The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.
Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth
2016-01-01
Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.
A Standard Kinematic Model for Flight Simulation at NASA Ames
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.
1975-01-01
A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.
NASA Astrophysics Data System (ADS)
Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.
2017-01-01
On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Evaluation of a Kinematically-Driven Finite Element Footstrike Model.
Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim
2016-06-01
A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process.
Multi-channel probes to understand fission dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosby, Shea Morgan
2016-04-15
Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fissionmore » output channels.« less
APPLIED ORIGAMI. Origami of thick panels.
Chen, Yan; Peng, Rui; You, Zhong
2015-07-24
Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. Copyright © 2015, American Association for the Advancement of Science.
Kinematic Structural Modelling in Bayesian Networks
NASA Astrophysics Data System (ADS)
Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.
2017-04-01
We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In addition, we use the capabilities of Noddy to analyze the topology of structural models to demonstrate how topological information, such as the connectivity of two layers across an unconformity, can be used as a likelihood function. In an application to a synthetic case study, we show that our approach leads to a successful combination of the two different modelling concepts. Specifically, we show that we derive ensemble realizations of implicit models that now incorporate the knowledge of the kinematic aspects, representing an important step forward in the integration of knowledge and a corresponding estimation of uncertainties in structural geological models.
Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo
2017-01-01
Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554
MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?
NASA Astrophysics Data System (ADS)
Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian
2017-01-01
We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.
Kinematic foot types in youth with equinovarus secondary to hemiplegia.
Krzak, Joseph J; Corcos, Daniel M; Damiano, Diane L; Graf, Adam; Hedeker, Donald; Smith, Peter A; Harris, Gerald F
2015-02-01
Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). Copyright © 2014 Elsevier B.V. All rights reserved.
Kinematic foot types in youth with equinovarus secondary to hemiplegia
Krzak, Joseph J.; Corcos, Daniel M.; Damiano, Diane L.; Graf, Adam; Hedeker, Donald; Smith, Peter A.; Harris, Gerald F.
2015-01-01
Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). PMID:25467429
Probabilistic description of infant head kinematics in abusive head trauma.
Lintern, T O; Nash, M P; Kelly, P; Bloomfield, F H; Taberner, A J; Nielsen, P M F
2017-12-01
Abusive head trauma (AHT) is a potentially fatal result of child abuse, but the mechanisms by which injury occur are often unclear. To investigate the contention that shaking alone can elicit the injuries observed, effective computational models are necessary. The aim of this study was to develop a probabilistic model describing infant head kinematics in AHT. A deterministic model incorporating an infant's mechanical properties, subjected to different shaking motions, was developed in OpenSim. A Monte Carlo analysis was used to simulate the range of infant kinematics produced as a result of varying both the mechanical properties and the type of shaking motions. By excluding physically unrealistic shaking motions, worst-case shaking scenarios were simulated and compared to existing injury criteria for a newborn, a 4.5 month-old, and a 12 month-old infant. In none of the three cases were head kinematics observed to exceed previously-estimated subdural haemorrhage injury thresholds. The results of this study provide no biomechanical evidence to demonstrate how shaking by a human alone can cause the injuries observed in AHT, suggesting either that additional factors, such as impact, are required, or that the current estimates of injury thresholds are incorrect.
Dark Matter or Modified Dynamics? Hints from Galaxy Kinematics
NASA Astrophysics Data System (ADS)
Gentile, G.
2010-12-01
I show two observational projects I am involved in, which are aimed at understanding better the existence and nature of dark matter, and also aimed at testing alternatives to galactic dark matter such as MOND (Modified Newtonian Dynamics). I present new HI observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended HI disc (42 B-band exponential scalelengths). The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. Mass modelling of the rotation curve shows that a cored dark matter halo or MOND provide very good fits, whereas Cold Dark Matter density profiles fail to fit the data. I also show new results about tidal dwarf galaxies, which within the CDM framework are expected to be dark matter-free but whose kinematics instead show a mass discrepancy, exactly of the magnitude that is expected in MOND (Modified Newtonian Dynamics).
Latash, M L; Goodman, S R
1994-01-01
The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
Drory, Ami; Li, Hongdong; Hartley, Richard
2017-04-11
We present a supervised machine learning approach for markerless estimation of human full-body kinematics for a cyclist from an unconstrained colour image. This approach is motivated by the limitations of existing marker-based approaches restricted by infrastructure, environmental conditions, and obtrusive markers. By using a discriminatively learned mixture-of-parts model, we construct a probabilistic tree representation to model the configuration and appearance of human body joints. During the learning stage, a Structured Support Vector Machine (SSVM) learns body parts appearance and spatial relations. In the testing stage, the learned models are employed to recover body pose via searching in a test image over a pyramid structure. We focus on the movement modality of cycling to demonstrate the efficacy of our approach. In natura estimation of cycling kinematics using images is challenging because of human interaction with a bicycle causing frequent occlusions. We make no assumptions in relation to the kinematic constraints of the model, nor the appearance of the scene. Our technique finds multiple quality hypotheses for the pose. We evaluate the precision of our method on two new datasets using loss functions. Our method achieves a score of 91.1 and 69.3 on mean Probability of Correct Keypoint (PCK) measure and 88.7 and 66.1 on the Average Precision of Keypoints (APK) measure for the frontal and sagittal datasets respectively. We conclude that our method opens new vistas to robust user-interaction free estimation of full body kinematics, a prerequisite to motion analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Camera-Only Kinematics for Small Lunar Rovers
NASA Astrophysics Data System (ADS)
Fang, E.; Suresh, S.; Whittaker, W.
2016-11-01
Knowledge of the kinematic state of rovers is critical. Existing methods add sensors and wiring to moving parts, which can fail and adds mass and volume. This research presents a method to optically determine kinematic state using a single camera.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Whorton, Mark S.
2000-01-01
Many space science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency design filters can be applied to these state-space models, in order to develop optimal H, or mixed-norm controllers with desired stability- and performance characteristics. In practice. however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Whorton, Mark S.
2000-01-01
Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station have been appropriately modeled using relative position relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, the kinematic coupling among the various states can lead, through the associated frequency-weighting-filters, to conflicting demands on the Riccati design "machinery." The results can be numerically ill-conditioned regulator and estimator Riccati equations and/or reduced intuition in the design process. In addition, kinematic coupling can result in a redundancy in the demands imposed by the frequency weights. Failure properly to account for this type of coupling can lead to an unnecessary increase in controller dimensionality and, in turn, controller complexity. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
Stability basin estimates fall risk from observed kinematics, demonstrated on the Sit-to-Stand task.
Shia, Victor; Moore, Talia Yuki; Holmes, Patrick; Bajcsy, Ruzena; Vasudevan, Ram
2018-04-27
The ability to quantitatively measure stability is essential to ensuring the safety of locomoting systems. While the response to perturbation directly reflects the stability of a motion, this experimental method puts human subjects at risk. Unfortunately, existing indirect methods for estimating stability from unperturbed motion have been shown to have limited predictive power. This paper leverages recent advances in dynamical systems theory to accurately estimate the stability of human motion without requiring perturbation. This approach relies on kinematic observations of a nominal Sit-to-Stand motion to construct an individual-specific dynamic model, input bounds, and feedback control that are then used to compute the set of perturbations from which the model can recover. This set, referred to as the stability basin, was computed for 14 individuals, and was able to successfully differentiate between less and more stable Sit-to-Stand strategies for each individual with greater accuracy than existing methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Clark, Stuart R.
2010-05-01
In the Western Pacific, two competing kinematic reconstructions exist: one with wholly westward subduction of the Pacific plate at what is now the Tonga-Kermadec trench and one combining a degree of eastward subduction under what has been termed the New Caledonia trench. New seismological observations indicate that eastward subduction could explain the existence of a fast anomaly, the hyothesised South Loyalty Basin slab, below the 660km transition zone distinct from the fast anomaly aligned with the Tonga-Kermadec slab. A plate reconstruction dated from the suggested initiation of New Caledonia subduction in the Eocene has been developed. This reconstruction is then used to predict the thermal history of the region and together provide kinematic and thermal boundary conditions for a regional mantle convection model. The model-predicted location of the South Loyalty Basin slab's location will be presented along with the location's dependence on the mantle rheological parameters and the hotspot reference frame. The implications for the topography of the region will also be discussed.
Linking Chaotic Advection with Subsurface Biogeochemical Processes
NASA Astrophysics Data System (ADS)
Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.
2017-12-01
This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.
How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.
Mantovani, Giulia; Lamontagne, Mario
2017-04-01
The choice of marker set is a source of variability in motion analysis. Studies exist which assess the performance of marker sets when direct kinematics is used, but these results cannot be extrapolated to the inverse kinematic framework. Therefore, the purpose of this study was to examine the sensitivity of kinematic outcomes to inter-marker set variability in an inverse kinematic framework. The compared marker sets were plug-in-gait, University of Ottawa motion analysis model and a three-marker-cluster marker set. Walking trials of 12 participants were processed in opensim. The coefficient of multiple correlations was very good for sagittal (>0.99) and transverse (>0.92) plane angles, but worsened for the transverse plane (0.72). Absolute reliability indices are also provided for comparison among studies: minimum detectable change values ranged from 3 deg for the hip sagittal range of motion to 16.6 deg of the hip transverse range of motion. Ranges of motion of hip and knee abduction/adduction angles and hip and ankle rotations were significantly different among the three marker configurations (P < 0.001), with plug-in-gait producing larger ranges of motion. Although the same model was used for all the marker sets, the resulting minimum detectable changes were high and clinically relevant, which warns for caution when comparing studies that use different marker configurations, especially if they differ in the joint-defining markers.
Kinematical Modeling of WARPS in the H i Disks of Galaxies
NASA Astrophysics Data System (ADS)
Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.
1993-10-01
In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170°. The overall position of the warp and the gross geometric shape of the halo have been determined unambiguously only in cases where the twisting of the warp is relatively strong. (Examples of galaxies whose disks sit in an oblate halo are M33, M83, NGC 2805, NGC 2841, and NGC 3718; prolate halos appear to surround NGC 5033 and NGC 5055; and ambiguous cases, at present permitting equally good oblate and prolate halo models, are M31, NGC 300, NGC 3079, NGC 3198, NGC 6946, NGC 7331, and IC 342). There appears to be a high degree of correlation between the twisting angles of kinematical models and precession angles derived from dynamical arguments. This correlation gives us considerable confidence that the kinematically identified twists in warped H I layers are real and that the general dynamical picture that has been put forward to explain their existence is correct. Adopting a scale-free, logarithmic halo potential having a quadrupole distortion η, we conclude specifically that in each of these twisted warped disk systems the product ητ8 is approximately equal to 1, where τ8 is the age of the warped layer in 108 yr.
Using 3D Spectroscopy to Probe the Orbital Structure of Composite Bulges
NASA Astrophysics Data System (ADS)
Erwin, Peter; Saglia, Roberto; Thomas, Jens; Fabricius, Maximilian; Bender, Ralf; Rusli, Stephanie; Nowak, Nina; Beckman, John E.; Vega Beltrán, Juan Carlos
2015-02-01
Detailed imaging and spectroscopic analysis of the centers of nearby S0 and spiral galaxies shows the existence of ``composite bulges'', where both classical bulges and disky pseudobulges coexist in the same galaxy. As part of a search for supermassive black holes in nearby galaxy nuclei, we obtained VLT-SINFONI observations in adaptive-optics mode of several of these galaxies. Schwarzschild dynamical modeling enables us to disentangle the stellar orbital structure of the different central components, and to distinguish the differing contributions of kinematically hot (classical bulge) and kinematically cool (pseudobulge) components in the same galaxy.
Kinematic Determination of an Unmodeled Serial Manipulator by Means of an IMU
NASA Astrophysics Data System (ADS)
Ciarleglio, Constance A.
Kinematic determination for an unmodeled manipulator is usually done through a-priori knowledge of the manipulator physical characteristics or external sensor information. The mathematics of the kinematic estimation, often based on Denavit- Hartenberg convention, are complex and have high computation requirements, in addition to being unique to the manipulator for which the method is developed. Analytical methods that can compute kinematics on-the fly have the potential to be highly beneficial in dynamic environments where different configurations and variable manipulator types are often required. This thesis derives a new screw theory based method of kinematic determination, using a single inertial measurement unit (IMU), for use with any serial, revolute manipulator. The method allows the expansion of reconfigurable manipulator design and simplifies the kinematic process for existing manipulators. A simulation is presented where the theory of the method is verified and characterized with error. The method is then implemented on an existing manipulator as a verification of functionality.
2D kinematic signatures of boxy/peanut bulges
NASA Astrophysics Data System (ADS)
Iannuzzi, Francesca; Athanassoula, E.
2015-07-01
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disc galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrized up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the mid-plane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second buckling and find that this phenomenon spurs an additional set of even deeper minima in the fourth moment. Finally, we show how the results evolve when inclining the disc away from perfectly edge-on and face-on. The behaviour of stars born during the course of the simulations is discussed and confronted to that of the pre-existing disc. The general aim of our study is providing a handle to identify boxy/peanut structures and their properties in latest generation Integral Field Unit observations of nearby disc galaxies.
Evaluation of colonoscopy technical skill levels by use of an objective kinematic-based system.
Obstein, Keith L; Patil, Vaibhav D; Jayender, Jagadeesan; San José Estépar, Raúl; Spofford, Inbar S; Lengyel, Balazs I; Vosburgh, Kirby G; Thompson, Christopher C
2011-02-01
Colonoscopy requires training and experience to ensure accuracy and safety. Currently, no objective, validated process exists to determine when an endoscopist has attained technical competence. Kinematics data describing movements of laparoscopic instruments have been used in surgical skill assessment to define expert surgical technique. We have developed a novel system to record kinematics data during colonoscopy and quantitatively assess colonoscopist performance. To use kinematic analysis of colonoscopy to quantitatively assess endoscopic technical performance. Prospective cohort study. Tertiary-care academic medical center. This study involved physicians who perform colonoscopy. Application of a kinematics data collection system to colonoscopy evaluation. Kinematics data, validated task load assessment instrument, and technical difficulty visual analog scale. All 13 participants completed the colonoscopy to the terminal ileum on the standard colon model. Attending physicians reached the terminal ileum quicker than fellows (median time, 150.19 seconds vs 299.86 seconds; p<.01) with reduced path lengths for all 4 sensors, decreased flex (1.75 m vs 3.14 m; P=.03), smaller tip angulation, reduced absolute roll, and lower curvature of the endoscope. With performance of attending physicians serving as the expert reference standard, the mean kinematic score increased by 19.89 for each decrease in postgraduate year (P<.01). Overall, fellows experienced greater mental, physical, and temporal demand than did attending physicians. Small cohort size. Kinematic data and score calculation appear useful in the evaluation of colonoscopy technical skill levels. The kinematic score appears to consistently vary by year of training. Because this assessment is nonsubjective, it may be an improvement over current methods for determination of competence. Ongoing studies are establishing benchmarks and characteristic profiles of skill groups based on kinematics data. Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Constraining Higgsino kink tracks from existing LHC searches
Jung, Sunghoon; Lee, Hye -Sung
2017-04-26
Considering the supersymmetric model with the long-lived charged Higgsino, we discuss how Higgsino kink signals can show up in the latest LHC Disappearing Track (DT) and stable chargino searches. We derive constraints on the Higgsino kink signal, and characterize it in comparison to the Wino DT and the slepton kink track. Here, we also discuss how to infer Higgsino model kinematics.
D'Lima, Darryl D; Patil, Shantanu; Steklov, Nicolai; Colwell, Clifford W
2011-10-01
Tibiofemoral forces are important in the design and clinical outcomes of TKA. We developed a tibial tray with force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo. Knee forces and kinematics traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid. We therefore developed wearable monitoring equipment and computer algorithms for classifying and identifying unsupervised activities outside the laboratory. Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, during 4 years postoperatively. Additional measurements included video motion analysis, EMG, fluoroscopic kinematic analysis, and ground reaction force measurement. In vivo measurements were used to evaluate computer models of the knee. Finite element models were used for contact analysis and for computing knee kinematics from measured knee forces. A third-generation system was developed for continuous monitoring of knee forces and kinematics outside the laboratory using a wearable data acquisition hardware. By using measured knee forces and knee flexion angle, we were able to compute femorotibial AP translation (-12 to +4 mm), mediolateral translation (-1 to 1.5 mm), axial rotation (-3° to 12°), and adduction-abduction (-1° to +1°). The neural-network-based classification system was able to identify walking, stair-climbing, sit-to-stand, and stand-to-sit activities with 100% accuracy. Our data may be used to improve existing in vitro models and wear simulators, and enhance prosthetic designs and biomaterials.
Effects of Utterance Length on Lip Kinematics in Aphasia
ERIC Educational Resources Information Center
Bose, Arpita; van Lieshout, Pascal
2008-01-01
Most existing models of language production and speech motor control do not explicitly address how language requirements affect speech motor functions, as these domains are usually treated as separate and independent from one another. This investigation compared lip movements during bilabial closure between five individuals with mild aphasia and…
An MR-compatible gyroscope-based arm movement tracking system.
Shirinbayan, S Iman; Rieger, Jochem W
2017-03-15
Functional magnetic resonance imaging is well suited to link neural population activation with movement parameters of complex natural arm movements. However, currently existing MR-compatible arm tracking devices are not constructed to measure arm joint movement parameters of unrestricted movements. Therefore, to date most research focuses on simple arm movements or includes very little knowledge about the actual movement kinematics. We developed a low cost gyroscope-based arm movement tracking system (GAMTS) that features MR-compatibility. The system consists of dual-axis analogue gyroscopes that measure rotations of upper and lower arm joints. After MR artifact reduction, the rotation angles of the individual arm joints are calculated and used to animate a realistic arm model that is implemented in the OpenSim platform. The OpenSim platform can then provide the kinematics of any point on the arm model. In order to demonstrate the capabilities of the system, we first assessed the quality of reconstructed wrist movements in a low-noise environment where typical MR-related problems are absent and finally, we validated the reconstruction in the MR environment. The system provides the kinematics of the whole arm when natural unrestricted arm movements are performed inside the MR-scanner. The GAMTS is reliably capable of reconstructing the kinematics of trajectories and the reconstruction error is small in comparison with the movement induced variation of speed, displacement, and rotation. Moreover, the system can be used to probe brain areas for their correlation with movement kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinematic stability of roller pairs in free rolling contact
NASA Technical Reports Server (NTRS)
Savage, M.; Loewenthal, S. H.
1976-01-01
A set of generalized stability equations was developed for roller pairs in free rolling contact. A symmetric, dual contact model was used. Four possible external contact profiles that possess continuous contacting surfaces were studied. It was found that kinematic stability would be insured if the larger radius of transverse curvature, in absolute value, and the smaller rolling radius both exist on the roller that has the apex of its conical surface outboard of its main body. The stability criteria developed are considered to be useful for assessing axial restraint requirements for a variety of roller mechanisms and in the selection of roller contact geometry for traction drive devices.
Fuzzy logic based robotic controller
NASA Technical Reports Server (NTRS)
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
The effect of intra-wellbore head losses in a vertical well
NASA Astrophysics Data System (ADS)
Wang, Quanrong; Zhan, Hongbin
2017-05-01
Flow to a partially penetrating vertical well is made more complex by intra-wellbore losses. These are caused not only by the frictional effect, but also by the kinematic effect, which consists of the accelerational and fluid inflow effects inside a wellbore. Existing models of flow to a partially penetrating vertical well assume either a uniform-flux boundary condition (UFBC) or a uniform-head boundary condition (UHBC) for treating the flow into the wellbore. Neither approach considers intra-wellbore losses. In this study a new general solution, named the mixed-type boundary condition (MTBC) solution, is introduced to include intra-wellbore losses. It is developed from the existing solutions using a hybrid analytical-numerical method. The MTBC solution is capable of modeling various types of aquifer tests (constant-head tests, constant-rate tests, and slug tests) for partially or fully penetrating vertical wells in confined aquifers. Results show that intra-wellbore losses (both frictional and kinematic) can be significant in the early pumping stage. At later pumping times the UHBC solution is adequate because the difference between the MTBC and UHBC solutions becomes negligible.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T
2012-04-05
Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. Published by Elsevier Ltd.
Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P
2016-06-14
Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buczek, Frank L; Sinsel, Erik W; Gloekler, Daniel S; Wimer, Bryan M; Warren, Christopher M; Wu, John Z
2011-06-03
Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging. Published by Elsevier Ltd.
Schiffman, Jeffrey M; Chelidze, David; Adams, Albert; Segala, David B; Hasselquist, Leif
2009-09-18
Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.
NASA Astrophysics Data System (ADS)
Roma, Maria; Pla, Oriol; Butillé, Mireia; Roca, Eduard; Ferrer, Oriol
2015-04-01
The widespread extensional deformation that took place during Jurassic to Cretaceous times in the Western Europe and north-Atlantic realm resulted in the formation of several rift systems. Some of the basins associated to these rifts show broad syncline-shapes filled by thick sedimentary successions deposited overlying a hyperextended crust (i.e., Parentis, Cameros, Organyà or Columbrets basins in Iberia). The development of these syncline basins has been associated to the slip of low-angle lithospheric-scale extensional faults with ramp/flat geometries. The shape and kinematics of such faults have been usually established using the architecture of syn-kinematic layers and assuming a complete coupling of the hangingwall rocks and a layer parallel flexural slip deformation mechanism. However almost all these basins include pre-kinematic Upper Triassic salt layers which undubtoufully acted as an effective detachment decoupling the structure of sub- and suprasalt units. The presence of this salt is denoted by the growth of salt structures as diapirs or salt walls at the edges of these basins where the overburden was thinner. During latest Cretaceous and Cenozoic these basins were partially inverted and often incorporated into thrust-and-fold belts as the Pyrenees . Contractional deformation resulted in the reactivation of major extensional faults and, above the salt, the squeezing of pre-existent salt structures. The pre-kinematic salt clearly acted again as as a major detachment decoupling the contractional deformation. Using an experimental approach (scaled sand-box models) the aim of our research is threefold: 1) to determine the geometrical features of the hangingwall above a convex upwards ramp of a low angle extensional fault with and without pre-kinematic salt, and consequently; 2) to decipher the role played by a pre-kinematic viscous layer, such as salt, in the development of these syncline basins; and 3) to characterize the contractional deformation that took place in them during a later contractional inversion. To achieve this goal an experimental program including seven different sand-box models has been carried out. The experimental results show that fault shape controls the geometry and the kinematic evolution of the ramp synclines formed on the hangingwall during extension and subsequent inversion. Regarding this, the experiments also demonstrate that the presence of a viscous layer changed significantly the kinematic of the basin developing two clearly different structural styles above and below the polymer. The kinematic of this basin during extension change dramatically when the silicone layer was depleted with the formation of primary welds. Since this moment model's kinematic becomes similar to the models without silicone. During the inversion, models show that low shortening produced the contractional reactivation of the major fault arched and uplifted the basin. In this scenario, if salt is rather continuous, took place an incipient reactivation of the silicone layer as a contractional detachment. By contrast, high shortening produces the total inversion of the detachment faults and the pop-up of the extensional basin. Finally, models are compared with different natural analogues from Iberia validating previous published interpretations or proposing new interpretations inferring the geometry of the major fault, specially if the presence of a salt interlayer in the deformed rocks is known or suspected.
On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516
NASA Technical Reports Server (NTRS)
Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan
1993-01-01
A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.
Some aspects of the analysis of geodetic strain observations in kinematic models
NASA Astrophysics Data System (ADS)
Welsch, W. M.
1986-11-01
Frequently, deformation processes are analyzed in static models. In many cases, this procedure is justified, in particular if the deformation occurring is a singular event. If. however, the deformation is a continuous process, as is the case, for instance, with recent crustal movements, the analysis in kinematic models is more commensurate with the problem because the factor "time" is considered an essential part of the model. Some specialities have to be considered when analyzing geodetic strain observations in kinematic models. They are dealt with in this paper. After a brief derivation of the basic kinematic model and the kinematic strain model, the following subjects are treated: the adjustment of the pointwise velocity field and the derivation of strain-rate parameters; the fixing of the kinematic reference system as part of the geodetic datum; statistical tests of models by testing linear hypotheses; the invariance of kinematic strain-rate parameters with respect to transformations of the coordinate-system and the geodetic datum; the interpolation of strain rates by finite-element methods. After the representation of some advanced models for the description of secular and episodic kinematic processes, the data analysis in dynamic models is regarded as a further generalization of deformation analysis.
NASA Astrophysics Data System (ADS)
Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.
2017-10-01
Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.
NASA Technical Reports Server (NTRS)
Liu, Shih-Ching
1994-01-01
The goal of this research was to determine kinematic parameters of the lower limbs of a subject pedaling a bicycle. An existing measurement system was used as the basis to develop the model to determine position and acceleration of the limbs. The system consists of an ergometer instrumented to provide position of the pedal (foot), accelerometers to be attached to the lower limbs to measure accelerations, a recorder used for filtering, and a computer instrumented with an A/D board and a decoder board. The system is designed to read and record data from accelerometers and encoders. Software has been developed for data collection, analysis and presentation. Based on the measurement system, a two dimensional analytical model has been developed to determine configuration (position, orientation) and kinematics (velocities, accelerations). The model has been implemented in software and verified by simulation. An error analysis to determine the system's accuracy shows that the expected error is well within the specifications of practical applications. When the physical hardware is completed, NASA researchers hope to use the system developed to determine forces exerted by muscles and forces at articulations. This data will be useful in the development of countermeasures to minimize bone loss experienced by astronauts in microgravity conditions.
Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A
2017-01-01
Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.
Kinematic design to improve ergonomics in human machine interaction.
Schiele, André; van der Helm, Frans C T
2006-12-01
This paper introduces a novel kinematic design paradigm for ergonomic human machine interaction. Goals for optimal design are formulated generically and applied to the mechanical design of an upper-arm exoskeleton. A nine degree-of-freedom (DOF) model of the human arm kinematics is presented and used to develop, test, and optimize the kinematic structure of an human arm interfacing exoskeleton. The resulting device can interact with an unprecedented portion of the natural limb workspace, including motions in the shoulder-girdle, shoulder, elbow, and the wrist. The exoskeleton does not require alignment to the human joint axes, yet is able to actuate each DOF of our redundant limb unambiguously and without reaching into singularities. The device is comfortable to wear and does not create residual forces if misalignments exist. Implemented in a rehabilitation robot, the design features of the exoskeleton could enable longer lasting training sessions, training of fully natural tasks such as activities of daily living and shorter dress-on and dress-off times. Results from inter-subject experiments with a prototype are presented, that verify usability over the entire workspace of the human arm, including shoulder and shoulder girdle.
Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Heidi A.; Abraham, Roberto G.; Fisher, David B.
2017-09-01
We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T {sub dust} < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly richmore » in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f {sub gas} and σ / v {sub c}, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t {sub dep} (∼0.5 Gyr) have the highest ratios of σ / v{sub c} and more pronounced clumps, even at the same high molecular gas fraction.« less
Nie, Bingbing; Panzer, Matthew Brian; Mane, Adwait; Mait, Alexander Ritz; Donlon, John-Paul; Forman, Jason Lee; Kent, Richard Wesley
2016-09-01
Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force-elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.
2016-03-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.
2015-11-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
Kinematics, structural mechanics, and design of origami structures with smooth folds
NASA Astrophysics Data System (ADS)
Peraza Hernandez, Edwin Alexander
Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided.
Lorentz symmetry violation and UHECR experiments
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, L.
2001-08-01
Lorentz symmetry violation (LSV) at Planck scale can be tested through ultra-high energy cosmic rays (UHECR). We discuss deformed Lorentz symmetry (DLS) and energy non-conservation (ENC) patterns where the effective LSV parameter varies like the square of the momentum scale (e.g. quadratically de-formed relativistic kinematics, QDRK). In such patterns, a ≈ 106 LSV at Planck scale would be enough to produce observable effects on the properties of cosmic rays at the ≈ 1020 eV scale: absence of GZK cutoff, stability of unstable particles, lower interaction rates, kinematical failure of any parton model and of standard formulae for Lorentz contraction and time dilation... Its phenomeno-logical implications are compatible with existing data. Precise signatures are discussed in several patterns. If the effective LSV or ENC parameter is taken to vary linearly with the momentum scale (e.g. linearly deformed relativistic kinematics, LDRK), contradictions seem to arise with UHECR data. Conse-quences are important for UHECR and high-energy gamma-ray exper iments, as well as for high-energy cosmic rays and gravitational waves.
Dynamic and kinematic strategies for head movement control
NASA Technical Reports Server (NTRS)
Peterson, B. W.; Choi, H.; Hain, T.; Keshner, E.; Peng, G. C.
2001-01-01
This paper describes our analysis of the complex head-neck system using a combination of experimental and modeling approaches. Dynamical analysis of head movements and EMG activation elicited by perturbation of trunk position has examined functional contributions of biomechanically and neurally generated forces in lumped systems with greatly simplified kinematics. This has revealed that visual and voluntary control of neck muscles and the dynamic and static vestibulocollic and cervicocollic reflexes preferentially govern head-neck system state in different frequency domains. It also documents redundant control, which allows the system to compensate for lesions and creates a potential for substantial variability within and between subjects. Kinematic studies have indicated the existence of reciprocal and co-contraction strategies for voluntary force generation, of a vestibulocollic strategy for stabilizing the head during body perturbations and of at least two strategies for voluntary head tracking. Each strategy appears to be executed by a specific muscle synergy that is presumably optimized to efficiently meet the demands of the task.
Plate-boundary kinematics in the Alps: Motion in the Arosa suture zone
NASA Astrophysics Data System (ADS)
Ring, Uwe; Ratschbacher, Lothar; Frisch, Wolfgang
1988-08-01
The Arosa zone forms a melange complex along the Penninic/Austroalpine boundary and belongs to the main Alpine suture zone. Accretion and plate collision occurred during Cretaceous and lower Tertiary time. A mixture of ophiolitic rocks and pelagic sediments is imbricated with flysch and blocks of Austroalpine (continental) derivation. We present a description of deformation structures, an analysis of strain, and a kinematic interpretation based on structural work. Deformation histories of imbricates show a translation path that was west-directed between ca. 110 and 50 Ma and north-directed thereafter. The kinematics of the Arosa zone agrees with the recently deduced displacement history of the Austroalpine units in the Eastern Alps during the Cretaceous orogeny. This calls for a predominantly top-to-the-west imbrication of Austroalpine and Penninic units and is in contradiction to what is inferred in most models of the Eastern Alps. A direct relation between the deformation along the Austroalpine margin and relative plate motion existed.
Resonance of scroll rings with periodic external fields in excitable media
NASA Astrophysics Data System (ADS)
Pan, De-Bei; Li, Qi-Hao; Zhang, Hong
2018-06-01
By direct numerical simulations of a chemical reaction-diffusion system coupled to a periodic external AC electric field with frequency equal to double frequency of the scroll wave rotation, we find that scroll rings resonate with the electric field and exhibit various dynamical behaviors, for example, their reversals, collapses, or growths, depending both on the initial phase of AC electric fields and on the initial phase of scroll rings. A kinematical model characterizing the drift velocity of the scroll rings along their radial directions as well as that of the scroll rings along their symmetry axes is proposed, which can effectively account for the numerical observations and predict the behaviors of the scroll rings. Besides, the existence of the equilibrium state of a scroll ring under the AC electric fields is predicted by the kinematical model and the predictions agree well with the simulations.
NASA Technical Reports Server (NTRS)
Hampton, Roy David; Whorton, Mark S.
1999-01-01
Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station (ISS) have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, since there is a kinematic relationship among the various states, any frequency weighting applied to one state will implicitly weight other states. These implicit frequency-weighting effects must be considered, for intelligent frequency-weighting filter assignment. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth
NASA Astrophysics Data System (ADS)
Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.
2017-12-01
The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.
The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birrer, Simon; Amara, Adam; Refregier, Alexandre, E-mail: simon.birrer@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch
We present extended modelling of the strong lens system RXJ1131-1231 with archival data in two HST bands in combination with existing line-of-sight contribution and velocity dispersion estimates. Our focus is on source size and its influence on time-delay cosmography. We therefore examine the impact of mass-sheet degeneracy and especially the degeneracy pointed out by Schneider and Sluse (2013) [1] using the source reconstruction scale. We also extend on previous work by further exploring the effects of priors on the kinematics of the lens and the external convergence in the environment of the lensing system. Our results coming from RXJ1131-1231 aremore » given in a simple analytic form so that they can be easily combined with constraints coming from other cosmological probes. We find that the choice of priors on lens model parameters and source size are subdominant for the statistical errors for H {sub 0} measurements of this systems. The choice of prior for the source is sub-dominant at present (2% uncertainty on H {sub 0}) but may be relevant for future studies. More importantly, we find that the priors on the kinematic anisotropy of the lens galaxy have a significant impact on our cosmological inference. When incorporating all the above modeling uncertainties, we find H {sub 0} = 86.6{sup +6.8}{sub -6.9} km s{sup -1} Mpc{sup -1}, when using kinematic priors similar to other studies. When we use a different kinematic prior motivated by Barnabè et al. (2012) [2] but covering the same anisotropic range, we find H {sub 0} = 74.5{sup +8.0}{sub -7.8} km s{sup -1} Mpc{sup -1}. This means that the choice of kinematic modeling and priors have a significant impact on cosmographic inferences. The way forward is either to get better velocity dispersion measures which would down weight the impact of the priors or to construct physically motivated priors for the velocity dispersion model.« less
EMG-Torque correction on Human Upper extremity using Evolutionary Computation
NASA Astrophysics Data System (ADS)
JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly
2016-09-01
There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.
NASA Astrophysics Data System (ADS)
Nevitt, Johanna M.; Pollard, David D.; Warren, Jessica M.
2014-03-01
Rock deformation often is investigated using kinematic and/or mechanical models. Here we provide a direct comparison of these modeling techniques in the context of a deformed dike within a meter-scale contractional fault step. The kinematic models consider two possible shear plane orientations and various modes of deformation (simple shear, transtension, transpression), while the mechanical model uses the finite element method and assumes elastoplastic constitutive behavior. The results for the kinematic and mechanical models are directly compared using the modeled maximum and minimum principal stretches. The kinematic analysis indicates that the contractional step may be classified as either transtensional or transpressional depending on the modeled shear plane orientation, suggesting that these terms may be inappropriate descriptors of step-related deformation. While the kinematic models do an acceptable job of depicting the change in dike shape and orientation, they are restricted to a prescribed homogeneous deformation. In contrast, the mechanical model allows for heterogeneous deformation within the step to accurately represent the deformation. The ability to characterize heterogeneous deformation and include fault slip - not as a prescription, but as a solution to the governing equations of motion - represents a significant advantage of the mechanical model over the kinematic models.
McCrory, Patricia A.; Wilson, Douglas S.
2013-01-01
The volcanic basement of the Oregon and Washington Coast ranges has been proposed to represent a pair of tracks of the Yellowstone hotspot formed at a mid-ocean ridge during the early Cenozoic. This interpretation has been questioned on many grounds, especially that the range of ages does not match the offshore spreading rates and that the presence of continental coarse clastic sediments is difficult to reconcile with fast convergence rates between the oceanic plates and North America. Updates to basement geochronology and plate motion history reveal that these objections are much less serious than when they were first raised. Forward plate kinematic modeling reveals that predicted basement ages can be consistent with the observed range of about 55–49 Ma, and that the entire basement terrane can form within about 300 km of continental sources for clastic sediments. This kinematic model indicates that there is no firm reason to reject the near-ridge hotspot hypothesis on the basis of plate motions. A novel element of the model is the Resurrection plate, previously proposed to exist between the Farallon and Kula plates. By including the defunct Resurrection plate in our reconstruction, we are able to model the Farallon hotspot track as docking against the Oregon subduction margin starting about 53 Ma, followed by docking of the Resurrection track to the north starting about 48 Ma. Accretion of the Farallon plate fragment and partial subduction of the Resurrection fragment complicates the three-dimensional structure of the modern Cascadia forearc. We interpret the so-called “E” layer beneath Vancouver Island to be part of the Resurrection fragment. Our new kinematic model of mobile terranes within the Paleogene North American plate boundary allows reinterpretation of the three-dimensional structure of the Cascadia forearc and its relationship to ongoing seismotectonic processes.
NASA Astrophysics Data System (ADS)
Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki
2018-06-01
Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.
The impact of galaxy formation on satellite kinematics and redshift-space distortions
NASA Astrophysics Data System (ADS)
Orsi, Álvaro A.; Angulo, Raúl E.
2018-04-01
Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.
Model simulations of flood and debris flow timing in steep catchments after wildfire
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.
2016-08-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Model simulations of flood and debris flow timing in steep catchments after wildfire
Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J
2016-01-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Caine, Jonathan S.; Nelson, E.P.; Beach, S.T.; Layer, P.W.
2006-01-01
The Idaho Springs and Central City mining districts form the central portion of a structurally controlled hydrothermal precious- and base-metal vein system in the Front Range of the northeast-trending Colorado Mineral Belt. Three new 40Ar/39Ar plateau ages on hydrothermal sericite indicate the veins formed during the Laramide orogeny between 65.4??1.5 - 61.9??1.3 Ma. We compile structural geologic data from surface geological maps, subsurface mine maps, and theses for analysis using modern graphical methods and integration into models of formation of economic mineral deposits. Structural data sets, produced in the 1950s and 1960s by the U.S. Geological Survey, are compiled for fabric elements, including metamorphic foliations, fold axial trends, major brittle fault zones, quartz and precious- and base-metal veins and fault veins, Tertiary dikes, and joints. These fabric elements are plotted on equal-area projections and analyzed for mean fabric orientations. Strike-slip fault-vein sets are mostly parallel or sub-parallel, and not conjugate as interpreted by previous work; late-stage, normal-slip fault veins possibly show a pattern indicative of triaxial strain. Fault-slip kinematic analysis was used to model the trend of the Laramide maximum horizontal stress axis, or compression direction, and to determine compatibility of opening and shear motions within a single stress field. The combined-model maximum compression direction for all strike slip fault veins is ???068??, which is consistent with published Laramide compression directions of ???064?? (mean of 23 regional models) and ???072?? for the Front Range uplift. The orientations of fabric elements were analyzed for mechanical and kinematic compatibility with opening, and thus permeability enhancement, in the modeled regional east-northeast, Laramide compression direction. The fabric orientation analysis and paleostress modeling show that structural permeability during mineralization was enhanced along pre-existing metamorphic foliations and fold axial planes. Large orientation dispersion in most fabric elements likely caused myriad potential pathways for permeability. The dominant orientations of opening and shear mode structures are consistent with a sub-parallel network of structures that formed in the Laramide east-northeast compression direction. The results presented demonstrate the importance of using mechanical and kinematic theory integrated with contemporary ideas of permeability structure to better understand the coupled nature of fluid flow, mineral deposition, stress, and strain. Further, the results demonstrate that there is significant internal strain within this basement-cored uplift that was localized by optimally oriented pre-existing structures in a regional stress field.
Effect of suspension kinematic on 14 DOF vehicle model
NASA Astrophysics Data System (ADS)
Wongpattananukul, T.; Chantharasenawong, C.
2017-12-01
Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.
Imhauser, Carl; Mauro, Craig; Choi, Daniel; Rosenberg, Eric; Mathew, Stephen; Nguyen, Joseph; Ma, Yan; Wickiewicz, Thomas
2014-01-01
Background Abnormal tibiofemoral contact stress and aberrant kinematics may influence the progression of osteoarthritis in the ACL-deficient and the ACL-reconstructed knee. However, relationships between contact stress and kinematics following ACL reconstruction are poorly understood. Therefore, we posed the following research questions: (1) How do ACL deficiency and reconstruction affect kinematics of and contact stress in the tibiofemoral joint? (2) What kinematic differences are associated with abnormal contact stress following ACL reconstruction? Hypothesis/Purpose Center-center ACL reconstruction will not restore knee kinematics and contact stress. Correlations will exist between abnormal contact stress and aberrant kinematics following ACL reconstruction will exist. Study Design Controlled laboratory study Methods Clinical tests of anterior and rotational stability were simulated on eleven cadaveric knees using an industrial robot. Tests were conducted with the ACL intact, sectioned, and after single bundle ACL reconstruction using a quadrupled hamstring autograft with tunnels drilled through the center of the native footprints. Kinematics were recorded during the tests. Contact stress was continuously recorded from a stress transducer fixed to the tibial plateau and mean contact stress was calculated regionally. Results ACL deficiency resulted in increased mean contact stress in the posterior sectors of the medial and lateral compartments under anterior and rotational loads, respectively. Reconstruction reduced stress in these locations; however contact stress abnormalities remained. On average, kinematics were overconstrained following ACL reconstruction (≤1.8mm and ≤2.6° in all directions). However, combinations of overconstrained and underconstrained motions in ab/adduction and medial-lateral translation in response to combined moments, and axial rotation, anterior-posterior and medial-lateral translation in response to an anterior load were associated with abnormal mean contact stress. Conclusions ACL reconstruction reduces high stresses generated in the posterior compartment of the ACL-deficient knee. Abnormal contact stress following ACL reconstruction is related to multiplanar variations in knee kinematics. Clinical Relevance Clinical measures of multiplanar kinematics may help to better characterize the quality of ACL reconstruction. Such measures may help identify those at increased risk of long-term joint degeneration following this surgery. PMID:23470858
Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study.
Jayaneththi, V R; Viloria, J; Wiedemann, L G; Jarrett, C; McDaid, A J
2017-07-01
Non-invasive neuromuscular characterization aims to provide greater insight into the effectiveness of existing and emerging rehabilitation therapies by quantifying neuromuscular characteristics relating to force production, muscle viscoelasticity and voluntary neural activation. In this paper, we propose a novel approach to evaluate neuromuscular characteristics, such as muscle fiber stiffness and viscosity, by combining robotic and HD-sEMG measurements with computational musculoskeletal modeling. This pilot study investigates the efficacy of this approach on a healthy population and provides new insight on potential limitations of conventional musculoskeletal models for this application. Subject-specific neuromuscular characteristics of the biceps and triceps brachii were evaluated using robot-measured kinetics, kinematics and EMG activity as inputs to a musculoskeletal model. Repeatability experiments in five participants revealed large variability within each subjects evaluated characteristics, with almost all experiencing variation greater than 50% of full scale when repeating the same task. The use of robotics and HD-sEMG, in conjunction with musculoskeletal modeling, to quantify neuromuscular characteristics has been explored. Despite the ability to predict joint kinematics with relatively high accuracy, parameter characterization was inconsistent i.e. many parameter combinations gave rise to minimal kinematic error. The proposed technique is a novel approach for in vivo neuromuscular characterization and is a step towards the realization of objective in-home robot-assisted rehabilitation. Importantly, the results have confirmed the technical (robot and HD-sEMG) feasibility while highlighting the need to develop new musculoskeletal models and optimization techniques capable of achieving consistent results across a range of dynamic tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relativistic Hamiltonian dynamics for N point particles
NASA Astrophysics Data System (ADS)
King, M. J.
