based on the construction of exact representations of quantum channels as quasiprobability distributions over stabilizer operations, which are then sampled, simulated, and weighted to yield unbiasedmore » statistical estimates of circuit outputs and other observables. As a demonstration of these techniques, we simulate a Steane [[7,1,3

  1. Microwave imaging of spinning object using orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang

    2017-09-01

    The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.

  2. Efficient clustering aggregation based on data fragments.

    PubMed

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  3. Disease and infection in the Tetraonidae

    USGS Publications Warehouse

    Herman, C.M.

    1963-01-01

    Disease is one of many factors advanced to explain the fluctuations of grouse populations, but no profound study of natural disease losses in Tetraonidae exists. The literature contains frequent references to THE grouse disease, although many potential pathogens are listed in numerous surveys and limited investigations, and the relevant data indicate that no single etiologic agent is universally responsible for disease in grouse. Few experimental infections or related studies on parasite biology have been attempted. Well-trained personnel and specialized facilities are required for research and analysis (1) to develop new methods of interpretation to be used with existing census techniques, (2) to conduct intensive studies of ecological factors of host and habitat, and (3) to establish base lines for recognition of deviations from the norm. Disease in wildlife can be controlled only through management procedures based on information concerning the biology of pathogens, hosts, and environments. It cannot be studied as a separate entity if its impact on survival or population fluctuations of grouse is to be correctly assessed.

  4. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III; Castellino, Craig

    1989-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselages lines with panels alternately tuned to frequencies above and below the frequency to be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cut off and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations. This program summarizes the work carried out at Duke University during the third semester of a contract supported by the Structural Acoustics Branch at NASA Langley Research Center.

  5. A general strategy to solve the phase problem in RNA crystallography

    PubMed Central

    Keel, Amanda Y.; Rambo, Robert P.; Batey, Robert T.; Kieft, Jeffrey S.

    2007-01-01

    SUMMARY X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding a heavy-atom derivative to obtain high-quality experimental phase information. Existing techniques have drawbacks, severely limiting the rate at which important new structures are solved. To address this need, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G·U wobble pair cation binding motif we have identified an optimal version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This “directed soaking” strategy can be integrated fully into existing RNA and crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kα radiation. The success of this method has been proven in that it has already been used to solve several novel crystal structures. PMID:17637337

  6. Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images

    PubMed Central

    Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki

    2015-01-01

    In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures. PMID:26007744

  7. Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.

    PubMed

    Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki

    2015-05-22

    In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.

  8. Characterization of an Electroanalytical Instrument Suite Searching for Water and Life on Mars

    NASA Technical Reports Server (NTRS)

    Bostic, Heidi E.

    2005-01-01

    Seeking the existence of life on other planets is an essential part of NASA's research. Our terrestrial experience suggests that water is a mandatory resource for life to exist and thrive. However, instruments capable of detecting water at the levels likely to be present on Mars are lacking. This project tests the possibility of using electrical measurements of soils, at variable frequencies, as a water detector. Generally, the electrical resistance of soils can be described as a combination of resistance and capacitance, which can be described by a vector including a magnitude and (phase) angle. By specifically studying the impedance measurements and phase angles of different types of soil, spiked with varying concentrations of dissolved ions, measurements can be taken to provide an idea of the behavior of dry Martian soils. The presentation will describe the experimental technique, apparatus and procedures, as well as results conducted to calibrate the instrument and to establish sample preparation protocols.

  9. Range pattern matching with layer operations and continuous refinements

    NASA Astrophysics Data System (ADS)

    Tseng, I.-Lun; Lee, Zhao Chuan; Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Ong, Jonathan Yoong Seang

    2018-03-01

    At advanced and mainstream process nodes (e.g., 7nm, 14nm, 22nm, and 55nm process nodes), lithography hotspots can exist in layouts of integrated circuits even if the layouts pass design rule checking (DRC). Existence of lithography hotspots in a layout can cause manufacturability issues, which can result in yield losses of manufactured integrated circuits. In order to detect lithography hotspots existing in physical layouts, pattern matching (PM) algorithms and commercial PM tools have been developed. However, there are still needs to use DRC tools to perform PM operations. In this paper, we propose a PM synthesis methodology, which uses a continuous refinement technique, for the automatic synthesis of a given lithography hotspot pattern into a DRC deck, which consists of layer operation commands, so that an equivalent PM operation can be performed by executing the synthesized deck with the use of a DRC tool. Note that the proposed methodology can deal with not only exact patterns, but also range patterns. Also, lithography hotspot patterns containing multiple layers can be processed. Experimental results show that the proposed methodology can accurately and efficiently detect lithography hotspots in physical layouts.