1980-08-01
The theory is quantized canonically to give a relativistic quantum mechanics for N particles. The existence of such a theory has been in doubt since the proof of the No-interaction theorem. However, such a theory does exist and was generalized. This dynamics is expressed in terms of N + 1 pairs of canonical fourvectors (center-of-momentum variables or CMV). A gauge independent reduction due to N + 3 first class kinematic constraints leads to a 6N + 2 dimensional minimum kinematic phase space, K. The kinematics and dynamics of particles with intrinsic spin were also considered. To this end known constraint techniques were generalized to make use of graded Lie algebras. The (Poincare) invariant Hamiltonian is specified in terms of the gauge invarient variables of K. The covariant worldline variables of each particle were found to be gauge dependent. As such they will usually not satisfy a canonical algebra. An exception exists for free particles. The No-interaction theorem therefore is not violated.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-04-24
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.
A Gaia study of the Hyades open cluster
NASA Astrophysics Data System (ADS)
Reino, Stella; de Bruijne, Jos; Zari, Eleonora; d'Antona, Francesca; Ventura, Paolo
2018-03-01
We present a study of the membership of the Hyades open cluster, derive kinematically-modelled parallaxes of its members, and study the colour-absolute magnitude diagram of the cluster. We use Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) data complemented by Hipparcos-2 data for bright stars not contained in TGAS. We supplement the astrometric data with radial velocities collected from a dozen literature sources. By assuming that all cluster members move with the mean cluster velocity to within the velocity dispersion, we use the observed and the expected motions of the stars to determine individual cluster membership probabilities. We subsequently derive improved parallaxes through maximum-likelihood kinematic modelling of the cluster. This method has an iterative component to deal with 'outliers', caused for instance by double stars or escaping members. Our method extends an existing method and supports the mixed presence of stars with and without radial velocities. We find 251 candidate members, 200 of which have a literature radial velocity, and 70 of which are new candidate members with TGAS astrometry. The cluster is roughly spherical in its centre but significantly flattened at larger radii. The observed colour-absolute magnitude diagram shows a clear binary sequence. The kinematically-modelled parallaxes that we derive are a factor ˜1.7 / 2.9 more precise than the TGAS / Hipparcos-2 values and allow to derive an extremely sharp main sequence. This sequence shows evidence for fine-detailed structure which is elegantly explained by the full spectrum turbulence model of convection.
Kinematic design considerations for minimally invasive surgical robots: an overview.
Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar
2012-06-01
Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.
Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots.
Fagogenis, Georgios; Bergeles, Christos; Dupont, Pierre E
2016-10-01
Concentric tube robots comprise telescopic precurved elastic tubes. The robot's tip and shape are controlled via relative tube motions, i.e. tube rotations and translations. Non-linear interactions between the tubes, e.g. friction and torsion, as well as uncertainty in the physical properties of the tubes themselves, e.g. the Young's modulus, curvature, or stiffness, hinder accurate kinematic modelling. In this paper, we present a machine-learning-based methodology for kinematic modelling of concentric tube robots and in situ model adaptation. Our approach is based on Locally Weighted Projection Regression (LWPR). The model comprises an ensemble of linear models, each of which locally approximates the original complex kinematic relation. LWPR can accommodate for model deviations by adjusting the respective local models at run-time, resulting in an adaptive kinematics framework. We evaluated our approach on data gathered from a three-tube robot, and report high accuracy across the robot's configuration space.
Peculiarities of the circumstellar envelopes of some Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Pogodin, M. A.
1985-10-01
The results of a spectral and photometric investigation of nine Herbig Ae/Be stars in the visible region of the spectrum in the period from 1978 to 1982 are presented. Certain physical and kinematic parameters of the circumstellar envelopes of the investigated objects are determined on the basis of the observational material obtained and Sobolev's (1947) probabilistic method for moving envelopes. It is shown that the observed spectral characteristics of the envelopes of Herbig Ae/Be stars and their variability can be explained by using models of extended isothermal envelopes with varying structural-kinematic parameters. The existence of a correlation between the amount of dust IR excess and the presence of signs of H2O absorption in the spectra of the investigated objects is noted.
The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2008-01-01
The 'Supercritical Pile' is a very economical gamma ray burst (GRB) model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at an energy sim 1 MeV. We extend this model to include also the evolution of the RBW Lorentz factor Gamma and thus follow the spectral and temporal features of this model into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have begun to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F spectra. Furthermore, the existence of a kinematic threshold in this model provides for a operational distinction of the prompt and afterglow GRB stages; in fact, the afterglow stage sets in when the RBW Lorentz factor cannot anymore fulfill the kinematic condition for pair formation in the photon - proton pair production reactions that constitute the fundamental process for the dissipation of the blast wave kinetic energy. We present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.
Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao
2016-10-01
This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.
Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation
NASA Astrophysics Data System (ADS)
Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao
2016-10-01
This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.
NASA Astrophysics Data System (ADS)
Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme
2017-04-01
Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.
Surgical gesture classification from video and kinematic data.
Zappella, Luca; Béjar, Benjamín; Hager, Gregory; Vidal, René
2013-10-01
Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on dynamic cues (e.g., time to completion, speed, forces, torque) or kinematic data (e.g., robot trajectories and velocities). While videos could be equally or more discriminative (e.g., videos contain semantic information not present in kinematic data), they are typically not used because of the difficulties associated with automatic video interpretation. In this paper, we propose several methods for automatic surgical gesture classification from video data. We assume that the video of a surgical task (e.g., suturing) has been segmented into video clips corresponding to a single gesture (e.g., grabbing the needle, passing the needle) and propose three methods to classify the gesture of each video clip. In the first one, we model each video clip as the output of a linear dynamical system (LDS) and use metrics in the space of LDSs to classify new video clips. In the second one, we use spatio-temporal features extracted from each video clip to learn a dictionary of spatio-temporal words, and use a bag-of-features (BoF) approach to classify new video clips. In the third one, we use multiple kernel learning (MKL) to combine the LDS and BoF approaches. Since the LDS approach is also applicable to kinematic data, we also use MKL to combine both types of data in order to exploit their complementarity. Our experiments on a typical surgical training setup show that methods based on video data perform equally well, if not better, than state-of-the-art approaches based on kinematic data. In turn, the combination of both kinematic and video data outperforms any other algorithm based on one type of data alone. Copyright © 2013 Elsevier B.V. All rights reserved.
The Kinematic Learning Model using Video and Interfaces Analysis
NASA Astrophysics Data System (ADS)
Firdaus, T.; Setiawan, W.; Hamidah, I.
2017-09-01
An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy
Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.
Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis.
Benazzi, Stefano; Nguyen, Huynh Nhu; Kullmer, Ottmar; Kupczik, Kornelius
2016-01-01
Dental biomechanics based on finite element (FE) analysis is attracting enormous interest in dentistry, biology, anthropology and palaeontology. Nonetheless, several shortcomings in FE modeling exist, mainly due to unrealistic loading conditions. In this contribution we used kinematics information recorded in a virtual environment derived from occlusal contact detection between high resolution models of an upper and lower human first molar pair (M1 and M1, respectively) to run a non-linear dynamic FE crash colliding test. MicroCT image data of a modern human skull were segmented to reconstruct digital models of the antagonistic right M1 and M1 and the dental supporting structures. We used the Occlusal Fingerprint Analyser software to reconstruct the individual occlusal pathway trajectory during the power stroke of the chewing cycle, which was applied in a FE simulation to guide the M1 3D-path for the crash colliding test. FE analysis results showed that the stress pattern changes considerably during the power stroke, demonstrating that knowledge about chewing kinematics in conjunction with a morphologically detailed FE model is crucial for understanding tooth form and function under physiological conditions. Results from such advanced dynamic approaches will be applicable to evaluate and avoid mechanical failure in prosthodontics/endodontic treatments, and to test material behavior for modern tooth restoration in dentistry. This approach will also allow us to improve our knowledge in chewing-related biomechanics for functional diagnosis and therapy, and it will help paleoanthropologists to illuminate dental adaptive processes and morphological modifications in human evolution.
Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I
2016-12-01
Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.
Kinematic path planning for space-based robotics
NASA Astrophysics Data System (ADS)
Seereeram, Sanjeev; Wen, John T.
1998-01-01
Future space robotics tasks require manipulators of significant dexterity, achievable through kinematic redundancy and modular reconfigurability, but with a corresponding complexity of motion planning. Existing research aims for full autonomy and completeness, at the expense of efficiency, generality or even user friendliness. Commercial simulators require user-taught joint paths-a significant burden for assembly tasks subject to collision avoidance, kinematic and dynamic constraints. Our research has developed a Kinematic Path Planning (KPP) algorithm which bridges the gap between research and industry to produce a powerful and useful product. KPP consists of three key components: path-space iterative search, probabilistic refinement, and an operator guidance interface. The KPP algorithm has been successfully applied to the SSRMS for PMA relocation and dual-arm truss assembly tasks. Other KPP capabilities include Cartesian path following, hybrid Cartesian endpoint/intermediate via-point planning, redundancy resolution and path optimization. KPP incorporates supervisory (operator) input at any detail to influence the solution, yielding desirable/predictable paths for multi-jointed arms, avoiding obstacles and obeying manipulator limits. This software will eventually form a marketable robotic planner suitable for commercialization in conjunction with existing robotic CAD/CAM packages.
NASA Astrophysics Data System (ADS)
Sun, Ming; Yin, An; Yan, Danping; Ren, Hongyu; Mu, Hongxu; Zhu, Lutao; Qiu, Liang
2018-06-01
Pre-existing weakness due to repeated tectonic, metamorphic, and magmatic events is a fundamental feature of the continental lithosphere on Earth. Because of this, continental deformation results from a combined effect of boundary conditions imposed by plate tectonic processes and heterogeneous and anisotropic mechanical strength inherited from protracted continental evolution. In this study, we assess how this interaction may have controlled the Cenozoic evolution of the eastern Tibetan plateau during the India-Asia collision. Specifically, we use analogue models to evaluate how the pre-Cenozoic structures may have controlled the location, orientation, and kinematics of the northwest-striking Xianshuihe and northeast-striking Longmen Shan fault zones, the two most dominant Cenozoic structures in eastern Tibet. Our best model indicates that the correct location, trend, and kinematics of the two fault systems can only be generated and maintained if the following conditions are met: (1) the northern part of the Songpan-Ganzi terrane in eastern Tibet has a strong basement whereas its southern part has a weak basement, (2) the northern strong basement consists of two pieces bounded by a crustal-scale weak zone that is expressed by the Triassic development of a northwest-trending antiform exposing middle and lower crustal rocks, and (3) the region was under persistent northeast-southwest compression since ∼35 Ma. Our model makes correct prediction on the sequence of deformation in eastern Tibet; the Longmen Shan right-slip transpressional zone was initiated first as an instantaneous response to the northeast-southwest compression, which is followed by the formation of the Xianshuihe fault about a half way after the exertion of northeast-southwest shortening in the model. The success of our model highlights the importance of pre-existing weakness, a key factor that has been largely neglected in the current geodynamic models of continental deformation.
Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume
2015-06-01
Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.
An inverse dynamics approach to face animation.
Pitermann, M; Munhall, K G
2001-09-01
Muscle-based models of the human face produce high quality animation but rely on recorded muscle activity signals or synthetic muscle signals that are often derived by trial and error. This paper presents a dynamic inversion of a muscle-based model (Lucero and Munhall, 1999) that permits the animation to be created from kinematic recordings of facial movements. Using a nonlinear optimizer (Powell's algorithm), the inversion produces a muscle activity set for seven muscles in the lower face that minimize the root mean square error between kinematic data recorded with OPTOTRAK and the corresponding nodes of the modeled facial mesh. This inverted muscle activity is then used to animate the facial model. In three tests of the inversion, strong correlations were observed for kinematics produced from synthetic muscle activity, for OPTOTRAK kinematics recorded from a talker for whom the facial model is morphologically adapted and finally for another talker with the model morphology adapted to a different individual. The correspondence between the animation kinematics and the three-dimensional OPTOTRAK data are very good and the animation is of high quality. Because the kinematic to electromyography (EMG) inversion is ill posed, there is no relation between the actual EMG and the inverted EMG. The overall redundancy of the motor system means that many different EMG patterns can produce the same kinematic output.
Renewable fluid dynamic energy derived from aquatic animal locomotion.
Dabiri, John O
2007-09-01
Aquatic animals swimming in isolation and in groups are known to extract energy from the vortices in environmental flows, significantly reducing muscle activity required for locomotion. A model for the vortex dynamics associated with this phenomenon is developed, showing that the energy extraction mechanism can be described by simple criteria governing the kinematics of the vortices relative to the body in the flow. In this way, we need not make direct appeal to the fluid dynamics, which can be more difficult to evaluate than the kinematics. Examples of these principles as exhibited in swimming fish and existing energy conversion devices are described. A benefit of the developed framework is that the potentially infinite-dimensional parameter space of the fluid-structure interaction is reduced to a maximum of eight combinations of three parameters. The model may potentially aid in the design and evaluation of unsteady aero- and hydrodynamic energy conversion systems that surpass the Betz efficiency limit of steady fluid dynamic energy conversion systems.
The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook
NASA Astrophysics Data System (ADS)
Mai, P. M.
2017-12-01
Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.
Begon, Mickaël; Andersen, Michael Skipper; Dumas, Raphaël
2018-03-01
Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).
Sun, L W; Lee, R Y W; Lu, W; Luk, K D K
2004-11-01
An inverse kinematic model is presented that was employed to determine the optimum intervertebral joint configuration for a given forward-bending posture of the human trunk. The lumbar spine was modelled as an open-end, kinematic chain of five links that represented the five vertebrae (L 1-L5). An optimisation equation with physiological constraints was employed to determine the intervertebral joint configuration. Intervertebral movements were measured from sagittal X-ray films of 22 subjects. The mean difference between the X-ray measurements of intervertebral rotations in the sagittal plane and the values predicted by the kinematic model was less than 1.6 degrees. Pearson product-moment correlation R was used to measure the relationship between the measured and predicted values. The R-values were found to be high, ranging from 0.83 to 0.97, for prediction of intervertebral rotation, but poor for intervertebral translation (R= 0.08-0.67). It is concluded that the inverse kinematic model will be clinically useful for predicting intervertebral rotation when X-ray or invasive measurements are undesirable. It will also be useful to biomechanical modelling, which requires accurate kinematic information as model input data.
Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.
2011-01-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616
Li, Jing-Sheng; Tsai, Tsung-Yuan; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Freiberg, Andrew; Rubash, Harry E.; Li, Guoan
2014-01-01
Using computed tomography (CT) or magnetic resonance (MR) images to construct 3D knee models has been widely used in biomedical engineering research. Statistical shape modeling (SSM) method is an alternative way to provide a fast, cost-efficient, and subject-specific knee modeling technique. This study was aimed to evaluate the feasibility of using a combined dual-fluoroscopic imaging system (DFIS) and SSM method to investigate in vivo knee kinematics. Three subjects were studied during a treadmill walking. The data were compared with the kinematics obtained using a CT-based modeling technique. Geometric root-mean-square (RMS) errors between the knee models constructed using the SSM and CT-based modeling techniques were 1.16 mm and 1.40 mm for the femur and tibia, respectively. For the kinematics of the knee during the treadmill gait, the SSM model can predict the knee kinematics with RMS errors within 3.3 deg for rotation and within 2.4 mm for translation throughout the stance phase of the gait cycle compared with those obtained using the CT-based knee models. The data indicated that the combined DFIS and SSM technique could be used for quick evaluation of knee joint kinematics. PMID:25320846
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-01-01
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370
Performance variation due to stiffness in a tuna-inspired flexible foil model.
Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V
2017-01-17
Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.
The Phenomenology of Small-Scale Turbulence
NASA Astrophysics Data System (ADS)
Sreenivasan, K. R.; Antonia, R. A.
I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.
A real-time computational model for estimating kinematics of ankle ligaments.
Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan
2016-01-01
An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.
Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.
Fok, Kai Lon; Lee, Jae; Vette, Albert H; Masani, Kei
2018-06-01
Many postural control studies employ a single-mass inverted pendulum model (IPM) to represent the body during standing. However, it is not known to what degree and for what conditions the model's kinematic assumptions are valid. Our first objective was to quantify the IPM error, corresponding to a distance change between the ankle joint and center of mass (COM) during unrestricted, natural, unperturbed standing. A second objective was to quantify the error of having the ankle joint angle represent the COM angle. Eleven young participants completed five standing conditions: quiet standing with eyes open (EO) and closed (EC), voluntarily swaying forward (VSf) and backward (VSb), and freely moving (FR). The modified Helen-Hayes marker model was used to capture the body kinematics. The COM distance changed <0.1% during EO and EC, <0.25% during VSf and VSb, and <1.5% during FR. The ankle angle moderately and positively correlated with the COM angle for EO, EC, and VSf, indicating that temporal features of the ankle angle moderately represent those of the COM angle. However, a considerable offset between the two existed, which needs to be considered when estimating the COM angle using the ankle angle. For VSb and FR, the correlation coefficients were low and/or negative, suggesting that a large error would result from using the ankle angle as an estimate of the COM angle. Insights from this study will be critical for deciding when to use the IPM in postural control research and for interpreting associated results. Copyright © 2018 Elsevier B.V. All rights reserved.
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-05-13
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.
Linear and nonlinear subspace analysis of hand movements during grasping.
Cui, Phil Hengjun; Visell, Yon
2014-01-01
This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.
Zero-Inertial Recession for a Kinematic Wave Model
USDA-ARS?s Scientific Manuscript database
Kinematic-wave models of surface irrigation assume a fixed relationship between depth and discharge (typically, normal depth). When surface irrigation inflow is cut off, the calculated upstream flow depth goes to zero, since the discharge is zero. For short time steps, use of the Kinematic Wave mode...
Szczęsna, Agnieszka; Pruszowski, Przemysław
2016-01-01
Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.
A theoretical model of speed-dependent steering torque for rolling tyres
NASA Astrophysics Data System (ADS)
Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing
2016-04-01
It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.
NASA Astrophysics Data System (ADS)
Chinnasee, Chamnan; Nadzalan, Ali Md; Ikhwan Mohamad, Nur; Sazili, Abdul Hafiz Ahmad; Hemapandha, Witthaya; Azizuddin Khan, Thariq Khan; Pimjan, Luckhana; Tan, Kevin
2018-05-01
This study was conducted to determine and compare the kinematics of knee strike in MuayThai between dominant and non-dominant lower limb. Ten MuayThai beginners (mean age = 20 ± 1 years old) with less than one week experiences in MuayThai training were recruited and were asked to perform three trials of knee strikes for each leg (dominant and non-dominant). Joint angles and angular velocity of the movement were assessed for each trial. Repeated measure multivariate analyses of variances (MANOVA) were performed to compare the kinematics data between the dominant and non-dominant lower limb. Results showed no significant differences existed in all the joint kinematics examined between dominant and non-dominant lower limb. As the conclusion, MuayThai beginners demonstrated no differences of joint kinematics during knee strike between dominant and non-dominant lower limb.
NASA Astrophysics Data System (ADS)
Gallovič, F.
2017-09-01
Strong ground motion simulations require physically plausible earthquake source model. Here, I present the application of such a kinematic model introduced originally by Ruiz et al. (Geophys J Int 186:226-244, 2011). The model is constructed to inherently provide synthetics with the desired omega-squared spectral decay in the full frequency range. The source is composed of randomly distributed overlapping subsources with fractal number-size distribution. The position of the subsources can be constrained by prior knowledge of major asperities (stemming, e.g., from slip inversions), or can be completely random. From earthquake physics point of view, the model includes positive correlation between slip and rise time as found in dynamic source simulations. Rupture velocity and rise time follows local S-wave velocity profile, so that the rupture slows down and rise times increase close to the surface, avoiding unrealistically strong ground motions. Rupture velocity can also have random variations, which result in irregular rupture front while satisfying the causality principle. This advanced kinematic broadband source model is freely available and can be easily incorporated into any numerical wave propagation code, as the source is described by spatially distributed slip rate functions, not requiring any stochastic Green's functions. The source model has been previously validated against the observed data due to the very shallow unilateral 2014 Mw6 South Napa, California, earthquake; the model reproduces well the observed data including the near-fault directivity (Seism Res Lett 87:2-14, 2016). The performance of the source model is shown here on the scenario simulations for the same event. In particular, synthetics are compared with existing ground motion prediction equations (GMPEs), emphasizing the azimuthal dependence of the between-event ground motion variability. I propose a simple model reproducing the azimuthal variations of the between-event ground motion variability, providing an insight into possible refinement of GMPEs' functional forms.
A Unified Picture of Mass Segregation in Globular Clusters
NASA Astrophysics Data System (ADS)
Watkins, Laura
2017-08-01
The sensitivity, stability and longevity of HST have opened up an exciting new parameter space: we now have velocity measurements, in the form of proper motions (PMs), for stars from the tip of the red giant branch to a few magnitudes below the main-sequence turn off for a large sample of globular clusters (GCs). For the very first time, we have the opportunity to measure both kinematic and spatial dependences on stellar mass in GCs.The formation and evolution histories of GCs are poorly understood, so too are their intermediate-mass black hole populations and binary fractions. However, the current structure and dynamical state of a GC is directly determined by its past history and its components, so by understanding the former we can gain insight into the latter. Quantifying variations in spatial structure for stars of different mass is extremely difficult with photometry alone as datasets are inhomogenous and incomplete. We require kinematic data for stars that span a range of stellar masses, combined with proper dynamical modelling. We now have the data in hand, but still lack the models needed to maximise the scientific potential of our HST datasets.Here, we propose to extend existing single-mass discrete dynamical-modelling tools to include kinematic and spatial variations with stellar mass, and verify the upgrades using mock data generated from N-body models. We will then apply the models to HST PM data and directly quantify energy equipartition and mass segregation in the GCs. The theoretical phase of the project is vital for the success of the subsequent data analysis, and will serve as a benchmark for future observational campaigns with HST, JWST and beyond.
NASA Astrophysics Data System (ADS)
Abadjieva, Emilia; Abadjiev, Valentin
2017-06-01
The science that study the processes of motions transformation upon a preliminary defined law between non-coplanar axes (in general case) axes of rotations or axis of rotation and direction of rectilinear translation by three-link mechanisms, equipped with high kinematic joints, can be treated as an independent branch of Applied Mechanics. It deals with mechanical behaviour of these multibody systems in relation to the kinematic and geometric characteristics of the elements of the high kinematic joints, which form them. The object of study here is the process of regular transformation of rotation into translation. The developed mathematical model is subjected to the defined task for studying the sliding velocity vector function at the contact point from the surfaces elements of arbitrary high kinematic joints. The main kinematic characteristics of the studied type motions transformation (kinematic cylinders on level, kinematic relative helices (helical conoids) and kinematic pitch configurations) are defined on the bases of the realized analysis. These features expand the theoretical knowledge, which is the objective of the gearing theory. They also complement the system of kinematic and geometric primitives, that form the mathematical model for synthesis of spatial rack mechanisms.
NASA Astrophysics Data System (ADS)
Rimal, Dipak
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.
Kinematic and neuromuscular relationships between lower extremity clinical movement assessments.
Mauntel, Timothy C; Cram, Tyler R; Frank, Barnett S; Begalle, Rebecca L; Norcross, Marc F; Blackburn, J Troy; Padua, Darin A
2018-06-01
Lower extremity injuries have immediate and long-term consequences. Lower extremity movement assessments can assist with identifying individuals at greater injury risk and guide injury prevention interventions. Movement assessments identify similar movement characteristics and evidence suggests large magnitude kinematic relationships exist between movement patterns observed across assessments; however, the magnitude of the relationships for electromyographic (EMG) measures across movement assessments remains largely unknown. This study examined relationships between lower extremity kinematic and EMG measures during jump landings and single leg squats. Lower extremity three-dimensional kinematic and EMG data were sampled from healthy adults (males = 20, females = 20) during the movement assessments. Pearson correlations examined the relationships of the kinematic and EMG measures and paired samples t-tests compared mean kinematic and EMG measures between the assessments. Overall, significant moderate correlations were observed for lower extremity kinematic (r avg = 0.41, r range = 0.10-0.61) and EMG (r avg = 0.47, r range = 0.32-0.80) measures across assessments. Kinematic and EMG measures were greater during the jump landings. Jump landings and single leg squats place different demands on the body and necessitate different kinematic and EMG patterns, such that these measures are not highly correlated between assessments. Clinicians should, therefore, use multiple assessments to identify aberrant movement and neuromuscular control patterns so that comprehensive interventions can be implemented.
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
Kinematic analysis of a posterior-stabilized knee prosthesis.
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-20
The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.
Baldwin, Mark A; Clary, Chadd; Maletsky, Lorin P; Rullkoetter, Paul J
2009-10-16
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial-lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10 degrees and 110 degrees femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency. Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1 degrees and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7 degrees and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal-external tilt and inferior-superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.
Hewitt, Angela L; Popa, Laurentiu S; Pasalar, Siavash; Hendrix, Claudia M; Ebner, Timothy J
2011-11-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of R(adj)(2)), followed by position (28 ± 24% of R(adj)(2)) and speed (11 ± 19% of R(adj)(2)). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower R(adj)(2) values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics.
Gait kinematics of subjects with ankle instability using a multisegmented foot model.
De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark; Pataky, Todd; Roosen, Philip
2013-11-01
Many patients who sustain an acute lateral ankle sprain develop chronic ankle instability (CAI). Altered ankle kinematics have been reported to play a role in the underlying mechanisms of CAI. In previous studies, however, the foot was modeled as one rigid segment, ignoring the complexity of the ankle and foot anatomy and kinematics. The purpose of this study was to evaluate stance phase kinematics of subjects with CAI, copers, and controls during walking and running using both a rigid and a multisegmented foot model. Foot and ankle kinematics of 77 subjects (29 subjects with self-reported CAI, 24 copers, and 24 controls) were measured during barefoot walking and running using a rigid foot model and a six-segment Ghent Foot Model. Data were collected on a 20-m-long instrumented runway embedded with a force plate and a six-camera optoelectronic system. Groups were compared using statistical parametric mapping. Both the CAI and the coper group showed similar differences during midstance and late stance compared with the control group (P < 0.05). The rigid foot segment showed a more everted position during walking compared with the control group. Based on the Ghent Foot Model, the rear foot also showed a more everted position during running. The medial forefoot showed a more inverted position for both running and walking compared with the control group. Our study revealed significant midstance and late stance differences in rigid foot, rear foot, and medial forefoot kinematics The multisegmented foot model demonstrated intricate behavior of the foot that is not detectable with rigid foot modeling. Further research using these models is necessary to expand knowledge of foot kinematics in subjects with CAI.
Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scaling and kinematics optimisation of the scapula and thorax in upper limb musculoskeletal models
Prinold, Joe A.I.; Bull, Anthony M.J.
2014-01-01
Accurate representation of individual scapula kinematics and subject geometries is vital in musculoskeletal models applied to upper limb pathology and performance. In applying individual kinematics to a model׳s cadaveric geometry, model constraints are commonly prescriptive. These rely on thorax scaling to effectively define the scapula׳s path but do not consider the area underneath the scapula in scaling, and assume a fixed conoid ligament length. These constraints may not allow continuous solutions or close agreement with directly measured kinematics. A novel method is presented to scale the thorax based on palpated scapula landmarks. The scapula and clavicle kinematics are optimised with the constraint that the scapula medial border does not penetrate the thorax. Conoid ligament length is not used as a constraint. This method is simulated in the UK National Shoulder Model and compared to four other methods, including the standard technique, during three pull-up techniques (n=11). These are high-performance activities covering a large range of motion. Model solutions without substantial jumps in the joint kinematics data were improved from 23% of trials with the standard method, to 100% of trials with the new method. Agreement with measured kinematics was significantly improved (more than 10° closer at p<0.001) when compared to standard methods. The removal of the conoid ligament constraint and the novel thorax scaling correction factor were shown to be key. Separation of the medial border of the scapula from the thorax was large, although this may be physiologically correct due to the high loads and high arm elevation angles. PMID:25011621
Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants
Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.
2017-01-01
This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463
Estimation of kinematic parameters in CALIFA galaxies: no-assumption on internal dynamics
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Barrera-Ballesteros, J.; CALIFA Team
2016-06-01
We propose a simple approach to homogeneously estimate kinematic parameters of a broad variety of galaxies (elliptical, spirals, irregulars or interacting systems). This methodology avoids the use of any kinematical model or any assumption on internal dynamics. This simple but novel approach allows us to determine: the frequency of kinematic distortions, systemic velocity, kinematic center, and kinematic position angles which are directly measured from the two dimensional-distributions of radial velocities. We test our analysis tools using the CALIFA Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Jonkman, Jason; Pegalajar-Jurado, Antonio
In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at themore » wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Jonkman, Jason; Pegalajar-Jurado, Antonio
In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at themore » wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.« less
Comparison of three-dimensional multi-segmental foot models used in clinical gait laboratories.
Nicholson, Kristen; Church, Chris; Takata, Colton; Niiler, Tim; Chen, Brian Po-Jung; Lennon, Nancy; Sees, Julie P; Henley, John; Miller, Freeman
2018-05-16
Many skin-mounted three-dimensional multi-segmented foot models are currently in use for gait analysis. Evidence regarding the repeatability of models, including between trial and between assessors, is mixed, and there are no between model comparisons of kinematic results. This study explores differences in kinematics and repeatability between five three-dimensional multi-segmented foot models. The five models include duPont, Heidelberg, Oxford Child, Leardini, and Utah. Hind foot, forefoot, and hallux angles were calculated with each model for ten individuals. Two physical therapists applied markers three times to each individual to assess within and between therapist variability. Standard deviations were used to evaluate marker placement variability. Locally weighted regression smoothing with alpha-adjusted serial T tests analysis was used to assess kinematic similarities. All five models had similar variability, however, the Leardini model showed high standard deviations in plantarflexion/dorsiflexion angles. P-value curves for the gait cycle were used to assess kinematic similarities. The duPont and Oxford models had the most similar kinematics. All models demonstrated similar marker placement variability. Lower variability was noted in the sagittal and coronal planes compared to rotation in the transverse plane, suggesting a higher minimal detectable change when clinically considering rotation and a need for additional research. Between the five models, the duPont and Oxford shared the most kinematic similarities. While patterns of movement were very similar between all models, offsets were often present and need to be considered when evaluating published data. Copyright © 2018 Elsevier B.V. All rights reserved.
Kinematic geometry of osteotomies.
Smith, Erin J; Bryant, J Tim; Ellis, Randy E
2005-01-01
This paper presents a novel method for defining an osteotomy that can be used to represent all types of osteotomy procedures. In essence, we model an osteotomy as a lower-pair mechanical joint to derive the kinematic geometry of the osteotomy. This method was implemented using a commercially available animation software suite in order to simulate a variety of osteotomy procedures. Two osteotomy procedures are presented for a femoral malunion in order to demonstrate the advantages of our kinematic model in developing optimal osteotomy plans. The benefits of this kinematic model include the ability to evaluate the effects of various kinds of osteotomy and the elimination of potentially error-prone radiographic assessment of deformities.
Study on stress-strain response of multi-phase TRIP steel under cyclic loading
NASA Astrophysics Data System (ADS)
Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.
2013-12-01
The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.
Wells, D J M; Alderson, J A; Dunne, J; Elliott, B C; Donnelly, C J
2017-01-25
To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration - MR PC - and once with the same model prepared without prescribed co-ordinates - MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MR PC : SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MR PC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, Jiayu; Chen, Zhenxian; Xin, Hua; Zhang, Qida; Jin, Zhongmin
2018-05-01
Detailed knowledge of the in vivo loading and kinematics in the knee joint is essential to understand its normal functions and the aetiology of osteoarthritis. Computer models provide a viable non-invasive solution for estimating joint loading and kinematics during different physiological activities. However, the joint loading and kinematics of the tibiofemoral and patellofemoral joints during a gait cycle were not typically investigated concurrently in previous computational simulations. In this study, a natural knee architecture was incorporated into a lower extremity musculoskeletal multibody dynamics model based on a force-dependent kinematics approach to investigate the contact mechanics and kinematics of a natural knee joint during a walking cycle. Specifically, the contact forces between the femoral/tibial articular cartilages and menisci and between the femoral and tibial/patellar articular cartilages were quantified. The contact forces and kinematics of the tibiofemoral and patellofemoral joints and the muscle activations and ligament forces were predicted simultaneously with a reasonable level of accuracy. The developed musculoskeletal multibody dynamics model with a natural knee architecture can serve as a potential platform for assisting clinical decision-making and postoperative rehabilitation planning.
Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots
NASA Astrophysics Data System (ADS)
WANG, Wei; WANG, Lei; YUN, Chao
2017-03-01
Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.
Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine
NASA Astrophysics Data System (ADS)
Izumida, Yuki
2018-03-01
The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.
NASA Astrophysics Data System (ADS)
Hoscheit, Benjamin L.; Barger, Amy J.
2017-06-01
There is substantial and growing observational evidence from the normalized luminosity density in the near-infrared that the local universe may be under-dense on scales of several hundred Megaparsecs. Our objective is to test whether a void described by a parameterization of the observational data is compatible with the latest data on supernovae type Ia and the linear kinematic Sunyaev-Zel'dovich (kSZ) effect. Our study is based on the large local void radial profile observed by Keenan, Barger, and Cowie (KBC) and a theoretical void description based on the Lemaître-Tolman-Bondi model with a nonzero cosmological constant (Lambda-LTB). We find consistency with the measured luminosity distance-redshift relation on radial scales relevant to the KBC void through a comparison with low-redshift supernovae type Ia from the `Supercal' dataset over the redshift range 0.01 < z < 0.10. We also find that previous linear kSZ constraints, as well as new ones from the South Pole Telescope, are fully compatible with the existence of the KBC void.
Digital Filtering of Three-Dimensional Lower Extremity Kinematics: an Assessment
Sinclair, Jonathan; Taylor, Paul John; Hobbs, Sarah Jane
2013-01-01
Errors in kinematic data are referred to as noise and are an undesirable portion of any waveform. Noise is typically removed using a low-pass filter which removes the high frequency components of the signal. The selection of an optimal frequency cut-off is very important when processing kinematic information and a number of techniques exists for the determination of an optimal frequency cut-off. Despite the importance of cut-off frequency to the efficacy of kinematic analyses there is currently a paucity of research examining the influence of different cut-off frequencies on the resultant 3-D kinematic waveforms and discrete parameters. Twenty participants ran at 4.0 m•s−1 as lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. The data were filtered at a range of cut-off frequencies and the discrete kinematic parameters were examined using repeated measures ANOVA’s. The similarity between the raw and filtered waveforms were examined using intra-class correlations. The results show that the cut-off frequency has a significant influence on the discrete kinematic measure across displacement and derivative information in all three planes of rotation. Furthermore, it was also revealed that as the cut-off frequency decreased the attenuation of the kinematic waveforms became more pronounced, particularly in the coronal and transverse planes at the second derivative. In conclusion, this investigation provides new information regarding the influence of digital filtering on lower extremity kinematics and re-emphasizes the importance of selecting the correct cut-off frequency. PMID:24511338
Dune Erosion Models and Swash Zone Kinematics from Remote Video Observations
2010-12-09
system. Thus, successful prediction of dune erosion requires knowledge of the expected trajectory of the eroding dune toe . If we describe the... dune toe trajectory as following a slope, βT, two end member retreat trajectories exist. The first would be direct landward erosion so that zb never...changes 0 0 T bb ztz (2.24) The second end member trajectory is that erosion moves the dune toe directly up the foreshore slope
Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.
2005-01-01
In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.
SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components
NASA Astrophysics Data System (ADS)
Jin, Yifei; Chen, Yanmei; Shi, Yong; Tremonti, C. A.; Bershady, M. A.; Merrifield, M.; Emsellem, E.; Fu, Hai; Wake, D.; Bundy, K.; Lin, Lihwai; Argudo-Fernandez, M.; Huang, Song; Stark, D. V.; Storchi-Bergmann, T.; Bizyaev, D.; Brownstein, J.; Chisholm, J.; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Masters, K. L.; Malanushenko, E.; Pan, Kaike; Riffel, R. A.; Roman-Lopes, A.; Simmons, A.; Thomas, D.; Wang, Lan; Westfall, K.; Yan, Renbin
2016-11-01
We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, I.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 `Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.
Mandibular kinematics represented by a non-orthogonal floating axis joint coordinate system.
Leader, Joseph K; Boston, J Robert; Debski, Richard E; Rudy, Thomas E
2003-02-01
There are many methods used to represent joint kinematics (e.g., roll, pitch, and yaw angles; instantaneous center of rotation; kinematic center; helical axis). Often in biomechanics internal landmarks are inferred from external landmarks. This study represents mandibular kinematics using a non-orthogonal floating axis joint coordinate system based on 3-D geometric models with parameters that are "clinician friendly" and mathematically rigorous. Kinematics data for two controls were acquired from passive fiducial markers attached to a custom dental clutch. The geometric models were constructed from MRI data. The superior point along the arc of the long axis of the condyle was used to define the coordinate axes. The kinematic data and geometric models were registered through fiducial markers visible during both protocols. The mean absolute maxima across the subjects for sagittal rotation, coronal rotation, axial rotation, medial-lateral translation, anterior-posterior translation, and inferior-superior translation were 34.10 degrees, 1.82 degrees, 1.14 degrees, 2.31, 21.07, and 6.95 mm, respectively. All the parameters, except for one subject's axial rotation, were reproducible across two motion recording sessions. There was a linear correlation between sagittal rotation and translation, the dominant motion plane, with approximately 1.5 degrees of rotation per millimeter of translation. The novel approach of combining the floating axis system with geometric models succinctly described mandibular kinematics with reproducible and clinician friendly parameters.
A kinematic/kinetic hybrid airplane simulator model : draft.
DOT National Transportation Integrated Search
2008-01-01
A kinematics-based flight model, for normal flight : regimes, currently uses precise flight data to achieve a high : level of aircraft realism. However, it was desired to further : increase the models accuracy, without a substantial increase in : ...
A kinematic/kinetic hybrid airplane simulator model.
DOT National Transportation Integrated Search
2008-01-01
A kinematics-based flight model, for normal flight : regimes, currently uses precise flight data to achieve a high : level of aircraft realism. However, it was desired to further : increase the models accuracy, without a substantial increase in : ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitarka, Arben
GEN_SRF_4 is a computer program for generation kinematic earthquake rupture models for use in ground motion modeling and simulations of earthquakes. The output is an ascii SRF formatted file containing kinematic rupture parameters.
Effect of shoulder model complexity in upper-body kinematics analysis of the golf swing.
Bourgain, M; Hybois, S; Thoreux, P; Rouillon, O; Rouch, P; Sauret, C
2018-06-25
The golf swing is a complex full body movement during which the spine and shoulders are highly involved. In order to determine shoulder kinematics during this movement, multibody kinematics optimization (MKO) can be recommended to limit the effect of the soft tissue artifact and to avoid joint dislocations or bone penetration in reconstructed kinematics. Classically, in golf biomechanics research, the shoulder is represented by a 3 degrees-of-freedom model representing the glenohumeral joint. More complex and physiological models are already provided in the scientific literature. Particularly, the model used in this study was a full body model and also described motions of clavicles and scapulae. This study aimed at quantifying the effect of utilizing a more complex and physiological shoulder model when studying the golf swing. Results obtained on 20 golfers showed that a more complex and physiologically-accurate model can more efficiently track experimental markers, which resulted in differences in joint kinematics. Hence, the model with 3 degrees-of-freedom between the humerus and the thorax may be inadequate when combined with MKO and a more physiological model would be beneficial. Finally, results would also be improved through a subject-specific approach for the determination of the segment lengths. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H
2017-07-01
Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.
Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.
Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W
2017-06-22
Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.
Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback
Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.
2017-01-01
Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038
Predicting muscle forces during the propulsion phase of single leg triple hop test.
Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini
2018-01-01
Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.
Brahmi, Brahim; Saad, Maarouf; Ochoa-Luna, Cristobal; Rahman, Mohammad H
2017-07-01
In this paper, we propose a new adaptive control technique based on nonlinear sliding mode control (JSTDE) taking into account kinematics and dynamics uncertainties. This approach is applied to an exoskeleton robot with uncertain kinematics and dynamics. The adaptation design is based on Time Delay Estimation (TDE). The proposed strategy does not necessitate the well-defined dynamic and kinematic models of the system robot. The updated laws are designed using Lyapunov-function to solve the adaptation problem systematically, proving the close loop stability and ensuring the convergence asymptotically of the outputs tracking errors. Experiments results show the effectiveness and feasibility of JSTDE technique to deal with the variation of the unknown nonlinear dynamics and kinematics of the exoskeleton model.
Uncertainty modelling of real-time observation of a moving object: photogrammetric measurements
NASA Astrophysics Data System (ADS)
Ulrich, Thomas
2015-04-01
Photogrametric systems are widely used in the field of industrial metrology to measure kinematic tasks such as tracking robot movements. In order to assess spatiotemporal deviations of a kinematic movement, it is crucial to have a reliable uncertainty of the kinematic measurements. Common methods to evaluate the uncertainty in kinematic measurements include approximations specified by the manufactures, various analytical adjustment methods and Kalman filters. Here a hybrid system estimator in conjunction with a kinematic measurement model is applied. This method can be applied to processes which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. Additionally, it has been shown that the approach is in accordance with GUM (Guide to the Expression of Uncertainty in Measurement). The approach is compared to the Kalman filter using simulated data to achieve an overall error calculation. Furthermore, the new approach is used for the analysis of a rotating system as this system has both a constant and a variable turn rate. As the new approach reduces overshoots it is more appropriate for analysing kinematic processes than the Kalman filter. In comparison with the manufacturer’s approximations, the new approach takes account of kinematic behaviour, with an improved description of the real measurement process. Therefore, this approach is well-suited to the analysis of kinematic processes with unknown changes in kinematic behaviour.
Kinematic Analysis of a Posterior-stabilized Knee Prosthesis
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-01
Background: The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0–135° flexion. Results: Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, “rollback” compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis. PMID:25591565
Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J
2016-01-01
Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context. Copyright © 2015 Elsevier B.V. All rights reserved.
A musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. Musculotendon parameters and the skeletal geometry were determined for the musculoskeletal model in the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing both isometric and ballistic elbow joint complex movements. In general, the model predicted kinematic and muscle excitation patterns similar to what was experimentally measured.
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Massa, Bruno; Milano, Girolamo; D'Auria, Luca
2018-01-01
In this paper we investigate the border between the Sannio and Irpinia seismogenic regions, a sector of the southern Apennine chain considered among the most active seismic areas of the Italian peninsula, to shed further light on its complex seismotectonic setting. We integrated recent seismicity with literature data. A detailed analysis of the seismicity that occurred in the 2013-2016 time interval was performed. The events were relocated, after manual re-picking, using different approaches. To retrieve information about the stress field active in the area, inversion of Fault Plane Solutions was also carried out. Hypocentral distribution of the relocated events (ML ≤ 3.5), whose depth is included between 5 and 25 km with the deepest ones located in the NW sector of the study area, shows a different pattern between the northern sector and the southern one. The computed Fault Plane Solutions can be grouped in three depth ranges: < 12 km, dominated by normal dip-slip kinematics; 12-18 km, characterized by normal dip-slip and strike-slip kinematics; > 18 km, dominated by strike-slip kinematics. Stress field inversion across the whole area shows that we are dealing with an heterogeneous set of data, apparently governed by distinct stress fields. We built an upper crustal model profile through integration of geological data, well logs and seismic tomographic profiles. Our results suggest the co-existence of different tectonic styles at distinct crustal depths: the upper crust seems to be affected mostly by normal faulting, whereas strike-slip faulting prevails in the intermediate and lower crust. We infer about the existence of a transitional volume, located between 12 and 18 km depth, between the Sannio and Irpinia regions, acting as a vertical transfer zone.
Movement coordination patterns between the foot joints during walking.
Arnold, John B; Caravaggi, Paolo; Fraysse, François; Thewlis, Dominic; Leardini, Alberto
2017-01-01
In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction), anti-phase (opposite directions), proximal or distal joint dominant. In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint coordination patterns due to lower limb pathologies or following injuries.
Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Samlan, Robin A.; Story, Brad H.
2011-01-01
Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…
Fang, Chao-Hua; Chang, Chia-Ming; Lai, Yu-Shu; Chen, Wen-Chuan; Song, Da-Yong; McClean, Colin J; Kao, Hao-Yuan; Qu, Tie-Bing; Cheng, Cheng-Kung
2015-11-01
Excellent clinical and kinematical performance is commonly reported after medial pivot knee arthroplasty. However, there is conflicting evidence as to whether the posterior cruciate ligament should be retained. This study simulated how the posterior cruciate ligament, post-cam mechanism and medial tibial insert morphology may affect postoperative kinematics. After the computational intact knee model was validated according to the motion of a normal knee, four TKA models were built based on a medial pivot prosthesis; PS type, modified PS type, CR type with PCL retained and CR type with PCL sacrificed. Anteroposterior translation and axial rotation of femoral condyles on the tibia during 0°-135° knee flexion were analyzed. There was no significant difference in kinematics between the intact knee model and reported data for a normal knee. In all TKA models, normal motion was almost fully restored, except for the CR type with PCL sacrificed. Sacrificing the PCL produced paradoxical anterior femoral translation and tibial external rotation during full flexion. Either the posterior cruciate ligament or post-cam mechanism is necessary for medial pivot prostheses to regain normal kinematics after total knee arthroplasty. The morphology of medial tibial insert was also shown to produce a small but noticeable effect on knee kinematics. V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
A stochastic approach to uncertainty in the equations of MHD kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Edward G., E-mail: egphillips@math.umd.edu; Elman, Howard C., E-mail: elman@cs.umd.edu
2015-03-01
The magnetohydrodynamic (MHD) kinematics model describes the electromagnetic behavior of an electrically conducting fluid when its hydrodynamic properties are assumed to be known. In particular, the MHD kinematics equations can be used to simulate the magnetic field induced by a given velocity field. While prescribing the velocity field leads to a simpler model than the fully coupled MHD system, this may introduce some epistemic uncertainty into the model. If the velocity of a physical system is not known with certainty, the magnetic field obtained from the model may not be reflective of the magnetic field seen in experiments. Additionally, uncertaintymore » in physical parameters such as the magnetic resistivity may affect the reliability of predictions obtained from this model. By modeling the velocity and the resistivity as random variables in the MHD kinematics model, we seek to quantify the effects of uncertainty in these fields on the induced magnetic field. We develop stochastic expressions for these quantities and investigate their impact within a finite element discretization of the kinematics equations. We obtain mean and variance data through Monte Carlo simulation for several test problems. Toward this end, we develop and test an efficient block preconditioner for the linear systems arising from the discretized equations.« less
Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
Duprey, Sonia; Naaim, Alexandre; Moissenet, Florent; Begon, Mickaël; Chèze, Laurence
2017-09-06
Soft tissue artefact (STA), i.e. the motion of the skin, fat and muscles gliding on the underlying bone, may lead to a marker position error reaching up to 8.7cm for the particular case of the scapula. Multibody kinematics optimisation (MKO) is one of the most efficient approaches used to reduce STA. It consists in minimising the distance between the positions of experimental markers on a subject skin and the simulated positions of the same markers embedded on a kinematic model. However, the efficiency of MKO directly relies on the chosen kinematic model. This paper proposes an overview of the different upper limb models available in the literature and a discussion about their applicability to MKO. The advantages of each joint model with respect to its biofidelity to functional anatomy are detailed both for the shoulder and the forearm areas. Models capabilities of personalisation and of adaptation to pathological cases are also discussed. Concerning model efficiency in terms of STA reduction in MKO algorithms, a lack of quantitative assessment in the literature is noted. In priority, future studies should concern the evaluation and quantification of STA reduction depending on upper limb joint constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling initial contact dynamics during ambulation with dynamic simulation.
Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F
2007-04-01
Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward dynamic simulations, given kinetic inputs. Future applications include predicting muscle forces and decomposing external kinetics.
Kinematics of Signature Writing in Healthy Aging*
Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.
2014-01-01
Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by elderly writers. The primary purpose of this study was to systematically examine age-related changes in signature kinematics in healthy writers. Forty-two healthy subjects between the ages of 60–91 years participated in this study. Signatures were recorded using a digitizing tablet and commercial software was used to examine the temporal and spatial stroke kinematics and pen pressure. Results indicated that vertical stroke duration and dysfluency increased with age, whereas vertical stroke amplitude and velocity decreased with age. Pen pressure decreased with age. We found that a linear model characterized the best-fit relationship between advanced age and handwriting movement parameters for signature formation. Male writers exhibited stronger age effects than female writers, especially for pen pressure and stroke dysfluency. The present study contributes to an understanding of how advanced age alters signature formation in otherwise healthy adults. PMID:24673648
Source inversion of the 1570 Ferrara earthquake and definitive diversion of the Po River (Italy)
NASA Astrophysics Data System (ADS)
Sirovich, L.; Pettenati, F.
2015-08-01
An 11-parameter, kinematic-function (KF) model was used to retrieve the approximate geometrical and kinematic characteristics of the fault source of the 1570 Mw 5.8 Ferrara earthquake in the Po Plain, including the double-couple orientation (strike angle 127 ± 16°, dip 28 ± 7°, and rake 77 ± 16°). These results are compatible with either the outermost thrust fronts of the northern Apennines, which are buried beneath the Po Plain's alluvial deposits, or the blind crustal-scale thrust. The 1570 event developed to the ENE of the two main shocks on 20 May 2012 (M 6.1) and 29 May 2012 (M 5.9). The three earthquakes had similar kinematics and are found 20-30 km from each other en echelon in the buried chain. Geomorphological and historical evidence exist which suggest the following: (i) the long-lasting uplift of the buried Apenninic front shifted the central part of the course of the Po River approximately 20 km northward in historical times and (ii) the 1570 earthquake marked the definitive diversion of the final part of the Po River away from Ferrara and the closure of the Po delta 40 km south of its present position.
Limit analysis, rammed earth material and Casagrande test
NASA Astrophysics Data System (ADS)
El-Nabouch, Ranime; Pastor, Joseph; Bui, Quoc-Bao; Plé, Olivier
2018-02-01
The present paper is concerned with the simulation of the Casagrande test carried out on a rammed earth material for wall-type structures in the framework of Limit Analysis (LA). In a preliminary study, the material is considered as a homogeneous Coulomb material, and existing LA static and kinematic codes are used for the simulation of the test. In each loading case, static and kinematic bounds coincide; the corresponding exact solution is a two-rigid-block mechanism together with a quasi-constant stress vector and a velocity jump also constant along the interface, for the three loading cases. In a second study, to take into account the influence of compressive loadings related to the porosity of the material, an elliptic criterion (denoted Cohesive Cam-Clay, CCC) is defined based on recent homogenization results about the hollow sphere model for porous Coulomb materials. Finally, original finite element formulations of the static and mixed kinematic methods for the CCC material are developed and applied to the Casagrande test. The results are the same than above, except that this time the velocity jump depends on the compressive loading, which is more realistic but not satisfying fully the experimental observations. Therefore, the possible extensions of this work towards non-standard direct methods are analyzed in the conclusion section.
NASA Astrophysics Data System (ADS)
Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.
2016-12-01
The Salton Seismic Imaging Project (SSIP) illuminated crustal and upper mantle structure of the Salton Trough, the northern-most rift segment of the Gulf of California plate boundary. The crust is 17-18 km thick and homogeneous for 100 km in the plate motion direction. New crust is being created by distributed rift magmatism, Colorado River sedimentation, and metamorphism of the sediment. A 5 km thick pre-existing crustal layer may still exist. The crust has not broken apart to enable initiation of seafloor spreading. A one-dimensional time-dependent kinematic and thermal model was developed to simulate these observations. We assume that all crustal layers are stretched uniformly during extension. Distributed mafic magmatism and sedimentation are added simultaneously to compensate for the crustal thinning. The ratio of magmatism to sedimentation is constrained by the seismic observations. Heat is transported by thermal conduction and by advection due to stretching of the crust. A constant temperature boundary at the Moho is used to represent partial melting in the upper mantle. Assuming a constant plate motion rate, the zone of active rifting extends linearly with time. The crustal thickness and internal structure also evolve with time. The model constraints are the observed seismic structure and heat flow. The model rapidly reaches quasi-steady state, and could continue for many millions of years. The observed seismic structure and heat flow are reproduced after 3 Myr. The yield strength profile calculated from lithology and model temperature indicates that ductile deformation in the middle and lower crust dominates the crustal rheology. Rapid sedimentation delays crustal breakup and the initiation of seafloor spreading by maintaining the thickness of the crust and keeping it predominantly ductile. This process probably occurs wherever a large river flows into an active rift driven by far-field extension. It may have built passive margins in many locations globally, such as the Gulf of Mexico. This type of passive margin consists of mostly new crust created by magmatism and metamorphism of sediment. Along such margins, metamorphosed sediment could be misinterpreted as stretched pre-existing continental crust.
Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger
Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.
2013-01-01
In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569
Input relegation control for gross motion of a kinematically redundant manipulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1992-10-01
This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less
NASA Technical Reports Server (NTRS)
Ider, Sitki Kemal
1989-01-01
Conventionally kinematical constraints in multibody systems are treated similar to geometrical constraints and are modeled by constraint reaction forces which are perpendicular to constraint surfaces. However, in reality, one may want to achieve the desired kinematical conditions by control forces having different directions in relation to the constraint surfaces. The conventional equations of motion for multibody systems subject to kinematical constraints are generalized by introducing general direction control forces. Conditions for the selections of the control force directions are also discussed. A redundant robotic system subject to prescribed end-effector motion is analyzed to illustrate the methods proposed.
Human-centric predictive model of task difficulty for human-in-the-loop control tasks
Majewicz Fey, Ann
2018-01-01
Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301
Joyce, Christopher; Burnett, Angus; Cochrane, Jodie; Ball, Kevin
2013-06-01
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 +/- 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p < or = 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7-66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.
Surgical gesture segmentation and recognition.
Tao, Lingling; Zappella, Luca; Hager, Gregory D; Vidal, René
2013-01-01
Automatic surgical gesture segmentation and recognition can provide useful feedback for surgical training in robotic surgery. Most prior work in this field relies on the robot's kinematic data. Although recent work [1,2] shows that the robot's video data can be equally effective for surgical gesture recognition, the segmentation of the video into gestures is assumed to be known. In this paper, we propose a framework for joint segmentation and recognition of surgical gestures from kinematic and video data. Unlike prior work that relies on either frame-level kinematic cues, or segment-level kinematic or video cues, our approach exploits both cues by using a combined Markov/semi-Markov conditional random field (MsM-CRF) model. Our experiments show that the proposed model improves over a Markov or semi-Markov CRF when using video data alone, gives results that are comparable to state-of-the-art methods on kinematic data alone, and improves over state-of-the-art methods when combining kinematic and video data.
Kinematic model for the space-variant image motion of star sensors under dynamical conditions
NASA Astrophysics Data System (ADS)
Liu, Chao-Shan; Hu, Lai-Hong; Liu, Guang-Bin; Yang, Bo; Li, Ai-Jun
2015-06-01
A kinematic description of a star spot in the focal plane is presented for star sensors under dynamical conditions, which involves all necessary parameters such as the image motion, velocity, and attitude parameters of the vehicle. Stars at different locations of the focal plane correspond to the slightly different orientation and extent of motion blur, which characterize the space-variant point spread function. Finally, the image motion, the energy distribution, and centroid extraction are numerically investigated using the kinematic model under dynamic conditions. A centroid error of eight successive iterations <0.002 pixel is used as the termination criterion for the Richardson-Lucy deconvolution algorithm. The kinematic model of a star sensor is useful for evaluating the compensation algorithms of motion-blurred images.
NASA Astrophysics Data System (ADS)
van den Bout, Bastian; Jetten, Victor
2017-04-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.
Inverse kinematics of a dual linear actuator pitch/roll heliostat
NASA Astrophysics Data System (ADS)
Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh
2017-06-01
This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.
Essential Kinematics for Autonomous Vehicles
1994-05-02
AD-.A282 456 Essential Kinematics for Autonomous Vehicles Alonzo Kelly DTICCMU-RI-TR-94- 14 AU 031994 F The Robotics Institute Carnegie Mellon...kit of concepts and techniques that will equip the reader to master a large class of kinematic modelling problems. Control of autonomous vehicles in 3D...transformation from system ’a’ to system b’. Essential Kinematics for Autonomous Vehicles page 1. The specification of derivatives will be necessarily
A method to model anticipatory postural control in driver braking events.
Östh, Jonas; Eliasson, Erik; Happee, Riender; Brolin, Karin
2014-09-01
Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering. Copyright © 2014. Published by Elsevier B.V.
The EDGE-CALIFA survey: validating stellar dynamical mass models with CO kinematics
NASA Astrophysics Data System (ADS)
Leung, Gigi Y. C.; Leaman, Ryan; van de Ven, Glenn; Lyubenova, Mariya; Zhu, Ling; Bolatto, Alberto D.; Falcón-Barroso, Jesus; Blitz, Leo; Dannerbauer, Helmut; Fisher, David B.; Levy, Rebecca C.; Sanchez, Sebastian F.; Utomo, Dyas; Vogel, Stuart; Wong, Tony; Ziegler, Bodo
2018-06-01
Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g. CO), on the other hand, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper, we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the Calar Alto Legacy Integral Field Area (CALIFA) survey, and CO kinematics from the Extragalactic Database for Galaxy Evolution (EDGE) survey. We test the asymmetric drift correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10 per cent. All three methods show larger scatter (up to 20 per cent) in the inner regions (R < 0.4Re) that may be due to an increasingly spherical mass distribution (which is not captured by the thin disc assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20 per cent, but users should be mindful of scatter in the inner regions where some assumptions may break down.
H I versus H α - comparing the kinematic tracers in modelling the initial conditions of the Mice
NASA Astrophysics Data System (ADS)
Mortazavi, S. Alireza; Lotz, Jennifer M.; Barnes, Joshua E.; Privon, George C.; Snyder, Gregory F.
2018-03-01
We explore the effect of using different kinematic tracers (H I and H α) on reconstructing the encounter parameters of the Mice major galaxy merger (NGC 4676A/B). We observed the Mice using the SparsePak Integral Field Unit (IFU) on the WIYN telescope, and compared the H α velocity map with VLA H I observations. The relatively high spectral resolution of our data (R ≈ 5000) allows us to resolve more than one kinematic component in the emission lines of some fibres. We separate the H α-[N II] emission of the star-forming regions from shocks using their [N II]/H α line ratio and velocity dispersion. We show that the velocity of star-forming regions agree with that of the cold gas (H I), particularly, in the tidal tails of the system. We reconstruct the morphology and kinematics of these tidal tails utilizing an automated modelling method based on the IDENTIKIT software package. We quantify the goodness of fit and the uncertainties of the derived encounter parameters. Most of the initial conditions reconstructed using H α and H I are consistent with each other, and qualitatively agree with the results of previous works. For example, we find 210± ^{50}_{40} Myr, and 180± ^{50}_{40} Myr for the time since pericentre, when modelling H α and H I kinematics, respectively. This confirms that in some cases, H α kinematics can be used instead of H I kinematics for reconstructing the initial conditions of galaxy mergers, and our automated modelling method is applicable to some merging systems.
Kinematics of our Galaxy from the PMA and TGAS catalogues
NASA Astrophysics Data System (ADS)
Velichko, Anna B.; Akhmetov, Volodymyr S.; Fedorov, Peter N.
2018-04-01
We derive and compare kinematic parameters of the Galaxy using the PMA and Gaia TGAS data. Two methods are used in calculations: evaluation of the Ogorodnikov-Milne model (OMM) parameters by the least square method (LSM) and a decomposition on a set of vector spherical harmonics (VSH). We trace dependencies on the distance of the derived parameters including the Oort constants A and B and the rotational velocity of the Galaxy V rot at the Solar distance for the common sample of stars of mixed spectral composition of the PMA and TGAS catalogues. The distances were obtained from the TGAS parallaxes or from reduced proper motions for fainter stars. The A, B and V rot parameters derived from proper motions of both catalogues used show identical behaviour but the values are systematically shifted by about 0.5 mas/yr. The Oort B parameter derived from the PMA sample of red giants shows gradual decrease with increasing the distance while the Oort A has a minimum at about 2 kpc and then gradually increases. As for models chosen for calculations, first, we confirm conclusions of other authors about the existence of extra-model harmonics in the stellar velocity field. Secondly, not all parameters of the OMM are statistically significant, and the set of parameters depends on the stellar sample used.
NASA Astrophysics Data System (ADS)
Rosas, Filipe; Duarte, Joao; Schellart, Wouter; Tomas, Ricardo; Grigorova, Vili; Terrinha, Pedro
2015-04-01
We present analogue modelling experimental results concerning thrust-wrench fault interference in a brittle medium, to try to evaluate the influence exerted by different prescribed interference angles in the formation of morpho-structural interference fault patterns. All the experiments were conceived to simulate simultaneous reactivation of confining strike-slip and thrust faults defining a (corner) zone of interference, contrasting with previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. Different interference angles of 60°, 90° and 120° were experimentally investigated by comparing the specific structural configurations obtained in each case. Results show that a deltoid-shaped morpho-structural pattern is consistently formed in the fault interference (corner) zone, exhibiting a specific geometry that is fundamentally determined by the different prescribed fault interference angle. Such angle determines the orientation of the displacement vector shear component along the main frontal thrust direction, determining different fault confinement conditions in each case, and imposing a complying geometry and kinematics of the interference deltoid structure. Model comparison with natural examples worldwide shows good geometric and kinematic similarity, pointing to the existence of matching underlying dynamic process. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.
Characterization of jellyfish turning using 3D-PTV
NASA Astrophysics Data System (ADS)
Xu, Nicole; Dabiri, John
2017-11-01
Aurelia aurita are oblate, radially symmetric jellyfish that consist of a gelatinous bell and subumbrellar muscle ring, which contracts to provide motive force. Swimming is typically modeled as a purely vertical motion; however, asymmetric activations of swim pacemakers (sensory organs that innervate the muscle at eight locations around the bell margin) result in turning and more complicated swim behaviors. More recent studies have examined flow fields around turning jellyfish, but the input/output relationship between locomotive controls and swim trajectories is unclear. To address this, bell kinematics for both straight swimming and turning are obtained using 3D particle tracking velocimetry (3D-PTV) by injecting biocompatible elastomer tags into the bell, illuminating the tank with ultraviolet light, and tracking the resulting fluorescent particles in a multi-camera setup. By understanding these kinematics in both natural and externally controlled free-swimming animals, we can connect neuromuscular control mechanisms to existing flow measurements of jellyfish turning for applications in designing more energy efficient biohybrid robots and underwater vehicles. NSF GRFP.
Growth rate degeneracies in kinematic dynamos
NASA Astrophysics Data System (ADS)
Favier, B.; Proctor, M. R. E.
2013-09-01
We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called pseudovacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation changing u into -u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired by [Dudley and James, Proc. R. Soc. London A1364-502110.1098/rspa.1989.0112 425, 407 (1989)]. Using both types of boundary conditions, it is shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are drastically different.
NASA Astrophysics Data System (ADS)
Pasqui, Valeria; Viti, Marcello; Mantovani, Enzo
2013-04-01
The recent and active deformation that affects the crest zone of the Umbria-Marche belt (Northern Apennines, Italy) displays a remarkable extensional character, outlined by development of normal fault sets that overprint pre-existing folds and thrusts of Late Miocene-Early Pliocene age. The main extensional fault systems often bound intermontane depressions hosting recent, mainly continental, i.e. fluvial or lacustrine deposits, separating the latter from Triassic-Miocene, mainly carbonatic and siliciclastic marine rocks that belong to the Romagna-Umbria-Marche stratigraphic succession. Stratigraphic data indicate that the extensional strain responsible for the development of normal fault-bounded continental basins in the outer zones of the Northern Apennines was active until Middle Pleistocene time. Since Middle Pleistocene time onwards a major geodynamic change has affected the Central Mediterranean region, with local reorganization of the kinematics in the Adria domain and adjacent Apennine belt. A wide literature illustrates that the overall deformation field of the Central Mediterranean area is presently governed by the relative movements between the Eurasia and Africa plates. The complex interaction of the Africa-Adria and the Anatolian-Aegean-Balkan domains has led the Adria microplate to migrate NW-ward and to collide against Eurasia along the Eastern Southern Alps. As a consequence Adria is presently moving with a general left-lateral displacement with respect to the Apennine mountain belt. The sinistral component of active deformations is also supported by analysis of earthquake focal mechanisms. A comparison between geophysical and geological evidence outlines an apparent discrepancy: most recognized recent and active faults display a remarkable extensional character, as shown by the geometry of continental basin-bounding structutes, whereas geodetic and seismologic evidence indicates the persistency of an active strike-slip, left-lateral dominated strain field. The coexistence of extensional and strike-slip regimes, in principle difficult to achieve, may be explained in the framework of a transtensional deformation model where extensional components, normal to the main NW-directed structural trends, are associated to left-lateral strike-slip movements parallel to the main NW-directed structural trends. Critical for the evaluation of the internal consistency of a deformation model for the brittle upper crustal levels is the definition of the kinematics of active faults. In this study we illustrate the preliminary results of a kinematic analysis carried out along 20, exceptionally well exposed, recent and active fault surfaces cropping out in the southernmost portion of the Umbria-Marche belt adjacent to its termination against the the Latium-Abruzzi domain to the East. The collected data indicate that the investigated faults reflect a kinematically oblique character, and that development of these structures may be explained in the framework of a left-dominated transtensional strain field. More important, the data indicate that fault kinematic analysis is an effective tool in testing geodynamic models for actively deforming crustal domains.
Kinematics and design of a class of parallel manipulators
NASA Astrophysics Data System (ADS)
Hertz, Roger Barry
1998-12-01
This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.
Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1983-01-01
The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, David R.; Bershady, Matthew A., E-mail: david.andersen@nrc-cnrc.gc.ca, E-mail: mab@astro.wisc.edu
2013-05-01
Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometricmore » and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.« less
A Comparison of Moment Rates for the Eastern Mediterranean Region from Competitive Kinematic Models
NASA Astrophysics Data System (ADS)
Klein, E. C.; Ozeren, M. S.; Shen-Tu, B.; Galgana, G. A.
2017-12-01
Relatively continuous, complex, and long-lived episodes of tectonic deformation gradually shaped the lithosphere of the eastern Mediterranean region into its present state. This large geodynamically interconnected and seismically active region absorbs, accumulates and transmits strains arising from stresses associated with: (1) steady northward convergence of the Arabian and African plates; (2) differences in lithospheric gravitational potential energy; and (3) basal tractions exerted by subduction along the Hellenic and Cyprus Arcs. Over the last twenty years, numerous kinematic models have been built using a variety of assumptions to take advantage of the extensive and dense GPS observations made across the entire region resulting in a far better characterization of the neotectonic deformation field than ever previously achieved. In this study, three separate horizontal strain rate field solutions obtained from three, region-wide, GPS only based kinematic models (i.e., a regional block model, a regional continuum model, and global continuum model) are utilized to estimate the distribution and uncertainty of geodetic moment rates within the eastern Mediterranean region. The geodetic moment rates from each model are also compared with seismic moment release rates gleaned from historic earthquake data. Moreover, kinematic styles of deformation derived from each of the modeled horizontal strain rate fields are examined for their degree of correlation with earthquake rupture styles defined by proximal centroid moment tensor solutions. This study suggests that significant differences in geodetically obtained moment rates from competitive kinematic models may introduce unforeseen bias into regularly updated, geodetically constrained, regional seismic hazard assessments.
Bishop, Chris; Paul, Gunther; Thewlis, Dominic
2013-04-01
Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot-shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot-shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC=0.75-0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC=0.68-0.99) than the inexperienced rater (ICC=0.38-0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint--MDD90=2.17-9.36°, tarsometatarsal joint--MDD90=1.03-9.29° and the metatarsophalangeal joint--MDD90=1.75-9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lohrmann, J.; Kukowski, N.; Oncken, O.
2003-04-01
Recording the incremental displacement field of scaled analogue simulations provides detailed data on wedge kinematics and timing of internal deformation. This is a very efficient tool to develop kinematic concepts and test mechanical theories, e.g. the critical-taper theory. Such models could not be validated until now by the available geological and geophysical data, since there was no information about the incremental displacement field. Recent GPS measurements and seismological investigations at convergent margins provide well-constrained strain-rates and kinematics of short-termed processes. These data allow the kinematic models that are based on analogue simulations to be tested against field observations. We investigate convergent accretive sand wedges in scaled analogue simulations. We define three kinematic segments based on distinctive wedge taper, displacement field and timing of deformation (recorded at a slow sampling rate, which represents the geological scale). Only one of these segments is in a critical state of stress, whereas the other segments are either in a sub-critical or stable state of stress. Such a kinematic segmentation is not predicted for ideally homogeneous wedge-shaped bodies by the critical-taper theory, but can be explained by the formation of localised weak shear zones, which preferentially accommodate deformation. These weak zones are formed in granular analogue materials, and also in natural rocks, since these materials show a strain-softening phase prior to the achievement of stable mechanical conditions. Therefore we suggest that the kinematic segmentation of convergent sand wedges should also be observed in natural settings, such as accretionary wedges, foreland fold-and-thrust belts and even entire orogens. To validate this hypothesis we compare strain rates from GPS measurements and kinematics deduced from focal mechanisms with the respective data from sandbox experiments. We present a strategy to compare strain rates and kinematics recorded in nature with kinematic models based on sandbox experiments. In the sandbox experiments we use a fast sampling rate in accordance with GPS measurements. We investigate whether strain rates obtained from the GPS measurements can test mechanical concepts of long-termed geodynamic processes.
Type synthesis and preliminary design of devices supporting lower limb's rehabilitation.
Olinski, Michał; Lewandowski, Bogusz; Gronowicz, Antoni
2015-01-01
Based on the analysis of existing solutions, biomechanics of human lower limbs and anticipated applications, results of con- siderations concerning the necessary number of degrees of freedom for the designed device supporting rehabilitation of lower extremities are presented. An analysis was carried out in order to determine the innovative kinematic structure of the device, ensuring sufficient mobility and functionality while minimizing the number of degrees of freedom. With the aid of appropriate formalised meth- ods, for instance, type synthesis, a complete variety of solutions for leg joints were obtained in the form of basic and kinematic schemes, having the potential to find application in devices supporting lower limb rehabilitation. A 3D model of ankle joint module was built in Autodesk Inventor System, then imported to Adams and assembled into a moving numerical model of a mechanism. Several conducted simulations resulted in finding the required maximum stroke of the cylinders. A comparison of the angular ranges of ankle joint and similar devices with the ones achieved by the designed device indicated a sufficient reserve allowing not only movements typical of gait, but approximately achieving the passive range of motion for the ankle joint.
NASA Astrophysics Data System (ADS)
McInroe, Benjamin; Astley, Henry; Kawano, Sandy; Blob, Richard; Goldman, Daniel I.
2015-03-01
In the evolutionary transition from an aquatic to a terrestrial environment, early walkers adapted to the challenges of locomotion on complex, flowable substrates (e.g. sand and mud). Our previous biological and robotic studies have demonstrated that locomotion on such substrates is sensitive to both limb morphology and kinematics. Although reconstructions of early vertebrate skeletal morphologies exist, the kinematic strategies required for successful locomotion by these organisms have not yet been explored. To gain insight into how early walkers contended with complex substrates, we developed a robotic model with appendage morphology inspired by a model analog organism, the mudskipper. We tested mudskippers and the robot on different substrates, including rigid ground and dry granular media, varying incline angle. The mudskippers moved effectively on all level substrates using a fin-driven gait. But as incline angle increased, the animals used their tails in concert with their fins to generate propulsion. Adding an actuated tail to the robot improved robustness, making possible locomotion on otherwise inaccessible inclines. With these discoveries, we are elucidating a minimal template that may have allowed the early walkers to adapt to locomotion on land. This work was supported by NSF PoLS.
Predicting power-optimal kinematics of avian wings
Parslew, Ben
2015-01-01
A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model unearths a vast range of kinematic modes that are capable of generating the required forces for flight. The most efficient mode uses a near-vertical stroke–plane and a flexed-wing upstroke, similar to kinematics recorded experimentally. In hover, the model predicts that the power-optimal mode uses an extended-wing upstroke, similar to hummingbirds. In flexing their wings, pigeons are predicted to consume 20% more power than if they kept their wings full extended, implying that the typical kinematics used by pigeons in hover are suboptimal. Predictions of climbing flight suggest that the most energy-efficient way to reach a given altitude is to climb as steeply as possible, subjected to the availability of power. PMID:25392398
3D Multi-segment foot kinematics in children: A developmental study in typically developing boys.
Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Christel; Hermans, Cedric; Matricali, Giovanni Arnoldo; Lobet, Sebastien
2017-02-01
The relationship between age and 3D rotations objectivized with multisegment foot models has not been quantified until now. The purpose of this study was therefore to investigate the relationship between age and multi-segment foot kinematics in a cross-sectional database. Barefoot multi-segment foot kinematics of thirty two typically developing boys, aged 6-20 years, were captured with the Rizzoli Multi-segment Foot Model. One-dimensional statistical parametric mapping linear regression was used to examine the relationship between age and 3D inter-segment rotations of the dominant leg during the full gait cycle. Age was significantly correlated with sagittal plane kinematics of the midfoot and the calcaneus-metatarsus inter-segment angle (p<0.0125). Age was also correlated with the transverse plane kinematics of the calcaneus-metatarsus angle (p<0.0001). Gait labs should consider age related differences and variability if optimal decision making is pursued. It remains unclear if this is of interest for all foot models, however, the current study highlights that this is of particular relevance for foot models which incorporate a separate midfoot segment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia
2017-04-01
The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.
Geometry and Kinematics of Fault-Propagation Folds with Variable Interlimb Angles
NASA Astrophysics Data System (ADS)
Dhont, D.; Jabbour, M.; Hervouet, Y.; Deroin, J.
2009-12-01
Fault-propagation folds are common features in foreland basins and fold-and-thrust belts. Several conceptual models have been proposed to account for their geometry and kinematics. It is generally accepted that the shape of fault-propagation folds depends directly from both the amount of displacement along the basal decollement level and the dip angle of the ramp. Among these, the variable interlimb angle model proposed by Mitra (1990) is based on a folding kinematics that is able to explain open and close natural folds. However, the application of this model is limited because the geometric evolution and thickness variation of the fold directly depend on imposed parameters such as the maximal value of the ramp height. Here, we use the ramp and the interlimb angles as input data to develop a forward fold modelling accounting for thickness variations in the forelimb. The relationship between the fold amplitude and fold wavelength are subsequently applied to build balanced geologic cross-sections from surface parameters only, and to propose a kinematic restoration of the folding through time. We considered three natural examples to validate the variable interlimb angle model. Observed thickness variations in the forelimb of the Turner Valley anticline in the Alberta foothills of Canada precisely correspond to the theoretical values proposed by our model. Deep reconstruction of the Alima anticline in the southern Tunisian Atlas implies that the decollement level is localized in the Triassic-Liassic series, as highlighted by seismic imaging. Our kinematic reconstruction of the Ucero anticline in the Spanish Castilian mountains is also in agreement with the anticline geometry derived from two cross-sections. The variable interlimb angle model implies that the fault-propagation fold can be symmetric, normal asymmetric (with a greater dip value in the forelimb than in the backlimb), or reversely asymmetric (with greater dip in the backlimb) depending on the shortening amount. This model allows also: (i) to easily explain folds with wide variety of geometries; (ii) to understand the deep architecture of anticlines; and (iii) to deduce the kinematic evolution of folding with time. Mitra, S., 1990, Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, v. 74, no. 6, p. 921-945.
Had the planet Mars not existed: Kepler's equant model and its physical consequences
NASA Astrophysics Data System (ADS)
Bracco, C.; Provost, J.-P.
2009-09-01
We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal acceleration with an r-2 dependence on the distance to the Sun. If this dependence is assumed to be universal, Kepler's third law follows immediately. This elementary exercise in kinematics for undergraduates emphasizes the proximity of the equant model coming from ancient Greece with our present knowledge. It adds to its historical interest a didactical relevance concerning, in particular, the discussion of the Aristotelian or Newtonian conception of motion.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. he model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. he ...
A Modified Kinematic Model of Neutral and Ionized Gas in Galactic Center
NASA Astrophysics Data System (ADS)
Krishnarao, Dhanesh; Benjamin, Robert A.; Haffner, L. Matthew
2018-01-01
Gas near the center of the Milky Way is very complex across all phases (cold, warm, neutral, ionized, atomic, molecular, etc.) and shows strong observational evidence for warping, lopsided orientations and strongly non-circular kinematics. Historically, the kinematic complexities were modeled with many discrete features involved with expulsive phenomena near Galactic Center. However, much of the observed emission can be explained with a single unified and smooth density structure when geometrical and perspective effects are accounted for. Here we present a new model for a tilted, elliptical disk of gas within the inner 2 kpc of Galactic center based on the series of models following Burton & Liszt (1978 - 1992, Papers I- V). Machine learning techniques such as the Histogram of Oriented Gradients image correlation statistic are used to optimize the geometry and kinematics of neutral and ionized gas in 3D observational space (position,position, velocity). The model successfully predicts emission from neutral gas as seen by HI (Hi4Pi) and explains anomalous ionized gas features in H-Alpha emission (Wisconsin H-Alpha Mapper) and UV absorption lines (Hubble Space Telescope - Space Telescope Imaging Spectrograph). The modeled distribution of this tilted gas disk along with its kinematics of elliptical x1 orbits can reveal new insight about the Galactic Bar, star formation, and high-velocity gas near Galactic Center and its relation with the Fermi Bubble.
Effects of Repeated Treadmill Testing and Electrical Stimulation on Post-Stroke Gait Kinematics
Awad, Louis N.; Kesar, Trisha M.; Reisman, Darcy; Binder-Macleod, Stuart A.
2012-01-01
Improvements in task performance due to repeated testing have previously been documented in healthy and patient populations. The existence of a similar change in performance due to repeated testing has not been previously investigated at the level of gait kinematics in the post-stroke population. The presence of such changes may define the number of testing sessions necessary for measuring a stable baseline of pre-training gait performance, which is a necessary prerequisite for determining the effectiveness of gait interventions. Considering the emergence of treadmills as a popular tool for gait evaluation and retraining and the common addition of functional electrical stimulation (FES) to gait retraining protocols, the stability of gait kinematics during the repeated testing of post-stroke individuals on a treadmill, either with or without FES, needs to be determined. Nine individuals (age: 58.1 +/− 7.3 years), with hemi-paresis secondary to a stroke (onset: 7.3 +/− 6.0 years) participated in this study. An 8-camera motion analysis system was used to measure sagittal plane knee and ankle joint kinematics. Gait kinematics were compared across two (N=9) and five (N=5) testing sessions. No consistent changes in knee or ankle kinematics were observed during repeated testing. These findings indicate that clinicians and researchers may not need to spend valuable time and resources performing multiple testing and acclimatization sessions when assessing baseline gait kinematics in the post-stroke population for use in determining the effectiveness of gait interventions. PMID:22796242
Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map
Cai, Miaomiao; Chen, Wen; Dong, Danan; Song, Le; Wang, Minghua; Wang, Zhiren; Zhou, Feng; Zheng, Zhengqi; Yu, Chao
2016-01-01
Multipath hemispherical map (MHM) is a kind of multipath mitigation approach that takes advantage of the spatial repeatability of the multipath effect under an unchanged environment. This approach is not only suitable for static environments, but also for some kinematic platforms, such as a moving ship and airplane, where the dominant multipath effects come from the platform itself and the multipath effects from the surrounding environment are considered minor or negligible. Previous studies have verified the feasibility of the MHM approach in static environments. In this study, we expanded the MHM approach to a kinematic shipborne environment. Both static and kinematic tests were carried out to demonstrate the feasibility of the MHM approach. The results indicate that, after MHM multipath mitigation, the root mean square (RMS) of baseline length deviations are reduced by 10.47% and 10.57%, and the RMS of residual values are reduced by 39.89% and 21.91% for the static and kinematic tests, respectively. Power spectrum analysis has shown that the MHM approach is more effective in mitigating multipath in low-frequency bands; the high-frequency multipath effects still exist, and are indistinguishable from observation noise. Taking the observation noise into account, the residual reductions increase to 41.68% and 24.51% in static and kinematic tests, respectively. To further improve the performance of MHM for kinematic platforms, we also analyzed the influence of spatial coverage and resolution on residual reduction. PMID:27754322
Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men
Santolaria, Pilar; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Yániz, Jesús L
2016-01-01
This study was designed to analyze the sperm kinematic and morphometric subpopulations in the different fractions of the ejaculate in normozoospermic men. Ejaculates from eight normozoospermic men were collected by masturbation in three fractions after 3–5 days of sexual abstinence. Analyses of sperm motility by computer-assisted sperm analysis (CASA-Mot), and of sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence were performed. Clustering and discriminant procedures were performed to identify sperm subpopulations in the kinematic and morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three kinematic subpopulations (slow with low ALH [35.6% of all motile spermatozoa], with circular trajectories [32.0%], and rapid with high ALH [32.4%]), and three morphometric subpopulations (large-round [33.9% of all spermatozoa], elongated [32.0%], and small [34.10%]). The distribution of kinematic sperm subpopulations was different among ejaculate fractions (P < 0.001), with higher percentages of spermatozoa exhibiting slow movements with low ALH in the second and third portions, and with a more homogeneous distribution of kinematic sperm subpopulations in the first portion. The distribution of morphometric sperm subpopulations was also different among ejaculate fractions (P < 0.001), with more elongated spermatozoa in the first, and of small spermatozoa in the third, portion. It is concluded that important variations in the distribution of kinematic and morphometric sperm subpopulations exist between ejaculate fractions, with possible functional implications. PMID:27624985
An instrumented spatial linkage for measuring knee joint kinematics.
Rosvold, Joshua M; Atarod, Mohammad; Frank, Cyril B; Shrive, Nigel G
2016-01-01
In this study, the design and development of a highly accurate instrumented spatial linkage (ISL) for kinematic analysis of the ovine stifle joint is described. The ovine knee is a promising biomechanical model of the human knee joint. The ISL consists of six digital rotational encoders providing six degrees of freedom (6-DOF) to its motion. The ISL makes use of the complete and parametrically continuous (CPC) kinematic modeling method to describe the kinematic relationship between encoder readings and the relative positions and orientation of its two ends. The CPC method is useful when calibrating the ISL, because a small change in parameters corresponds to a small change in calculated positions and orientations and thus a smaller optimization error, compared to other kinematic models. The ISL is attached rigidly to the femur and the tibia for motion capture, and the CPC kinematic model is then employed to transform the angle sensor readings to relative motion of the two ends of the linkage, and thereby, the stifle joint motion. The positional accuracy for ISL after calibration and optimization was 0.3±0.2mm (mean +/- standard deviation). The ISL was also evaluated dynamically to ensure that accurate results were maintained, and achieved an accuracy of 0.1mm. Compared to the traditional motion capture methods, this system provides increased accuracy, reduced processing time, and ease of use. Future work will be on the application of the ISL to the ovine gait and determination of in vivo joint motions and tissue loads. Accurate measurement of knee joint kinematics is essential in understanding injury mechanisms and development of potential preventive or treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Shojaei, Iman; Arjmand, Navid; Meakin, Judith R; Bazrgari, Babak
2018-03-21
The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Decoding intentions from movement kinematics
Cavallo, Andrea; Koul, Atesh; Ansuini, Caterina; Capozzi, Francesca; Becchio, Cristina
2016-01-01
How do we understand the intentions of other people? There has been a longstanding controversy over whether it is possible to understand others’ intentions by simply observing their movements. Here, we show that indeed movement kinematics can form the basis for intention detection. By combining kinematics and psychophysical methods with classification and regression tree (CART) modeling, we found that observers utilized a subset of discriminant kinematic features over the total kinematic pattern in order to detect intention from observation of simple motor acts. Intention discriminability covaried with movement kinematics on a trial-by-trial basis, and was directly related to the expression of discriminative features in the observed movements. These findings demonstrate a definable and measurable relationship between the specific features of observed movements and the ability to discriminate intention, providing quantitative evidence of the significance of movement kinematics for anticipating others’ intentional actions. PMID:27845434
A Kinematic Link Between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 and NGC 4388
NASA Technical Reports Server (NTRS)
Veilleux, S.; Bland-Hawthrorn, J.; Cecil, Gerald
1999-01-01
We present direct kinematic evidence for bar streaming in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. In NGC 3079, bar streaming motions with moderately eccentric orbits (e = b/a approx. 0.7) aligned along PA = 130 deg. intrinsic to the disk (PA = 97 deg. on the sky) are detected out to R(sub b) = 3.6 kpc. The orbits become increasingly circular beyond that radius (e = 1 at R(sub d) approx. = 6 kpc). The best model for NGC 4388 includes highly eccentric orbits (e approx. 0.3) for R(sub) less than or equal to 1.5 kpc which are aligned along PA = 135 deg. intrinsic to the disk (PA = 100 deg. on the sky). The observed "spiral arms" are produced by having the orbits become increasingly circular from the ends of the bar to the edge of the disk (R(sub d) approx. = 5 kpc), and the intrinsic bar PA shifting from 135 deg. to 90 deg.. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the stellar bars in NGC 3079 and NGC 4388 directly trigger or sustain the nuclear activity.