  10. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  11. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    NASA Technical Reports Server (NTRS)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  12. Catheter port cleansing techniques and the entry of povidone-iodine into the epidural space.

    PubMed

    Paice, J A; DuPen, A; Schwertz, D

    1999-04-01

    To determine whether three epidural catheter port cleansing techniques used to apply a povidone-iodine solution differed with respect to the introduction of this solution through the epidural catheter. Experimental. Laboratory. Five DuPen (Davol, Cranston, RI) epidural catheters. Five DuPen epidural catheters each were cleansed twice with (a) a commercially available 10% povidone-iodine swabstick, (b) a commercially available pledget impregnated with 10% povidone-iodine, and (c) a gauze pad saturated with 10% povidone-iodine. The order of cleansing was randomized. Each solution was used to clean the port for 30 seconds, and the port was allowed to dry for 30 seconds, similar to the technique used in the clinical setting. After cleaning the catheter port, water was injected through the catheter, and the solution from the tip of the catheter was analyzed using absorbance spectrophotometry. Cleansing techniques, presence of povidone-iodine in catheter. A statistically significant difference existed between the three cleansing techniques, with the pledget yielding the lowest values of povidone-iodine contamination of the epidural catheter (Freidman test, p = 0.02). Use of pledgets allowed the least amount of povidone-iodine to enter the epidural catheter as compared with the swabsticks or gauze pads. Commercially available pledgets used to cleanse catheter injection ports may limit the introduction of 10% povidone-iodine into the epidural or intrathecal space.

  13. Comparison of embedded, surface bonded and reusable piezoelectric transducers for monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Sabet Divsholi, Bahador; Yang, Yaowen

    2011-04-01

    Piezoelectric lead zirconate titanate (PZT) transducers have been used for health monitoring of various structures over the last two decades. There are three methods to install the PZT transducers to structures, namely, surface bonded, reusable setup and embedded PZTs. The embedded PZTs and reusable PZT setups can be used for concrete structures during construction. On the other hand, the surface bonded PZTs can be installed on the existing structures. In this study, the applicability and limitations of each installation method are experimentally studied. A real size concrete structure is cast, where the surface bonded, reusable setup and embedded PZTs are installed. Monitoring of concrete hydration and structural damage is conducted by the electromechanical impedance (EMI), wave propagation and wave transmission techniques. It is observed that embedded PZTs are suitable for monitoring the hydration of concrete by using both the EMI and the wave transmission techniques. For damage detection in concrete structures, the embedded PZTs can be employed using the wave transmission technique, but they are not suitable for the EMI technique. It is also found that the surface bonded PZTs are sensitive to damage when using both the EMI and wave propagation techniques. The reusable PZT setups are able to monitor the hydration of concrete. However they are less sensitive in damage detection in comparison to the surface bonded PZTs.

  14. Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium

    NASA Astrophysics Data System (ADS)

    Pérez, Martín; Blostein, Juan Jerónimo; Bessia, Fabricio Alcalde; Tartaglione, Aureliano; Sidelnik, Iván; Haro, Miguel Sofo; Suárez, Sergio; Gimenez, Melisa Lucía; Berisso, Mariano Gómez; Lipovetzky, Jose

    2018-06-01

    In this work we will introduce a novel low cost position sensitive thermal neutron detection technique, based on a Commercial Off The Shelf CMOS image sensor covered with a Gadolinium containing conversion layer. The feasibility of the neutron detection technique implemented in this work has been experimentally demonstrated. A thermal neutron detection efficiency of 11.3% has been experimentally obtained with a conversion layer of 11.6 μm. It was experimentally verified that the thermal neutron detection efficiency of this technique is independent on the intensity of the incident thermal neutron flux, which was confirmed for conversion layers of different thicknesses. Based on the experimental results, a spatial resolution better than 25 μm is expected. This spatial resolution makes the proposed technique specially useful for neutron beam characterization, neutron beam dosimetry, high resolution neutron imaging, and several neutron scattering techniques.