NASA Astrophysics Data System (ADS)
Simoëns, Serge; Wallace, James M.
As described in Part 1 [Simoëns et al., 2007. The flow across a street canyon of variable width—Part 1: kinematic description. Atmospheric Environment 41, 9002-9017] measurements have been made of the velocity field around and within the canyon formed by two obstacles placed on the wall of a turbulent boundary layer. Here in Part 2 measurements of the scalar dispersion of smoke released from a two-dimensional slot in the wall perpendicular to the mean flow and located parallel to and midway between these two square obstacles are presented. The Reynolds number of the boundary layer at the slot location without the obstacles in place was Rθ≈980. Statistical properties of the concentration field and the scalar fluxes in the streamwise plane are reported here for canyon openings that have been chosen based on characteristics of the kinematic description. These opening widths, expressed as multiples of the obstacle height, are 1 h, 4 h and 8 h. The mean concentration field revealed that the much of the scalar is trapped on the leeward side of the upstream obstacle before some of it escapes the canyon and is entrained on the roof of the upstream obstacle. It then is spread downstream by the turbulence in the wake of this obstacle. Surprisingly, the root mean square (rms) concentration field reveals that high concentration fluctuations exist in a zone where velocity field turbulence is very low. Measured streamwise scalar fluxes were found to be negative above the obstacles, whereas they are mainly positive between the obstacles. The measured wall normal scalar fluxes have an inverse behavior. Within the canyon, the scalar fluxes are greatest in the region between the large primary vortex, evident in the kinematic field, and the secondary vortex located in the corner of the leeward side of the upstream obstacle. In the flow above the obstacle roofs the wake of the upstream obstacle seems to dominate the scalar transport. Between the obstacles in and above the canyon, the existence of intermittent and intense events appear to prevent the modelling of these fluxes with a simple mean concentration gradient model.
The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a ΛLTB Model
NASA Astrophysics Data System (ADS)
Hoscheit, Benjamin L.; Barger, Amy J.
2018-02-01
There is substantial and growing observational evidence from the normalized luminosity density in the near-infrared that the local universe is underdense on scales of several hundred megaparsecs. We test whether our parameterization of the observational data of such a “void” is compatible with the latest supernovae type Ia data and with constraints from line-of-sight peculiar-velocity motions of galaxy clusters with respect to the cosmic microwave background rest-frame, known as the linear kinematic Sunyaev–Zel’dovich (kSZ) effect. Our study is based on the large local void (LLV) radial profile observed by Keenan, Barger, and Cowie (KBC) and a theoretical void description based on the Lemaître–Tolman–Bondi model with a nonzero cosmological constant (ΛLTB). We find consistency with the measured luminosity distance–redshift relation on radial scales relevant to the KBC LLV through a comparison with 217 low-redshift supernovae type Ia over the redshift range 0.0233< z< 0.15. We assess the implications of the KBC LLV in light of the tension between “local” and “cosmic” measurements of the Hubble constant, H 0. We find that when the existence of the KBC LLV is fully accounted for, this tension is reduced from 3.4σ to 2.75σ . We find that previous linear kSZ constraints, as well as new ones from the South Pole Telescope and the Atacama Cosmology Telescope, are fully compatible with the existence of the KBC LLV.
Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.
Singh, Amanpreet; Singla, Ekta; Soni, Sanjeev; Singla, Ashish
2018-01-01
The prime objective of this work is to deal with the kinematics of spatial hybrid manipulators. In this direction, in 1955, Denavit and Hartenberg proposed a consistent and concise method, known as D-H parameters method, to deal with kinematics of open serial chains. From literature review, it is found that D-H parameter method is widely used to model manipulators consisting of lower pairs. However, the method leads to ambiguities when applied to closed-loop, tree-like and hybrid manipulators. Furthermore, in the dearth of any direct method to model closed-loop, tree-like and hybrid manipulators, revisions of this method have been proposed from time-to-time by different researchers. One such kind of revision using the concept of dummy frames has successfully been proposed and implemented by the authors on spatial hybrid manipulators. In that work, authors have addressed the orientational inconsistency of the D-H parameter method, restricted to body-attached frames only. In the current work, the condition of body-attached frames is relaxed and spatial frame attachment is considered to derive the kinematic model of a 7-degree of freedom spatial hybrid robotic arm, along with the development of closed-loop constraints. The validation of the new kinematic model has been performed with the help of a prototype of this 7-degree of freedom arm, which is being developed at Council of Scientific & Industrial Research-Central Scientific Instruments Organisation Chandigarh to aid the surgeon during a medical surgical task. Furthermore, the developed kinematic model is used to develop the first column of the Jacobian matrix, which helps in providing the estimate of the tip velocity of the 7-degree of freedom manipulator when the first joint velocity is known.
Dynamic modeling and optimal joint torque coordination of advanced robotic systems
NASA Astrophysics Data System (ADS)
Kang, Hee-Jun
The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.
A kinematic model for the late Cenozoic development of southern California crust and upper mantle
NASA Technical Reports Server (NTRS)
Humphreys, Eugene D.; Hager, Bradford H.
1990-01-01
A model is developed for the young and ongoing kinematic deformation of the southern California crust and upper mantle. The kinematic model qualitatively explains both the overall seismic structure of the upper mantle and much of the known geological history of the late Cenozoic as consequences of ongoing convection beneath southern California. In this model, the high-velocity upper-mantle anomaly of the Transverse ranges is created through the convergence and sinking of the entire thickness of subcrustal lihtosphere, and the low-velocity upper-mantle anomaly beneath the Salton Trough region is attributed to high temperatures and 1-4 percent partial melt related to adiabatic decompression during mantle upwelling.
Hurd, Wendy J; Kavros, Steven J; Kaufman, Kenton R
2010-11-01
Evaluate effects of a new off-the-shelf insert on frontal plane foot biomechanics and compare effectiveness of the new and an existing off-the-shelf insert and a motion-control shoe in neutralizing frontal plane foot biomechanics. Descriptive. Biomechanics laboratory. Fifteen uninjured subjects with a flexible flatfoot secondary to forefoot varus. Three-dimensional kinematic and kinetic data were collected as subjects walked and jogged at their self-selected speed while wearing a motion-control running shoe, the shoe with a new off-the-shelf insert, and the shoe with an existing off-the-shelf insert. Frontal plane kinematics and rearfoot kinetics were evaluated during stance. Statistical analysis was performed using a repeated measures analysis of variance and Student-Newman-Keuls post hoc tests (α ≤ 0.05). The new insert and motion-control shoe placed the forefoot in a less-everted position than the existing off-the-shelf insert during walking. There were no differences in forefoot kinematics during jogging, nor were there differences in rearfoot motion during walking or jogging. The rearfoot eversion moment was significantly lower with the new off-the-shelf insert compared with the motion-control shoe and the existing insert during walking and jogging. A new off-the-shelf device is available that promotes more neutral frontal plane biomechanics, thus providing a theoretical rationale for using this device for injury prevention and treatment. The comparative biomechanical effectiveness of a motion-control shoe and the orthotic inserts may assist health care professionals in selecting a device to correct the flatfoot structure.
Obtaining short-fiber orientation model parameters using non-lubricated squeeze flow
NASA Astrophysics Data System (ADS)
Lambert, Gregory; Wapperom, Peter; Baird, Donald
2017-12-01
Accurate models of fiber orientation dynamics during the processing of polymer-fiber composites are needed for the design work behind important automobile parts. All of the existing models utilize empirical parameters, but a standard method for obtaining them independent of processing does not exist. This study considers non-lubricated squeeze flow through a rectangular channel as a solution. A two-dimensional finite element method simulation of the kinematics and fiber orientation evolution along the centerline of a sample is developed as a first step toward a fully three-dimensional simulation. The model is used to fit to orientation data in a short-fiber-reinforced polymer composite after squeezing. Fiber orientation model parameters obtained in this study do not agree well with those obtained for the same material during startup of simple shear. This is attributed to the vastly different rates at which fibers orient during shearing and extensional flows. A stress model is also used to try to fit to experimental closure force data. Although the model can be tuned to the correct magnitude of the closure force, it does not fully recreate the transient behavior, which is attributed to the lack of any consideration for fiber-fiber interactions.
NASA Astrophysics Data System (ADS)
Erbello, Asfaw; Corti, Giacomo; Sani, Federico; Kidane, Tesfaye
2016-04-01
The Main Ethiopian Rift (MER), at the northern termination of the East African Rift, is an ideal locale where to get insights into the long-term motion between Nubia and Somalia. The rift is indeed one of the few places along the plate boundary where the deformation is narrow: its evolution is thus strictly related to the kinematics of the two major plates, whereas south of the Turkana depression a two-plate model for the EARS is too simplistic as extension occurs both along the Western and Eastern branches and different microplates are present between the two major plates. Despite its importance, the kinematics responsible for development and evolution of the MER is still a matter of debate: indeed, whereas the Quaternary-present kinematics of rifting is rather well constrained, the plate kinematics driving the initial, Mio-Pliocene stages of extension is still not clear, and different hypothesis have been put forward, including: polyphase rifting, with a change in direction of extension from NW-SE extension to E-W extension; constant Miocene-recent NW-SE extension; constant Miocene-recent NE-SW extension; constant, post-11 Ma extension consistent with the GPS-derived kinematics (i.e., roughly E-W to ESE-WNW). To shed additional light on this controversy and to test these different hypothesis, in this contribution we use new crustal-scale analogue models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The extension direction is indeed one of the most important parameters controlling the architecture of continental rifts and the relative abundance and orientation of different fault sets that develop during oblique rifting is typically a function of the angle between the extension direction and the orthogonal to the rift trend (i.e., the obliquity angle). Since the trend of the MER varies along strike, and consequently it is characterized by a variable obliquity angle (i.e., kinematics) along its length, the analysis of fault architecture and its variations are able to provide significant insights into the plate kinematics responsible for rift development and evolution. Our models thus reproduce the overall geometry of the ~600km-long MER with its along-strike variation in orientation to test the above-described hypothesis of rift evolution. Analysis of model results in terms of statistics of fault length and orientation, and deformation architecture and its comparison with the MER suggests that rift has likely developed under a constant, post-11 Ma extension oriented roughly E-W (N97.5°E), consistent with recent plate kinematics models.
A morpho-kinematic and spectroscopic study of the bipolar nebulae: M 2-9, Mz 3, and Hen 2-104
NASA Astrophysics Data System (ADS)
Clyne, N.; Akras, S.; Steffen, W.; Redman, M. P.; Gonçalves, D. R.; Harvey, E.
2015-10-01
Context. Complex bipolar shapes can be generated either as a planetary nebula or a symbiotic system. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. Aims: The physical properties, structure, and dynamics of the bipolar nebulae, M 2-9, Mz 3, and Hen 2-104, are investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. Both a morpho-kinematic study and a spectroscopic analysis, can be used to more accurately determine the kinematics and nature of each nebula. Methods: Long-slit optical echelle spectra are used to investigate the morpho-kinematics of M 2-9, Mz 3, and Hen 2-104. The morpho-kinematic modelling software SHAPE is used to constrain both the morphology and kinematics of each nebula by means of detailed 3D models. Near-infrared (NIR) data, as well as optical, spectra are used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. Results: The best-fitted 3D models for M 2-9, Mz 3, and Hen 2-104 provide invaluable kinematical information on the expansion velocity of its nebular components by means of synthetic spectra. The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. The optical diagnostic diagram is shown to successfully separate the two types of nebulae, however, the NIR colour-colour diagram is not as accurate in separating these objects. Conclusions: The morphology, kinematics, and evolutionary history of M 2-9, Mz 3, and Hen 2-104 are better understood using the interactive 3D modelling tool shape. The expansion velocities of the components for each nebula are better constrained and fitted with a vector field to reveal their direction of motion. The optical and NIR diagnostic diagrams used are important techniques for separating Galactic symbiotic-type nebulae from genuine planetary nebulae.
NASA Astrophysics Data System (ADS)
Zschaechner, Laura K.; Rand, Richard J.; Walterbos, Rene
2015-01-01
To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H I in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H I are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R 25. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H I kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R 25 and R 25, suggesting internal processes are important in dictating extra-planar kinematics.
Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2004-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
Kinematics of a New High Precision Three Degree-of-Freedom Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2005-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most sixteen assembly configurations for the manipulator. In addition, it is shown that the sixteen solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
Koh, Y-G.; Son, J.; Kwon, S-K.; Kim, H-J.; Kang, K-T.
2017-01-01
Objectives Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1. PMID:28947604
Things that go bump in the light - On the optical specification of contact severity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Phatak, Anil V.
1993-01-01
Psychologists are intrigued with the idea that optical variables can specify not only the time until an object impacts an observer but also the severity of the impact. However, the mapping between the optical variables and the kinematic variables has been misstated, erroneously implying that there exist critical values of the optical variables used for locomotion and control. In this commentary, the mathematical relationship between the optical and kinematic variables is reexamined and the erroneous assumptions that have led to the proposal of critical values are shown. Also examined are the empirical data on deceleration to approach to assess whether the proposed optical variables are likely candidates for control strategies. Finally, problems associated with numerical approximations to dynamic systems, particularly when analytic solutions exist, are discussed.
Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative Bionic Arms
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Lakhal, Othman; Merzouki, Rochdi
2017-01-01
Forward Kinematics is a stepping stone towards finding an inverse solution and subsequently a dynamic model of a robot. Hence a study and comparison of various Forward Kinematic Models (FKMs) is necessary for robot design. This paper deals with comparison of three FKMs on the same hyper-redundant Compact Bionic Handling Assistant (CBHA) manipulator under same conditions. The aim of this study is to project on modeling cooperative bionic manipulators. Two of these methods are quantitative methods, Arc Geometry HTM (Homogeneous Transformation Matrix) Method and Dual Quaternion Method, while the other one is Hybrid Method which uses both quantitative as well as qualitative approach. The methods are compared theoretically and experimental results are discussed to add further insight to the comparison. HTM is the widely used and accepted technique, is taken as reference and trajectory deviation in other techniques are compared with respect to HTM. Which method allows obtaining an accurate kinematic behavior of the CBHA, controlled in the real-time.
Extension of D-H parameter method to hybrid manipulators used in robot-assisted surgery.
Singh, Amanpreet; Singla, Ashish; Soni, Sanjeev
2015-10-01
The main focus of this work is to extend the applicability of D-H parameter method to develop a kinematic model of a hybrid manipulator. A hybrid manipulator is a combination of open- and closed-loop chains and contains planar and spatial links. It has been found in the literature that D-H parameter method leads to ambiguities, when dealing with closed-loop chains. In this work, it has been observed that the D-H parameter method, when applied to a hybrid manipulator, results in an orientational inconsistency, because of which the method cannot be used to develop the kinematic model. In this article, the concept of dummy frames is proposed to resolve the orientational inconsistency and to develop the kinematic model of a hybrid manipulator. Moreover, the prototype of 7-degree-of-freedom hybrid manipulator, known as a surgeon-side manipulator to assist the surgeon during a medical surgery, is also developed to validate the kinematic model derived in this work. © IMechE 2015.
NASA Technical Reports Server (NTRS)
Doty, Keith L
1992-01-01
The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.
Of cilium and flagellum kinematics
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Promode R.; Hansen, Joshua C.
2009-11-01
The kinematics of propulsion of small animals such as paramecium and spermatozoa is considered. Larger scale models of the cilium and flagellum have been built and a four-motor apparatus has been constructed to reproduce their known periodic motions. The cilium model has transverse deformational ability in one plane only, while the flagellum model has such ability in two planes. When the flagellum model is given a push-pull in one diametral plane, instead of transverse deflection in one plane, it forms a coil. Berg & Anderson's postulation (Nature 245 1973) that a flagellum rotates, is recalled. The kinematics of cilia of paramecium, of the whipping motion of the spermatozoa flagella, and of the flapping motion (rolling and pitching) of the pectoral fins of much larger animals such penguins, have been reproduced in the same basic paramecium apparatus. The results suggest that each of the tiny individual paramecium propulsors have the intrinsic dormant kinematic and structural building blocks to optimize into higher Reynolds number propulsors. A synthetic hypothesis on how small might have become large is animated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the jointmore » velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.« less
Dual gait generative models for human motion estimation from a single camera.
Zhang, Xin; Fan, Guoliang
2010-08-01
This paper presents a general gait representation framework for video-based human motion estimation. Specifically, we want to estimate the kinematics of an unknown gait from image sequences taken by a single camera. This approach involves two generative models, called the kinematic gait generative model (KGGM) and the visual gait generative model (VGGM), which represent the kinematics and appearances of a gait by a few latent variables, respectively. The concept of gait manifold is proposed to capture the gait variability among different individuals by which KGGM and VGGM can be integrated together, so that a new gait with unknown kinematics can be inferred from gait appearances via KGGM and VGGM. Moreover, a new particle-filtering algorithm is proposed for dynamic gait estimation, which is embedded with a segmental jump-diffusion Markov Chain Monte Carlo scheme to accommodate the gait variability in a long observed sequence. The proposed algorithm is trained from the Carnegie Mellon University (CMU) Mocap data and tested on the Brown University HumanEva data with promising results.
Mapping From an Instrumented Glove to a Robot Hand
NASA Technical Reports Server (NTRS)
Goza, Michael
2005-01-01
An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand Cartesian reference frame. A calibration must be performed to make the glove and robot-hand fingertip positions correspond more precisely. The calibration procedure involves a few simple hand poses designed to provide well-defined fingertip positions. One of the poses is a fist. In each of the other poses, a finger touches the thumb. The calibration subalgorithm uses the sensor readings from these poses to modify the kinematical models to make the two sets of fingertip positions agree more closely.
Zabihhosseinian, Mahboobeh; Holmes, Michael W R; Howarth, Samuel; Ferguson, Brad; Murphy, Bernadette
2017-04-01
Scapular orientation is highly dependent on axioscapular muscle function. This study examined the impact of neck muscle fatigue on scapular and humeral kinematics in participants with and without subclinical neck pain (SCNP) during humeral elevation. Ten SCNP and 10 control participants performed three unconstrained trials of dominant arm humeral elevation in the scapular plane to approximately 120 degrees before and after neck extensor muscle fatigue. Three-dimensional scapular and humeral kinematics were measured during the humeral elevation trials. Humeral elevation plane angle showed a significant interaction between groups (SCNP vs controls) and trial (pre- vs post-fatigue) (p=0.001). Controls began the unconstrained humeral elevation task after fatigue in a more abducted position, (p=0.002). Significant baseline differences in scapular rotation existed between the two groups (Posterior/Anterior tilt, p=0.04; Internal/External Rotation, p=0.001). SCNP contributed to altered scapular kinematics. Neck muscle fatigue influenced humeral kinematics in controls but not the SCNP group; suggesting that altered scapular motor control in the SCNP group resulted in an impaired adaption further to the neck muscle fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex: simple models of technological equipment, conveyors models, models of the obstacles and like that. Using these elements it could be formed various production spaces (robotized workcells), in which it is possible to virtually track the operation of an industrial robot arm modelled in the system.
Childers, W Lee; Kogler, Géza F
2014-01-01
People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p = 0.05. The CRANK condition reduced hip and knee ROM in the amputated limb compared with the control condition. There were no differences in joint kinematics between the contralateral and amputated limbs during the CRANK condition. Pedaling asymmetries did not differ and were 23.0% +/= 9.8% and 23.2% +/= 12% for the control and CRANK conditions, respectively. Our results suggest that minimizing kinematic asymmetries does not relate to kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.
Heller Murray, Elizabeth S.; Lien, Yu-An S.; Stepp, Cara E.
2016-01-01
Purpose This study examined the relationship between the acoustic measure relative fundamental frequency (RFF) and a kinematic estimate of laryngeal stiffness. Method Twelve healthy adults (mean age = 22.7 years, SD = 4.4; 10 women, 2 men) produced repetitions of /ifi/ while varying their vocal effort during simultaneous acoustic and video nasendoscopic recordings. RFF was determined from the last 10 voicing cycles before the voiceless obstruent (RFF offset) and the first 10 cycles of revoicing (RFF onset). A kinematic stiffness ratio was calculated for the vocal fold adductory gesture during revoicing by normalizing the maximum angular velocity by the maximum glottic angle during the voiceless obstruent. Results A linear mixed effect model indicated that RFF offset and onset were significant predictors of the kinematic stiffness ratios. The model accounted for 52% of the variance in the kinematic data. Individual relationships between RFF and kinematic stiffness ratios varied across participants, with at least moderate negative correlations in 83% of participants for RFF offset but only 40% of participants for RFF onset. Conclusions RFF significantly predicted kinematic estimates of laryngeal stiffness in healthy speakers and has the potential to be a useful clinical indicator of laryngeal tension. Further research is needed in individuals with voice disorders. PMID:27936279
Multi-Body Analysis of a Tiltrotor Configuration
NASA Technical Reports Server (NTRS)
Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.
1997-01-01
The paper describes the aeroelastic analysis of a tiltrotor configuration. The 1/5 scale wind tunnel semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a multi-body code, based on an original formulation. The differential equilibrium problem is stated in terms of first order differential equations. The equilibrium equations of every rigid body are written, together with the definitions of the momenta. The bodies are connected by kinematic constraints, applied in form of Lagrangian multipliers. Deformable components are mainly modelled by means of beam elements, based on an original finite volume formulation. Multi-disciplinar problems can be solved by adding user-defined differential equations. In the presented analysis the equations related to the control of the swash-plate of the model are considered. Advantages of a multi-body aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the kinematics of the hub, the detailed modelling of the flexibility of critical hub components, and the possibility to simulate steady flight conditions as well as wind-up and maneuvers. The simulations described in the paper include: 1) the analysis of the aeroelastic stability, with particular regard to the proprotor/pylon instability that is peculiar to tiltrotors, 2) the determination of the dynamic behavior of the system and of the loads due to typical maneuvers, with particular regard to the conversion from helicopter to airplane mode, and 3) the stress evaluation in critical components, such as the pitch links and the conversion downstop spring.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. The model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. Th...
3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy.
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2015-04-01
Total knee arthroplasty (TKA) 3D kinematic analysis requires 2D/3D image registration of X-ray fluoroscopic images and a computer-aided design (CAD) model of the knee implant. However, these techniques cannot provide information on the radiolucent polyethylene insert, since the insert silhouette does not appear clearly in X-ray images. Therefore, it is difficult to obtain the 3D kinematics of the polyethylene insert, particularly the mobile-bearing insert. A technique for 3D kinematic analysis of a mobile-bearing insert used in TKA was developed using X-ray fluoroscopy. The method was tested and a clinical application was evaluated. Tantalum beads and a CAD model of the mobile-bearing TKA insert are used for 3D pose estimation of the mobile-bearing insert used in TKA using X-ray fluoroscopy. The insert model was created using four identical tantalum beads precisely located at known positions in a polyethylene insert using a specially designed insertion device. Finally, the 3D pose of the insert model was estimated using a feature-based 2D/3D registration technique, using the silhouette of beads in fluoroscopic images and the corresponding CAD insert model. In vitro testing for the repeatability of the positioning of the tantalum beads and computer simulations for 3D pose estimation of the mobile-bearing insert were performed. The pose estimation accuracy achieved was sufficient for analyzing mobile-bearing TKA kinematics (RMS error: within 1.0 mm and 1.0°, except for medial-lateral translation). In a clinical application, nine patients with mobile-bearing TKA were investigated and analyzed with respect to a deep knee bending motion. A 3D kinematic analysis technique was developed that enables accurate quantitative evaluation of mobile-bearing TKA kinematics. This method may be useful for improving implant design and optimizing TKA surgical techniques.
Kinematic capability in the SVDS
NASA Technical Reports Server (NTRS)
Flanders, H. A.
1977-01-01
The details of the Remote Manipulator System kinematic model implemented into the Space Vehicle Dynamics Simulation are given. Detailed engineering flow diagrams and definitions of terms are included.
Imhauser, Carl; Mauro, Craig; Choi, Daniel; Rosenberg, Eric; Mathew, Stephen; Nguyen, Joseph; Ma, Yan; Wickiewicz, Thomas
2013-04-01
Abnormal tibiofemoral contact stress and aberrant kinematics may influence the progression of osteoarthritis in the anterior cruciate ligament (ACL)-deficient and the ACL-reconstructed knee. However, relationships between contact stress and kinematics after ACL reconstruction are poorly understood. Therefore, we posed the following research questions: (1) How do ACL deficiency and reconstruction affect the kinematics of and contact stress in the tibiofemoral joint? (2) What kinematic differences are associated with abnormal contact stress after ACL reconstruction? Center-center ACL reconstruction will not restore knee kinematics and contact stress. Correlations will exist between abnormal contact stress and aberrant kinematics after ACL reconstruction. Controlled laboratory study. Clinical tests of anterior and rotational stability were simulated on 11 cadaveric knees using an industrial robot. Tests were conducted with the ACL intact, sectioned, and after single-bundle ACL reconstruction using a quadrupled hamstring autograft with tunnels drilled through the center of the native footprints. Kinematics were recorded during the tests. Contact stress was continuously recorded from a stress transducer fixed to the tibial plateau, and mean contact stress was calculated regionally. ACL deficiency resulted in increased mean contact stress in the posterior sectors of the medial and lateral compartments under anterior and rotational loads, respectively. Reconstruction reduced stress in these locations; however, contact stress abnormalities remained. On average, kinematics were overconstrained after ACL reconstruction (≤1.8 mm and ≤2.6° in all directions). However, combinations of overconstrained and underconstrained motions in abduction/adduction and medial-lateral translation in response to combined moments, and anterior-posterior translation, medial-lateral translation, and axial rotation in response to an anterior load were associated with abnormal mean contact stress. ACL reconstruction reduces high stresses generated in the posterior compartment of the ACL-deficient knee. Abnormal contact stress after ACL reconstruction is related to multiplanar variations in knee kinematics. Clinical measures of multiplanar kinematics may help to better characterize the quality of ACL reconstruction. Such measures may help identify patients at increased risk of long-term joint degeneration following this surgery.
Simulation of kinematics of SS 433 radio jets that interact with the ambient medium
NASA Astrophysics Data System (ADS)
Panferov, A.
2014-02-01
Context. The mildly relativistic jets of SS 433 are believed to inflate the surrounding supernova remnant W 50, possibly depositing more than 99% of their kinetic energy in the remnant expansion. Where and how this transformation of the energy occurs is as yet unknown. We can learn from this that the jets decelerate and that this deceleration is non-dissipative. Aims: We uncover the deviation of the arcsecond-scale precessing radio jets of SS 433 from the ballistic locus described by the kinematic model as a signature of the dynamics issuing from the interaction of the jets with the ambient medium. Methods: To do this, we simulated the kinematics of these jets, taking into account the ram pressure on the jets, which we estimated from the profile of brightness of synchrotron radiation along the radio jets, assuming pressure balance in the jets. Results: We found that to fit an observable locus in all scales the radio jets need to be decelerated and twisted in addition to the precession torsion, mostly within the first one-fifth of the precession period, and subsequently they extend in a way that imitates ballistic jets. This jet kinematics implies a smaller distance to SS 433 than the currently accepted 5.5 kpc. The physical parameters of the jet model, which links jets dynamics with radiation, are physically reliable and characteristic for the SS 433 jets. The model proposes that beyond the radio-brightening zone, the jet clouds expand because they are in pressure balance with the intercloud medium, and heat up with distance according to the law T = 2 × 104(r/1015 cm)1.5 K. Conclusions: This model naturally explains and agrees with, the observed properties of the radio jets: a) the shock-pressed morphology; b) the brightness profile; c) the ~10% deflections of the jet kinematics from the standard kinematic model - a magnitude of the jet speed decrement in our simulation; d) the precession-phase deviations from the standard kinematic model predictions; e) the dichotomy of the distances to the object, 4.8 kpc vs. 5.5 kpc, which are determined on the basis of the jet kinematics on scales of sub-arcsecond and several arcseconds, respectively; and f) the reheating on arcsecond scales.
Kinematic signature of a rotating bar near a resonance
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
Recent work based on H I, star count and emission data suggests that the Milky Way has rotating bar-like features. In this paper, I show that such features cause distinctive stellar kinematic signatures near Outer Lindblad Resonance (OLR) and Inner Lindblad Resonance (ILR). The effect of these resonances may be observable far from the peak density of the pattern and relatively nearby the solar position. The details of the kinematic signatures depend on the evolutionary history of the 'bar' and therefore velocity data, both systematic and velocity dispersion, may be used to probe the evolutionary history as well as the present state of Galaxy. Kinematic models for a variety of sample scenarios are presented. Models with evolving pattern speeds show significantly stronger dispersion signatures than those with static pattern speeds, suggesting that useful observational constraints are possible. The models are applied to the proposed rotating spheroid and bar models; we find (1) none of these models chosen to represent the proposed large-scale rotating spheroid are consistent with the stellar kinematics and (2) a Galactic bar with semimajor axis of 3 kpc will cause a large increase in velocity dispersion in the vicinity of OLR (approximately 5 kpc) with little change in the net radial motion and such a signature is suggested by K-giant velocity data. Potential future observations and analyses are discussed.
A mechanism for decoupling within the oceanic lithosphere revealed in the Troodos ophiolite
Agar, Susan M.; Klitgord, Kim D.
1995-01-01
Contrasting kinematic histories recorded in the sheeted dykes and underlying plutonic rocks of the Troodos ophiolite provide a new perspective on the mechanical evolution of oceanic spreading centres. The kinematic framework of the decoupling zone that partitions deformation between the sheeted dykes and plutonics contrasts with low-angle detachment models for slow-spreading ridges based on continental-rift analogues. A model for the generation of multiple, horizontal decoupling horizons, linked by planar normal faults, demonstrates new possibilities for the kinematic and rheological significance of seismic reflectors in oceanic lithosphere.
Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation
NASA Astrophysics Data System (ADS)
Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.
2018-03-01
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
Main Ethiopian Rift Kinematic analogue modeling: Implications for Nubian-Somalian plate motion.
NASA Astrophysics Data System (ADS)
Erbello, A.; Corti, G.; Sani, F.; Agostini, A.; Buccianti, A.; Kidane, T. B.
2016-12-01
In this contribution, analogue modeling is used to provide new insights into the kinematics of the Nubia and Somalia plates responsible for development and evolution of the Main Ethiopian Rift (MER), at the northern termination of the East African Rift. In particular, we performed new crustal-scale, brittle models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The models reproduced the overall geometry of the 600km-long MER with its along-strike variation in orientation to test different hypothesis proposed to explain rift evolution. Analysis of model results in terms of statistics of fault length and orientation, as well as deformation architecture, and its comparison with the MER suggests that models of two-phase rifting (with a first phase of NW-SE extension followed by E-W rifting) or constant NW-SE extension, as well as models of constant ENE-WSW rifting are not able to reproduce the fault architecture observed in nature. Model results suggest instead that the rift has likely developed under a constant, post-11 Ma extension oriented roughly ESE-WNW (N97.5°E), consistent with recent plate kinematics models.
NASA Astrophysics Data System (ADS)
Erbello, Asfaw; Corti, Giacomo; Agostini, Andrea; Sani, Federico; Kidane, Tesfaye; Buccianti, Antonella
2016-12-01
In this contribution, analogue modeling is used to provide new insights into the Nubia-Somalia kinematics responsible for development and evolution of the Main Ethiopian Rift (MER), at the northern termination of the East African Rift system. In particular, we performed new crustal-scale, brittle models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The models reproduced the overall geometry of the ∼600 km-long MER with its along-strike variation in orientation to test different hypothesis proposed to explain rift evolution. Analysis of model results in terms of statistics of fault length and orientation, as well as deformation architecture, and its comparison with the MER suggest that models of two-phase rifting (with a first phase of NW-SE extension followed by E-W rifting) or constant NW-SE extension, as well as models of constant ENE-WSW rifting are not able to reproduce the fault architecture observed in nature. Model results suggest instead that the rift has likely developed under a constant, post-11 Ma extension oriented roughly ESE-WNW (N97.5°E), consistent with recent plate kinematics models.
Direction-dependent arm kinematics reveal optimal integration of gravity cues.
Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos
2016-11-02
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.
Quality of motion considerations in numerical analysis of motion restoring implants of the spine.
Bowden, Anton E; Guerin, Heather L; Villarraga, Marta L; Patwardhan, Avinash G; Ochoa, Jorge A
2008-06-01
Motion restoring implants function in a dynamic environment that encompasses the full range of spinal kinematics. Accurate assessment of the in situ performance of these devices using numerical techniques requires model verification and validation against the well-established nonlinear quality of motion of the spine, as opposed to the previous norm of matching kinematic endpoint metrics such as range of motion and intervertebral disc pressure measurements at a single kinematic reference point. Experimental data was obtained during cadaveric testing of nine three-functional spinal unit (L3-S1) lumbar spine segments. Each specimen was tested from 8 Nm of applied flexion moment to 6 Nm of applied extension moment with an applied 400 N compressive follower preload. A nonlinear kinematic curve representing the spinal quality of motion (applied moment versus angular rotation) for the index finite element model was constructed and compared to the kinematic responses of the experimental specimens. The effect of spinal soft tissue structure mechanical behaviors on the fidelity of the model's quality of motion to experimental data was assessed by iteratively modifying the material representations of annulus fibrosus, nucleus pulposus, and ligaments. The present work demonstrated that for this model, the annulus fibrosus played a small role in the nonlinear quality of motion of the model, whereas changes in ligament representations had a large effect, as validated against the full kinematic range of motion. An anisotropic continuum representation of the annulus fibrosus was used, along with nonlinear fabric representations of the ligaments and a hyperelastic representation of the nucleus pulposus. Our results suggest that improvements in current methodologies broadly used in numerical simulations of the lumbar spine are needed to fully describe the highly nonlinear motion of the spine.
NASA Technical Reports Server (NTRS)
Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.
1992-01-01
The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.
NASA Astrophysics Data System (ADS)
Weil, Arlo; Gutiérrez-Alonso, Gabriel; Johnston, Stephen; Pastor Galán, Daniel
2013-04-01
The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple continents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear convergent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean resulted in E-W shortening (present-day coordinates) in the Carboniferous, producing a near linear N-S trending, east-verging belt. Subsequent N-S shortening near the Carb-Permian boundary resulted in oroclinal buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation. The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement between them. While there is general consensus that two separate phases of deformation occurred, various models consider that curvature was caused by: dextral transpression around a Gondwana indentor; strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establishment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accurately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to corroborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues for secondary buckling of an originally linear orogenic system. Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma during the latest Carboniferous, which agrees well with recent geodynamical models and structural data that relate oroclinal buckling with lithospheric delamination in the Variscan.
NASA Astrophysics Data System (ADS)
Weil, A. Brandon; Gutiérrez-Alonso, G.; Johnston, S. T.; Pastor-Galán, D.
2013-01-01
The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple continents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear convergent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean resulted in E-W shortening (present-day coordinates) in the Carboniferous, producing a near linear N-S trending, east-verging belt. Subsequent N-S shortening near the Carb-Permian boundary resulted in oroclinal buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation. The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement between them. While there is general consensus that two separate phases of deformation occurred, various models consider that curvature was caused by: dextral transpression around a Gondwana indentor; strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establishment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accurately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to corroborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues for secondary buckling of an originally linear orogenic system. Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma during the latest Carboniferous, which agrees well with recent geodynamical models and structural data that relate oroclinal buckling with lithospheric delamination in the Variscan.
Bush, Nicholas E; Schroeder, Christopher L; Hobbs, Jennifer A; Yang, Anne ET; Huet, Lucie A; Solla, Sara A; Hartmann, Mitra JZ
2016-01-01
Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space. DOI: http://dx.doi.org/10.7554/eLife.13969.001 PMID:27348221
Berens, Angelique M; Harbison, Richard Alex; Li, Yangming; Bly, Randall A; Aghdasi, Nava; Ferreira, Manuel; Hannaford, Blake; Moe, Kris S
2017-08-01
To develop a method to measure intraoperative surgical instrument motion. This model will be applicable to the study of surgical instrument kinematics including surgical training, skill verification, and the development of surgical warning systems that detect aberrant instrument motion that may result in patient injury. We developed an algorithm to automate derivation of surgical instrument kinematics in an endoscopic endonasal skull base surgery model. Surgical instrument motion was recorded during a cadaveric endoscopic transnasal approach to the pituitary using a navigation system modified to record intraoperative time-stamped Euclidian coordinates and Euler angles. Microdebrider tip coordinates and angles were referenced to the cadaver's preoperative computed tomography scan allowing us to assess surgical instrument kinematics over time. A representative cadaveric endoscopic endonasal approach to the pituitary was performed to demonstrate feasibility of our algorithm for deriving surgical instrument kinematics. Technical feasibility of automatically measuring intraoperative surgical instrument motion and deriving kinematics measurements was demonstrated using standard navigation equipment.
Kinematic modelling of disc galaxies using graphics processing units
NASA Astrophysics Data System (ADS)
Bekiaris, G.; Glazebrook, K.; Fluke, C. J.; Abraham, R.
2016-01-01
With large-scale integral field spectroscopy (IFS) surveys of thousands of galaxies currently under-way or planned, the astronomical community is in need of methods, techniques and tools that will allow the analysis of huge amounts of data. We focus on the kinematic modelling of disc galaxies and investigate the potential use of massively parallel architectures, such as the graphics processing unit (GPU), as an accelerator for the computationally expensive model-fitting procedure. We review the algorithms involved in model-fitting and evaluate their suitability for GPU implementation. We employ different optimization techniques, including the Levenberg-Marquardt and nested sampling algorithms, but also a naive brute-force approach based on nested grids. We find that the GPU can accelerate the model-fitting procedure up to a factor of ˜100 when compared to a single-threaded CPU, and up to a factor of ˜10 when compared to a multithreaded dual CPU configuration. Our method's accuracy, precision and robustness are assessed by successfully recovering the kinematic properties of simulated data, and also by verifying the kinematic modelling results of galaxies from the GHASP and DYNAMO surveys as found in the literature. The resulting GBKFIT code is available for download from: http://supercomputing.swin.edu.au/gbkfit.
NASA Astrophysics Data System (ADS)
Lin, T. C.; Hu, F.; Chen, X.; Lee, S. J.; Hung, S. H.
2017-12-01
Kinematic source model is widely used for the simulation of an earthquake, because of its simplicity and ease of application. On the other hand, dynamic source model is a more complex but important tool that can help us to understand the physics of earthquake initiation, propagation, and healing. In this study, we focus on the southernmost Ryukyu Trench which is extremely close to northern Taiwan. Interseismic GPS data in northeast Taiwan shows a pattern of strain accumulation, which suggests the maximum magnitude of a potential future earthquake in this area is probably about magnitude 8.7. We develop dynamic rupture models for the hazard estimation of the potential megathrust event based on the kinematic rupture scenarios which are inverted using the interseismic GPS data. Besides, several kinematic source rupture scenarios with different characterized slip patterns are also considered to constrain the dynamic rupture process better. The initial stresses and friction properties are tested using the trial-and-error method, together with the plate coupling and tectonic features. An analysis of the dynamic stress field associated with the slip prescribed in the kinematic models can indicate possible inconsistencies with physics of faulting. Furthermore, the dynamic and kinematic rupture models are considered to simulate the ground shaking from based on 3-D spectral-element method. We analyze ShakeMap and ShakeMovie from the simulation results to evaluate the influence over the island between different source models. A dispersive tsunami-propagation simulation is also carried out to evaluate the maximum tsunami wave height along the coastal areas of Taiwan due to coseismic seafloor deformation of different source models. The results of this numerical simulation study can provide a physically-based information of megathrust earthquake scenario for the emergency response agency to take the appropriate action before the really big one happens.
NASA Technical Reports Server (NTRS)
Fielding, Eric; Sladen, Anthony; Avouac, Jean-Philippe; Li, Zhenhong; Ryder, Isabelle; Burgmann, Roland
2008-01-01
The presentations explores kinematics of the Wenchaun-Beichuan earthquake using data from ALOS, Envisat, and teleseismic recordings. Topics include geomorphic mapping, ALOS PALSAR range offsets, ALOS PALSAR interferometry, Envisat IM interferometry, Envisat ScanSAR, Joint GPS-InSAR inversion, and joint GPS-teleseismic inversion (static and kinematic).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu
The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less
The validity of flow approximations when simulating catchment-integrated flash floods
NASA Astrophysics Data System (ADS)
Bout, B.; Jetten, V. G.
2018-01-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.
Tanaka, Yoshihisa; Nakamura, Shinichiro; Kuriyama, Shinichi; Ito, Hiromu; Furu, Moritoshi; Komistek, Richard D; Matsuda, Shuichi
2016-11-01
It is unknown whether a computer simulation with simple models can estimate individual in vivo knee kinematics, although some complex models have predicted the knee kinematics. The purposes of this study are first, to validate the accuracy of the computer simulation with our developed model during a squatting activity in a weight-bearing deep knee bend and then, to analyze the contact area and the contact stress of the tri-condylar implants for individual patients. We compared the anteroposterior (AP) contact positions of medial and lateral condyles calculated by the computer simulation program with the positions measured from the fluoroscopic analysis for three implanted knees. Then the contact area and the stress including the third condyle were calculated individually using finite element (FE) analysis. The motion patterns were similar in the simulation program and the fluoroscopic surveillance. Our developed model could nearly estimate the individual in vivo knee kinematics. The mean and maximum differences of the AP contact positions were 1.0mm and 2.5mm, respectively. At 120° of knee flexion, the contact area at the third condyle was wider than the both condyles. The mean maximum contact stress at the third condyle was lower than the both condyles at 90° and 120° of knee flexion. Individual bone models are required to estimate in vivo knee kinematics in our simple model. The tri-condylar implant seems to be safe for deep flexion activities due to the wide contact area and low contact stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Macchiavelli, Chiara; Vergés, Jaume; Schettino, Antonio; Fernández, Manel; Turco, Eugenio; Torné, Montserrat; Casciello, Emilio
2017-04-01
We present the first high-resolution kinematic model for the southern North Atlantic since the late Cretaceous, in order to constrain the Iberian kinematics during the last 83 Myr. Assessing the detailed movements of the Iberian plate is crucial to constrain the kinematics of the Western Mediterranean region and to better understand the Pyrenees and Betic - Rif orogenic systems evolution. The new plate motions model for the Iberia - North America plate pair is accompanied by a high-resolution isochron map for the southern North Atlantic region, resulting from a re-examination of 400 ship tracks and 3 aeromagnetic tracks in the NGDC data base for the area between the Azores triple junction and 46° N. We derive a well-constrained kinematic solution for the relative motion between an independent Iberia and North America from seafloor spreading data despite the short length of the magnetic lineations and the scarcity of large-offset transform faults and fracture zones. Accurate finite reconstruction poles for the Iberia - North America conjugate plate pair between the Late Cretaceous (Chron 34, 83.5 Ma) and the present day (Chron 2A, 2.58 Ma) are calculated on the basis of a set of 100 magnetic profiles through an iterative method. Euler poles and associated angles of rotation are computed as follow. An initial rotation pole is calculated using only magnetic anomaly crossings. The initial large uncertainty associated with the first determination is reduced by generating a set of synthetic fracture zones associated with the initial pole and using points sampled along these structures in conjunction with magnetic anomaly crossings to calculate a new Euler pole and associated confidence ellipse. This procedure is repeated n times, generating a sequence of improving approximate solutions and stopped when the solution become stable excluding solutions that were inconsistent with geological constraints. We used these results to build a comprehensive kinematic model for the North America - Iberia - Europe - Africa - Morocco plate system. A set of plate reconstructions illustrates the Iberian plate kinematics and show plate boundaries and velocity fields since the Late Cretaceous attempting to reconcile the geology of Pyrenees and Betic - Rif chain and the kinematic of the southern North Atlantic Ocean. This research is supported by project ALPIMED (PIE-CSIC-201530E082)
Kinematic Measures of Imitation Fidelity in Primary School Children
ERIC Educational Resources Information Center
Williams, Justin H. G.; Casey, Jackie M.; Braadbaart, Lieke; Culmer, Peter R.; Mon-Williams, Mark
2014-01-01
We sought to develop a method for measuring imitation accuracy objectively in primary school children. Children imitated a model drawing shapes on the same computer-tablet interface they saw used in video clips, allowing kinematics of model and observers' actions to be directly compared. Imitation accuracy was reported as a correlation reflecting…
Development of force adaptation during childhood.
Konczak, Jürgen; Jansen-Osmann, Petra; Kalveram, Karl-Theodor
2003-03-01
Humans learn to make reaching movements in novel dynamic environments by acquiring an internal motor model of their limb dynamics. Here, the authors investigated how 4- to 11-year-old children (N = 39) and adults (N = 7) adapted to changes in arm dynamics, and they examined whether those data support the view that the human brain acquires inverse dynamics models (IDM) during development. While external damping forces were applied, the children learned to perform goal-directed forearm flexion movements. After changes in damping, all children showed kinematic aftereffects indicative of a neural controller that still attempted to compensate the no longer existing damping force. With increasing age, the number of trials toward complete adaptation decreased. When damping was present, forearm paths were most perturbed and most variable in the youngest children but were improved in the older children. The findings indicate that the neural representations of limb dynamics are less precise in children and less stable in time than those of adults. Such controller instability might be a primary cause of the high kinematic variability observed in many motor tasks during childhood. Finally, the young children were not able to update those models at the same rate as the older children, who, in turn, adapted more slowly than adults. In conclusion, the ability to adapt to unknown forces is a developmental achievement. The present results are consistent with the view that the acquisition and modification of internal models of the limb dynamics form the basis of that adaptive process.
Coordination of multiple appendages in drag-based swimming.
Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette
2010-11-06
Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.
Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.; Destouni, G.
2017-12-01
The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow hillslope compartments are controlled by topography, and therefore application and further development of the simple "kinematic pathway" approach is promising for their modeling.
Prediction of elbow joint contact mechanics in the multibody framework.
Rahman, Munsur; Cil, Akin; Stylianou, Antonis P
2016-03-01
Computational multibody musculoskeletal models of the elbow joint that are capable of simultaneous and accurate predictions of muscle and ligament forces, along with cartilage contact mechanics can be immensely useful in clinical practice. As a step towards producing a musculoskeletal model that includes the interaction between cartilage and muscle loading, the goal of this study was to develop subject-specific multibody models of the elbow joint with discretized humerus cartilage representation interacting with the radius and ulna cartilages through deformable contacts. The contact parameters for the compliant contact law were derived using simplified elastic foundation contact theory. The models were then validated by placing the model in a virtual mechanical tester for flexion-extension motion similar to a cadaver experiment, and the resulting kinematics were compared. Two cadaveric upper limbs were used in this study. The humeral heads were subjected to axial motion in a mechanical tester and the resulting kinematics from three bones were recorded for model validation. The maximum RMS error between the predicted and measured kinematics during the complete testing cycle was 2.7 mm medial-lateral translation and 9.7° varus-valgus rotation of radius relative to humerus (for elbow 2). After model validation, a lateral ulnar collateral ligament (LUCL) deficient condition was simulated and, contact pressures and kinematics were compared to the intact elbow model. A noticeable difference in kinematics, contact area, and contact pressure were observed for LUCL deficient condition. LUCL deficiency induced higher internal rotations for both the radius and ulna during flexion and an associated medial shift of the articular contact area. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Kinematic sensitivity of robot manipulators
NASA Technical Reports Server (NTRS)
Vuskovic, Marko I.
1989-01-01
Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.
Kinematic Methods of Designing Free Form Shells
NASA Astrophysics Data System (ADS)
Korotkiy, V. A.; Khmarova, L. I.
2017-11-01
The geometrical shell model is formed in light of the set requirements expressed through surface parameters. The shell is modelled using the kinematic method according to which the shell is formed as a continuous one-parameter set of curves. The authors offer a kinematic method based on the use of second-order curves with a variable eccentricity as a form-making element. Additional guiding ruled surfaces are used to control the designed surface form. The authors made a software application enabling to plot a second-order curve specified by a random set of five coplanar points and tangents.
Dance recognition system using lower body movement.
Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C
2014-02-01
The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.
Feasible Path Generation Using Bezier Curves for Car-Like Vehicle
NASA Astrophysics Data System (ADS)
Latip, Nor Badariyah Abdul; Omar, Rosli
2017-08-01
When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.
NASA Astrophysics Data System (ADS)
Jebeli, Mahvash; Bilesan, Alireza; Arshi, Ahmadreza
2017-06-01
The currently available commercial motion capture systems are constrained by space requirement and thus pose difficulties when used in developing kinematic description of human movements within the existing manufacturing and production cells. The Kinect sensor does not share similar limitations but it is not as accurate. The proposition made in this article is to adopt the Kinect sensor in to facilitate implementation of Health Engineering concepts to industrial environments. This article is an evaluation of the Kinect sensor accuracy when providing three dimensional kinematic data. The sensor is thus utilized to assist in modeling and simulation of worker performance within an industrial cell. For this purpose, Kinect 3D data was compared to that of Vicon motion capture system in a gait analysis laboratory. Results indicated that the Kinect sensor exhibited a coefficient of determination of 0.9996 on the depth axis and 0.9849 along the horizontal axis and 0.2767 on vertical axis. The results prove the competency of the Kinect sensor to be used in the industrial environments.
Konow, Nicolai; Sanford, Christopher P J
2008-11-01
A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.
NASA Astrophysics Data System (ADS)
Battistella, C.; Robinson, D.; McQuarrie, N.; Ghoshal, S.
2017-12-01
Multiple valid balanced cross sections can be produced from mapped surface and subsurface data. By integrating low temperature thermochronologic data, we are better able to predict subsurface geometries. Existing valid balanced cross section for far western Nepal are few (Robinson et al., 2006) and do not incorporate thermochronologic data because the data did not exist. The data published along the Simikot cross section along the Karnali River since then include muscovite Ar, zircon U-Th/He and apatite fission track. We present new mapping and a new valid balanced cross section that takes into account the new field data as well as the limitations that thermochronologic data places on the kinematics of the cross section. Additional constrains include some new geomorphology data acquired since 2006 that indicate areas of increased vertical uplift, which indicate locations of buried ramps in the Main Himalayan thrust and guide the locations of Lesser Himalayan ramps in the balanced cross section. Future work will include flexural modeling, new low temperature thermochronometic data, and 2-D thermokinematic models from a sequentially forward modeled balanced cross sections in far western Nepal.
Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A
2016-05-19
The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.
Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.
Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian
2018-06-01
This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.
Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis
NASA Astrophysics Data System (ADS)
Arendra, A.; Akhmad, S.
2018-01-01
This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly
Kinematic cross-correlation induces sensory integration across separate objects.
Debats, Nienke B; Ernst, Marc O; Heuer, Herbert
2017-12-01
In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.e. hand and cursor). In the current study, we examined which aspects of the kinematic relation are crucial for eliciting the sensory integration: (i) the cross-correlation between kinematic variables of the hand and cursor trajectories, and/or (ii) an internal model of the hand-cursor kinematic transformation. Participants made out-and-back movements from the centre of a semicircular workspace to its boundary, after which they judged the position where either their hand or the cursor hit the boundary. We analysed the position biases and found that the integration was strong in a condition with high kinematic correlations (a straight hand trajectory was mapped to a straight cursor trajectory), that it was significantly reduced for reduced kinematic correlations (a straight hand trajectory was transformed into a curved cursor trajectory) and that it was not affected by the inability to acquire an internal model of the kinematic transformation (i.e. by the trial-to-trial variability of the cursor curvature). These findings support the idea that correlations play a crucial role in multisensory integration irrespective of the number of sensory sources involved. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Chang, Young-Hui; Auyang, Arick G.; Scholz, John P.; Nichols, T. Richard
2009-01-01
Summary Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. PMID:19837893
Reduced-order modeling of soft robots
Chenevier, Jean; González, David; Aguado, J. Vicente; Chinesta, Francisco
2018-01-01
We present a general strategy for the modeling and simulation-based control of soft robots. Although the presented methodology is completely general, we restrict ourselves to the analysis of a model robot made of hyperelastic materials and actuated by cables or tendons. To comply with the stringent real-time constraints imposed by control algorithms, a reduced-order modeling strategy is proposed that allows to minimize the amount of online CPU cost. Instead, an offline training procedure is proposed that allows to determine a sort of response surface that characterizes the response of the robot. Contrarily to existing strategies, the proposed methodology allows for a fully non-linear modeling of the soft material in a hyperelastic setting as well as a fully non-linear kinematic description of the movement without any restriction nor simplifying assumption. Examples of different configurations of the robot were analyzed that show the appeal of the method. PMID:29470496
Ion kinematics in a plasma focus.
NASA Technical Reports Server (NTRS)
Gary, S. P.; Hohl, F.
1973-01-01
The results of numerical integrations of three-dimensional equations of motion of ions subject to given electric and magnetic fields are presented. The fields represent those which may exist in the pinch phase of the plasma focus, although here they depend only on the radial coordinate. The ions initially have Maxwellian velocity distributions, and their trajectories are interpreted in terms of single-particle constants of the motion. Two models of the axial electric field Ez are considered. For strong Ez away from the axis, there is a cyclotron acceleration which leads to ion heating. For positive Ez on the axis, ions within a Larmor radius of the axis undergo very efficient acceleration; the results for this new model are in general agreement with experimental results.
Dynamic model of the octopus arm. II. Control of reaching movements.
Yekutieli, Yoram; Sagiv-Zohar, Roni; Hochner, Binyamin; Flash, Tamar
2005-08-01
The dynamic model of the octopus arm described in the first paper of this 2-part series was used here to investigate the neural strategies used for controlling the reaching movements of the octopus arm. These are stereotypical extension movements used to reach toward an object. In the dynamic model, sending a simple propagating neural activation signal to contract all muscles along the arm produced an arm extension with kinematic properties similar to those of natural movements. Control of only 2 parameters fully specified the extension movement: the amplitude of the activation signal (leading to the generation of muscle force) and the activation traveling time (the time the activation wave takes to travel along the arm). We found that the same kinematics could be achieved by applying activation signals with different activation amplitudes all exceeding some minimal level. This suggests that the octopus arm could use minimal amplitudes of activation to generate the minimal muscle forces required for the production of the desired kinematics. Larger-amplitude signals would generate larger forces that increase the arm's stability against perturbations without changing the kinematic characteristics. The robustness of this phenomenon was demonstrated by examining activation signals with either a constant or a bell-shaped velocity profile. Our modeling suggests that the octopus arm biomechanics may allow independent control of kinematics and resistance to perturbation during arm extension movements.
Neotectonic deformation model of the Northern Algeria from Paleomagnetic data
NASA Astrophysics Data System (ADS)
Derder, M. E. M.; Henry, B.; Maouche, S.; Amenna, M.; Bayou, B.; Djellit, H.; Ymel, H.; Gharbi, S.; Abtout, A.; Ayache, M.
2012-04-01
The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it is shown by the strongest recent earthquakes of "Zemmouri" 21 May 2003 Mw=6.9 and the "El Asnam" 10 October 1980 Ms= 7.3. This seismicity is due to the tectonic activity related to the convergence between Africa and Eurasia plates since at least the Oligocene. The deformation is mostly compressional with associated folds, strike-slip faults and thrusts, and a direction of shortening between N-S and NNW-SSE. This convergence involves a tectonic transpression which is expressed by active deformation along the plate boundary. In northern Algeria, the seismicity is concentrated in a coastal E-W thin band zone (the Tell Atlas). Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. " Cheliff "basin, " Mitidja "basin, …). These reverse faults are associated with NW-SE to E-W strike-slips deep faults. The active tectonics could be explained by a simple blocks rotation kinematics model. In order to test the validity of this kinematic model, three different paleomagnetic studies have been conducted. The first one concerned the "Cheliff" basin where sedimentary Neogene formations were extensively sampled (66 sites). The second study was carried out on Miocene andesite and dacite rocks cropping out along the northern coastal zone of the "Cheliff" basin ("Beni Haoua" area, 19 sites). The third study has been carried out on the Miocene magmatic rocks (rhyolites and basalts) cropping out north-eastern part of the "Mitidja" basin ("Cap Djinet" - "Boumerdes" area, 23 sites). The obtained results show existence of paleomagnetic clockwise rotations in all the studied areas and then validates the kinematics block rotation model. Accordingly, the deformation related to the convergence between the Africa and Eurasia plates, is partly accommodated in northern Algeria by blocks rotation movements. It seems that the Tellian Atlas (northern Algeria) domain is organized as tectonic blocks with relative clockwise blocks rotation movement as in a "bookshelf" model.
NASA Astrophysics Data System (ADS)
Kinscher, J.; Krüger, F.; Woith, H.; Lühr, B. G.; Hintersberger, E.; Irmak, T. S.; Baris, S.
2013-11-01
The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, İzmit MW 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary stresses as transtensional faulting is consistent with the southwest directed far field deformation of the Anatolian plate.
Kinematics of the ionized-to-neutral interfaces in Monoceros R2
NASA Astrophysics Data System (ADS)
Pilleri, P.; Fuente, A.; Gerin, M.; Cernicharo, J.; Goicoechea, J. R.; Ossenkopf, V.; Joblin, C.; González-García, M.; Treviño-Morales, S. P.; Sánchez-Monge, Á.; Pety, J.; Berné, O.; Kramer, C.
2014-01-01
Context. Monoceros R2 (Mon R2), at a distance of 830 pc, is the only ultra-compact H ii region (UC H ii) where its associated photon-dominated region (PDR) can be resolved with the Herschel Space Observatory. Aims: Our aim is to investigate observationally the kinematical patterns in the interface regions (i.e., the transition from atomic to molecular gas) associated with Mon R2. Methods: We used the HIFI instrument on board Herschel to observe the line profiles of the reactive ions CH+, OH+, and H2O+ toward different positions in Mon R2. We derive the column density of these molecules and compare them with gas-phase chemistry models. Results: The reactive ion CH+ is detected both in emission (at central and red-shifted velocities) and in absorption (at blue-shifted velocities). The OH+ ion is detected in absorption at both blue- and red-shifted velocities, with similar column densities; H2O+ is not detected at any of the positions, down to a rms of 40 mK toward the molecular peak. At this position, we find that the OH+ absorption originates in a mainly atomic medium, and therefore is associated with the most exposed layers of the PDR. These results are consistent with the predictions from photo-chemical models. The line profiles are consistent with the atomic gas being entrained in the ionized gas flow along the walls of the cavity of the H ii region. Based on this evidence, we are able to propose a new geometrical model for this region. Conclusions: The kinematical patterns of the OH+ and CH+ absorption indicate the existence of a layer of mainly atomic gas for which we have derived, for the first time, some physical parameters and its dynamics. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
van Wingerden, J P; Vleeming, A; Snijders, C J; Stoeckart, R
1993-10-01
Summary. Sacroiliac joint dysfunction is often overlooked as a possible cause of low back pain. This is due to the use of reductionistic anatomical models. From a kinematic point of view, topographic anatomical models are generally inadequate since they categorize pelvis, lower vertebral column and legs as distinct entities. This functional-anatomical study focuses on the question whether anatomical connections between the biceps femoris muscle and the sacrotuberous ligament are kinematically useful. Forces applied to the tendon of the biceps femoris muscle, simulating biceps femoris muscle force, were shown to influence sacrotuberous ligament tension. Since sacrotuberous ligament tension influences sacroiliac joint kinematics, hamstring training could influence the sacroiliac joint and thus low back kinematics. The clinical implications with respect to 'short' hamstrings, pelvic instability and walking are discussed.
Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics
NASA Astrophysics Data System (ADS)
Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.
2017-11-01
We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.
Yang, Zhaochun; Wickwire, Alexis C; Debski, Richard E
2010-11-01
Recent clinical evidence has suggested that tasks performed in kneeling or squatting postures place the knee at a higher risk for injury because loads across the knee might overload the ligaments. The objective of this study was to develop a subject-specific model of the knee that is kinematically driven to predict the forces in the major ligaments at high flexion angles. The geometry of the femur, tibia, and fibula and the load-elongation curves representing the structural properties of the ACL, PCL, LCL, and MCL served as inputs to the model, which represented each ligament as a nonlinear elastic spring. To drive the model, kinematic data was obtained while loads were applied to the same cadaveric knee at four flexion angles. The force in each ligament during the recorded kinematic data allowed an optimization procedure to determine the location of the ligament attachment sites on each bone and their reference lengths. The optimization procedure could successfully minimize the differences between the experimental and predicted forces only when the kinematics at 90°, 120°, and 140° of flexion were utilized. This finding suggests that the ligaments at the knee function differently at high-flexion angles compared to low flexion angles and separate models must be used to examine each range of motion. In the future, the novel experimental and computational methodology will be used to construct additional models and additional knee kinematics will be input to help elucidate mechanisms of injury during tasks performed in kneeling or squatting postures.
Kinematics and force analysis of a robot hand based on an artificial biological control scheme
NASA Astrophysics Data System (ADS)
Kim, Man Guen
An artificial biological control scheme (ABCS) is used to study the kinematics and statics of a multifingered hand with a view to developing an efficient control scheme for grasping. The ABCS is based on observation of human grasping, intuitively taking it as the optimum model for robotic grasping. A final chapter proposes several grasping measures to be applied to the design and control of a robot hand. The ABCS leads to the definition of two modes of the grasping action: natural grasping (NG), which is the human motion to grasp the object without any special task command, and forced grasping (FG), which is the motion with a specific task. The grasping direction line (GDL) is defined to determine the position and orientation of the object in the hand. The kinematic model of a redundant robot arm and hand is developed by reconstructing the human upper extremity and using anthropometric measurement data. The inverse kinematic analyses of various types of precision and power grasping are studied by replacing the three-link with one virtual link and using the GDL. The static force analysis for grasping with fingertips is studied by applying the ABCS. A measure of grasping stability, that maintains the positions of contacts as well as the configurations of the redundant fingers, is derived. The grasping stability measure (GSM), a measure of how well the hand maintains grasping under the existence of external disturbance, is derived by the torque vector of the hand calculated from the external force applied to the object. The grasping manipulability measure (GMM), a measure of how well the hand manipulates the object for the task, is derived by the joint velocity vector of the hand calculated from the object velocity. The grasping performance measure (GPM) is defined by the sum of the directional components of the GSM and the GMM. Finally, a planar redundant hand with two fingers is examined in order to study the various postures of the hand performing pinch grasping by applying the GSM and the GMM.
Effect of thong style flip-flops on children's barefoot walking and jogging kinematics.
Chard, Angus; Greene, Andrew; Hunt, Adrienne; Vanwanseele, Benedicte; Smith, Richard
2013-03-05
Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children's barefoot three dimensional foot kinematics during walking and jogging. Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion. Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001). Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought.
Effect of thong style flip-flops on children’s barefoot walking and jogging kinematics
2013-01-01
Background Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children’s barefoot three dimensional foot kinematics during walking and jogging. Methods Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion. Results Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001). Conclusions Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought. PMID:23497571
Kinematic algorithm to determine the energy cost of running with changes of direction.
Zago, Matteo; Esposito, Fabio; Rausa, Giulia; Limonta, Eloisa; Corrado, Felice; Rampichini, Susanna; Sforza, Chiarella
2018-06-15
Changes of direction (CoDs) have a high metabolic and mechanical impact in field and court team sports, but the estimation of the associated workload is still inaccurate. This study aims at validating an algorithm based on kinematic data to estimate the energy cost of running with frequent 180°-CoDs. Twenty-six physically active male subjects (22.4 ± 3.2 years) participated in two sessions: (1) maximum oxygen uptake (V̇O 2,max ) and maximal aerobic speed (MAS) test; (2) 5-m continuous shuttle run (two 5-min trials at 50% and 75% MAS, 6-min recovery). In (2), full-body 3D-kinematics and V̇O 2 were simultaneously recorded. Actual cost of shuttle running (C meas ) was obtained from the aerobic, anaerobic alactic and lactic components. The proposed algorithm detects "braking phases", periods of mostly negative (eccentric) work occurring at concurrent knee flexion and ground contact, and estimates energy cost (C est ) considering negative mechanical work in braking phases, and positive elsewhere. At the speed of, respectively, 1.54 ± 0.17 and 1.90 ± 0.15 m s -1 (rate of perceived exertion: 9.1 ± 1.8 and 15.8 ± 1.9), C meas was 8.06 ± 0.49 and 9.04 ± 0.73 J kg -1 m -1 . C est was more accurate than regression models found in literature (p < 0.01), and not significantly different from C meas (p > 0.05; average error: 8.3%, root-mean-square error: 0.86 J kg -1 m -1 ). The proposed algorithm improved existing techniques based on CoM kinematics, integrating data of ground contacts and joint angles that allowed to separate propulsive from braking phases. This work constitutes the basis to extend the model from the laboratory to the field, providing a reliable measure of training and matches workload. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brideau, Marc-André; Yan, Ming; Stead, Doug
2009-01-01
Rock slope failures are frequently controlled by a complex combination of discontinuities that facilitate kinematic release. These discontinuities are often associated with discrete folds, faults, and shear zones, and/or related tectonic damage. The authors, through detailed case studies, illustrate the importance of considering the influence of tectonic structures not only on three-dimensional kinematic release but also in the reduction of rock mass properties due to induced damage. The case studies selected reflect a wide range of rock mass conditions. In addition to active rock slope failures they include two major historic failures, the Hope Slide, which occurred in British Columbia in 1965 and the Randa rockslides which occurred in Switzerland in 1991. Detailed engineering geological mapping combined with rock testing, GIS data analysis and for selected case numerical modelling, have shown that specific rock slope failure mechanisms may be conveniently related to rock mass classifications such as the Geological Strength Index (GSI). The importance of brittle intact rock fracture in association with pre-existing rock mass damage is emphasized though a consideration of the processes involved in the progressive-time dependent development not only of though-going failure surfaces but also lateral and rear-release mechanisms. Preliminary modelling data are presented to illustrate the importance of intact rock fracture and step-path failure mechanisms; and the results are discussed with reference to selected field observations. The authors emphasize the importance of considering all forms of pre-existing rock mass damage when assessing potential or operative failure mechanisms. It is suggested that a rock slope rock mass damage assessment can provide an improved understanding of the potential failure mode, the likely hazard presented, and appropriate methods of both analysis and remedial treatment.
Drake Passage opening history: a synthesis of existing and new data from diverse proxies
NASA Astrophysics Data System (ADS)
Barbeau, D. L.; Scotia Project Team
2011-12-01
The tectonic opening of the Drake Passage marine gateway between the Antarctic Peninsula and southern South America enabled development of the Antarctic circumpolar current, which has been variably ascribed to establishment and/or expansion of Cenozoic ice caps on Antarctica. Despite the importance of this gateway, interpretations of its opening history vary greatly, and are widely debated. Using data collected using a variety of geologic, geochemical, geophysical, and paleobiologic techniques, I summarize existing and new constraints on the tectonic history of Drake Passage, and evaluate temporal and kinematic models for its opening. In particular, new data from sediment provenance and thermochronology of Drake Passage margins integrated with independent paleoclimate, eustasy and paleobiology studies suggest that this gateway may have begun opening at least as early as the Paleocene -- 15 Myr prior to the oldest previous estimates.
Kinematics, controls, and path planning results for a redundant manipulator
NASA Technical Reports Server (NTRS)
Gretz, Bruce; Tilley, Scott W.
1989-01-01
The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.
Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco
2003-11-01
What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.
NASA Technical Reports Server (NTRS)
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
A Three-Dimensional Kinematic and Kinetic Study of the College-Level Female Softball Swing
Milanovich, Monica; Nesbit, Steven M.
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key Points The female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing. The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter. Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two. PMID:24570623
NASA Astrophysics Data System (ADS)
Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo
2014-05-01
Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.
A three-dimensional kinematic and kinetic study of the college-level female softball swing.
Milanovich, Monica; Nesbit, Steven M
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key PointsThe female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities.The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing.The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter.Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two.
Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A
2015-11-05
Soft tissue artifact (STA) distort marker-based knee kinematics measures and make them difficult to use in clinical practice. None of the current methods designed to compensate for STA is suitable, but multi-body optimization (MBO) has demonstrated encouraging results and can be improved. The goal of this study was to develop and validate the performance of knee joint models, with anatomical and subject-specific kinematic constraints, used in MBO to reduce STA errors. Twenty subjects were recruited: 10 healthy and 10 osteoarthritis (OA) subjects. Subject-specific knee joint models were evaluated by comparing dynamic knee kinematics recorded by a motion capture system (KneeKG™) and optimized with MBO to quasi-static knee kinematics measured by a low-dose, upright, biplanar radiographic imaging system (EOS(®)). Errors due to STA ranged from 1.6° to 22.4° for knee rotations and from 0.8 mm to 14.9 mm for knee displacements in healthy and OA subjects. Subject-specific knee joint models were most effective in compensating for STA in terms of abduction-adduction, inter-external rotation and antero-posterior displacement. Root mean square errors with subject-specific knee joint models ranged from 2.2±1.2° to 6.0±3.9° for knee rotations and from 2.4±1.1 mm to 4.3±2.4 mm for knee displacements in healthy and OA subjects, respectively. Our study shows that MBO can be improved with subject-specific knee joint models, and that the quality of the motion capture calibration is critical. Future investigations should focus on more refined knee joint models to reproduce specific OA knee geometry and physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
NASA Astrophysics Data System (ADS)
Oakley, David O. S.; Fisher, Donald M.; Gardner, Thomas W.; Stewart, Mary Kate
2018-01-01
Marine terraces on growing fault-propagation folds provide valuable insight into the relationship between fold kinematics and uplift rates, providing a means to distinguish among otherwise non-unique kinematic model solutions. Here, we investigate this relationship at two locations in North Canterbury, New Zealand: the Kate anticline and Haumuri Bluff, at the northern end of the Hawkswood anticline. At both locations, we calculate uplift rates of previously dated marine terraces, using DGPS surveys to estimate terrace inner edge elevations. We then use Markov chain Monte Carlo methods to fit fault-propagation fold kinematic models to structural geologic data, and we incorporate marine terrace uplift into the models as an additional constraint. At Haumuri Bluff, we find that marine terraces, when restored to originally horizontal surfaces, can help to eliminate certain trishear models that would fit the geologic data alone. At Kate anticline, we compare uplift rates at different structural positions and find that the spatial pattern of uplift rates is more consistent with trishear than with a parallel-fault propagation fold kink-band model. Finally, we use our model results to compute new estimates for fault slip rates ( 1-2 m/ka at Kate anticline and 1-4 m/ka at Haumuri Bluff) and ages of the folds ( 1 Ma), which are consistent with previous estimates for the onset of folding in this region. These results are consistent with previous work on the age of onset of folding in this region, provide revised estimates of fault slip rates necessary to understand the seismic hazard posed by these faults, and demonstrate the value of incorporating marine terraces in inverse fold kinematic models as a means to distinguish among non-unique solutions.
An adaptive inverse kinematics algorithm for robot manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.
Pions as gluons in higher dimensions
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.; Shen, Chia-Hsien; Wen, Congkao
2018-04-01
We derive the nonlinear sigma model as a peculiar dimensional reduction of Yang-Mills theory. In this framework, pions are reformulated as higher-dimensional gluons arranged in a kinematic configuration that only probes cubic interactions. This procedure yields a purely cubic action for the nonlinear sigma model that exhibits a symmetry enforcing color-kinematics duality. Remarkably, the associated kinematic algebra originates directly from the Poincaré algebra in higher dimensions. Applying the same construction to gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic action for the special Galileon theory. Since the nonlinear sigma model and special Galileon are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their double copy relationship is automatic.
Studying aerodynamic drag for modeling the kinematical behavior of CMEs
NASA Astrophysics Data System (ADS)
Temmer, M.; Vrsnak, B.; Moestl, C.; Zic, T.; Veronig, A. M.; Rollett, T.
2013-12-01
With the SECCHI instrument suite aboard STEREO, coronal mass ejections (CMEs) can be observed from multiple vantage points during their entire propagation all the way from the Sun to 1 AU. The propagation behavior of CMEs in interplanetary space is mainly influenced by the ambient solar wind flow. CMEs that are faster than the ambient solar wind get decelerated, whereas slower ones are accelerated until the CME speed is finally adjusted to the solar wind speed. On a statistical basis, empirical models taking into account the drag force acting on CMEs, are able to describe the observed kinematical behaviors. For several well observed CME events we derive the kinematical evolution by combining remote sensing and in situ data. The observed kinematical behavior is compared to results from current empirical and numerical propagation models. For this we mainly use the drag based model DBM as well as the MHD model ENLIL. We aim to obtain the distance regime at which the solar wind drag force is dominating the CME propagation and quantify differences between different model results. This work has received funding from the FWF: V195-N16, and the European Commission FP7 Projects eHEROES (284461, www.eheroes.eu) and COMESEP (263252, www.comesep.eu).
Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin
2017-01-01
The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629
Zheng, Liying; Li, Kang; Shetye, Snehal; Zhang, Xudong
2014-09-22
This manuscript presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zheng, Liying; Li, Kang; Shetye, Snehal; Zhang, Xudong
2014-01-01
This paper presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10 mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling. PMID:25169658
The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.
van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth
2017-09-01
The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.
Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon
2017-01-01
Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.
The most important "factor" in producing clubhead speed in golf.
Joyce, Christopher
2017-10-01
Substantial experiential research into x-factor, and to a lesser extent crunch-factor has been undertaken with the aim of increasing clubhead speed. However, a direct comparison of the golf swing kinematics associated with each 'factor' has not, and possible differences when using a driver compared to an iron. Fifteen low handicap male golfers who displayed a modern swing had their golf swing kinematic data measured when hitting their own driver and five-iron, using a 10-camera motion analysis system operating at 250Hz. Clubhead speed was collected using a validated launch monitor. No between-club differences in x-factor and crunch-factor existed. Correlation analyses revealed within-club segment (trunk and lower trunk) interaction was different for the driver, compared to the five-iron, and that a greater number of kinematic variables associated with x-factor, compared to crunch-factor were shown to be correlated with faster clubhead speeds. This was further explained in the five-iron regression model, where a significant amount of variance in clubhead speed was associated with increased lower trunk x-factor stretch, and reduced trunk lateral bending. Given that greens in regulation was shown to be the strongest correlated variable with PGA Tour earnings (1990-2004), the findings suggests a link to player performance for approach shots. These findings support other empiric research into the importance of x-factor as well as anecdotal evidence on how crunch-factor can negatively affect clubhead speed. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effect of Intensity on 3-Dimensional Kinematics and Coordination in Front-Crawl Swimming.
de Jesus, Kelly; Sanders, Ross; de Jesus, Karla; Ribeiro, João; Figueiredo, Pedro; Vilas-Boas, João P; Fernandes, Ricardo J
2016-09-01
Coaches are often challenged to optimize swimmers' technique at different training and competition intensities, but 3-dimensional (3D) analysis has not been conducted for a wide range of training zones. To analyze front-crawl 3D kinematics and interlimb coordination from low to severe swimming intensities. Ten male swimmers performed a 200-m front crawl at 7 incrementally increasing paces until exhaustion (0.05-m/s increments and 30-s intervals), with images from 2 cycles in each step (at the 25- and 175-m laps) being recorded by 2 surface and 4 underwater video cameras. Metabolic anaerobic threshold (AnT) was also assessed using the lactate-concentration-velocity curve-modeling method. Stroke frequency increased, stroke length decreased, hand and foot speed increased, and the index of interlimb coordination increased (within a catch-up mode) from low to severe intensities (P ≤ .05) and within the 200-m steps performed above the AnT (at or closer to the 4th step; P ≤ .05). Concurrently, intracyclic velocity variations and propelling efficiency remained similar between and within swimming intensities (P > .05). Swimming intensity has a significant impact on swimmers' segmental kinematics and interlimb coordination, with modifications being more evident after the point when AnT is reached. As competitive swimming events are conducted at high intensities (in which anaerobic metabolism becomes more prevalent), coaches should implement specific training series that lead swimmers to adapt their technique to the task constraints that exist in nonhomeostatic race conditions.
Ghosh, Erina; Shmuylovich, Leonid; Kovacs, Sandor J
2009-01-01
The filling (diastolic) function of the human left ventricle is most commonly assessed by echocardiography, a non-invasive imaging modality. To quantify diastolic function (DF) empiric indices are obtained from the features (height, duration, area) of transmitral flow velocity contour, obtained by echocardiography. The parameterized diastolic filling (PDF) formalism is a kinematic model developed by Kovács et. al. which incorporates the suction pump attribute of the left ventricle and facilitates DF quantitation by analysis of echocardiographic transmitral flow velocity contours in terms of stiffness (k), relaxation (c) and load (x(0)). A complementary approach developed by Gharib et. al., uses fluid mechanics and characterizes DF in terms of vortex formation time (T*) derived from streamline features formed by the jet of blood aspirated into the ventricle. Both of these methods characterize DF using a causality-based approach. In this paper, we derive T*'s kinematic analogue T*(kinematic) in terms of k, c and x(0). A comparison between T*(kinematic) and T*(fluid) (mechanic) obtained from averaged transmitral velocity and mitral annulus diameter, is presented. We found that T* calculated by the two methods were comparable and T*(kinematic) correlated with the peak LV recoil driving force kx(0).
Direction-dependent arm kinematics reveal optimal integration of gravity cues
Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos
2016-01-01
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort. DOI: http://dx.doi.org/10.7554/eLife.16394.001 PMID:27805566
Reliability of four models for clinical gait analysis.
Kainz, Hans; Graham, David; Edwards, Julie; Walsh, Henry P J; Maine, Sheanna; Boyd, Roslyn N; Lloyd, David G; Modenese, Luca; Carty, Christopher P
2017-05-01
Three-dimensional gait analysis (3DGA) has become a common clinical tool for treatment planning in children with cerebral palsy (CP). Many clinical gait laboratories use the conventional gait analysis model (e.g. Plug-in-Gait model), which uses Direct Kinematics (DK) for joint kinematic calculations, whereas, musculoskeletal models, mainly used for research, use Inverse Kinematics (IK). Musculoskeletal IK models have the advantage of enabling additional analyses which might improve the clinical decision-making in children with CP. Before any new model can be used in a clinical setting, its reliability has to be evaluated and compared to a commonly used clinical gait model (e.g. Plug-in-Gait model) which was the purpose of this study. Two testers performed 3DGA in eleven CP and seven typically developing participants on two occasions. Intra- and inter-tester standard deviations (SD) and standard error of measurement (SEM) were used to compare the reliability of two DK models (Plug-in-Gait and a six degrees-of-freedom model solved using Vicon software) and two IK models (two modifications of 'gait2392' solved using OpenSim). All models showed good reliability (mean SEM of 3.0° over all analysed models and joint angles). Variations in joint kinetics were less in typically developed than in CP participants. The modified 'gait2392' model which included all the joint rotations commonly reported in clinical 3DGA, showed reasonable reliable joint kinematic and kinetic estimates, and allows additional musculoskeletal analysis on surgically adjustable parameters, e.g. muscle-tendon lengths, and, therefore, is a suitable model for clinical gait analysis. Copyright © 2017. Published by Elsevier B.V.
Majarena, Ana C.; Santolaria, Jorge; Samper, David; Aguilar, Juan J.
2010-01-01
This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters. PMID:22163469
Analytical formulation of selected activities of the remote manipulator system
NASA Technical Reports Server (NTRS)
Zimmerman, K. J.
1977-01-01
Existing analysis of Orbiter-RMS-Payload kinematics were surveyed, including equations dealing with the two body kinematics in the presence of a massless RMS and compares analytical explicit solutions with numerical solutions. For the following operational phases of the RMS numerical demonstration, problems are provided: (1) payload capture; (2) payload stowage and removal from cargo bay; and (3) payload deployment. The equation of motion provided accounted for RMS control forces and torque moments and could be extended to RMS flexibility and control loop simulation without increasing the degrees of freedom of the two body system.
Modelling and Simulation Based on Matlab/Simulink: A Press Mechanism
NASA Astrophysics Data System (ADS)
Halicioglu, R.; Dulger, L. C.; Bozdana, A. T.
2014-03-01
In this study, design and kinematic analysis of a crank-slider mechanism for a crank press is studied. The crank-slider mechanism is the commonly applied one as direct and indirect drive alternatives in practice. Since inexpensiveness, flexibility and controllability are getting more and more important in many industrial applications especially in automotive industry, a crank press with servo actuator (servo crank press) is taken as an application. Design and kinematic analysis of representative mechanism is presented with geometrical analysis for the inverse kinematic of the mechanism by using desired motion concept of slider. The mechanism is modelled in MATLAB/Simulink platform. The simulation results are presented herein.
The Hungtsaiping landslide:A kinematic model based on morphology
NASA Astrophysics Data System (ADS)
Huang, W.-K.; Chu, H.-K.; Lo, C.-M.; Lin, M.-L.
2012-04-01
A large and deep-seated landslide at Hungtsaiping was triggered by the 7.3 magnitude 1999 Chi-Chi earthquake. Extensive site investigations of the landslide were conducted including field reconnaissance, geophysical exploration, borehole logs, and laboratory experiments. Thick colluvium was found around the landslide area and indicated the occurrence of a large ancient landslide. This study presents the catastrophic landslide event which occurred during the Chi-Chi earthquake. The mechanism of the 1999 landslide which cannot be revealed by the underground exploration data alone, is clarified. This research include investigations of the landslide kinematic process and the deposition geometry. A 3D discrete element method (program), PFC3D, was used to model the kinematic process that led to the landslide. The proposed procedure enables a rational and efficient way to simulate the landslide dynamic process. Key word: Hungtsaiping catastrophic landslide, kinematic process, deposition geometry, discrete element method
Khachatryan, Vardan
2016-02-03
We found that the first search for a heavy charged vector boson in the final state with a tau lepton and a neutrino is reported, using 19.7 fb -1 of LHC data at √s = 8 TeV. A signal would appear as an excess of events in kinematic regions where the standard model background is low. No excess is observed. Limits are set on a model in which the W' decays preferentially to fermions of the third generation. Our results substantially extend previous constraints on this model. Masses below 2.0 to 2.7 TeV are excluded, depending on the model parameters.more » In addition, the existence of a W' boson with universal fermion couplings is excluded at 95% confidence level, for W' masses below 2.7 TeV.« less
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena
1993-01-01
This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.
NASA Astrophysics Data System (ADS)
Shuman, Nicholas S.; Mihok, Morgan; Fistik, Margaret; Valentini, James J.
2005-08-01
Experimentally observed product quantum state distributions across a wide range of abstraction reactions at suprathreshold collision energies have shown a strong bias against product internal energy. Only a fraction, sometimes quite a small fraction, of the energetically accessible product quantum states are populated. Picconatto et al. [J. Chem. Phys. 114, 1663 (2001)] noted a simple mathematical relationship between the highest-energy rovibrational states observed and the kinematics of the reaction system. They proposed a reaction model based on reaction kinematics that quantitatively explains this behavior. The model is in excellent agreement with measured quantum state distributions. The assumptions of the model invoke detailed characteristics of reactive trajectories at suprathreshold collision energies. Here we test those assumptions using quasiclassical trajectory calculations for the abstraction reactions H +HCl→H2+Cl, D +HCl→HD+Cl, and H +DCl→HD+Cl. Trajectories were run on a potential-energy surface calculated with a London-Eyring-Polyani-Sato function with a localized 3-center term (LEPS-3C) previously shown to accurately reproduce experimentally observed product state distributions for the H +HCl abstraction reaction. The trajectories sample collision energies near threshold and also substantially above it. Although the trajectories demonstrate some aspects of the model, they show that it is not valid. However, the inadequacy of the proposed model does not invalidate the apparent kinematic basis of the observed energy constraint. The present results show that there must be some other molecular behavior rooted in the reaction kinematics that is the explanation and the source of the constraint.