  15. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun

    2018-03-01

    Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.

  16. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Alpha Collaboration; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-04-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5% worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  17. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime. PMID:23653197

  18. Investigating the effect of cardiac oscillations and deadspace gas mixing during apnea using computer simulation.

    PubMed

    Laviola, Marianna; Das, Anup; Chikhani, Marc; Bates, Declan G; Hardman, Jonathan G

    2017-07-01

    Gaseous mixing in the anatomical deadspace with stimulation of respiratory ventilation through cardiogenic oscillations is an important physiological mechanism at the onset of apnea, which has been credited with various beneficial effects, e.g. reduction of hypercapnia during the use of low flow ventilation techniques. In this paper, a novel method is proposed to investigate the effect of these mechanisms in silico. An existing computational model of cardio-pulmonary physiology is extended to include the apneic state, gas mixing within the anatomical deadspace, insufflation into the trachea and cardiogenic oscillations. The new model is validated against data published in an experimental animal (dog) study that reported an increase in arterial partial pressure of carbon dioxide (PaCO 2 ) during apnea. Computational simulations confirm that the model outputs accurately reproduce the available experimental data. This new model can be used to investigate the physiological mechanisms underlying clearance of carbon dioxide during apnea, and hence to develop more effective ventilation strategies for apneic patients.

  19. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  20. A full three dimensional Navier-Stokes numerical simulation of flow field inside a power plant Kaplan turbine using some model test turbine hill chart points

    NASA Astrophysics Data System (ADS)

    Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.

    2012-06-01

    A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.

  1. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.

  2. Multiscale Analysis of a Collapsible Respiratory Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir; Bell, E. David; Swarts, J. Douglas

    2006-11-01

    The Eustachian tube (ET) is a collapsible respiratory airway that connects the nasopharynx with the middle ear (ME). The ET normally exists in a collapsed state and must be periodically opened to maintain a healthy and sterile ME. Although the inability to open the ET (i.e. ET dysfunction) is the primary etiology responsible for several common ME diseases (i.e. Otitis Media), the mechanisms responsible for ET dysfunction are not well established. To investigate these mechanisms, we developed a multi-scale model of airflow in the ET and correlated model results with experimental data obtained in healthy and diseased subjects. The computational models utilized finite-element methods to simulate fluid-structure interactions and molecular dynamics techniques to quantify the adhesive properties of mucus glycoproteins. Results indicate that airflow in the ET is highly sensitive to both the dynamics of muscle contraction and molecular adhesion forces within the ET lumen. In addition, correlation of model results with experimental data obtained in diseased subjects was used to identify the biomechanical mechanisms responsible for ET dysfunction.

  3. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.

    1990-01-01

    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  4. Description and first application of a new technique to measure the gravitational mass of antihydrogen.

    PubMed

    Charman, A E; Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  5. Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    NASA Astrophysics Data System (ADS)

    Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken

    2007-07-01

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  6. Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San

    1989-01-01

    An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.

  7. Crack growth induced by thermal-mechanical loading

    NASA Astrophysics Data System (ADS)

    John, R.; Hartman, G. A.; Gallagher, J. P.

    1992-06-01

    Advanced aerospace structures are often subjected to combined thermal and mechanical loads. The fracture-mechanics behavior of the structures may be altered by the thermal state existing around the crack. Hence, design of critical structural elements requires the knowledge of stress-intensity factors under both thermal and mechanical loads. This paper describes the development of an experimental technique to verify the thermal-stress-intensity factor generated by a temperature gradient around the crack. Thin plate specimens of a model material (AISI-SAE 1095 steel) were used for the heat transfer and thermal-mechanical fracture tests. Rapid thermal loading was achieved using high-intensity focused infrared spot heaters. These heaters were also used to generate controlled temperature rates for heat-transfer verification tests. The experimental results indicate that thermal loads can generate stress-intensity factors large enough to induce crack growth. The proposed thermal-stress-intensity factors appear to have the same effect as the conventional mechanical-stress-intensity factors with respect to fracture.

  8. Qubit-loss-free fusion of atomic W states via photonic detection

    NASA Astrophysics Data System (ADS)

    Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang

    2018-06-01

    In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.

  9. Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives.

    PubMed

    Rimboud, M; Pocaznoi, D; Erable, B; Bergel, A

    2014-08-21

    Over about the last ten years, microbial anodes have been the subject of a huge number of fundamental studies dealing with an increasing variety of possible application domains. Out of several thousands of studies, only a minority have used 3-electrode set-ups to ensure well-controlled electroanalysis conditions. The present article reviews these electroanalytical studies with the admitted objective of promoting this type of investigation. A first recall of basics emphasises the advantages of the 3-electrode set-up compared to microbial fuel cell devices if analytical objectives are pursued. Experimental precautions specifically relating to microbial anodes are then noted and the existing experimental set-ups and procedures are reviewed. The state-of-the-art is described through three aspects: the effect of the polarisation potential on the characteristics of microbial anodes, the electroanalytical techniques, and the electrode. We hope that the final outlook will encourage researchers working with microbial anodes to strengthen their engagement along the multiple exciting paths of electroanalysis.

  10. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  11. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  12. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    NASA Astrophysics Data System (ADS)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral information. The IRAC design is validated by modeling the experiment in Fluent which shows that the IRAC should be capable of measuring absorption coefficients within 10%. Chapter 4 contains a parallel effort to experimental techniques, whereby information on absorption in salts is pursued using the Density Functional Theory code VASP. Photon-electron interactions are studied in pure salts such as LiF and are shown to be broadly transparent. Transition metal Fluoride salts such as KF-ZrF4 are shown to be broadly opaque. The addition of small amounts of transition metal impurities is studied by insertion of Chromium into the salt mixtures, which causes otherwise transparent salts to exhibit absorption coefficients significant to heat transfer. The spectral absorption coefficient for FLiNaK with Chromium is presented as is the average absorption coefficient as a function of impurity concentration. Chapter 5 discusses experimental efforts undertaken at The Ohio State University. Challenges with the constructed experimental apparatus are discussed and suggestions for future improvement on the technique are included. Finally, Chapter 6 contains broad conclusions pertaining to radiative transfer in advanced reactors.

  13. Applied Mycology Can Contribute to Sustainable Rural Livelihoods: Building upon China's Matsutake Management Initiatives.

    PubMed

    Brown, Madeline; McLellan, Timothy; Li, Huili; Karunarathna, Samantha C

    2018-02-01

    Matsutake mushrooms are an important part of rural livelihoods and forest ecosystems across large parts of China, as well as elsewhere in East Asia, Northern Europe and North America. Mushroom harvesters have developed sophisticated understandings of matsutake ecology and production, and are applying this knowledge in various innovative management strategies. At the same time, Chinese government agencies and scientists are promoting matsutake-based livelihoods to support development and conservation goals. We collaborated with matsutake harvesters in one Yunnan community to carry out a systematic experiment on a popular shiro-level management technique: covering matsutake shiros with either plastic or leaf litter. Our experimental results suggest that although leaf litter coverings are superior to plastic coverings, shiros that are left uncovered may produce the highest yields. Complementing our experimental work is a multi-sited household survey of existing matsutake management practices across Yunnan, which shows that a high proportion of harvesters are already engaged in a broad range of potentially beneficial management strategies. Though both findings highlight limitations of previous initiatives led by government and research actors in China, this existing body of work is an important foundation and opportunity for developing applied mycology in the region. In and beyond China, working with communities to develop site-specific management strategies through rigorous and participatory scientific inquiry can provide salient benefits for both scientists and resource users.