Controller design for a teleoperator system with dissimilar kinematics and force feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, J.F.; Kress, R.L.; Babcock, S.M.
1990-01-01
The purpose of this paper is to develop a controller for dissimilar kinematic teleoperator systems, which include a force/torque sensor mounted on the slave. Due to improved modern microprocessor computing capability and the trend toward redundant slaves, the next generation of teleoperator systems will likely incorporate dissimilar kinematics in their design; consequently, a need exists for a workable control scheme for these systems. The control scheme presented in this paper incorporates the work and ideas of numerous researchers over the past 40 years. The master controller and the orientation representation using Euler parameters for the both the master and slavemore » will be the main focus of this paper. The implementation of the master controller on a 6-degrees-of-freedom (DOF) master is also discussed. Only a brief summary of the overall strategy will be presented. 13 refs., 1 fig.« less
Kinematics of velocity and vorticity correlations in turbulent flow
NASA Technical Reports Server (NTRS)
Bernard, P. S.
1983-01-01
The kinematic problem of calculating second-order velocity moments from given values of the vorticity covariance is examined. Integral representation formulas for second-order velocity moments in terms of the two-point vorticity correlation tensor are derived. The special relationships existing between velocity moments in isotropic turbulence are expressed in terms of the integral formulas yielding several kinematic constraints on the two-point vorticity correlation tensor in isotropic turbulence. Numerical evaluation of these constraints suggests that a Gaussian curve may be the only form of the longitudinal velocity correlation coefficient which is consistent with the requirement of isotropy. It is shown that if this is the case, then a family of exact solutions to the decay of isotropic turbulence may be obtained which contains Batchelor's final period solution as a special case. In addition, the computed results suggest a method of approximating the integral representation formulas in general turbulent shear flows.
Hastings, Mary K; Woodburn, James; Mueller, Michael J; Strube, Michael J; Johnson, Jeffrey E; Beckert, Krista S; Stein, Michelle L; Sinacore, David R
2014-01-01
Diabetic foot deformity onset and progression maybe associated with abnormal foot and ankle motion. The modified Oxford multi-segmental foot model allows kinematic assessment of inter-segmental foot motion. However, there are insufficient anatomical landmarks to accurately representation the alignment of the hindfoot and forefoot segments during model construction. This is most notable for the sagittal plane which is referenced parallel to the floor, allowing comparison of inter-segmental excursion but not capturing important sagittal hind-to-forefoot deformity associated with diabetic foot disease and can potentially underestimate true kinematic differences. The purpose of the study was to compare walking kinematics using local coordinate systems derived from the modified Oxford model and the radiographic directed model which incorporated individual calcaneal and 1st metatarsal declination pitch angles for the hindfoot and forefoot. We studied twelve participants in each of the following groups: (1) diabetes mellitus, peripheral neuropathy and medial column foot deformity (DMPN+), (2) DMPN without medial column deformity (DMPN-) and (3) age- and weight-match controls. The modified Oxford model coordinate system did not identify differences between groups in the initial, peak, final, or excursion hindfoot relative to shank or forefoot relative to hindfoot dorsiflexion/plantarflexion during walking. The radiographic coordinate system identified the DMPN+ group to have an initial, peak and final position of the forefoot relative to hindfoot that was more dorsiflexed (lower arch phenotype) than the DMPN- group (p<.05). Use of radiographic alignment in kinematic modeling of those with foot deformity reveals segmental motion occurring upon alignment indicative of a lower arch. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation
NASA Astrophysics Data System (ADS)
Mossahebi, Sina
Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy, diastatic stiffness, and relaxation and stiffness components of E-wave deceleration time.
Fully decentralized estimation and control for a modular wheeled mobile robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutambara, A.G.O.; Durrant-Whyte, H.F.
2000-06-01
In this paper, the problem of fully decentralized data fusion and control for a modular wheeled mobile robot (WMR) is addressed. This is a vehicle system with nonlinear kinematics, distributed multiple sensors, and nonlinear sensor models. The problem is solved by applying fully decentralized estimation and control algorithms based on the extended information filter. This is achieved by deriving a modular, decentralized kinematic model by using plane motion kinematics to obtain the forward and inverse kinematics for a generalized simple wheeled vehicle. This model is then used in the decentralized estimation and control algorithms. WMR estimation and control is thusmore » obtained locally using reduced order models with reduced communication of information between nodes is carried out after every measurement (full rate communication), the estimates and control signals obtained at each node are equivalent to those obtained by a corresponding centralized system. Transputer architecture is used as the basis for hardware and software design as it supports the extensive communication and concurrency requirements that characterize modular and decentralized systems. The advantages of a modular WMR vehicle include scalability, application flexibility, low prototyping costs, and high reliability.« less
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
New Kinematical Constraints on Cosmic Acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapetti, David; Allen, Steve W.; Amin, Mustafa A.
2007-05-25
We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for amore » late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.« less
Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C
2011-01-01
This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE
Refining plate reconstructions of the North Atlantic and Ellesmerian domains
NASA Astrophysics Data System (ADS)
Shephard, Grace E.; Abdelmalak, Mansour M.; Buiter, Susanne; Piepjohn, Karsten; Jones, Morgan; Torsvik, Trond; Faleide, Jan Inge; Gaina, Carmen
2017-04-01
Located at the intersection of major tectonic plates, the North Atlantic and western Arctic domains have experienced both widespread and localized deformation since the Paleozoic. In conventional tectonic reconstructions, the plates of Greenland, Eurasia and North America are assumed to be rigid. However, prior to the onset of seafloor spreading, rifting lithosphere experiences significant thinning that is usually not accounted for. This leads to significant (in excess of 300 km in places) over- and under-laps between conjugate continent-ocean boundaries, an incomplete history of basin evolution, and loose correlations between climatic, volcanic, oceanographic and, geologic events. Furthermore, a handful of alternative regional reconstructions now exist, which predict different timings, rates and locations of relative motion and associated deformation. Assumptions of reference crustal thicknesses and the nature of lower crustal bodies, as well as the location of basin hinge lines have to-date not yet been incorporated into a consistent regional kinematic model. Notably, the alternative models predict varying episodes of compression or quiescence, not just orthogonal or oblique rifting. Here, we present new temporal and spatial-dependent results related to (1) the dominant rifting episodes across the North Atlantic (Carboniferous, Late Permian, Late Jurassic-Early Cenozoic and Late Cretaceous-Paleogene), and (2) restoration of compression and strike-slip motion between northern Greenland, Ellesmere Island (North America) and Spitsbergen (Eurasia) related to the Eurekan Orogeny. We achieve this by integrating a series of conjugate seismic profiles, calculated stretching factors, dated volcanic events, structural mapping and mass-balanced restorations into a global plate motion model via GPlates software. We also test alternative models of rift velocities (as kinematic boundary conditions) with 2-D lithosphere and mantle numerical models, and explore the importance of rheology and initial model setup.
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices
Best, Matthew D.
2017-01-01
Classically, it has been hypothesized that reach-to-grasp movements arise from two discrete parietofrontal cortical networks. As part of these networks, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. Recent studies have shown that such a strict delineation of function along anatomical boundaries is unlikely, partly because reaching to different locations can alter distal hand kinematics and grasping different objects can affect kinematics of the proximal arm. Here, we used chronically implanted multielectrode arrays to record unit-spiking activity in both PMd and PMv simultaneously while rhesus macaques engaged in a reach-to-grasp task. Generalized linear models were used to predict the spiking activity of cells in both areas as a function of different kinematic parameters, as well as spike history. To account for the influence of reaching on hand kinematics and vice versa, we applied demixed principal components analysis to define kinematics synergies that maximized variance across either different object locations or grip types. We found that single cells in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that this classical division of reach and grasp in PMd and PMv, respectively, does not accurately reflect the encoding preferences of cells in those areas. SIGNIFICANCE STATEMENT For reach-to-grasp movements, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. We recorded unit-spiking activity in PMd and PMv simultaneously while macaques performed a reach-to-grasp task. We modeled the spiking activity of neurons as a function of kinematic parameters and spike history. We applied demixed principal components analysis to define kinematics synergies. We found that single units in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that the division of reach and grasp in PMd and PMv, respectively, cannot be made based on their encoding properties. PMID:28077725
Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups
NASA Astrophysics Data System (ADS)
Topaz, Chad
2004-03-01
We construct a continuum model for the motion of biological organisms experiencing social interactions and study its pattern-forming behavior. The model takes the form of a conservation law in two spatial dimensions. Social interactions are modeled in the velocity term, which is nonlocal in the population density. The dynamics of the model may be uniquely decomposed into incompressible motion and potential motion. For the purely incompressible case, the model resembles that for fluid dynamical vortex patches. There exist solutions that have constant population density and compact support for all time. Numerical simulations produce rotating structures with circular cores and spiral arms, reminiscent of naturally observed swarms such as ant mills. For the purely potential case, the model resembles a nonlocal (forwards or backwards) porous media equation, describing aggregation or dispersion of the population. For the aggregative case, the population clumps into regions of high and low density with a predictable characteristic length scale that is confirmed by numerical simulations.
Cartilage loss patterns within femorotibial contact regions during deep knee bend.
Michael Johnson, J; Mahfouz, Mohamed R
2016-06-14
Osteoarthritis (OA) can alter knee kinematics and stresses. The relationship between cartilage loss in OA and kinematics is unclear, with existing work focusing on static wear and morphology. In this work, femorotibial cartilage maps were coupled with kinematics to investigate the relationship between kinematics and cartilage loss, allowing for more precise treatment and intervention. Cartilage thickness maps were created from healthy and OA subgroups (varus, valgus, and neutral) and mapped to a statistical bone atlas. Video fluoroscopy determined contact regions from 0° to 120° flexion. Varus and valgus subgroups displayed different wear patterns across the range of flexion, with varus knees showing more loss in early flexion and valgus in deeper flexion. For the femur, varus knees had more wear in the medial compartment than neutral or valgus and most wear at both 0° and 20° flexion. In the lateral femoral compartment, the valgus subgroup showed significantly more wear from 20° to 60° flexion as compared to other angles, though varus knees displayed highest magnitude of wear. For the tibia, most medial wear occurred at 0-40° flexion and most lateral occurred after 60° flexion. Knowing more about cartilage changes in OA knees provides insight as to expected wear or stresses on implanted components after arthroplasty. Combining cartilage loss patterns with kinematics allows for pre-surgical intervention and treatments tailored to the patient׳s alignment and kinematics. Reported wear patterns may also serve as a gauge for post-operative loading to be considered when placing implant components. Copyright © 2016. Published by Elsevier Ltd.
High effective inverse dynamics modelling for dual-arm robot
NASA Astrophysics Data System (ADS)
Shen, Haoyu; Liu, Yanli; Wu, Hongtao
2018-05-01
To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.
Nakamura, Shinichiro; Tanaka, Yoshihisa; Kuriyama, Shinichi; Nishitani, Kohei; Ito, Hiromu; Furu, Moritoshi; Matsuda, Shuichi
2017-06-01
Anterior knee pain has been reported as a major postoperative complication after total knee arthroplasty, which may lead to patient dissatisfaction. Rotational alignment and the medial-lateral position correlate with patellar maltracking, which can cause knee pain postoperatively. However, the superior-inferior position of the patellar component has not been investigated. The purpose of the current study was to investigate the effects of the patellar superior-inferior position on patellofemoral kinematics and kinetics. Superior, central, and inferior models with a dome patellar component were constructed. In the superior and inferior models, the position of the patellar component translated superiorly and inferiorly, respectively, by 3mm, relative to the center model. Kinematics of the patellar component, quadriceps force, and patellofemoral contact force were calculated using a computer simulation during a squatting activity in a weight-bearing deep knee bend. In the inferior model, the flexion angle, relative to the tibial component, was the greatest among all models. The inferior model showed an 18.0%, 36.5%, and 22.7% increase in the maximum quadriceps force, the maximum medial patellofemoral force, and the maximum lateral patellofemoral force, respectively, compared with the superior model. Superior-inferior positions affected patellofemoral kinematic and kinetics. Surgeons should avoid the inferior position of the patellar component, because the inferior positioned model showed greater quadriceps and patellofemoral force, resulting in a potential risk for anterior knee pain and component loosening. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Dutta, Saikat; Choi, Seung-Bok
2016-03-01
It is well known that Macpherson strut suspension systems are widely used in light and medium weight vehicles. The performance of these suspension systems can be enriched by incorporating magneto-rheological (MR) dampers and an appropriate dynamic model is required in order to find out the ride comfort and other performances properly in the sense of practical environment conditions. Therefore, in this work the kinematic and dynamic modeling of Macpherson strut suspension system with MR damper is presented and its responses are evaluated. The governing equations are formulated using the kinematic properties of the suspension system and adopting Lagrange’s equation. In the formulation of the model, both the rotation of the wheel assembly and the lateral stiffness of the tire are considered to represent the nonlinear characteristic of Macpherson type suspension system. The formulated mathematical model is then compared with equivalent conventional quarter car suspension model and the different dynamic responses such as the displacement of the sprung mass are compared to emphasize the effectiveness of the proposed model. Additionally, in this work the important kinematic properties of suspension system such as camber angle, king-pin angle and track width alteration, which cannot be obtained from conventional quarter car suspension model, are evaluated in time and frequency domains. Finally, vibration control responses of the proposed suspension system are presented in time and frequency domains which are achieved from the semi-active sky-hook controller.
2017-09-01
target is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...49 A. TRAVELING TIME COMPUTATION ............................................. 49 B. CONVERSION TO
Development of automation and robotics for space via computer graphic simulation methods
NASA Technical Reports Server (NTRS)
Fernandez, Ken
1988-01-01
A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.
Initial proposition of kinematics model for selected karate actions analysis
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Koptyra, Katarzyna; Ogiela, Marek R.
2017-03-01
The motivation for this paper is to initially propose and evaluate two new kinematics models that were developed to describe motion capture (MoCap) data of karate techniques. We decided to develop this novel proposition to create the model that is capable to handle actions description both from multimedia and professional MoCap hardware. For the evaluation purpose we have used 25-joints data with karate techniques recordings acquired with Kinect version 2. It is consisted of MoCap recordings of two professional sport (black belt) instructors and masters of Oyama Karate. We have selected following actions for initial analysis: left-handed furi-uchi punch, right leg hiza-geri kick, right leg yoko-geri kick and left-handed jodan-uke block. Basing on evaluation we made we can conclude that both proposed kinematics models seems to be convenient method for karate actions description. From two proposed variables models it seems that global might be more useful for further usage. We think that because in case of considered punches variables seems to be less correlated and they might also be easier to interpret because of single reference coordinate system. Also principal components analysis proved to be reliable way to examine the quality of kinematics models and with the plot of the variable in principal components space we can nicely present the dependences between variables.
Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements
NASA Astrophysics Data System (ADS)
Ulrich, Thomas
2013-08-01
Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.
Kinematic analysis of crank -cam mechanism of process equipment
NASA Astrophysics Data System (ADS)
Podgornyj, Yu I.; Skeeba, V. Yu; Martynova, T. G.; Pechorkina, N. S.; Skeeba, P. Yu
2018-03-01
This article discusses how to define the kinematic parameters of a crank-cam mechanism. Using the mechanism design, the authors have developed a calculation model and a calculation algorithm that allowed the definition of kinematic parameters of the mechanism, including crank displacements, angular velocities and acceleration, as well as driven link (rocker arm) angular speeds and acceleration. All calculations were performed using the Mathcad mathematical package. The results of the calculations are reported as numerical values.
Hydrodynamic Performance of the Flippers of Large-bodied Cetaceans in Relation to Locomotor Ecology
2014-04-01
flow velocity (m/s) m Kinematic viscosity (m2/s) Table 2. Morphometrics of cetaceans and flippers. Fin whale Balaenoptera physalus Killer whale Orcinus...chord (m), and m is the kinematic viscosity (m2/s). Fluid kinematic similarity was obtained by ensuring both geometric and dynamic similarity between...the model and the flipper. Equation (2) was used to determine appropriate water tunnel testing speeds given the geometric parameters and water
The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model
van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth
2017-01-01
Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109
The inaccuracy of surface-measured model-derived tibiofemoral kinematics
Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong
2014-01-01
This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all 6 degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0 ± 1.2°, 6.4 ± 4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, and 7.1± 3.2mm, 8.8± 3.7mm, and 1.9± 1.2mm for anterior-posterior, proximal-distal, and medial-lateral translations. The differences were more pronounced in the relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotation, and anterior-posterior translation. PMID:22964018
Samlan, Robin A.; Story, Brad H.
2011-01-01
Purpose To relate vocal fold structure and kinematics to two acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method A computational, kinematic model of the medial surfaces of the vocal folds was used to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow and acoustic waveforms and related to the underlying vocal fold kinematics. Results CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1–1.5 mm and decreased with separation > 1.5 mm. Conclusions CPP is generally a function of vocal process separation. H1*-H2* will increase or decrease with vocal process separation based on vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures. PMID:21498582
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
Kinematic parameters of second-mode internal waves in the South China Sea
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Talipova, Tatiana; Kurkin, Andrey; Naumov, Alexander; Rybin, Artem
2017-04-01
Kinematic parameters of second-mode internal waves (in the framework of weakly nonlinear model of the Gardner equation) are calculated for the region of the South China Sea on a base of GDEM climatology. The prognostic parameters of the model include phase speed of long linear waves, coefficients of dispersion, quadratic and cubic nonlinearity, location (in vertical) of minimum, zero and maximum of the second vertical baroclinic mode and the ratio of its maximal and minimal values. All the parameters are presented in the form of geographical maps for winter (January) and summer (July) seasons. Frequence (in the sense of occurrence) histograms and scatter plots with depth are also given for all the parameters. Special attention is paid to the conditions of normalizing for internal waves of the second mode, as it possesses two extremes. Here some freedom exists, but for correct further modeling of internal waves within the Gardner model one has to fix and keep the same normalization (at maximum or at minimum) for whole a basin. Constructed arrays of prognostic parameters of second-mode internal waves are necessary for the estimations of shape and width (at fixed amplitude) of internal solitary and breather-like waves, limiting amplitudes of internal solitary waves of different families, for assessment of near-bed and near-surface flows induced by such waves, and for evaluation of transport distance for dissolved and suspended matter. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-05-00049.
The mechanics of fault-bend folding and tear-fault systems in the Niger Delta
NASA Astrophysics Data System (ADS)
Benesh, Nathan Philip
This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new map-based structural restoration techniques, we find that the tear faults have distinct displacement patterns that distinguish them from conventional strike-slip faults and reflect their roles in accommodating displacement gradients within the fold-and-thrust belt.
NASA Astrophysics Data System (ADS)
Lima, José; Pereira, Ana I.; Costa, Paulo; Pinto, Andry; Costa, Pedro
2017-07-01
This paper describes an optimization procedure for a robot with 12 degrees of freedom avoiding the inverse kinematics problem, which is a hard task for this type of robot manipulator. This robot can be used to pick and place tasks in complex designs. Combining an accurate and fast direct kinematics model with optimization strategies, it is possible to achieve the joints angles for a desired end-effector position and orientation. The optimization methods stretched simulated annealing algorithm and genetic algorithm were used. The solutions found were validated using data originated by a real and by a simulated robot formed by 12 servomotors with a gripper.
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim
Modenese, L.; Lloyd, D.G.
2017-01-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time. PMID:27723992
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G
2017-03-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.
Kinematics of the symbiotic system R Aqr
NASA Astrophysics Data System (ADS)
Navarro, S.; Corral, L. J.; Steffen, W.
2014-04-01
We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.
Hayes, Spencer J; Andrew, Matthew; Elliott, Digby; Gowen, Emma; Bennett, Simon J
2016-02-01
We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics.
Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A
2007-12-01
Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.
Kinematic analysis of the golf swing in men and women experienced golfers.
Egret, C I; Nicolle, B; Dujardin, F H; Weber, J; Chollet, D
2006-06-01
Golf has become an increasingly popular sport, which is enjoyed by both men and women. This paper addresses the question what differences may exist between men and women golfers. The purpose of this study is to analyze the kinematic pattern of the golf swing in both men and women experienced golfers. Seven male and five female golfers participated in the study. The measurements of kinematic data during swing were obtained with the optoelectronic system VICON (Oxford's Metric, Oxford, UK) with five cameras operating at 50 frames per second. Clubhead speed was measured using a radar system (Bell-Tronics, Ltd, Covington, USA). A Mann-Whitney test (p = 0.05) showed that the women seem to produce a wide swing with larger hip and shoulder joint rotation angles at the top of the backswing. Men flexed their left knee more during the backswing, this may promote a greater weight transfer to the right side. Nevertheless, these two kinematic patterns showed no significant differences in the clubhead speed. Men probably used their increased knee flexion to compensate for their muscular and articular suppleness which is less than that of the women. The results of this study show that there is a specific swing for women.
Constrained Kinematics of ICMEs from Multi-point in Situ and Heliospheric Imaging Data
NASA Astrophysics Data System (ADS)
Rollett, T.; Temmer, M.; Moestl, C.; Veronig, A. M.; Lugaz, N.; Vrsnak, B.; Farrugia, C. J.; Amerstorfer, U.
2013-12-01
The constrained harmonic mean (CHM) method is used to calculate the direction of motion of ICMEs and their kinematical profiles. Combining single spacecraft white-light observations from STEREO/HI with supplementary in situ data, it is possible to derive the propagation speed varying with heliocentric distance. This is a big advantage against other single-viewpoint methods, i.e. fitting methods, which assume a constant propagation speed. We show two different applications for the CHM method: first, an analysis of the interaction between the solar wind and ICMEs, and second, the interaction between two ICMEs. For analyzing interaction processes it is crucial to use a method that has the ability to investigate the corresponding effects on ICME kinematics. Additionally, we show the analysis of an outstanding fast ICME event of March 2012, which was detected in situ by Venus Express, Messenger and Wind and also observed by STEREO-A/HI. Due to these multiple in situ measurements it was possible to constrain the ICME kinematics by three different boundary values. These studies are fundamental in order to deepen the understanding of ICME evolution and to enhance existing forecasting methods. This work has received funding from the European Commission FP7 Project COMESEP (263252).
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)
Dülger, L. Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129
Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.
A CFD-informed quasi-steady model of flapping wing aerodynamics.
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J
2015-11-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891
Potvin, Brigitte M; Shourijeh, Mohammad S; Smale, Kenneth B; Benoit, Daniel L
2017-09-06
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p<0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilmore, Michelle E.; McQuarrie, Nadine; Eizenhöfer, Paul R.; Ehlers, Todd A.
2018-05-01
In this study, reconstructions of a balanced geologic cross section in the Himalayan fold-thrust belt of eastern Bhutan are used in flexural-kinematic and thermokinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, topography, and radiogenic heat production. The kinematics for each scenario are created by sequentially deforming the cross section with ˜ 10 km deformation steps while applying flexural loading and erosional unloading at each step to develop a high-resolution evolution of deformation, erosion, and burial over time. By assigning ages to each increment of displacement, we create a suite of modeled scenarios that are input into a 2-D thermokinematic model to predict cooling ages. Comparison of model-predicted cooling ages to published thermochronometer data reveals that cooling ages are most sensitive to (1) the location and size of fault ramps, (2) the variable shortening rates between 68 and 6.4 mm yr-1, and (3) the timing and magnitude of out-of-sequence faulting. The predicted ages are less sensitive to (4) radiogenic heat production and (5) estimates of topographic evolution. We used the observed misfit of predicted to measured cooling ages to revise the cross section geometry and separate one large ramp previously proposed for the modern décollement into two smaller ramps. The revised geometry results in an improved fit to observed ages, particularly young AFT ages (2-6 Ma) located north of the Main Central Thrust. This study presents a successful approach for using thermochronometer data to test the viability of a proposed cross section geometry and kinematics and describes a viable approach to estimating the first-order topographic evolution of a compressional orogen.
Development of advanced blade pitching kinematics for cycloturbines and cyclorotors
NASA Astrophysics Data System (ADS)
Adams, Zachary Howard
Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required to achieve optimum performance. A novel inverse method was developed implementing a new semi-empirical curvilinear flow blade aerodynamic coefficient model to predict optimum cycloturbine blade pitch waveforms from the ideal fluid deceleration. These improved blade pitch waveforms were evaluated on a 1.37m diameter by 1.37m span cycloturbine to definitively characterize their improvement over existing blade pitch motions and demonstrate the practicality of a variable blade pitch system. The Fluxline Optimal pitching kinematics outperformed sinusoidal and fixed pitching kinematics. The turbine achieved a mean gross aerodynamic power coefficient of 0.44 (95% confidence interval: [0.388,0.490]) and 0.52 (95% confidence interval: [0.426,0.614]) at tip speed ratios (TSRs) of 1.5 and 2.25 respectively which exceeds all other low TSR vertical axis wind turbines. Two-dimensional incompressible Reynolds-averaged Navier-Stokes computational fluid dynamic simulations were used to characterize higher order effects of the blade interaction with the fluid. These simulations suggest Fluxline Optimal pitch kinematics achieve high power coefficients by evenly extracting energy from the flow without blade stall or detached turbine wakes. Fluxline Theory was adapted to inform the design of high efficiency cyclorotors by incorporating the concept of rotor angle of attack as well as a power and drag loss model for blade support structure. A blade element version of this theory predicts rotor performance. For hovering, a simplified variation of the theory instructs that cyclorotors will achieve the greatest power loading at low disk loadings with high solidity blades pitched to maximum lift coefficient. Increasing lift coefficients in the upstream portion of the rotor disproportionately increases performance compared to magnifying lift in the downstream portion. This suggests airfoil sections that counter curvilinear flow effects could improve hovering efficiency. Additionally, the simplified hovering theory explains the cyclorotor side force which was observed experimentally, but never adequately explained. In contrast, a separate simplified version of the theory for high speed forward flight points to better rotor performance with a low solidity, high disk loading rotor operated at high advance ratios. High rotor aspect ratios will improve performance in both hover and forward flight. A new mechanical blade pitch mechanism was designed to actuate the high efficiency blade pitch motions predicted by Fluxline Theory for both cyclorotors and cycloturbines. The mechanism optimizes blade pitch at all operating conditions via different cross sections of a three dimensionally contoured cam. Varying the position of the cam accounts for changing wind direction and velocity on a cycloturbine, or for pilot-controlled thrust vectoring, forward speed, and aircraft angle of attack as a cyclorotor. A simplified variation of the mechanism, which implemented fully aerodynamically-shrouded blade pitch links, performed flawlessly on the cycloturbine experiment.
3D+T motion analysis with nanosensors
NASA Astrophysics Data System (ADS)
Leduc, Jean-Pierre
2017-09-01
This paper addresses the problem of motion analysis performed in a signal sampled on an irregular grid spread in 3-dimensional space and time (3D+T). Nanosensors can be randomly scattered in the field to form a "sensor network". Once released, each nanosensor transmits at its own fixed pace information which corresponds to some physical variable measured in the field. Each nanosensor is supposed to have a limited lifetime given by a Poisson-exponential distribution after release. The motion analysis is supported by a model based on a Lie group called the Galilei group that refers to the actual mechanics that takes place on some given geometry. The Galilei group has representations in the Hilbert space of the captured signals. Those representations have the properties to be unitary, irreducible and square-integrable and to enable the existence of admissible continuous wavelets fit for motion analysis. The motion analysis can be considered as a so-called "inverse problem" where the physical model is inferred to estimate the kinematical parameters of interest. The estimation of the kinematical parameters is performed by a gradient algorithm. The gradient algorithm extends in the trajectory determination. Trajectory computation is related to a Lagrangian-Hamiltonian formulation and fits into a neuro-dynamic programming approach that can be implemented in the form of a Q-learning algorithm. Applications relevant for this problem can be found in medical imaging, Earth science, military, and neurophysiology.
INTERNAL STELLAR KINEMATICS OF M32 FROM THE SPLASH SURVEY: DARK HALO CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howley, K. M.; Guhathakurta, P.; Van der Marel, R.
2013-03-01
As part of the SPLASH survey of the Andromeda (M31) system, we have obtained Keck/DEIMOS spectra of the compact elliptical (cE) satellite M32. This is the first resolved-star kinematical study of any cE galaxy. In contrast to most previous kinematical studies that extended out to r {approx}< 30'' {approx} 1 r {sup eff} {sub I} {approx} 100 pc, we measure the rotation curve and velocity dispersion profile out to r {approx} 250'' and higher order Gauss-Hermite moments out to r {approx} 70''. We achieve this by combining integrated-light spectroscopy at small radii (where crowding/blending are severe) with resolved stellar spectroscopymore » at larger radii, using spatial and kinematical information to account statistically for M31 contamination. The rotation curve and velocity dispersion profile extend well beyond the radius (r {approx} 150'') where the isophotes are distorted. Unlike NGC 205, another close dwarf companion of M31, M32's kinematics appear regular and symmetric and do not show obvious sharp gradients across the region of isophotal elongation and twists. We interpret M31's kinematics using three-integral axisymmetric dynamical equilibrium models constructed using Schwarzschild's orbit superposition technique. Models with a constant mass-to-light ratio can fit the data remarkably well. However, since such a model requires an increasing tangential anisotropy with radius, invoking the presence of an extended dark halo may be more plausible. Such an extended dark halo is definitely required to bind a half-dozen fast-moving stars observed at the largest radii, but these stars may not be an equilibrium component of M32.« less
The Envelope of Physiological Motion of the First Carpometacarpal Joint
Crisco, Joseph J.; Patel, Tarpit; Halilaj, Eni; Moore, Douglas C.
2015-01-01
Much of the hand's functional capacity is due to the versatility of the motions at the thumb carpometacarpal (CMC) joint, which are presently incompletely defined. The aim of this study was to develop a mathematical model to completely describe the envelope of physiological motion of the thumb CMC joint and then to examine if there were differences in the kinematic envelope between women and men. In vivo kinematics of the first metacarpal with respect to the trapezium were computed from computed tomography (CT) volume images of 44 subjects (20M, 24F, 40.3 ± 17.7 yr) with no signs of CMC joint pathology. Kinematics of the first metacarpal were described with respect to the trapezium using helical axis of motion (HAM) variables and then modeled with discrete Fourier analysis. Each HAM variable was fit in a cyclic domain as a function of screw axis orientation in the trapezial articular plane; the RMSE of the fits was 14.5 deg, 1.4 mm, and 0.8 mm for the elevation, location, and translation, respectively. After normalizing for the larger bone size in men, no differences in the kinematic variables between sexes could be identified. Analysis of the kinematic data also revealed notable coupling of the primary rotations of the thumb with translation and internal and external rotations. This study advances our basic understanding of thumb CMC joint function and provides a complete description of the CMC joint for incorporation into future models of hand function. From a clinical perspective, our findings provide a basis for evaluating CMC pathology, especially the mechanically mediated aspects of osteoarthritis (OA), and should be used to inform artificial joint design, where accurate replication of kinematics is essential for long-term success. PMID:26201612
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, S.; Jansen, J.F.; Kress, R.L.
1992-08-01
A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capablemore » of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.« less
Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy
NASA Astrophysics Data System (ADS)
Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark
2018-02-01
Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.
Modeling human perception and estimation of kinematic responses during aircraft landing
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Silk, Anthony B.
1988-01-01
The thrust of this research is to determine estimation accuracy of aircraft responses based on observed cues. By developing the geometric relationships between the outside visual scene and the kinematics during landing, visual and kinesthetic cues available to the pilot were modeled. Both fovial and peripheral vision was examined. The objective was to first determine estimation accuracy in a variety of flight conditions, and second to ascertain which parameters are most important and lead to the best achievable accuracy in estimating the actual vehicle response. It was found that altitude estimation was very sensitive to the FOV. For this model the motion cue of perceived vertical acceleration was shown to be less important than the visual cues. The inclusion of runway geometry in the visual scene increased estimation accuracy in most cases. Finally, it was shown that for this model if the pilot has an incorrect internal model of the system kinematics the choice of observations thought to be 'optimal' may in fact be suboptimal.
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
NASA Astrophysics Data System (ADS)
Maiti, Raman
2016-06-01
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
NASA Astrophysics Data System (ADS)
Maiti, Raman
2018-06-01
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.
Disambiguating seesaw models using invariant mass variables at hadron colliders
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-01
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.
Note: Model-based identification method of a cable-driven wearable device for arm rehabilitation
NASA Astrophysics Data System (ADS)
Cui, Xiang; Chen, Weihai; Zhang, Jianbin; Wang, Jianhua
2015-09-01
Cable-driven exoskeletons have used active cables to actuate the system and are worn on subjects to provide motion assistance. However, this kind of wearable devices usually contains uncertain kinematic parameters. In this paper, a model-based identification method has been proposed for a cable-driven arm exoskeleton to estimate its uncertainties. The identification method is based on the linearized error model derived from the kinematics of the exoskeleton. Experiment has been conducted to demonstrate the feasibility of the proposed model-based method in practical application.
D2 Delta Robot Structural Design and Kinematics Analysis
NASA Astrophysics Data System (ADS)
Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai
2017-12-01
In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.
Inter-segment foot motion in girls using a three-dimensional multi-segment foot model.
Jang, Woo Young; Lee, Dong Yeon; Jung, Hae Woon; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho
2018-05-06
Several multi-segment foot models (MFMs) have been introduced for in vivo analyses of dynamic foot kinematics. However, the normal gait patterns of healthy children and adolescents remain uncharacterized. We sought to determine normal foot kinematics according to age in clinically normal female children and adolescents using a Foot 3D model. Fifty-eight girls (age 7-17 years) with normal function and without radiographic abnormalities were tested. Three representative strides from five separate trials were analyzed. Kinematic data of foot segment motion were tracked and evaluated using an MFM with a 15-marker set (Foot 3D model). As controls, 50 symptom-free female adults (20-35 years old) were analyzed. In the hindfoot kinematic analysis, plantar flexion motion in the pre-swing phase was significantly greater in girls aged 11 years or older than in girls aged <11 years, thereby resulting in a larger sagittal range of motion. Coronal plane hindfoot motion exhibited pronation, whereas transverse plane hindfoot motion exhibited increased internal rotation in girls aged <11 years. Hallux valgus angles increased significantly in girls aged 11 years or older. The foot progression angle showed mildly increased internal rotation in the loading response phase and the swing phase in girls aged <11 years old. The patterns of inter-segment foot motion in girls aged 11 years or older showed low-arch kinematic characteristics, whereas those in girls aged 11 years or older were more similar to the patterns in young adult women. Copyright © 2018 Elsevier B.V. All rights reserved.
The key kinematic determinants of undulatory underwater swimming at maximal velocity.
Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross
2016-01-01
The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.
NASA Astrophysics Data System (ADS)
Díaz-Azpiroz, M.; Barcos, L.; Balanyá, J. C.; Fernández, C.; Expósito, I.; Czeck, D. M.
2014-11-01
Oblique convergence and subsequent transpression kinematics can be considered as the general situation in most convergent and strike-slip tectonic boundaries. To better understand such settings, progressively more complex kinematic models have been proposed, which need to be tested against natural shear zones using standardized procedures that minimise subjectivism. In this work, a protocol to test a general triclinic transpression model is applied to the Torcal de Antequera massif (TAM), an essentially brittle shear zone. Our results, given as kinematic parameters of the transpressive flow (transpression obliquity, ϕ; extrusion obliquity, υ; and kinematic vorticity number, Wk), suggest that the bulk triclinic transpressive flow imposed on the TAM was partitioned into two different flow fields, following a general partitioning type. As such, one flow field produced narrow structural domains located at the limits of the TAM, where mainly dextral strike-slip simple-shear-dominated transpression took place (Outer domains, ODs). In contrast, the remaining part of the bulk flow produced pure-shear-dominated dextral triclinic transpression at the inner part of the TAM (Inner domain, ID). A graphical method relating internal (ϕ, Wk) to far-field (dip of the shear zone boundary, δ; angle of oblique convergence, α) transpression parameters is proposed to obtain the theoretical horizontal velocity vector (V→), which in the case of the TAM, ranges between 099 and 118. These results support the applicability of kinematic models of triclinic transpression to brittle-ductile shear zones and the potential utility of the proposed protocol.
Inverse kinematics problem in robotics using neural networks
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Lawrence, Charles
1992-01-01
In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.
Modeling neutrino-induced charged pion production on water at T2K kinematics
NASA Astrophysics Data System (ADS)
Nikolakopoulos, A.; González-Jiménez, R.; Niewczas, K.; Sobczyk, J.; Jachowicz, N.
2018-05-01
Pion production is a significant component of the signal in accelerator-based neutrino experiments. Over the last years, the MiniBooNE, T2K, and MINERvA collaborations have reported a substantial amount of data on (anti)neutrino-induced pion production on the nucleus. However, a comprehensive and consistent description of the whole data set is still missing. We aim at improving the current understanding of neutrino-induced pion production on the nucleus. To this end, the comparison of experimental data with theoretical predictions, preferably based on microscopic models, is essential to disentangle the different reaction mechanisms involved in the process. To describe single-pion production, we use a hybrid model that combines low- and a high-energy approaches. The low-energy model contains resonances and background terms. At high invariant masses, a high-energy model based on a Regge approach is employed. The model is implemented in the nucleus using the relativistic plane wave impulse approximation (RPWIA). We present a comparison of the hybrid-RPWIA and low-energy model with the recent neutrino-induced charged-current 1 π+ -production cross section on water reported by T2K. In order to judge the impact of final-state interactions (FSI), we confront our results with those of the nuwro Monte Carlo generator. The hybrid-RPWIA model and nuwro results compare favorably to the data, albeit that FSI are not included in the former. The need of a high-energy model at T2K kinematics is made clear. These results complement our previous work [Phys. Rev. D 97, 013004 (2018), 10.1103/PhysRevD.97.013004], in which we compared the models to the MINERvA and MiniBooNE 1 π+ data. The hybrid-RPWIA model tends to overpredict both the T2K and MINERvA data in kinematic regions where the largest suppression due to FSI is expected and agrees remarkably well with the data in other kinematic regions. On the contrary, the MiniBooNE data are underpredicted over the whole kinematic range.
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
NASA Astrophysics Data System (ADS)
Basak, Anup; Levitas, Valery I.
2018-04-01
A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.
Experimental identification and mathematical modeling of viscoplastic material behavior
NASA Astrophysics Data System (ADS)
Haupt, P.; Lion, A.
1995-03-01
Uniaxial torsion and biaxial torsion-tension experiments on thin-walled tubes were carried out to investigate the viscoplastic behavior of stainless steel XCrNi18.9. A series of monotonic tests under strain and stress control shows nonlinear rate dependence and suggests the existence of equilibrium states, which are asymptotically approached during relaxation and creep processes. Strain controlled cyclic experiments display various hardening and softening phenomena that depend on strain amplitude and mean strain. All experiments indicate that the equilibrium states within the material depend on the history of the input process, whereas the history-dependence of the relaxation and creep behavior appears less significant. From the experiments the design of a constitutive model of viscoplasticity is motivated: The basic assumption is a decomposition of the total stress into an equilibrium stress and a non-equilibrium overstress: At constant strain, the overstress relaxes to zero, where the relaxation time depends on the overstress in order to account for the nonlinear rate-dependence. The equilibrium stress is assumed to be a rate independent functional of the total strain history. Classical plasticity is utilized with a kinematic hardening rule of the Armstrong-Frederick type. In order to incorporate the amplitude-dependent hardening and softening behavior, a generalized arc length representation is applied [14]. The introduction of an additional kinematic hardening variable facilitates consideration of additional hardening effects resulting from the non-radiality of the input process. Apart from the common yield and loading criterion of classical plasticity, the proposed constitutive model does not contain any further distinction of different cases. The experimental data are sufficient to identify the material parameters of the constitutive model. The results of the identification procedure demonstrate the ability of the model to represent the observed phenomena with satisfactory approximation.
Coulomb Excitation of the 64Ni Nucleus and Application of Inverse Kinematics
NASA Astrophysics Data System (ADS)
Greaves, Beau; Muecher, Dennis; Ali, Fuad A.; Drake, Tom; Bildstein, Vinzenz; Berner, Christian; Gernhaeuser, Roman; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.
2017-09-01
In this contribution, we present new data on the semi-magic 64Ni nucleus, close to the N =40 harmonic oscillator shell gap. Recent studies suggest a complicated existence of shape coexistence in 68Ni, likely caused by type-II shell evolutions. The region studied here thus might define the ``shore'' of the region of more deformed nuclei in the Island of Inversion below 68Ni. At the Maier-Leibnitz-Laboratory (MLL) in Munich, a beam of 64Ni was excited using Coulomb excitation. The high-granularity MINIBALL HPGe array and a segmented silicon strip detector were used to identify gamma decays in 64Ni. Doppler-shifted attenuation method (DSAM) analysis was applied to the experimental data acquired to resolve the low-lying excited states and acquire a lifetime measurement based on Geant4 simulations of the first excited 2 + state, clarifying the previously conflicting results. Furthermore, we show DSAM data following transfer reactions in inverse kinematics. This new method has the potential to provide insight into tests of ab-initio shell model calculations in the sd-pf shell and for the study of nuclear reaction rates. Supported under NSERC SAPIN-2016-00030.
The kinematic dipole in galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Maartens, Roy; Clarkson, Chris; Chen, Song
2018-01-01
In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.
Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro
2014-01-01
Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.
DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu
We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less
NASA Astrophysics Data System (ADS)
Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-03-01
Single-beam, single-target, and double spin asymmetries for hard exclusive electroproduction of a photon on the proton e →p →→e'p'γ are presented. The data were taken at Jefferson Lab using the CEBAF large acceptance spectrometer and a longitudinally polarized
A model for collisionally induced disturbed structure in disk galaxies
NASA Technical Reports Server (NTRS)
Gerber, Richard A.; Lamb, Susan A.
1994-01-01
We derive analytic expressions, using the impulse and epicycle approximations, which describe the kinematic response of a disk galaxy following a collision with a second spherical galaxy which collides perpendicular to, but not through the center of, the disk. This model can reporduce the morphologies found in n-body experiments in which distant encounters produce two-armed spiral patterns and more central collisions produce rings in the disk galaxy, thereby confirming that simple kinematics can be used to describe the early evolution of these systems. Application of this procedure provides a convenient method with which to conduct parameter studies of these collisions. Comparison of the kinematic description with a fully self-gravitating, three-dimensional n-body/gasdynamics computer model shows that the disk galaxy's response is initially well represented by the kinematic model but that the self-gravity of the disk becomes important at longer times after the collision. The flows of gas and stars decouple from one another where stellar orbits cross, leaving regions of elevated gas density behind as the stars move freely past each other. If star formation rates are enhanced in these regions of high gas density, active star formation could be taking place where there is no corresponding dense feature in the old stellar population.
Saliency in VR: How Do People Explore Virtual Environments?
Sitzmann, Vincent; Serrano, Ana; Pavel, Amy; Agrawala, Maneesh; Gutierrez, Diego; Masia, Belen; Wetzstein, Gordon
2018-04-01
Understanding how people explore immersive virtual environments is crucial for many applications, such as designing virtual reality (VR) content, developing new compression algorithms, or learning computational models of saliency or visual attention. Whereas a body of recent work has focused on modeling saliency in desktop viewing conditions, VR is very different from these conditions in that viewing behavior is governed by stereoscopic vision and by the complex interaction of head orientation, gaze, and other kinematic constraints. To further our understanding of viewing behavior and saliency in VR, we capture and analyze gaze and head orientation data of 169 users exploring stereoscopic, static omni-directional panoramas, for a total of 1980 head and gaze trajectories for three different viewing conditions. We provide a thorough analysis of our data, which leads to several important insights, such as the existence of a particular fixation bias, which we then use to adapt existing saliency predictors to immersive VR conditions. In addition, we explore other applications of our data and analysis, including automatic alignment of VR video cuts, panorama thumbnails, panorama video synopsis, and saliency-basedcompression.
Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.
2016-01-01
An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.
NASA Astrophysics Data System (ADS)
Cordero, M. J.; Hénault-Brunet, V.; Pilachowski, C. A.; Balbinot, E.; Johnson, C. I.; Varri, A. L.
2017-03-01
We use radial velocities from spectra of giants obtained with the WIYN telescope, coupled with existing chemical abundance measurements of Na and O for the same stars, to probe the presence of kinematic differences among the multiple populations of the globular cluster (GC) M13. To characterize the kinematics of various chemical subsamples, we introduce a method using Bayesian inference along with a Markov chain Monte Carlo algorithm to fit a six-parameter kinematic model (including rotation) to these subsamples. We find that the so-called extreme population (Na-enhanced and extremely O-depleted) exhibits faster rotation around the centre of the cluster than the other cluster stars, in particular, when compared with the dominant `intermediate' population (moderately Na-enhanced and O-depleted). The most likely difference between the rotational amplitude of this extreme population and that of the intermediate population is found to be ˜4 km s-1 , with a 98.4 per cent probability that the rotational amplitude of the extreme population is larger than that of the intermediate population. We argue that the observed difference in rotational amplitudes, obtained when splitting subsamples according to their chemistry, is not a product of the long-term dynamical evolution of the cluster, but more likely a surviving feature imprinted early in the formation history of this GC and its multiple populations. We also find an agreement (within uncertainties) in the inferred position angle of the rotation axis of the different subpopulations considered. We discuss the constraints that these results may place on various formation scenarios.
Why do high-redshift galaxies show diverse gas-phase metallicity gradients?
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan
2017-04-01
Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.
McGovern, Andrew; Dude, Christopher; Munkley, Daniel; Martin, Thomas; Wallace, David; Feinn, Richard; Dione, Donald; Garbalosa, Juan C
2015-12-01
Despite the recent emphasis on injury prevention, anterior cruciate ligament (ACL) injury rates remain high. This study aimed to ascertain the effects of prolonged activity on lower limb kinematics during a self-selected cutting maneuver. Angular kinematics were recorded during an agility test performed until the completion time was greater than the mean plus one SD of baseline trials. Cut type was identified and the hip and knee angles at 33 ms post heel strike were determined. A linear mixed effects model assessed the effects of cut type, gender, and activity status on the hip and knee angles. Males performed sidestep cuts more frequently than females. Females increased the incidence of sidestep cuts after prolonged activity. At the hip, a gender-cut type interaction existed for the transverse (p=0.001) and sagittal (p=0.11) planes. Females showed more internal rotation during sidestep and more external rotation and less flexion during crossover cuts. For the frontal plane, a gender-activity status interaction (p = 0.032) was due to no change within females but greater hip adduction during prolonged activity within males. With prolonged activity, both genders displayed less hip (p=0.29) and knee (p=0.009) flexion and more knee (p=0.001) adduction. Females displayed less hip and knee flexion than men (p=0.001). Sidestep may be more risky than crossover cuts. Both genders place themselves in at-risk postures with prolonged activity due to less hip and knee flexion. Copyright © 2015 Elsevier B.V. All rights reserved.
A Morpho-kinematic and Spectroscopic study of Bipolar Planetary Nebulae
NASA Astrophysics Data System (ADS)
Clyne, Niall
2015-09-01
In this thesis, studies of the kinematic properties for a sample of Galactic bipolar planetary nebulae, based on optical and infrared observations, were performed using a morpho-kinematic code, optical and NIR diagnostic diagrams, and techniques using data analyses. The mechanisms that form complex bipolar planetary nebulae remain unclear, and their shapes can be generated either as a planetary or symbiotic nebula. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. The physical properties, structure, and dynamics of the bipolar nebulae, MyCn 18, M 2-9, Mz 3, Hen 2-104, and Abell 14, are each investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. For MyCn 18, VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical echelle spectra are used to investigate the inner and outer regions of the nebula. The morpho-kinematic modelling tool shape was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to help determine the kinematical age of the nebula and its main components. A spectroscopic study of MyCn 18's central region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Brackett gamma emission are detected in the central regions. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A final reconstructed 3-D model of MyCn 18 was generated, providing kinematical information on the expansion velocity of its nebular components by means of position-velocity arrays (or observed long-slit spectra). A kinematical age of the nebula and its components were obtained using the position-velocity arrays and timescale analysis. For M 2-9, Mz 3, and Hen 2-104, long-slit optical echelle spectra were used to investigate their morpho-kinematics using shape. Near-infrared data, as well as optical spectra, were used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae, which included M 2-9, Mz 3, Hen 2-104, and MyCn 18, by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. The best-fitted 3-D models M 2-9, Mz 3, and Hen 2-104, provide invaluable kinematical information on the expansion velocity of their nebular components by means of synthetic spectra (or synthetic position-velocity arrays). The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. For Abell 14, a detailed study of its 3-D morphology and kinematics were performed using shape. Its morphology, which is bipolar in nature, shows an ellipsoidal-like shell that is expanding faster along its minor-axis than that to its major (symmetry) axis. The modelled inclination angle along the east-west direction is 22° ± 4° with respect to the plane of the sky. Two ring-like structures, with a radius of ∼11.5 arcsec, are found to the east and west regions of the nebula, and expanding with a de-projected velocity V = 17 ± 4 kms-1, whereas the eastern and western parts of the nebula itself are expanding with a de-projected velocity of V = 25 ± 4 kms-1. The overall conclusion is that, for each object, the kinematics, morphology, nebular evolution, and their nature, are better understood by means of morpho-kinematic and spectroscopic analyses. In the case of MyCn 18, the offset of its central star, its asymmetry, and its collimated knots, all point to a binary system. The engulfment and destruction of an exoplanet during the asymptotic giant branch phase may have been a key event in shaping MyCn 18 and generating of its hypersonic knotty outflow. As for M 2-9, Mz 3, and Hen 2-104, the expansion rates of their individual components are better constrained and fitted with a vector field to reveal their direction of motion. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. With regards to Abell 14, it has been shown to be a highly-evolved bipolar nebula with a kinematical age of 19,400 ± 3480 yr for a distance of 4 kpc, and is a nebula with a very-low density, which further implies its evolved state.
NASA Astrophysics Data System (ADS)
Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.
2013-12-01
The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.
Differences in foot kinematics between young and older adults during walking.
Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic
2014-02-01
Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = <0.001), a smaller sagittal plane range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = <0.001) and smaller coronal plane ROM of the metatarsus (3.2° vs. 4.3°, d = 1.1, p = 0.006) compared to the young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.
Determining inclinations of active galactic nuclei via their narrow-line region kinematics
NASA Astrophysics Data System (ADS)
Fischer, Travis Cody
Active Galactic Nuclei (AGN) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight. However, except for a few special cases, the specific inclinations of individual AGN are unknown. We have developed a promising technique for determining the inclinations of nearby AGN by mapping the kinematics of their narrow-line regions (NLRs), which are easily resolved with Hubble Space Telescope (HST) [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph (STIS). Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our line of sight. We present NLR analysis of 53 Seyfert galaxies and resultant inclinations from models of 17 individual AGN with clear signatures of biconical outflow. From these AGN, which we can for the first time assess the effect of inclination on other observable properties in radio-quiet AGN, including the discovery of a distinct correlation between AGN inclination and X-ray column density. INDEX WORDS: AGN, Seyfert galaxies, NLR, Outflows, Kinematics, Bicones, Unified Model Graduation.
3D kinematics using dual quaternions: theory and applications in neuroscience
Leclercq, Guillaume; Lefèvre, Philippe; Blohm, Gunnar
2013-01-01
In behavioral neuroscience, many experiments are developed in 1 or 2 spatial dimensions, but when scientists tackle problems in 3-dimensions (3D), they often face problems or new challenges. Results obtained for lower dimensions are not always extendable in 3D. In motor planning of eye, gaze or arm movements, or sensorimotor transformation problems, the 3D kinematics of external (stimuli) or internal (body parts) must often be considered: how to describe the 3D position and orientation of these objects and link them together? We describe how dual quaternions provide a convenient way to describe the 3D kinematics for position only (point transformation) or for combined position and orientation (through line transformation), easily modeling rotations, translations or screw motions or combinations of these. We also derive expressions for the velocities of points and lines as well as the transformation velocities. Then, we apply these tools to a motor planning task for manual tracking and to the modeling of forward and inverse kinematics of a seven-dof three-link arm to show the interest of dual quaternions as a tool to build models for these kinds of applications. PMID:23443667
Samlan, Robin A.; Story, Brad H.; Bunton, Kate
2014-01-01
Purpose To determine 1) how specific vocal fold structural and vibratory features relate to breathy voice quality and 2) the relation of perceived breathiness to four acoustic correlates of breathiness. Method A computational, kinematic model of the vocal fold medial surfaces was used to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: vocal process separation, surface bulging, vibratory nodal point, and epilaryngeal constriction. Twelve naïve listeners rated breathiness of 364 samples relative to a reference. The degree of breathiness was then compared to 1) the underlying kinematic profile and 2) four acoustic measures: cepstral peak prominence (CPP), harmonics-to-noise ratio, and two measures of spectral slope. Results Vocal process separation alone accounted for 61.4% of the variance in perceptual rating. Adding nodal point ratio and bulging to the equation increased the explained variance to 88.7%. The acoustic measure CPP accounted for 86.7% of the variance in perceived breathiness, and explained variance increased to 92.6% with the addition of one spectral slope measure. Conclusions Breathiness ratings were best explained kinematically by the degree of vocal process separation and acoustically by CPP. PMID:23785184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Optimal fall indicators for slip induced falls on a cross-slope.
Domone, Sarah; Lawrence, Daniel; Heller, Ben; Hendra, Tim; Mawson, Sue; Wheat, Jonathan
2016-08-01
Slip-induced falls are among the most common cause of major occupational injuries in the UK as well as being a major public health concern in the elderly population. This study aimed to determine the optimal fall indicators for fall detection models which could be used to reduce the detrimental consequences of falls. A total of 264 kinematic variables covering three-dimensional full body model translation and rotational measures were analysed during normal walking, successful recovery from slips and falls on a cross-slope. Large effect sizes were found for three kinematic variables which were able to distinguish falls from normal walking and successful recovery. Further work should consider other types of daily living activities as results show that the optimal kinematic fall indicators can vary considerably between movement types. Practitioner Summary: Fall detection models are used to minimise the adverse consequences of slip-induced falls, a major public health concern. Optimal fall indicators were derived from a comprehensive set of kinematic variables for slips on a cross-slope. Results suggest robust detection of falls is possible on a cross-slope but may be more difficult than level walking.
Design and fabrication of robotic gripper for grasping in minimizing contact force
NASA Astrophysics Data System (ADS)
Heidari, Hamidreza; Pouria, Milad Jafary; Sharifi, Shahriar; Karami, Mahmoudreza
2018-03-01
This paper presents a new method to improve the kinematics of robot gripper for grasping in unstructured environments, such as space operations. The robot gripper is inspired from the human hand and kept the hand design close to the structure of human fingers to provide successful grasping capabilities. The main goal is to improve kinematic structure of gripper to increase the grasping capability of large objects, decrease the contact forces and makes a successful grasp of various objects in unstructured environments. This research will describe the development of a self-adaptive and reconfigurable robotic hand for space operations through mechanical compliance which is versatile, robust and easy to control. Our model contains two fingers, two-link and three-link, with combining a kinematic model of thumb index. Moreover, some experimental tests are performed to examine the effectiveness of the hand-made in real, unstructured tasks. The results represent that the successful grasp range is improved about 30% and the contact forces is reduced approximately 10% for a wide range of target object size. According to the obtained results, the proposed approach provides an accommodative kinematic model which makes the better grasping capability by fingers geometries for a robot gripper.
Jarvis, Hannah L; Nester, Christopher J; Bowden, Peter D; Jones, Richard K
2017-01-01
The Root model of normal and abnormal foot function remains the basis for clinical foot orthotic practice globally. Our aim was to investigate the relationship between foot deformities and kinematic compensations that are the foundations of the model. A convenience sample of 140 were screened and 100 symptom free participants aged 18-45 years were invited to participate. The static biomechanical assessment described by the Root model was used to identify five foot deformities. A 6 segment foot model was used to measure foot kinematics during gait. Statistical tests compared foot kinematics between feet with and without foot deformities and correlated the degree of deformity with any compensatory motions. None of the deformities proposed by the Root model were associated with distinct differences in foot kinematics during gait when compared to those without deformities or each other. Static and dynamic parameters were not correlated. Taken as part of a wider body of evidence, the results of this study have profound implications for clinical foot health practice. We believe that the assessment protocol advocated by the Root model is no longer a suitable basis for professional practice. We recommend that clinicians stop using sub-talar neutral position during clinical assessments and stop assessing the non-weight bearing range of ankle dorsiflexion, first ray position and forefoot alignments and movement as a means of defining the associated foot deformities. The results question the relevance of the Root assessments in the prescription of foot orthoses.
Hibberd, Elizabeth E; Oyama, Saki; Spang, Jeffrey T; Prentice, William; Myers, Joseph B
2012-08-01
Shoulder injuries are common in swimmers because of the demands of the sport. Muscle imbalances frequently exist due to the biomechanics of the sport, which predispose swimmers to injury. To date, an effective shoulder-injury-prevention program for competitive swimmers has not been established. To assess the effectiveness of a 6-wk strengthening and stretching intervention program on improving glenohumeral and scapular muscle strength and scapular kinematics in collegiate swimmers. Randomized control trial. University biomechanics research laboratory. Forty-four Division I collegiate swimmers. The intervention program was completed 3 times per week for 6 wk. The program included strengthening exercises completed using resistance tubing-scapular retraction (Ts), scapular retraction with upward rotation (Ys), scapular retraction with downward rotation (Ws), shoulder flexion, low rows, throwing acceleration and deceleration, scapular punches, shoulder internal rotation at 90° abduction, and external rotation at 90° abduction-and 2 stretching exercises: corner stretch and sleeper stretch. Scapular kinematics and glenohumeral and scapular muscle strength assessed preintervention and postintervention. There were no significant between-groups differences in strength variables at pre/post tests, although shoulder-extension and internal-rotation strength significantly increased in all subjects regardless of group assignment. Scapular kinematic data revealed increased scapular internal rotation, protraction, and elevation in all subjects at posttesting but no significant effect of group on the individual kinematic variables. The current strengthening and stretching program was not effective in altering strength and scapular kinematic variables but may serve as a framework for future programs. Adding more stretching exercises, eliminating exercises that overlap with weight-room training and swim training, and timing of implementation may yield a more beneficial program for collegiate swimmers.
Zago, Matteo; Motta, Andrea Francesco; Mapelli, Andrea; Annoni, Isabella; Galvani, Christel; Sforza, Chiarella
2014-09-29
Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior.
Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan
2017-01-01
This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations - SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans.
Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan
2017-01-01
This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations – SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans. PMID:27751987
Klous, Miriam; Klous, Sander
2010-07-01
The aim of skin-marker-based motion analysis is to reconstruct the motion of a kinematical model from noisy measured motion of skin markers. Existing kinematic models for reconstruction of chains of segments can be divided into two categories: analytical methods that do not take joint constraints into account and numerical global optimization methods that do take joint constraints into account but require numerical optimization of a large number of degrees of freedom, especially when the number of segments increases. In this study, a new and largely analytical method for a chain of rigid bodies is presented, interconnected in spherical joints (chain-method). In this method, the number of generalized coordinates to be determined through numerical optimization is three, irrespective of the number of segments. This new method is compared with the analytical method of Veldpaus et al. [1988, "A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates," J. Biomech., 21, pp. 45-54] (Veldpaus-method, a method of the first category) and the numerical global optimization method of Lu and O'Connor [1999, "Bone Position Estimation From Skin-Marker Co-Ordinates Using Global Optimization With Joint Constraints," J. Biomech., 32, pp. 129-134] (Lu-method, a method of the second category) regarding the effects of continuous noise simulating skin movement artifacts and regarding systematic errors in joint constraints. The study is based on simulated data to allow a comparison of the results of the different algorithms with true (noise- and error-free) marker locations. Results indicate a clear trend that accuracy for the chain-method is higher than the Veldpaus-method and similar to the Lu-method. Because large parts of the equations in the chain-method can be solved analytically, the speed of convergence in this method is substantially higher than in the Lu-method. With only three segments, the average number of required iterations with the chain-method is 3.0+/-0.2 times lower than with the Lu-method when skin movement artifacts are simulated by applying a continuous noise model. When simulating systematic errors in joint constraints, the number of iterations for the chain-method was almost a factor 5 lower than the number of iterations for the Lu-method. However, the Lu-method performs slightly better than the chain-method. The RMSD value between the reconstructed and actual marker positions is approximately 57% of the systematic error on the joint center positions for the Lu-method compared with 59% for the chain-method.
A three-dimensional kinematic model for the dissolution of crystals
NASA Astrophysics Data System (ADS)
Tellier, C. R.
1989-06-01
The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.
Virtual photon impact factors with exact gluon kinematics
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
2001-06-01
An explicit analytic formula for the transverse and longitudinal impact factors ST, L( N, γ) of the photon using kT factorization with exact gluon kinematics is given. Applications to the QCD dipole model and the extraction of the unintegrated gluon structure function from data are proposed.
Mathematical model for studying cyclist kinematics in vehicle-bicycle frontal collisions
NASA Astrophysics Data System (ADS)
Condrea, OA; Chiru, A.; Chiriac, RL; Vlase, S.
2017-10-01
For the development of effective vehicle related safety solutions to improve cyclist protection, kinematic predictions are essential. The objective of the paper was the elaboration of a simple mathematical model for predicting cyclist kinematics, with the advantage of yielding simple results for relatively complicated impact situations. Thus, the use of elaborated math software is not required and the calculation time is shortened. The paper presents a modelling framework to determine cyclist kinematic behaviour for the situations in which a M1 category vehicle frontally hits the rear part of a bicycle. After the primary impact between the vehicle front bumper and the bicycle, the cyclist hits the vehicle’s bonnet, the windscreen or both the vehicle’s bonnet and the windscreen in short succession. The head-windshield impact is often the most severe impact, causing serious and potentially lethal injuries. The cyclist is represented by a rigid segment and the equations of motion for the cyclist after the primary impact are obtained by applying Newton’s second law of motion. The impact time for the contact between the vehicle and the cyclist is yielded afterwards by formulating and intersecting the trajectories for two points positioned on the cyclist’s head/body and the vehicle’s windscreen/bonnet while assuming that the cyclist’s equations of motion after the primary impact remain the same. Postimpact kinematics for the secondary impact are yielded by applying linear and angular momentum conservation laws.
The inaccuracy of surface-measured model-derived tibiofemoral kinematics.
Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong
2012-10-11
This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all six degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0±1.2°, and 6.4±4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, respectively, and 7.1±3.2 mm, 8.8±3.7 mm, and 1.9±1.2 mm for anterior-posterior, proximal-distal, and medial-lateral translations, respectively. The differences were more pronounced in relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotations, and anterior-posterior translation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alipour, Hiva; Gazerani, Parisa; van der Horst, Gerhard; Brandsborg, Erik; Nielsen, Hans Ingolf
2017-01-01
Probiotics have been proposed as alternatives to pharmacological products in several medical conditions including the modulation of obesity, which is frequently associated with poor semen quality. However, effects of probiotics on male fertility have been less investigated. This study assessed the effect of Lactobacillus rhamnosus PB01 (DSM-14870) on sperm kinematic parameters in Normal-weight (NW) and diet-induced obese (DIO) models. NW and DIO C57BL/6NTac mice were divided into two subgroups with or without a single daily dose (1x109CFU) of L. rhamnosus for four weeks. Sperm motility and kinematics together with blood lipid profiles and reproductive hormone levels were assessed using the sperm class analyzer system. Probiotic supplementation increased serum testosterone, LH and FSH levels in both NW and DIO groups resulting in significantly (P<0.05) higher velocity (VSL, VCL and VAP) and percentages of progressively motile sperm and significantly lower percentages of immotile sperm. Other kinematic parameters (Lin, STR, ALH and BCF) were also increased in both probiotic supplemented DIO and NW groups at the 10% level of significance. Probiotic supplemented DIO mice demonstrated significantly higher percentages of progressively motile sperm versus DIO controls. This study demonstrated the potential of L. rhamnosus PB01 as a regulatory agent with positive effects on weight loss and reproductive-hormones, significantly improving sperm motility and kinematic parameters in male DIO models. PMID:29016685
Samlan, Robin A; Story, Brad H
2011-10-01
To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow, and acoustic waveforms and were related to the underlying vocal fold kinematics. CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1.0 mm to 1.5 mm and decreased with separation > 1.5 mm. CPP is generally a function of vocal process separation. H1*-H2* (see paragraph 6 of article text for an explanation of the asterisks) will increase or decrease with vocal process separation on the basis of vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures.
Analysis of foot kinematics wearing high heels using the Oxford foot model.
Wang, Meizi; Gu, Yaodong; Baker, Julien Steven
2018-04-29
Wearing high heels is thought to lead to various foot disorders and injuries such as metatarsal pain, Achilles tendon tension, plantar fasciitis and Haglund malformation. However, there is little available information explaining the specific mechanisms and reasons why wearing high heels causes foot deformity. Therefore, the purpose of this study was to investigate the foot kinematics of high heel wearers and compare any differences with barefoot individuals using the Oxford Foot Model (OFM). Fifteen healthy women aged 20-25 years were measured while walking barefoot and when wearing high heels. The peak value of angular motion for the hallux with respect to the forefoot, the forefoot with respect to the hind foot, and the hind foot with respect to the tibia were all analyzed. Compared to the barefoot, participants wearing high heels demonstrated larger hallux dorsiflexion (22.55∘± 1.62∘ VS 26.6∘± 2.33∘ for the barefoot; P= 0.001), and less hallux plantarflexion during the initial stance phase (-4.86∘± 2.32∘ VS -8.68∘± 1.13∘; P< 0.001). There were also greater forefoot adduction (16.15∘± 1.37∘ VS 13.18∘± 0.79∘; P< 0.001), but no significant differences were found in forefoot abduction between the two conditions. The hind foot demonstrated a larger dorsiflexion in the horizontal plane (16.59∘± 1.69∘ VS 12.08∘± 0.9∘; P< 0.001), greater internal rotation (16.72∘± 0.48∘ VS 7.97∘± 0.55∘; P< 0.001), and decreased peak hind foot extension rotation (-5.49∘± 0.69∘ VS -10.73∘± 0.42∘; P= 0.001). These findings complement existing kinematic evidence that wearing high heels can lead to foot deformities and injuries.
Applicability of Kinematic and Diffusive models for mud-flows: a steady state analysis
NASA Astrophysics Data System (ADS)
Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea
2018-04-01
The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water flows, the study compares the steady flow depth profiles predicted by approximated models with those of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the approximated models is assessed by computing the average, along the channel length, of the errors, for several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error equal to 5%, the applicability conditions of the two approximations have been individuated for several values of the power-law exponent, showing a crucial role of the rheology. The comparison with the clear-water results indicates that applicability criteria for clear-water flows do not apply to shear-thinning fluids, potentially leading to an incorrect use of approximated models if the rheology is not properly accounted for.
NASA Astrophysics Data System (ADS)
Saniga, Metod
1995-03-01
It is demonstrated that the kinematic 'peculiarity' of the early Sab galaxy NGC 4826 can easily be understood in terms of the Abelian Higgs (AH) model of spiral galaxies. A cylindrically symmetric AH vorto-source (-sink) with a disk-to-bulge ratio Omega greater than 1 is discussed and the distributions of the diagonal components of the corresponding stress-energy tensor Tmu,nu are presented. It is argued that the sign-changing component Tphiphi could account for the existence of two counter-rotating gas disks while negative values of Trr imply inward gas motions as observed in the outer and transition regions of the galaxy.
Bertocci, G; Smalley, C; Brown, N; Bialczak, K; Carroll, D
2018-02-01
To compare pelvic limb joint kinematics and temporal gait characteristics during land-based and aquatic-based treadmill walking in dogs that have undergone surgical stabilisation for cranial cruciate ligament deficiency. Client-owned dogs with surgically stabilised stifles following cranial cruciate ligament deficiency performed three walking trials consisting of three consecutive gait cycles on an aquatic treadmill under four water levels. Hip, stifle and hock range of motion; peak extension; and peak flexion were assessed for the affected limb at each water level. Gait cycle time and stance phase percentage were also determined. Ten client-owned dogs of varying breeds were evaluated at a mean of 55·2 days postoperatively. Aquatic treadmill water level influenced pelvic limb kinematics and temporal gait outcomes. Increased stifle joint flexion was observed as treadmill water level increased, peaking when the water level was at the hip. Similarly, hip flexion increased at the hip water level. Stifle range of motion was greatest at stifle and hip water levels. Stance phase percentage was significantly decreased when water level was at the hip. Aquatic treadmill walking has become a common rehabilitation modality following surgical stabilisation of cranial cruciate ligament deficiency. However, evidence-based best practice guidelines to enhance stifle kinematics do not exist. Our findings suggest that rehabilitation utilising a water level at or above the stifle will achieve the best stifle kinematics following surgical stifle stabilisation. © 2017 British Small Animal Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio
Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless ofmore » the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less
Joyce, Christopher; Burnett, Angus; Cochrane, Jodie; Reyes, Alvaro
2016-01-01
It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (M ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional (3D) trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60-67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties.
A kinematic eddy viscosity model including the influence of density variations and preturbulence
NASA Technical Reports Server (NTRS)
Cohen, L. S.
1973-01-01
A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.
Meshless analysis of shear deformable shells: the linear model
NASA Astrophysics Data System (ADS)
Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.
2013-10-01
This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.
Development of esMOCA RULA, Motion Capture Instrumentation for RULA Assessment
NASA Astrophysics Data System (ADS)
Akhmad, S.; Arendra, A.
2018-01-01
The purpose of this research is to build motion capture instrumentation using sensors fusion accelerometer and gyroscope to assist in RULA assessment. Data processing of sensor orientation is done in every sensor node by digital motion processor. Nine sensors are placed in the upper limb of operator subject. Development of kinematics model is done with Simmechanic Simulink. This kinematics model receives streaming data from sensors via wireless sensors network. The output of the kinematics model is the relative angular angle between upper limb members and visualized on the monitor. This angular information is compared to the look-up table of the RULA worksheet and gives the RULA score. The assessment result of the instrument is compared with the result of the assessment by rula assessors. To sum up, there is no significant difference of assessment by the instrument with an assessment by an assessor.
The stability of nonlinear dynamos and the limited role of kinematic growth rates
NASA Astrophysics Data System (ADS)
Brandenburg, A.; Krause, F.; Meinel, R.; Moss, D.; Tuominen, I.
1989-04-01
The growth rate behavior of several kinematic dynamo models was investigated in the context of the observation that, as a rule, a magnetic field of a single symmetry dominates in the sun and other cosmic objects. For all dynamo models considered, it is shown that, as the dynamo numbers increase, the kinematic growth rates of fields of different parities are asymptotically equal, indicating that growth rates do not dominate the final state of the field. The possibility that the stability of different solutions of nonlinear dynamos determines the final state was then investigated. Dynamo models in spherical geometry were found in which both symmetric and antisymmetric solutions are stable. The kind of symmetry finally established depends in these cases on the initial conditions, i.e., on the history of the object. It is noted that the basic mechanism stabilizing or destabilizing different solutions is not well understood.
Expression for time travel based on diffusive wave theory: applicability and considerations
NASA Astrophysics Data System (ADS)
Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.
2017-12-01
Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the expression is no longer valid, and one must fall back to kinematic wave theory, for lack of a better option. This expression could be used for improving currently published spatially distributed time travel models, since they would become applicable in many new cases.
Kinematic Modeling Of The Milky Way Using The RAVE And GCS Stellar Surveys
NASA Astrophysics Data System (ADS)
Sharma, Sanjib; Rave Collaboration
2014-01-01
We investigate the kinematic parameters of the Milky Way disc using the Radial Velocity (RAVE) and Geneva-Copenhagen (GCS) stellar surveys. We do this by fitting a kinematic model to the data. Using two distinct Markov Chain Monte Carlo (MCMC) techniques, we investigate the full posterior distributions of the parameters given the data. For RAVE, we restrict ourselves to angular position and radial velocity for each star since these quantities are determined to high accuracy. For GCS, the data consist of the full 6 dimensional phase space but, in contrast to RAVE, are confined to the Solar neighborhood only. We show results using the traditional Gaussian distribution function and compare to the Shu distribution function that handles non-circular orbits more accurately. We investigate the `age-velocity dispersion' relation (AVR) for the three kinematic components (σ_R,σ_φ, σ_z), the radial dependence of the velocity dispersions, the Solar peculiar motion (U_Sun,V_Sun, W_Sun) and the circular velocity (v_c) at the Sun. We investigate models with and without a thick disc. We find that the kinematic parameters derived from RAVE and GCS are in good agreement. The Shu model fits the RAVE data better than the Gaussian model, but a perfect fit could not be found for either model. Furthermore, the Gaussian model predicts a positive radial gradient for the velocity dispersion, while the Shu model does not. The measured Solar peculiar motion, U_Sun=10.5 ±0.13, V_Sun=10.27±0.11, and W_Sun=7.44± 0.09, is in good agreement with estimates of Schonrich et al (2010) but our values for (U_Sun, V_Sun) are slightly lower. We stress that V_Sun is a highly model-dependent quantity and claims of accuracy must be treated with caution. For RAVE, we find that v_c = 212 ±1.4 km/s ; this is a lower bound on the true value as the vertical dependence of asymmetric drift for an isothermal population has been ignored in our analysis.
Van Wassenbergh, Sam; Aerts, Peter; Herrel, Anthony
2006-01-01
The magnitude of sub-ambient pressure inside the bucco-pharyngeal cavity of aquatic animals is generally considered a valuable metric of suction feeding performance. However, these pressures do not provide a direct indication of the effect of the suction act on the movement of the prey item. Especially when comparing suction performance of animals with differences in the shape of the expanding bucco-pharyngeal cavity, the link between speed of expansion, water velocity, force exerted on the prey and intra-oral pressure remains obscure. By using mathematical models of the heads of catfishes, a morphologically diverse group of aquatic suction feeders, these relationships were tested. The kinematics of these models were fine-tuned to transport a given prey towards the mouth in the same way. Next, the calculated pressures inside these models were compared. The results show that no simple relationship exists between the amount of generated sub-ambient pressure and the force exerted on the prey during suction feeding, unless animals of the same species are compared. Therefore, for evaluating suction performance in aquatic animals in future studies, the focus should be on the flow velocities in front of the mouth, for which a direct relationship exists with the hydrodynamic force exerted on prey. PMID:16849247
On the Presence of Affine Fibril and Fiber Kinematics in the Mitral Valve Anterior Leaflet
Lee, Chung-Hao; Zhang, Will; Liao, Jun; Carruthers, Christopher A.; Sacks, Jacob I.; Sacks, Michael S.
2015-01-01
In this study, we evaluated the hypothesis that the constituent fibers follow an affine deformation kinematic model for planar collagenous tissues. Results from two experimental datasets were utilized, taken at two scales (nanometer and micrometer), using mitral valve anterior leaflet (MVAL) tissues as the representative tissue. We simulated MVAL collagen fiber network as an ensemble of undulated fibers under a generalized two-dimensional deformation state, by representing the collagen fibrils based on a planar sinusoidally shaped geometric model. The proposed approach accounted for collagen fibril amplitude, crimp period, and rotation with applied macroscopic tissue-level deformation. When compared to the small angle x-ray scattering measurements, the model fit the data well, with an r2 = 0.976. This important finding suggests that, at the homogenized tissue-level scale of ∼1 mm, the collagen fiber network in the MVAL deforms according to an affine kinematics model. Moreover, with respect to understanding its function, affine kinematics suggests that the constituent fibers are largely noninteracting and deform in accordance with the bulk tissue. It also suggests that the collagen fibrils are tightly bounded and deform as a single fiber-level unit. This greatly simplifies the modeling efforts at the tissue and organ levels, because affine kinematics allows a straightforward connection between the macroscopic and local fiber strains. It also suggests that the collagen and elastin fiber networks act independently of each other, with the collagen and elastin forming long fiber networks that allow for free rotations. Such freedom of rotation can greatly facilitate the observed high degree of mechanical anisotropy in the MVAL and other heart valves, which is essential to heart valve function. These apparently novel findings support modeling efforts directed toward improving our fundamental understanding of tissue biomechanics in healthy and diseased conditions. PMID:25902446
3D artifact for calibrating kinematic parameters of articulated arm coordinate measuring machines
NASA Astrophysics Data System (ADS)
Zhao, Huining; Yu, Liandong; Xia, Haojie; Li, Weishi; Jiang, Yizhou; Jia, Huakun
2018-06-01
In this paper, a 3D artifact is proposed to calibrate the kinematic parameters of articulated arm coordinate measuring machines (AACMMs). The artifact is composed of 14 reference points with three different heights, which provides 91 different reference lengths, and a method is proposed to calibrate the artifact with laser tracker multi-stations. Therefore, the kinematic parameters of an AACMM can be calibrated in one setup of the proposed artifact, instead of having to adjust the 1D or 2D artifacts to different positions and orientations in the existing methods. As a result, it saves time to calibrate the AACMM with the proposed artifact in comparison with the traditional 1D or 2D artifacts. The performance of the AACMM calibrated with the proposed artifact is verified with a 600.003 mm gauge block. The result shows that the measurement accuracy of the AACMM is improved effectively through calibration with the proposed artifact.
The Use Of Videography For Three-Dimensional Motion Analysis
NASA Astrophysics Data System (ADS)
Hawkins, D. A.; Hawthorne, D. L.; DeLozier, G. S.; Campbell, K. R.; Grabiner, M. D.
1988-02-01
Special video path editing capabilities with custom hardware and software, have been developed for use in conjunction with existing video acquisition hardware and firmware. This system has simplified the task of quantifying the kinematics of human movement. A set of retro-reflective markers are secured to a subject performing a given task (i.e. walking, throwing, swinging a golf club, etc.). Multiple cameras, a video processor, and a computer work station collect video data while the task is performed. Software has been developed to edit video files, create centroid data, and identify marker paths. Multi-camera path files are combined to form a 3D path file using the DLT method of cinematography. A separate program converts the 3D path file into kinematic data by creating a set of local coordinate axes and performing a series of coordinate transformations from one local system to the next. The kinematic data is then displayed for appropriate review and/or comparison.
Assessment of Suited Reach Envelope in an Underwater Environment
NASA Technical Reports Server (NTRS)
Kim, Han; Benson, Elizabeth; Bernal, Yaritza; Jarvis, Sarah; Meginnis, Ian; Rajulu, Sudhakar
2017-01-01
Predicting the performance of a crewmember in an extravehicular activity (EVA) space suit presents unique challenges. The kinematic patterns of suited motions are difficult to reproduce in gravity. Additionally, 3-D suited kinematics have been practically and technically difficult to quantify in an underwater environment, in which crewmembers are commonly trained and assessed for performance. The goal of this study is to develop a hardware and software system to predictively evaluate the kinematic mobility of suited crewmembers, by measuring the 3-D reach envelope of the suit in an underwater environment. This work is ultimately aimed at developing quantitative metrics to compare the mobility of the existing Extravehicular Mobility Unit (EMU) to newly developed space suit, such as the Z-2. The EMU has been extensively used at NASA since 1981 for EVA outside the Space Shuttle and International Space Station. The Z-2 suit is NASA's newest prototype space suit. The suit is comprised of new upper torso and lower torso architectures, which were designed to improve test subject mobility.
Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen
2017-08-23
To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification.
Ball and Socket Ankle: Mechanism and Computational Evidence of Concept.
Jastifer, James R; Gustafson, Peter A; Labomascus, Aaron; Snoap, Tyler
The ball and socket ankle joint is a morphologically abnormal joint characterized by rounding of the articular surface of the talus. Other than anecdotal observation, little evidence has been presented to describe the development of this deformity. The purpose of the present study was to review ankle and subtalar joint mechanics and to kinematically examine the functional combination of these joints as a mechanism of the ball and socket ankle deformity. We reviewed functional representations of the ankle joint, subtalar joint, and ball and socket ankle deformity. A computational study of joint kinematics was then performed using a 3-dimensional model derived from a computed tomography scan of a ball and socket deformity. The joint kinematics were captured by creating a "virtual map" of the combined kinematics of the ankle and subtalar joints in the respective models. The ball and socket ankle deformity produces functionally similar kinematics to a combination of the ankle and subtalar joints. The findings of the present study support the notion that a possible cause of the ball and socket deformity is bony adaptation that compensates for a functional deficit of the ankle and subtalar joints. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen
2017-01-01
To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification. PMID:28832518
Bates, Nathaniel A.; Myer, Gregory D.; Hewett, Timothy E.
2014-01-01
Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (P-range < 0.01-0.95). However, none of the anthropometric relationships accounted for clinical variance or provided substantive univariate accuracy needed for clinical prediction algorithms (r2 < 0.20). Mass and BMI demonstrated models that were significant (P < 0.05) and predictive (r2 > 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions. PMID:25266933
An optimal resolved rate law for kinematically redundant manipulators
NASA Technical Reports Server (NTRS)
Bourgeois, B. J.
1987-01-01
The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.
Nguyen, T T; Biadillah, Y; Mongrain, R; Brunette, J; Tardif, J C; Bertrand, O F
2004-08-01
In this work, we propose a simple method to simultaneously match the refractive index and kinematic viscosity of a circulating blood analog in hydraulic models for optical flow measurement techniques (PIV, PMFV, LDA, and LIF). The method is based on the determination of the volumetric proportions and temperature at which two transparent miscible liquids should be mixed to reproduce the targeted fluid characteristics. The temperature dependence models are a linear relation for the refractive index and an Arrhenius relation for the dynamic viscosity of each liquid. Then the dynamic viscosity of the mixture is represented with a Grunberg-Nissan model of type 1. Experimental tests for acrylic and blood viscosity were found to be in very good agreement with the targeted values (measured refractive index of 1.486 and kinematic viscosity of 3.454 milli-m2/s with targeted values of 1.47 and 3.300 milli-m2/s).
A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.
Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L
2018-01-01
The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.
A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait
Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.
2018-01-01
The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336
Kinematics Modelling of Tendon-Driven Continuum Manipulator with Crossed Notches
NASA Astrophysics Data System (ADS)
Yang, Z. X.; Yang, W. L.; Du, Z. J.
2018-03-01
Single port surgical robot (SPSR) is a giant leap in the development of minimally invasive surgical robot. An innovative manipulator with high control accuracy and good kinematic dexterity can reduce wound, expedite recovery, and improve the success rate. This paper presents a tendon-driven continuum manipulator with crossed notches. This manipulator has two degrees of freedom (DOF), which possesses good flexibility and high capacity. Then based on cantilever beam theory, a mechanics model is proposed, which connects external force and deformation of a single flexible ring (SFR). By calculating the deformation of each SFR, the manipulator is considered as a series robot whose joint numbers is equal to SFR numbers, and the kinematics model is established through Denavit-Hartenberg (D-H) procedure. In this paper, the total manipulator is described as a curve tube whose curvature is increased from tip to base. Experiments were conducted and the comparison between theoretical and actual results proved the rationality of the models.
Rift systems in the southern North Atlantic: why did some fail and others not?
NASA Astrophysics Data System (ADS)
Nirrengarten, M.; Manatschal, G.; Tugend, J.; Kusznir, N. J.; Sauter, D.
2017-12-01
Orphan, Rockall, Porcupine, Parentis and Pyrenean Basins are failed rift systems surrounding the southern North Atlantic Ocean. The failure or succeessing of a rift system is intimately linked to the question of what controls lithospheric breakup and what keeps oceanic spreading alive. Extension rates and the thermal structure are usually the main parameters invoked. However, between the rifts that succeeded and those that failed, the relative control and relative importance of these parameters is not clear. Cessation of driving forces, strain hardening or competition between concurrent rifts are hypotheses often used to explain rift failure. In this work, we aim to analyze the influence of far field forces on the abandon of rift systems in the southern North Atlantic domain using plate kinematic modeling. A new reconstruction approach that integrates the spatio-temporal evolution of rifted basins has been developed. The plate modeling is based on the definition, mapping and restoration of rift domains using 3D gravity inversions methods that provide crustal thickness maps. The kinematic description of each rift system enables us to discuss the local rift evolution relative to the far field kinematic framework. The resulting model shows a strong segmentation of the different rift systems during extreme crustal thinning that are crosscut by V-shape propagators linked to the exhumation of mantle and emplacement of first oceanic crust. The northward propagating lithospheric breakup of the southern North Atlantic may be partly triggered and channeled by extreme lithospheric thinning. However, at Aptian-Albian time, the northward propagating lithospheric breakup diverts and is partitioned along a transtensional system resulting in the abandon of the Orphan and Rockall basins. The change in the propagation direction may be related to a local strain weakening along existing/inherited transfer zones and/or, alternatively, to a more global plate reorganization. The cessation of the Bay of Biscay-Pyrenean system is related to the northward motion of Africa at Campanian/Santonian time, resulting in a competition between incipient seafloor spreading and far field forces. A concordance between far field forces, lithospheric architecture and strain weakening seems necessary to create a sustainable oceanic domain.