  14. Applied Mycology Can Contribute to Sustainable Rural Livelihoods: Building upon China's Matsutake Management Initiatives

    NASA Astrophysics Data System (ADS)

    Brown, Madeline; McLellan, Timothy; Li, Huili; Karunarathna, Samantha C.

    2018-02-01

    Matsutake mushrooms are an important part of rural livelihoods and forest ecosystems across large parts of China, as well as elsewhere in East Asia, Northern Europe and North America. Mushroom harvesters have developed sophisticated understandings of matsutake ecology and production, and are applying this knowledge in various innovative management strategies. At the same time, Chinese government agencies and scientists are promoting matsutake-based livelihoods to support development and conservation goals. We collaborated with matsutake harvesters in one Yunnan community to carry out a systematic experiment on a popular shiro-level management technique: covering matsutake shiros with either plastic or leaf litter. Our experimental results suggest that although leaf litter coverings are superior to plastic coverings, shiros that are left uncovered may produce the highest yields. Complementing our experimental work is a multi-sited household survey of existing matsutake management practices across Yunnan, which shows that a high proportion of harvesters are already engaged in a broad range of potentially beneficial management strategies. Though both findings highlight limitations of previous initiatives led by government and research actors in China, this existing body of work is an important foundation and opportunity for developing applied mycology in the region. In and beyond China, working with communities to develop site-specific management strategies through rigorous and participatory scientific inquiry can provide salient benefits for both scientists and resource users.

  15. Study of strong turbulence effects for optical wireless links

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Meric, Hasim; Kunter, Fulya

    2012-10-01

    Strong turbulence measurements that are taken using real time optical wireless experimental setups are valuable when studying the effects of turbulence regimes on a propagating optical beam. In any kind of FSO system, for us to know the strength of the turbulence thus the refractive index structure constant, is beneficial for having an optimum bandwidth of communication. Even if the FSO Link is placed very well-high-above the ground just to have weak enough turbulence effects, there can be severe atmospheric conditions that can change the turbulence regime. Having a successful theory that will cover all regimes will give us the chance of directly processing the image in existing or using an additional hardware thus deciding on the optimum bandwidth of the communication line at firsthand. For this purpose, Strong Turbulence data has been collected using an outdoor optical wireless setup placed about 85 centimeters above the ground with an acceptable declination and a path length of about 250 meters inducing strong turbulence to the propagating beam. Variations of turbulence strength estimation methods as well as frame image analysis techniques are then been applied to the experimental data in order to study the effects of different parameters on the result. Such strong turbulence data is compared with existing weak and intermediate turbulence data. Aperture Averaging Factor for different turbulence regimes is also investigated.

  16. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  17. In-situ identification of anti-personnel mines using acoustic resonant spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, R L; Roberts, R S

    1999-02-01

    A new technique for identifying buried Anti-Personnel Mines is described, and a set of preliminary experiments designed to assess the feasibility of this technique is presented. Analysis of the experimental results indicates that the technique has potential, but additional work is required to bring the technique to fruition. In addition to the experimental results presented here, a technique used to characterize the sensor employed in the experiments is detailed.

  18. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Ping Yu; JiangTao Cheng

    2002-12-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally that the coherence detection can be performed in a borescope. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, is essentially completed for imbibition conditions.« less

  19. Computational comparison of quantum-mechanical models for multistep direct reactions

    NASA Astrophysics Data System (ADS)

    Koning, A. J.; Akkermans, J. M.

    1993-02-01

    We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmüller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90Zr(p,p') at 80 MeV, 209Bi(p,p') at 62 MeV, and 93Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data.

  20. Experimental Validation Techniques for the Heleeos Off-Axis Laser Propagation Model

    DTIC Science & Technology

    2010-03-01

    EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER PROPAGATION MODEL THESIS John Haiducek, 1st Lt, USAF AFIT/GAP/ENP/10-M07 DEPARTMENT...Department of Defense, or the United States Government. AFIT/GAP/ENP/10-M07 EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER ...BS, Physics 1st Lt, USAF March 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GAP/ENP/10-M07 Abstract The High Energy Laser End-to-End

Top