Comment on ``Mesoplates: Resolving a Decades-Old Controversy''
NASA Astrophysics Data System (ADS)
Liu, Han-Shou; Kolenkiewicz, R.
2004-07-01
Plate tectonics is primarily a geokinematic theory. Additional new concepts or components are needed to provide insights and constrains for geodynamic modeling. Recently, in Eos (23 December 2003), Pilger has developed a new concept regarding the kinematics of the lithospheric plates and the underlying mesosphere. He proposed that three mesoplates under the lithosphere can provide a framework for resolving a decades-old controversy on hot spots and mantle plumes. Geodynamic modelers are forced to establish the existence of these three mesoplates. We have attempted to verify the mesoplate hypothesis using satellite gravity signals for remote sensing the stresses in the mesosphere. Our stress patterns of the mesosphere at 100 km depth as inferred from satellite gravity signals show that global stress concentrations are mainly restricted to the boundaries of the Hawaiian, Tristan, and Icelandic Mesoplate as defined by Pilger.
Stellar Wakes from Dark Matter Subhalos
NASA Astrophysics Data System (ADS)
Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang
2018-05-01
We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G
2013-11-15
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. © 2013 Published by Elsevier Ltd.
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces
Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.
2013-01-01
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941
O'Reilly, Christian; Plamondon, Réjean; Landou, Mohamed K; Stemmer, Brigitte
2013-01-01
This article presents an exploratory study investigating the possibility of predicting the time occurrence of a motor event related potential (ERP) from a kinematic analysis of human movements. Although the response-locked motor potential may link the ERP components to the recorded response, to our knowledge no previous attempt has been made to predict a priori (i.e. before any contact with the electroencephalographic data) the time occurrence of an ERP component based only on the modeling of an overt response. The proposed analysis relies on the delta-lognormal modeling of velocity, as proposed by the kinematic theory of rapid human movement used in several studies of motor control. Although some methodological aspects of this technique still need to be fine-tuned, the initial results showed that the model-based kinematic analysis allowed the prediction of the time occurrence of a motor command ERP in most participants in the experiment. The average map of the motor command ERPs showed that this signal was stronger in electrodes close to the contra-lateral motor area (Fz, FCz, FC1, and FC3). These results seem to support the claims made by the kinematic theory that a motor command is emitted at time t(0), the time reference parameter of the model. This article proposes a new time marker directly associated with a cerebral event (i.e. the emission of a motor command) that can be used for the development of new data analysis methodologies and for the elaboration of new experimental protocols based on ERP. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Casellato, Claudia; Ferrante, Simona; Gandolla, Marta; Volonterio, Nicola; Ferrigno, Giancarlo; Baselli, Giuseppe; Frattini, Tiziano; Martegani, Alberto; Molteni, Franco; Pedrocchi, Alessandra
2010-09-23
Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters.Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability.We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected.
2010-01-01
Background Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters. Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. Methods The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability. We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Results Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. Conclusions The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected. PMID:20863391
A new look at the kinematics of the bulge from an N-body model
NASA Astrophysics Data System (ADS)
Gómez, A.; Di Matteo, P.; Stefanovitch, N.; Haywood, M.; Combes, F.; Katz, D.; Babusiaux, C.
2016-05-01
By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (I.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b = -4°, -6°, -8°, and -10°, along the bulge minor axis as well as outside it, at l = ± 5° and l = ± 10°. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km s-1, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. They display a rather symmetric velocity distribution and a smaller fraction of high-velocity stars. The stellar stream motion, which is induced by the bar changes with the star initial position, can reach more than 40 km s-1 for stars that originated in the external disk, depending on the observed direction. Otherwise it is smaller than approximately 20 km s-1. In all cases, it decreases from b = -4° to -10°. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at l = 0° and b = -6°. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge velocity fields, which are generated by the bar. This suggests that caution should be used when interpreting the bulge kinematics: the presence of substructures, peaks and clumps in the velocity fields is not necessarily a sign of past accretion events.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
The Outer Profile of the Draco Dwarf Spheroidal Galaxy: Measuring the Mass-Loss Rate
NASA Astrophysics Data System (ADS)
Armandroff, Taft; Pryor, Carlton; Olszewski, Edward
1999-02-01
The existence and properties of dark matter in dwarf galaxies have fundamental implications for cosmology and galaxy formation. We are engaged in a long-term effort to observe and model the structure, kinematics, and mass-to-light ratios of the Draco and UMi dwarf spheroidal (dSph) galaxies. Here we propose to extend our work with a search for outlying members and tidal tails of the Draco dSph galaxy, motivated by observational, theoretical, and technical advances. Recent sophisticated modeling of tidal interactions with the Galactic potential clarifies the interpretation of tidal tails and shows how to calculate the rate at which stars have been lost from a dSph or globular from the density profile of the tidal debris. Also, the radius of the transition between bound and unbound stars yields the outer boundary and total mass of the dark matter halos in the dSphs. While central mass densities and central mass-to-light ratios are generally available for dSphs, determination of their total masses (like those of any galaxy) has remained elusive. We will map a 24 square degree area along the major axis of Draco, plus six square degrees of background. Use of a 3-filter technique will result in an unprecedentedly clean census of distant Draco stars and, thus, a major-axis density profile to a radius of ~6°. Our long-term goal is to investigate the kinematics of the outer members and tidal-tail stars in order to compare in detail with the models.
Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es
Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended timemore » integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.« less
Rainbow, Michael J.; Moore, Douglas C.; Wolfe, Scott W.
2012-01-01
Previous studies have found gender differences in carpal kinematics, and there are discrepancies in the literature on the location of the flexion/extension and radio-ulnar deviation rotation axes of the wrist. It has been postulated that these differences are due to carpal bone size differences rather than gender and that they may be resolved by normalizing the kinematics by carpal size. The purpose of this study was to determine if differences in radio-capitate kinematics are a function of size or gender. We also sought to determine if a best-fit pivot point (PvP) describes the radio-capitate joint as a ball-and-socket articulation. By using an in vivo markerless bone registration technique applied to computed tomography scans of 26 male and 28 female wrists, we applied scaling derived from capitate length to radio-capitate kinematics, characterized by a best-fit PvP. We determined if radio-capitate kinematics behave as a ball-and-socket articulation by examining the error in the best-fit PvP. Scaling PvP location completely removed gender differences (P = 0.3). This verifies that differences in radio-capitate kinematics are due to size and not gender. The radio-capitate joint did not behave as a perfect ball and socket because helical axes representing anatomical motions such as flexion-extension, radio-ulnar deviation, dart throwers, and antidart throwers, were located at distances up to 4.5 mm from the PvP. Although the best-fit PvP did not yield a single center of rotation, it was still consistently found within the proximal pole of the capitate, and rms errors of the best-fit PvP calculation were on the order of 2 mm. Therefore, the ball-and-socket model of the wrist joint center using the best-fit PvP is appropriate when considering gross motion of the hand with respect to the forearm such as in optical motion capture models. However, the ball-and-socket model of the wrist is an insufficient description of the complex motion of the capitate with respect to the radius. These findings may aid in the design of wrist external fixation and orthotics. PMID:18601445
Spiral galaxy HI models, rotation curves and kinematic classifications
NASA Astrophysics Data System (ADS)
Wiegert, Theresa B. V.
Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC. To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional "tilted-ring'' method RCs. The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a trend of velocity with DM halo properties such as Mhalo/Mbaryon. Using this strategy on upcoming large databases should reveal relationships between the DM halo and our kinematic classification scheme. If NGC 2841, NGC 3521 and NGC 5055 are understood to have declining RC after further investigation, this cannot be explained by the usual morphology scenarios.
Population studies. 12: The duality of the galactic halo
NASA Astrophysics Data System (ADS)
Norris, John E.
1994-08-01
Consideration of the abundance distribution and the complicated dependence of kinematics on abundance in high-proper-motion samples of main-sequence stars, together with the velocities of non-kinematically selected objects in the direction of the Galactic poles, leads to the conjectures (1) that for (Fe/H) less than -1.0, two distinct components are present in the samples, each of which spans the range -3.0 less than or equal (Fe/H) less than or equal -1.0, (2) that one of the components has the properties of the accretion process postulated for the formation of the halo by Searle & Zinn (1978) and amplified by Rodgers & Paltoglou (1984), van den Bergh (1993), and Zinn (1993), and (3) that the second component encompasses at high abundance ((Fe/H) greater than -1.5) the disklike entity variously referred to as the thick disk, the metal-weak thick disk, the extended disk, and Intermediate Population II, together with, at lower abundances, material which has an abundance distribution similar to that of the so-called Best Accretion Model of Lynden-Bell and kinematics which have a very hot spheroidal signature sigmaU = sigmaV = sigmaW approximately 130 km/s and low systemic rotation Vrot at the lowest values ((Fe/H) approximately -2.0 to -3.0). The second component has many of the properties espoused by Eggen, Lynden-Bell, & Sandage (1962) in the context of the contraction of the proto-Galaxy. Monte Carlo simulations are presented which demonstrate that, within the framework of these conjectures and the rather large uncertainties associated with the second component, it is possible to explain fully the basic features of the abundance distribution and kinematics of the high-proper-motion samples. The crux of the issue is that such a model can explain the observed relative constancy of sigmaU and Vrot for (Fe/H) less than or equal -1.5, together with the constancy of sigmaV and the steady increase of sigmaW from 50 to 120 km/s as (Fe/H) decreases from -1.0 to -2.5. It is emphasized that within the suggested framework neither the precepts of Searle & Zinn nor those of Eggen et al. can by themselves fullly explain the totality of the observations. For kinematically selected samples the combination of both as essential ingredients can provide an explanation. The possibility exists that a double accretion scenario as described by Freeman (1987) following Quinn & Goodman (1986) might also explain the binarity conjectured upon here, but more information on the details of the accretion is needed to facilitate the comparison between theory and observation.
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
3-D scapular kinematics during arm elevation: effect of motion velocity.
Fayad, F; Hoffmann, G; Hanneton, S; Yazbeck, C; Lefevre-Colau, M M; Poiraudeau, S; Revel, M; Roby-Brami, A
2006-11-01
No three-dimensional (3-D) data exist on the influence of motion velocity on scapular kinematics. The effect of arm elevation velocity has been studied only in a two-dimensional setting. Thirty healthy subjects performed dominant (right) arm elevation in two planes, sagittal and frontal, and at slow and fast self-selected arm speed. Scapular orientation and humeral elevation were measured at 30 Hz recording frequency with use of a 6-degree-of-freedom electromagnetic system (Polhemus Fastraka). Motion was computed according to the International Society of Biomechanics standards. Scapular orientation was also determined with the arm held in different static positions. We obtained a full 3-D kinematic description of scapula achieving a reliable, complex 3-D motion during humeral elevation and lowering. The maximal sagittal arm elevation showed a characteristic "M"-shape pattern of protraction/retraction curve. Scapular rotations did not differ significantly between slow and fast movements. Moreover, protraction/retraction and tilt angular values did not differ significantly between static and dynamic tasks. However, scapular lateral rotation values differed between static and dynamic measurements during sagittal and frontal arm elevation. Lateral scapular rotation appears to be less in static than in dynamic measurement, particularly in the sagittal plane. Interpolation of statically recorded positions of the bones cannot reflect the kinematics of the scapula.
LAWRENCE, REBEKAH L.; BRAMAN, JONATHAN P.; STAKER, JUSTIN L.; LAPRADE, ROBERT F.; LUDEWIG, PAULA M.
2015-01-01
STUDY DESIGN Cross-sectional. OBJECTIVES To compare differences in glenohumeral joint angular motion and linear translations between symptomatic and asymptomatic individuals during shoulder motion performed in 3 planes of humerothoracic elevation. BACKGROUND Numerous clinical theories have linked abnormal glenohumeral kinematics, including decreased glenohumeral external rotation and increased superior translation, to individuals with shoulder pain and impingement diagnoses. However, relatively few studies have investigated glenohumeral joint angular motion and linear translations in this population. METHODS Transcortical bone pins were inserted into the scapula and humerus of 12 a symptomatic and 10 symptomatic participants for direct bone-fixed tracking using electromagnetic sensors. Glenohumeral joint angular positions and linear translations were calculated during active shoulder flexion, abduction, and scapular plane abduction. RESULTS Differences between groups in angular positions were limited to glenohumeral elevation, coinciding with a reduction in scapulothoracic upward rotation. Symptomatic participants demonstrated 1.4 mm more anterior glenohumeral translation between 90° and 120° of shoulder flexion and an average of 1 mm more inferior glenohumeral translation throughout shoulder abduction. CONCLUSION Differences in glenohumeral kinematics exist between symptomatic and a symptomatic individuals. The clinical implications of these differences are not yet understood, and more research is needed to understand the relationship between abnormal kinematics, shoulder pain, and pathoanatomy. PMID:25103132
Kleindienst, F I; Michel, K J; Schwarz, J; Krabbe, B
2006-03-01
Based on a higher cardio-pulmonary and cardio-vascular benefit and a promised reduction of mechanical load of the musculoskeletal system Nordic Walking (NW) shows an increased market potential. The present study should investigate whether there are biomechanical differences between the locomotion patterns NW, walking and running. Moreover possible resultant load differences should be determined. Eleven subjects, who were already experienced with the NW-technique, participated in this experiment. The kinematic data were collected using two high-speed camera systems from posterior and from lateral at the same time. Simultaneously the ground reaction forces were recorded. The kinematic and the kinetic data reveal differences between the three analyzed locomotion patterns. For NW as well as walking the mechanical load of the lower extremity is lower compared to running. None of the kinematic parameters suggest a "physiological benefit" of NW compared to walking. Moreover NW shows higher vertical and horizontal forces during landing. Exclusively the lower vertical force peak during push off indicates a lower mechanical load for NW in comparison to walking. Consequently it is questionable is NW -- based on its promised "biomechanical benefits" compared to walking -- should be still recommended for overweight people and for people with existing musculoskeletal problems of the lower limb.
Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C
2016-08-01
A robotic exoskeleton was designed for individuals with crouch gait caused by cerebral palsy with the intent to supplement existing muscle function during walking. The aim of this study was to evaluate how powered knee extension assistance provided during stance and swing phases of the gait cycle affect knee kinematics, and knee flexor and extensor muscle activity. Muscle activity and kinematic data were collected from four individuals with crouch gait from cerebral palsy during their normal walking condition and while walking with the exoskeleton under stance, swing, and stance & swing assistance. The exoskeleton was effective in reducing crouch by an average of 13.8° in three of the four participants when assistance was provided during the stance phase; assistance during the swing phase alone was ineffective. Peak knee extensor activity was maintained for all of the conditions during the stance and swing phases. Integrated (i.e. area under the curve) knee extensor activity decreased in two of the subjects indicating a more well-modulated activation pattern. Modest increases in peak and integrated antagonist knee flexor activity were exhibited in all participants; the subject without kinematic improvement had the greatest increase. While the exoskeleton was well tolerated, additional training with a focus on reducing knee flexor activity may lead to further improvements in crouch gait reduction.
Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul
2015-10-01
While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Control of Leg Movements Driven by EMG Activity of Shoulder Muscles
La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.
2014-01-01
During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569
Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.
La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P
2014-01-01
During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.
Tate, Jeremiah; Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin
2017-06-01
Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Controlled Laboratory Study; Cross-sectional. Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants' height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship ( r =-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved ( r =.62) and uninvolved limb ( r =.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Level 2a.
Finite element analysis of plantar fascia during walking: a quasi-static simulation.
Chen, Yen-Nien; Chang, Chih-Wei; Li, Chun-Ting; Chang, Chih-Han; Lin, Cheng-Feng
2015-01-01
The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis. © The Author(s) 2014.
Target Lagrangian kinematic simulation for particle-laden flows.
Murray, S; Lightstone, M F; Tullis, S
2016-09-01
The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.
Disambiguating seesaw models using invariant mass variables at hadron colliders
Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.
2016-01-19
Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less
Possible quasi-periodic ejections in quasar B1308+326
NASA Astrophysics Data System (ADS)
Qian, S. J.; Britzen, S.; Witzel, A.; Krichbaum, T. P.; Gan, H. Q.
2017-08-01
Context. The search for periodic features in flux variability and kinematics of superluminal components in blazars is capable of providing significant clues for the understanding of the physical processes in their central engines (black-hole/accretion-disk systems), especially concerning the formation and structure of their relativistic jets and radiation mechanisms. Aims: The jet swing on parsec-scales and the change of the ejection position angle of the superluminal components with time in the quasar B1308+326 (z = 0.997) are investigated as quasi-periodic behaviors. Methods: A previously published precessing jet nozzle model is applied to model the source kinematics and a possible jet precession period is found. Results: Based on the model fitting of the kinematics for a subset of components, it is shown that their kinematics, including the shape of the inner trajectories and the motion of the components, could be well fitted in terms of the precessing jet nozzle model and a precession period of 16.9 ± 0.3 yr is derived. Different precession mechanisms are discussed and compared. Conclusions: It is shown that the swing of the ejection position angle of the superluminal knots observed in B1308+326 may be due to the orbital motion of a putative supermassive black hole binary in its nucleus. Some relevant parameters of the binary model are estimated. We also discuss the spin-induced precession mechanism in the single black hole scenario and an estimate for the spin of the Kerr black hole is obtained.
Chemodynamical modelling of the galactic bulge and bar
NASA Astrophysics Data System (ADS)
Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin; Ness, Melissa
2017-09-01
We present the first self-consistent chemodynamical model fitted to reproduce data for the galactic bulge, bar and inner disc. We extend the Made-to-Measure method to an augmented phase-space including the metallicity of stars, and show its first application to the bar region of the Milky Way. Using data from the ARGOS and APOGEE (DR12) surveys, we adapt the recent dynamical model from Portail et al. to reproduce the observed spatial and kinematic variations as a function of metallicity, thus allowing the detailed study of the 3D density distributions, kinematics and orbital structure of stars in different metallicity bins. We find that metal-rich stars with [Fe/H] ≥ -0.5 are strongly barred and have dynamical properties that are consistent with a common disc origin. Metal-poor stars with [Fe/H] ≤ -0.5 show strong kinematic variations with metallicity, indicating varying contributions from the underlying stellar populations. Outside the central kpc, metal-poor stars are found to have the density and kinematics of a thick disc while in the inner kpc, evidence for an extra concentration of metal-poor stars is found. Finally, the combined orbit distributions of all metallicities in the model naturally reproduce the observed vertex deviations in the bulge. This paper demonstrates the power of Made-to-Measure chemodynamical models, that when extended to other chemical dimensions will be very powerful tools to maximize the information obtained from large spectroscopic surveys such as APOGEE, GALAH and MOONS.
A Kinematic Calibration Process for Flight Robotic Arms
NASA Technical Reports Server (NTRS)
Collins, Curtis L.; Robinson, Matthew L.
2013-01-01
The Mars Science Laboratory (MSL) robotic arm is ten times more massive than any Mars robotic arm before it, yet with similar accuracy and repeatability positioning requirements. In order to assess and validate these requirements, a higher-fidelity model and calibration processes were needed. Kinematic calibration of robotic arms is a common and necessary process to ensure good positioning performance. Most methodologies assume a rigid arm, high-accuracy data collection, and some kind of optimization of kinematic parameters. A new detailed kinematic and deflection model of the MSL robotic arm was formulated in the design phase and used to update the initial positioning and orientation accuracy and repeatability requirements. This model included a higher-fidelity link stiffness matrix representation, as well as a link level thermal expansion model. In addition, it included an actuator backlash model. Analytical results highlighted the sensitivity of the arm accuracy to its joint initialization methodology. Because of this, a new technique for initializing the arm joint encoders through hardstop calibration was developed. This involved selecting arm configurations to use in Earth-based hardstop calibration that had corresponding configurations on Mars with the same joint torque to ensure repeatability in the different gravity environment. The process used to collect calibration data for the arm included the use of multiple weight stand-in turrets with enough metrology targets to reconstruct the full six-degree-of-freedom location of the rover and tool frames. The follow-on data processing of the metrology data utilized a standard differential formulation and linear parameter optimization technique.
Computational knee ligament modeling using experimentally determined zero-load lengths.
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.
Symmetries for Light-Front Quantization of Yukawa Model with Renormalization
NASA Astrophysics Data System (ADS)
Żochowski, Jan; Przeszowski, Jerzy A.
2017-12-01
In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.
Linking morphology and motion: a test of a four-bar mechanism in seahorses.
Roos, Gert; Leysen, Heleen; Van Wassenbergh, Sam; Herrel, Anthony; Jacobs, Patric; Dierick, Manuel; Aerts, Peter; Adriaens, Dominique
2009-01-01
Syngnathid fishes (seahorses, pipefish, and sea dragons) possess a highly modified cranium characterized by a long and tubular snout with minute jaws at its end. Previous studies indicated that these species are extremely fast suction feeders with their feeding strike characterized by a rapid elevation of the head accompanied by rotation of the hyoid. A planar four-bar model is proposed to explain the coupled motion of the neurocranium and the hyoid. Because neurocranial elevation as well as hyoid rotation are crucial for the feeding mechanism in previously studied Syngnathidae, a detailed evaluation of this model is needed. In this study, we present kinematic data of the feeding strike in the seahorse Hippocampus reidi. We combined these data with a detailed morphological analysis of the important linkages and joints involved in rotation of the neurocranium and the hyoid, and we compared the kinematic measurements with output of a theoretical four-bar model. The kinematic analysis shows that neurocranial rotation never preceded hyoid rotation, thus indicating that hyoid rotation triggers the explosive feeding strike. Our data suggest that while neurocranium and hyoid initially (first 1.5 ms) behave as predicted by the four-bar model, eventually, the hyoid rotation is underestimated by the model. Shortening, or a posterior displacement of the sternohyoid muscle (of which the posterior end is confluent with the hypaxial muscles in H. reidi), probably explains the discrepancy between the model and our kinematic measurements. As a result, while four-bar modeling indicates a clear coupling between hyoid rotation and neurocranial elevation, the detailed morphological determination of the linkages and joints of this four-bar model remain crucial in order to fully understand this mechanism in seahorse feeding.
A fuzzy logic approach to modeling a vehicle crash test
NASA Astrophysics Data System (ADS)
Pawlus, Witold; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2013-03-01
This paper presents an application of fuzzy approach to vehicle crash modeling. A typical vehicle to pole collision is described and kinematics of a car involved in this type of crash event is thoroughly characterized. The basics of fuzzy set theory and modeling principles based on fuzzy logic approach are presented. In particular, exceptional attention is paid to explain the methodology of creation of a fuzzy model of a vehicle collision. Furthermore, the simulation results are presented and compared to the original vehicle's kinematics. It is concluded which factors have influence on the accuracy of the fuzzy model's output and how they can be adjusted to improve the model's fidelity.
ERIC Educational Resources Information Center
Cagande, Jeffrey Lloyd L.; Jugar, Richard R.
2018-01-01
Reversing the traditional classroom activities, in the flipped classroom model students view lectures at home and perform activities during class period inside the classroom. This study investigated the effect of a flipped classroom implementation on college physics students' motivation and understanding of kinematics graphs. A Solomon four-group…
Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki
2014-04-01
Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.
Multi-segment foot landing kinematics in subjects with chronic ankle instability.
De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip
2015-07-01
Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Femoral condyle curvature is correlated with knee walking kinematics in ungulates.
Sylvester, Adam D
2015-12-01
The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. © 2015 Wiley Periodicals, Inc.
Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang
2017-09-01
Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Athanassoula, E.
Various aspects of the internal kinematics and dynamics of galaxies are considered. The kinematics of the gas and the underlying mass distribution are discussed, including the systematics of H II rotation curves, H I velocity fields and rotation curves, the distribution of molecular clouds in spiral galaxies, gas at large radii, the implications for galactic mass models of vertical motion and the thickness of H I disks, and mass distribution and dark halos. The theory of spiral structure is addressed, along with conflicts and directions in spiral structure studies. Theories of warps are covered. Barred galaxies are treated, including their morphology, stellar kinematics, and dynamics, the stability of their disks, theoretical studies of their gas flows, and the formation of rings and lenses. Spheroidal systems are considered, including dynamics of early type galaxies, models of ellipticals and bulges, and interstellar matter in elliptical galaxies. Simulations and observational evidence for mergers are addressed, and the formation of galaxies and dynamics of globular cluster systems are examined. For individual items see A83-49202 to A83-49267
State-space decoding of primary afferent neuron firing rates
NASA Astrophysics Data System (ADS)
Wagenaar, J. B.; Ventura, V.; Weber, D. J.
2011-02-01
Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.
Lane changing trajectory planning and tracking control for intelligent vehicle on curved road.
Wang, Lukun; Zhao, Xiaoying; Su, Hao; Tang, Gongyou
2016-01-01
This paper explores lane changing trajectory planning and tracking control for intelligent vehicle on curved road. A novel arcs trajectory is planned for the desired lane changing trajectory. A kinematic controller and a dynamics controller are designed to implement the trajectory tracking control. Firstly, the kinematic model and dynamics model of intelligent vehicle with non-holonomic constraint are established. Secondly, two constraints of lane changing on curved road in practice (LCCP) are proposed. Thirdly, two arcs with same curvature are constructed for the desired lane changing trajectory. According to the geometrical characteristics of arcs trajectory, equations of desired state can be calculated. Finally, the backstepping method is employed to design a kinematic trajectory tracking controller. Then the sliding-mode dynamics controller is designed to ensure that the motion of the intelligent vehicle can follow the desired velocity generated by kinematic controller. The stability of control system is proved by Lyapunov theory. Computer simulation demonstrates that the desired arcs trajectory and state curves with B-spline optimization can meet the requirements of LCCP constraints and the proposed control schemes can make tracking errors to converge uniformly.
Spatial Rack Drives Pitch Configurations: Essence and Content
NASA Astrophysics Data System (ADS)
Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro
2018-03-01
The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.
Osth, Jonas; Olafsdóttir, Jóna Marín; Davidsson, Johan; Brolin, Karin
2013-11-01
The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males. The range of activity during steady state braking for males and females was 13-44% in the cervical and lumbar extensors, while antagonistic muscles showed a co-contraction of 2.3-19%. Seat belt pre-tension affects both the kinematic and muscle responses of drivers. In autonomous braking with standard restraints, muscle activation occurred in response to the inertial load. With pre-tensioned seat belts, EMG onset occurred earlier; between 71 ms and 176 ms after belt pre-tension. The EMG onset times decreased with repeated trials and were shorter for females than for males. With the results from this study, further improvement and validation of human models that incorporate active musculature will be made possible.
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
NASA Astrophysics Data System (ADS)
Golikov, N. S.; Timofeev, I. P.
2018-05-01
Efficiency increase of jaw crushers makes the foundation of rational kinematics and stiffening of the elements of the machine possible. Foundation of rational kinematics includes establishment of connection between operation mode parameters of the crusher and its technical characteristics. The main purpose of this research is just to establish such a connection. Therefore this article shows analytical procedure of getting connection between operation mode parameters of the crusher and its capacity. Theoretical, empirical and semi-empirical methods of capacity determination of a single-toggle jaw crusher are given, taking into account physico-mechanical properties of crushed material and kinematics of the working mechanism. When developing a mathematical model, the method of closed vector polygons by V. A. Zinoviev was used. The expressions obtained in the article give an opportunity to solve important scientific and technical problems, connected with finding the rational kinematics of the jaw crusher mechanism, carrying out a comparative assessment of different crushers and giving the recommendations about updating the available jaw crushers.
Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.
2017-12-01
The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.
NASA Astrophysics Data System (ADS)
Dienes, Keith R.; Su, Shufang; Thomas, Brooks
2015-03-01
In this paper, we examine the strategies and prospects for distinguishing between traditional dark-matter models and models with nonminimal dark sectors—including models of Dynamical Dark Matter—at hadron colliders. For concreteness, we focus on events with two hadronic jets and large missing transverse energy at the Large Hadron Collider (LHC). As we discuss, simple "bump-hunting" searches are not sufficient; probing nonminimal dark sectors typically requires an analysis of the actual shapes of the distributions of relevant kinematic variables. We therefore begin by identifying those kinematic variables whose distributions are particularly suited to this task. However, as we demonstrate, this then leads to a number of additional subtleties, since cuts imposed on the data for the purpose of background reduction can at the same time have the unintended consequence of distorting these distributions in unexpected ways, thereby obscuring signals of new physics. We therefore proceed to study the correlations between several of the most popular relevant kinematic variables currently on the market, and investigate how imposing cuts on one or more of these variables can impact the distributions of others. Finally, we combine our results in order to assess the prospects for distinguishing nonminimal dark sectors in this channel at the upgraded LHC.
Biomechanical Comparison of Three Perceived Effort Set Shots in Team Handball Players.
Plummer, Hillary A; Gascon, Sarah S; Oliver, Gretchen D
2017-01-01
Plummer, HA, Gascon, SS, and Oliver, GD. Biomechanical comparison of three perceived effort set shots in team handball players. J Strength Cond Res 31(1): 80-87, 2017-Shoulder injuries are prevalent in the sport of team handball; however, no guidelines currently exist in the implementation of an interval throwing protocol for players returning from an upper extremity injury. These guidelines exist for the sport of baseball, but team handball may present additional challenges due to greater ball mass that must be accounted for. The purpose of this study was to examine kinematic differences in the team handball set shot at 50, 75, and 100% effort which are common throwing intensities in throwing protocols. Eleven male team handball players (23.09 ± 3.05 years; 185.12 ± 8.33 cm; 89.65 ± 12.17 kg) volunteered. An electromagnetic tracking system was used to collect kinematic data at the pelvis, trunk, scapula, and shoulder. Kinematic differences at the shoulder, trunk, and pelvis were observed across effort levels throughout the set shot with most occurring at ball release and maximum internal rotation. Significant differences in ball speed were observed between all 3 effort level shots (p < 0.001). Team handball players are able to gauge the effort at which they shoot; however, it cannot be assumed that these speeds will be at a certain percentage of their maximum. The results of this study provide valuable evidence that can be used to prepare a team handball player to return to throwing activities.
Salimi-Badr, Armin; Ebadzadeh, Mohammad Mehdi; Darlot, Christian
2018-01-01
In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuti, L.; Sartoris, B.; Borgani, S.
We perform a maximum likelihood kinematic analysis of the two dynamically relaxed galaxy clusters MACS J1206.2-0847 at z =0.44 and RXC J2248.7-4431 at z =0.35 to determine the total mass profile in modified gravity models, using a modified version of the MAMPOSSt code of Mamon, Biviano and Bou and apos;e. Our work is based on the kinematic and lensing mass profiles derived using the data from the Cluster Lensing And Supernova survey with Hubble (hereafter CLASH) and the spectroscopic follow-up with the Very Large Telescope (hereafter CLASH-VLT). We assume a spherical Navarro-Frenk-White (NFW hereafter) profile in order to obtain amore » constraint on the fifth force interaction range λ for models in which the dependence of this parameter on the environment is negligible at the scale considered (i.e. λ= const ) and fixing the fifth force strength to the value predicted in f (R) gravity. We then use information from lensing analysis to put a prior on the other NFW free parameters. In the case of MACSJ 1206 the joint kinematic+lensing analysis leads to an upper limit on the effective interaction range λ≤1.61 mpc at Δχ{sup 2}=2.71 on the marginalized distribution. For RXJ 2248 instead a possible tension with the ΛCDM model appears when adding lensing information, with a lower limit λ≥0.14 mpc at Δχ{sup 2}=2.71. This is consequence of the slight difference between the lensing and kinematic data, appearing in GR for this cluster, that could in principle be explained in terms of modifications of gravity. We discuss the impact of systematics and the limits of our analysis as well as future improvements of the results obtained. This work has interesting implications in view of upcoming and future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass reconstruction for a large number of galaxy clusters.« less
Kinematic and diabatic vertical velocity climatologies from a chemistry climate model
NASA Astrophysics Data System (ADS)
Marinke Hoppe, Charlotte; Ploeger, Felix; Konopka, Paul; Müller, Rolf
2016-05-01
The representation of vertical velocity in chemistry climate models is a key element for the representation of the large-scale Brewer-Dobson circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10-year simulation are provided for both kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely, upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities and analyze the impact of residual circulation and mixing processes on the age of air. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows a younger mean age of air in the inner tropical upwelling branch and an older mean age in the extratropical tropopause region.
Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël
2016-01-01
The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.
Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël
2016-01-01
The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586
Heard, B J; Beveridge, J E; Atarod, M; O'Brien, E J; Rolian, C; Frank, C B; Hart, D A; Shrive, N G
2017-05-23
Many patients who undergo anterior cruciate ligament (ACL) reconstructive surgery develop post-traumatic osteoarthritis (PTOA). ACL reconstructive surgery may not fully restore pre-injury joint biomechanics, thereby resulting in further joint damage and contributing to the development of PTOA. In an ovine model of idealized ACL reconstruction (ACL-R), it has been shown that signs of PTOA develop within surgical joints by 20 weeks post-surgery. The aim of the present study was to investigate whether altered kinematics contribute to early PTOA development within ACL-R joints of the ovine injury model by comparing the gait of these surgical animals to the gait of a stable normal control group, and an unstable injury group in which the ACL and medial collateral ligament (MCL) had been transected. Fifteen skeletally mature female sheep were allocated evenly into 3 treatment groups: normal control, ACL-R, and ACL/MCL Tx (each group n = 5). Each animal's gait was recorded at baseline, 4 weeks post injury, and 20 weeks post injury. Principal component analysis (PCA) was used to identify the kinematic patterns that may be discriminant between treatment groups. Results from previous studies were referenced to present the amount of gross PTOA-like changes that occurred in the joints. ACL-R and ACL/MCL transected (Tx) animals developed a similar amount of early PTOA-like changes within the surgical joints, but differed significantly in the amount of kinematic change present at 20 weeks post-surgery. We showed that the stifle joint kinematics of ACL/MCL Tx differed significantly from those of CTRL and the majority of ACL-R animals, while no significant differences in joint kinematic changes were found between ACL-R and CTRL animals. These results suggest that the early PTOA-like changes reported in the ACL-R model cannot be attributed exclusively to post-surgical kinematic changes, and therefore biologic components in the post-injury environment must be contributing significantly to PTOA development.
Finite element analysis of unicompartmental knee arthroplasty.
Hopkins, Andrew R; New, Andrew M; Rodriguez-y-Baena, Ferdinando; Taylor, Mark
2010-01-01
Concerns over accelerated damage to the untreated compartment of the knee following unicompartmental knee arthroplasty (UKA), as well as the relatively poor success rates observed for lateral as opposed to the medial arthroplasty, remain issues for attention. Finite element analysis (FEA) was used to assess changes to the kinematics and potential for cartilage damage across the knee joint in response to the implantation of the Oxford Mobile Bearing UKA. FE models of lateral and medial compartment arthroplasty were developed, in addition to a healthy natural knee model, to gauge changes incurred through the arthroplasty. Varus-valgus misalignments were introduced to the femoral components to simulate surgical inaccuracy or over-correction. Boundary conditions from the Stanmore knee simulator during the stance phase of level gait were used. AP translations of the tibia in the medial UKA models were comparable to the behaviour of the natural knee models (+/-0.6mm deviation from pre-operative motion). Following lateral UKA, 4.1mm additional posterior translation of the tibia was recorded than predicted for the natural knee. IE rotations of the medial UKA models were less consistent with the pre-operative knee model than the lateral UKA models (7.7 degrees vs. 3.6 degrees deviation). Varus misalignment of the femoral prosthesis was more influential than valgus for medial UKA kinematics, whereas in lateral UKA, a valgus misalignment of the femoral prosthesis was most influential on the kinematics. Resection of the cartilage in the medial compartment reduced the overall risk of progressive OA in the knee, whereas removing the cartilage from the lateral compartment, and in particular introducing a valgus femoral misalignment, increased the overall risk of progressive OA in the knee. Based on these results, under the conditions tested herein, both medial and lateral UKA can be said to induce kinematics of the knee which could be considered broadly comparable to those of the natural knee, and that even a 10 degrees varus-valgus misalignment of the femoral component may not induce highly irregular kinematics. However, elevated posterior translation of the tibia in lateral UKA and large excursions of the insert may explain the higher incidence of bearing dislocation observed in some clinical studies. (c) 2009 IPEM. All rights reserved.
Study on individual stochastic model of GNSS observations for precise kinematic applications
NASA Astrophysics Data System (ADS)
Próchniewicz, Dominik; Szpunar, Ryszard
2015-04-01
The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.
Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.
2016-01-01
Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042
Miguel-Andres, Israel; Alonso-Rasgado, Teresa; Walmsley, Alan; Watts, Adam C
2017-03-01
The specific contribution of the anconeus muscle to elbow function is still uncertain. This study aimed to investigate the effect on elbow kinematics and kinetics of blocking anconeus using lidocaine. Ten healthy volunteers performed experimental trials involving flexion-extension and supination-pronation movements in horizontal and sagittal planes. Inertial sensors and surface electromyography were used to record elbow kinematics and kinetics and electrical activity from the anconeus, biceps and triceps brachii before and after blocking anconeus. Moreover, a finite element model of the elbow was created to further investigate the contribution of anconeus to elbow kinematics. The electrical activity results from the trials before blocking clearly indicated that activity of anconeus was increased during extension, suggesting that it behaves as an extensor. However, blocking anconeus had no effect on the elbow kinematics and kinetics, including the angular velocity, net torque and power of the joint. The electrical activity of the biceps and triceps brachii did not alter significantly following anconeus blocking. These results suggest that anconeus is a weak extensor, and the relative small contribution of anconeus to extension before blocking was compensated by triceps brachii. The finite element results indicated that anconeus does not contribute significantly to elbow kinematics.
NASA Astrophysics Data System (ADS)
Larionov, M. G.
On the basis of a new examination of the Michelson-Morley experiment, a theory is suggested, based on two principles and not on Lorentz transformations. The physical vacuum conception was revisited. Under these assumptions some parameters of the kinematic model of SS433 were reconsidered. A coincidence of some data of the theory with the special relativity conclusions for SS433 was noted in a plan of further investigations.
On the Collision Nature of Two Coronal Mass Ejections: A Review
NASA Astrophysics Data System (ADS)
Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang
2017-08-01
Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.
Inter-segmental motions of the foot: differences between younger and older healthy adult females.
Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Lee, Doo Jae; Bae, Kee Jeong; Lee, Kyoung Min; Choi, In Ho
2017-01-01
Although accumulative evidence exists that support the applicability of multi-segmental foot models (MFMs) in evaluating foot motion in various pathologic conditions, little is known of the effect of aging on inter-segmental foot motion. The objective of this study was to evaluate differences in inter-segmental motion of the foot between older and younger adult healthy females during gait using a MFM with 15-marker set. One hundred symptom-free females, who had no radiographic evidence of osteoarthritis, were evaluated using MFM with 15-marker set. They were divided into young ( n = 50, 20-35 years old) and old ( n = 50, 60-69 years old) groups. Coefficients of multiple correlations were evaluated to assess the similarity of kinematic curve. Inter-segmental angles (hindfoot, forefoot, and hallux) were calculated at each gait phase. To evaluate the effect of gait speed on intersegmental foot motion, subgroup analysis was performed according to the similar speed of walking. Kinematic curves showed good or excellent similarity in most parameters. Range of motion in the sagittal ( p < 0.001) and transverse ( p = 0.001) plane of the hallux, and sagittal ( p = 0.023) plane of the forefoot was lower in older females. The dorsiflexion ( p = 0.001) of the hallux at terminal stance and pre-swing phases was significantly lower in older females. When we compared young and older females with similar speed, these differences remained. Although the overall kinematic pattern was similar between young and older females, reduced range of inter-segmental motion was observed in the older group. Our results suggest that age-related changes need to be considered in studies evaluating inter-segmental motion of the foot.
THE SPLASH SURVEY: KINEMATICS OF ANDROMEDA's INNER SPHEROID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorman, Claire E.; Guhathakurta, Puragra; Fardal, Mark A., E-mail: cdorman@ucolick.org, E-mail: raja@ucolick.org, E-mail: fardal@astro.umass.edu
2012-06-20
The combination of large size, high stellar density, high metallicity, and Sersic surface brightness profile of the spheroidal component of the Andromeda galaxy (M31) within R{sub proj} {approx} 20 kpc suggests that it is unlike any subcomponent of the Milky Way. In this work we capitalize on our proximity to and external view of M31 to probe the kinematical properties of this 'inner spheroid'. We employ a Markov chain Monte Carlo (MCMC) analysis of resolved stellar kinematics from Keck/DEIMOS spectra of 5651 red giant branch stars to disentangle M31's inner spheroid from its stellar disk. We measure the mean velocitymore » and dispersion of the spheroid in each of five spatial bins after accounting for a locally cold stellar disk as well as the Giant Southern Stream and associated tidal debris. For the first time, we detect significant spheroid rotation (v{sub rot} {approx} 50 km s{sup -1}) beyond R{sub proj} {approx} 5 kpc. The velocity dispersion decreases from about 140 km s{sup -1} at R{sub proj} = 7 kpc to 120 km s{sup -1} at R{sub proj} = 14 kpc, consistent to 2{sigma} with existing measurements and models. We calculate the probability that a given star is a member of the spheroid and find that the spheroid has a significant presence throughout the spatial extent of our sample. Lastly, we show that the flattening of the spheroid is due to velocity anisotropy in addition to rotation. Though this suggests that the inner spheroid of M31 more closely resembles an elliptical galaxy than a typical spiral galaxy bulge, it should be cautioned that our measurements are much farther out (2-14r{sub eff}) than for the comparison samples.« less
Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
Peng, Jifeng; Alben, Silas
2012-03-01
In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion.