Advanced techniques for determining long term compatibility of materials with propellants
NASA Technical Reports Server (NTRS)
Green, R. L.
1972-01-01
The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.
Techniques for Down-Sampling a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces
Measurement of water pressure and deformation with time domain reflectometry cables
NASA Astrophysics Data System (ADS)
Dowding, Charles H.; Pierce, Charles E.
1995-05-01
Time domain reflectometry (TDR) techniques can be deployed to measure water pressures and relative dam abutment displacement with an array of coaxial cables either drilled and grouted or retrofitted through existing passages. Application of TDR to dam monitoring requires determination of appropriate cable types and methods to install these cables in existing dams or during new construction. This paper briefly discusses currently applied and developing TDR techniques and describes initial design considerations for TDR-based dam instrumentation. Water pressure at the base of or within the dam can be determined by measuring the water level within a hollow or air-filled coaxial cable. The ability to retrofit existing porous stone-tipped piezometers is an attractive attribute of the TDR system. Measurement of relative lateral movement can be accomplished by monitoring local shearing of a solid polyethylene-filled coaxial cable at the interface of the dam base and foundation materials or along adversely oriented joints. Uplift can be recorded by measuring cable extension as the dam displaces upward off its foundation. Since each monitoring technique requires measurements with different types of coaxial cables, a variety may be installed within the array. Multiplexing of these cables will allow monitoring from a single pulser, and measurements can be recorded on site or remotely via a modem at any time.
NASA Technical Reports Server (NTRS)
Miles, J. H.; Stevens, G. H.; Leininger, G. G.
1975-01-01
Ground reflections generate undesirable effects on acoustic measurements such as those conducted outdoors for jet noise research, aircraft certification, and motor vehicle regulation. Cepstral techniques developed in speech processing are adapted to identify echo delay time and to correct for ground reflection effects. A sample result is presented using an actual narrowband sound pressure level spectrum. The technique can readily be adapted to existing fast Fourier transform type spectrum measurement instrumentation to provide field measurements/of echo time delays.
Three dimensional scattering center imaging techniques
NASA Technical Reports Server (NTRS)
Younger, P. R.; Burnside, W. D.
1991-01-01
Two methods to image scattering centers in 3-D are presented. The first method uses 2-D images generated from Inverse Synthetic Aperture Radar (ISAR) measurements taken by two vertically offset antennas. This technique is shown to provide accurate 3-D imaging capability which can be added to an existing ISAR measurement system, requiring only the addition of a second antenna. The second technique uses target impulse responses generated from wideband radar measurements from three slightly different offset antennas. This technique is shown to identify the dominant scattering centers on a target in nearly real time. The number of measurements required to image a target using this technique is very small relative to traditional imaging techniques.
Comparison of non-invasive tear film stability measurement techniques.
Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P
2018-01-01
Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p < 0.001) but not between the hand-held device and the instrument-mounted techniques (all p > 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p < 0.05), while no significant differences were observed between the two instrument-mounted devices (all p > 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemer, B; Hubbard, L; Groves, E
2015-06-15
Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volumemore » CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.« less
Use of Ultrasonic Technology for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.
1997-01-01
In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.
Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology
NASA Technical Reports Server (NTRS)
1991-01-01
Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.
NASA Astrophysics Data System (ADS)
Larkin, Serguey Y.; Anischenko, Serguei E.; Kamyshin, Vladimir A.
1996-12-01
The frequency and power measurements technique using ac Josephson effect is founded on deviation of the voltagecurrent curve of irradiated Josephson junction from its autonomous voltage-current (V-I) curve [1]. Generally this technique, in case of harmonic incident radiation, may be characterized in the following manner: -to measure frequency of the hannonic microwave signal inadiating the Josephson junction and to estimate its intensity using functional processing of the voltage-current curves, one should identify the "Special feature existence" zone on the voltage-current curves. The "Special feature existence" zone results the junction's response to the incident radiation. As this takes place, it is necessary to define the coordinate of a central point of the "Special feature existence" zone on the curve and to estimate the deviation of the V-I curve of irradiated Josephson junction from its autonomous V-I curve. The practical implementation of this technique place at one's disposal a number of algorithms, which enable to realize frequency measurements and intensity estimation with a particular accuracy for incident radiation. This paper presents two rational algorithms to determine the aggregate of their merits and disadvantages and to choose more optimal one.
Image Analysis Technique for Material Behavior Evaluation in Civil Structures
Moretti, Michele; Rossi, Gianluca
2017-01-01
The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques. PMID:28773129
Image Analysis Technique for Material Behavior Evaluation in Civil Structures.
Speranzini, Emanuela; Marsili, Roberto; Moretti, Michele; Rossi, Gianluca
2017-07-08
The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques.
3D shape measurement of automotive glass by using a fringe reflection technique
NASA Astrophysics Data System (ADS)
Skydan, O. A.; Lalor, M. J.; Burton, D. R.
2007-01-01
In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.
NASA Astrophysics Data System (ADS)
Akons, Kfir; Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir
2016-03-01
Values of blood oxygenation levels are useful for assessing heart and lung conditions, and are frequently monitored during routine patient care. Independent measurement of the oxygen saturation in capillary blood, which is significantly different from that of arterial blood, is important for diagnosing tissue hypoxia and for increasing the accuracy of existing techniques that measure arterial oxygen saturation. Here, we developed a simple, non-invasive technique for measuring the reflected spectra from individual capillary vessels within a human lip, allowing local measurement of the blood oxygen saturation. The optical setup includes a spatially incoherent broadband light that was focused onto a specific vessel below the lip surface. Backscattered light was imaged by a camera for identifying a target vessel and pointing the illumination beam to its cross section. Scattered light from the vessel was then collected by a single-mode fiber and analyzed by a fast spectrometer. Spectra acquired from small capillary vessels within a volunteer lip showed the characteristic oxyhemoglobin absorption bands in real time and with a high signal-to-noise ratio. Measuring capillary oxygen saturation using this technique would potentially be more accurate compared to existing pulse oximetry techniques due to its insensitivity to the patient's skin color, pulse rate, motion, and medical condition. It could be used as a standalone endoscopic technique for measuring tissue hypoxia or in conjunction with conventional pulse oximetry for a more accurate measurement of oxygen transport in the body.
Review of phase measuring deflectometry
Huang, Lei; Idir, Mourad; Zuo, Chao; ...
2018-04-07
As a low cost, full-field three-dimensional shape measurement technique with high dynamic range, Phase Measuring Deflectometry (PMD) has been studied and improved to be a simple and effective manner to inspect specular reflecting surfaces. In this review, the fundamental principle and the basic concepts of PMD technique are introduced and followed by a brief overview of its key developments since it was first proposed. In addition, the similarities and differences compared with other related techniques are discussed to highlight the distinguishing features of the PMD technique. In conclusion, we will address the major challenges, the existing solutions and the remainingmore » limitations in this technique to provide some suggestions for potential future investigations.« less
From air to rubber: New techniques for measuring and replicating mouthpieces, bocals, and bores
NASA Astrophysics Data System (ADS)
Fuks, Leonardo
2002-11-01
The history of musical instruments comprises a long genealogy of models and prototypes that results from a combination of copying existing specimens with the change in constructive parameters, and the addition of new devices. In making wind instruments, several techniques have been traditionally employed for extracting the external and internal dimensions of toneholes, air columns, bells, and mouthpieces. In the twentieth century, methods such as pulse reflectometry, x-ray, magnetic resonance, and ultrasound imaging have been made available for bore measurement. Advantages and drawbacks of the existing methods are discussed and a new method is presented that makes use of the injection and coating of silicon rubber, for accurate molding of the instrument. This technique is harmless to all traditional materials, being indicated also for measurements of historical instruments. The paper presents dimensional data obtained from clarinet and saxophone mouthpieces. A set of replicas of top quality clarinet and saxophone mouthpieces, trombone bocals, and flute headjoints is shown, with comparative acoustical and performance analyses. The application of such techniques for historical and modern instrument analysis, restoration, and manufacturing is proposed.
A micropatterning and image processing approach to simplify measurement of cellular traction forces
Polio, Samuel R.; Rothenberg, Katheryn E.; Stamenović, Dimitrije; Smith, Michael L.
2012-01-01
Quantification of the traction forces that cells apply to their surroundings has been critical to the advancement of our understanding of cancer, development and basic cell biology. This field was made possible through the development of engineered cell culture systems that permit optical measurement of cell-mediated displacements and computational algorithms that allow conversion of these displacements into stresses and forces. Here, we present a novel advancement of traction force microscopy on polyacrylamide (PAA) gels that addresses limitations of existing technologies. Through an indirect patterning technique, we generated PAA gels with fluorescent 1 μm dot markers in a regularized array. This improves existing traction measurements since (i) multiple fields of view can be measured in one experiment without the need for cell removal; (ii) traction vectors are modeled as discrete point forces, and not as a continuous field, using an extremely simple computational algorithm that we have made available online; and (iii) the pattern transfer technique is amenable to any of the published techniques for producing patterns on glass. In the future, this technique will be used for measuring traction forces on complex patterns with multiple, spatially distinct ligands in systems for applying strain to the substrate, and in sandwich cultures that generate quasi-three-dimensional environments for cells. PMID:21884832
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2007-01-01
An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.
Novel measurement techniques (development and analysis of silicon solar cells near 20% effciency)
NASA Technical Reports Server (NTRS)
Wolf, M.; Newhouse, M.
1986-01-01
Work in identifying, developing, and analyzing techniques for measuring bulk recombination rates, and surface recombination velocities and rates in all regions of high-efficiency silicon solar cells is presented. The accuracy of the previously developed DC measurement system was improved by adding blocked interference filters. The system was further automated by writing software that completely samples the unkown solar cell regions with data of numerous recombination velocity and lifetime pairs. The results can be displayed in three dimensions and the best fit can be found numerically using the simplex minimization algorithm. Also described is a theoretical methodology to analyze and compare existing dynamic measurement techniques.
Novel measurement techniques (development and analysis of silicon solar cells near 20% effciency)
NASA Astrophysics Data System (ADS)
Wolf, M.; Newhouse, M.
Work in identifying, developing, and analyzing techniques for measuring bulk recombination rates, and surface recombination velocities and rates in all regions of high-efficiency silicon solar cells is presented. The accuracy of the previously developed DC measurement system was improved by adding blocked interference filters. The system was further automated by writing software that completely samples the unkown solar cell regions with data of numerous recombination velocity and lifetime pairs. The results can be displayed in three dimensions and the best fit can be found numerically using the simplex minimization algorithm. Also described is a theoretical methodology to analyze and compare existing dynamic measurement techniques.
Inverse-dispersion technique for assessing lagoon gas emissions
USDA-ARS?s Scientific Manuscript database
Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...
ERIC Educational Resources Information Center
Harder, Valerie S.; Stuart, Elizabeth A.; Anthony, James C.
2010-01-01
There is considerable interest in using propensity score (PS) statistical techniques to address questions of causal inference in psychological research. Many PS techniques exist, yet few guidelines are available to aid applied researchers in their understanding, use, and evaluation. In this study, the authors give an overview of available…
NASA Astrophysics Data System (ADS)
Golobokov, M.; Danilevich, S.
2018-04-01
In order to assess calibration reliability and automate such assessment, procedures for data collection and simulation study of thermal imager calibration procedure have been elaborated. The existing calibration techniques do not always provide high reliability. A new method for analyzing the existing calibration techniques and developing new efficient ones has been suggested and tested. A type of software has been studied that allows generating instrument calibration reports automatically, monitoring their proper configuration, processing measurement results and assessing instrument validity. The use of such software allows reducing man-hours spent on finalization of calibration data 2 to 5 times and eliminating a whole set of typical operator errors.
TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN 19 MARYLAND HOUSES
The report gives results of testing of indoor radon reduction techniques in 19 existing houses in Maryland. The focus was on passive measures: various passive soil depressurization methods, where natural wind and temperature effects are utilized to develop suction in the system; ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.
2015-06-15
The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when themore » bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.« less
Recent flight-test results of optical airdata techniques
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.
1993-01-01
Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.
NASA Astrophysics Data System (ADS)
Chen, Xi; Ogasawara, Nagahisa; Zhao, Manhong; Chiba, Norimasa
2007-08-01
Indentation is widely used to extract material elastoplastic properties from the measured force-displacement curves. One of the most well-established indentation techniques utilizes dual (or plural) sharp indenters (which have different apex angles) to deduce key parameters such as the elastic modulus, yield stress, and work-hardening exponent for materials that obey the power-law constitutive relationship. However, the uniqueness of such analysis is not yet systematically studied or challenged. Here we show the existence of "mystical materials", which have distinct elastoplastic properties yet they yield almost identical indentation behaviors, even when the indenter angle is varied in a large range. These mystical materials are, therefore, indistinguishable by many existing indentation analyses unless extreme (and often impractical) indenter angles are used. Explicit procedures of deriving these mystical materials are established, and the general characteristics of the mystical materials are discussed. In many cases, for a given indenter angle range, a material would have infinite numbers of mystical siblings, and the existence maps of the mystical materials are also obtained. Furthermore, we propose two alternative techniques to effectively distinguish these mystical materials. The study in this paper addresses the important question of the uniqueness of indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material elastoplastic properties.
NASA Astrophysics Data System (ADS)
Abbasi, Madiha; Imran Baig, Mirza; Shafique Shaikh, Muhammad
2013-12-01
At present existence OTDR based techniques have become a standard practice for measuring chromatic dispersion distribution along an optical fiber transmission link. A constructive measurement technique has been offered in this paper, in which a four wavelength bidirectional optical time domain reflectometer (OTDR) has been used to compute the chromatic dispersion allocation beside an optical fiber transmission system. To improve the correction factor a novel formulation has been developed, which leads to an enhanced and defined measurement. The investigational outcomes obtained are in good harmony.
Summary of Global Ozone Measurements Collected from Field Campaigns
NASA Astrophysics Data System (ADS)
Aguilera, J.; Salazar, V.
2013-12-01
The goal of the NCAR Earth Observing Laboratory data services is to advance science through delivering high-quality project data and meta data in ways that are as transparent, secure, and easily accessible as possible. By using EOL's existing infrastructure and applying data mining techniques, we explored global ozone measurements collected during EOL supported airborne field campaigns. This study highlights ozone concentrations addressing a diverse set of science objectives, and how these timed measurements contribute to the understanding of the state of the atmosphere and evolution of the different measuring techniques.
Antiterrorism Measures For Historic Properties
2006-09-01
steel jacket on an existing concrete column (Morley Builders 1997...of the material. Figure 17. Seismic application of a steel jacket on an existing concrete column (Morley Builders 1997). Columns — Reinforced...from a previously unreinforced structure, so future irreversibility of the technique need not disqualify it from consideration by project teams. ERDC
Improving Objective Measures of Mobility.
ERIC Educational Resources Information Center
Dodds, Allan G.; And Others
1983-01-01
The article examines shortcomings in existing objective measures of mobility for blind persons in the light of evaluative experiences and demonstrates improvements in reliability, together with a new technique for tracking pavement position. It refutes the idea that it is not possible to measure improvement in performance objectively. (Author/CL)
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance; ...
2018-03-30
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael
Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less
2013-09-01
existing MR scanning systems providing the ability to visualize structures that are impossible with current methods . Using techniques to concurrently...and unique system for analysis of affected brain regions and coupled with other imaging techniques and molecular measurements holds significant...scanning systems providing the ability to visualize structures that are impossible with current methods . Using techniques to concurrently stain
A modal separation measurement technique for broadband noise propagating inside circular ducts
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Johnston, J. P.
1981-01-01
A measurement technique which separates broadband noise propagating inside circular ducts into the acoustic duct modes is developed. The technique is also applicable to discrete frequency noise. The acoustic modes are produced by weighted combinations of the instantaneous outputs of microphones spaced around the duct circumference. The technique is compared with the cross spectral density approach presently available and found to have certain advantages, and disadvantages. Considerable simplification of both the new technique and the cross spectral density approach occurs when no correlation exists between different circumferential mode orders. The properties leading to uncorrelated modes and experimental tests which verify this condition are discussed. The modal measurement technique is applied to the case of broadband noise generated by flow through a coaxial obstruction (nozzle or orifice) in a pipe. Different circumferential mode orders are shown to be uncorrelated for this type of noise source.
Wang, Yajun; Laughner, Jacob I.; Efimov, Igor R.; Zhang, Song
2013-01-01
This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151
Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan
There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of lessmore » than 0.2% vol.« less
Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Jog, Mayank Anant
Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.
Novel Technique for Making Measurements of SO2 with a Standalone Sonde
NASA Astrophysics Data System (ADS)
Flynn, J. H., III; Morris, G. A.; Kotsakis, A.; Alvarez, S. L.
2017-12-01
A novel technique has been developed to measure SO2 using the existing electrochemical concentration cell (ECC) ozonesonde technology. An interference in the ozone measurement occurs when SO2 is introduced to the iodide redox reaction causing the signal to decrease and go to zero when [O3] < [SO2]. The original method of measuring SO2 with ozonesondes involves launching two ozonesondes together with one ozonesonde unmodified and one with an SO2 filter [Morris et al, 2010]. By taking the difference between these profiles, the SO2 profile could be determined as long as [O3] > [SO2]. A new method allows for making a direct measurement of SO2 without the need for the dual payload by modifying the existing design. The ultimate goal is to be able to measure SO2 vertical profiles in the atmosphere, such as in plumes from anthropogenic or natural sources (i.e. volcanic eruptions). The benefits of an SO2 sonde include the ability to make measurements where aircraft cannot safely fly, such as in volcanic plumes, and to provide validation of SO2 columns from satellites.
Description and Evaluation of a Measurement Technique for Assessment of Performing Gender
Harris, Kathleen Mullan; Halpern, Carolyn Tucker
2016-01-01
The influence of masculinity and femininity on behaviors and outcomes has been extensively studied in social science research using various measurement strategies. In the present paper, we describe and evaluate a measurement technique that uses existing survey items to capture the extent to which an individual behaves similarly to their same-gender peers. We use data from the first four waves of The National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative sample of adolescents (age 12–18) in the United States who were re-interviewed at ages 13–19, 18–26, and 24–32. We estimate split-half reliability and provide evidence that supports the validity of this measurement technique. We demonstrate that the resulting measure does not perform as a trait measure and is associated with involvement in violent fights, a pattern consistent with theory and empirical findings. This measurement technique represents a novel approach for gender researchers with the potential for expanding our current knowledge base. PMID:28630528
Joint temporal density measurements for two-photon state characterization.
Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey
2008-10-10
We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.
Quantifying short-lived events in multistate ionic current measurements.
Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute
2014-02-25
We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.
Monopulse azimuth measurement in the ATC Radar Beacon System
DOT National Transportation Integrated Search
1971-12-01
A review is made of the application of sum-difference beam : techniques to the ATC Radar Beacon System. A detailed error analysis : is presented for the case of a monopulse azimuth measurement based : on the existing beacon antenna with a modified fe...
DOT National Transportation Integrated Search
1981-09-01
Measurement of wheel/rail characteristics generates information for improvement of design tools such as model validation, establishment of load spectra and vehicle/track system interaction. Existing and new designs are assessed from evaluation of veh...
3D shape measurement of moving object with FFT-based spatial matching
NASA Astrophysics Data System (ADS)
Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun
2018-03-01
This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.
Two color holographic interferometry for microgravity application
NASA Technical Reports Server (NTRS)
Trolinger, James D.; Weber, David C.
1995-01-01
Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.
NASA Technical Reports Server (NTRS)
Younglove, B.; Mccarty, R. D.
1979-01-01
A virial equation of state for nitrogen was determined by use of newly measured speed-of-sound data and existing pressure-density-temperature data in a multiproperty-fitting technique. The experimental data taken were chosen to optimize the equation of state for a pressure range of 0 to 10 atm and for a temperature range of 60 to 350 K. Comparisons are made for thermodynamic properties calculated both from the new equation and from existing equations of state.
Measurement of surface microtopography
NASA Technical Reports Server (NTRS)
Wall, S. D.; Farr, T. G.; Muller, J.-P.; Lewis, P.; Leberl, F. W.
1991-01-01
Acquisition of ground truth data for use in microwave interaction modeling requires measurement of surface roughness sampled at intervals comparable to a fraction of the microwave wavelength and extensive enough to adequately represent the statistics of a surface unit. Sub-centimetric measurement accuracy is thus required over large areas, and existing techniques are usually inadequate. A technique is discussed for acquiring the necessary photogrammetric data using twin film cameras mounted on a helicopter. In an attempt to eliminate tedious data reduction, an automated technique was applied to the helicopter photographs, and results were compared to those produced by conventional stereogrammetry. Derived root-mean-square (RMS) roughness for the same stereo-pair was 7.5 cm for the automated technique versus 6.5 cm for the manual method. The principal source of error is probably due to vegetation in the scene, which affects the automated technique but is ignored by a human operator.
Non-Conventional Techniques for the Study of Phase Transitions in NiTi-Based Alloys
NASA Astrophysics Data System (ADS)
Nespoli, Adelaide; Villa, Elena; Passaretti, Francesca; Albertini, Franca; Cabassi, Riccardo; Pasquale, Massimo; Sasso, Carlo Paolo; Coïsson, Marco
2014-07-01
Differential scanning calorimetry and electrical resistance measurements are the two most common techniques for the study of the phase transition path and temperatures of shape memory alloys (SMA) in stress-free condition. Besides, it is well known that internal friction measurements are also useful for this purpose. There are indeed some further techniques which are seldom used for the basic characterization of SMA transition: dilatometric analysis, magnetic measurements, and Seebeck coefficient study. In this work, we discuss the attitude of these techniques for the study of NiTi-based phase transition. Measurements were conducted on several fully annealed Ni50- x Ti50Cu x samples ranging from 3 to 10 at.% in Cu content, fully annealed at 850 °C for 1 h in vacuum and quenched in water at room temperature. Results show that all these techniques are sensitive to phase transition, and they provide significant information about the existence of intermediate phases.
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.
Liberman, Vladimir; Smith, Melissa; Weaver, Isaac; Rothschild, Mordechai
2018-05-20
Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.
FIELD MEASUREMENTS OF CONTAMINANT FLUX BY INTEGRAL PUMPING TESTS (SAN FRANCISCO, CA)
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of flux measurements before and af...
PERFORMANCE OF A NEW DIFFUSIVE SAMPLER FOR HG0 DETERMINATION IN THE TROPOSPHERE
Mercury behaves uniquely in the atmosphere due to its volatility and long lifetime. The existing methods for measuring atmospheric mercury are either expensive or labour intensive. The present paper presents a new measurement technique, the diffusive sampler, that is portable, in...
Automatic dilution gaging of rapidly varying flow
Duerk, M.D.
1983-01-01
The analysis showed that the discharges measured by dye-dilution techniques were generally within ± 10 percent of the discharges determined from ratings established by current-meter measurements. Larger differences were noted at the start of and on the rising limb of four hydrographs. Of the 20 storms monitored, dilution measurements on 17 were of acceptable accuracy. Peak discharges from the open-channel site ranged from 0 to 12 percent departures from the existing rating whereas the comparison of peak discharge at the storm sewer site ranged from 0 to 5 percent departures from the existing rating.
Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.
2010-01-01
Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147
A Cost-Effectiveness/Benefit Analysis Model for Postsecondary Vocational Programs. Technical Report.
ERIC Educational Resources Information Center
Kim, Jin Eun
A cost-effectiveness/benefit analysis is defined as a technique for measuring the outputs of existing and new programs in relation to their specified program objectives, against the costs of those programs. In terms of its specific use, the technique is conceptualized as a systems analysis method, an evaluation method, and a planning tool for…
Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety
NASA Technical Reports Server (NTRS)
Yost, William T.; Perey, Daniel F.; Cramer, Elliott
2006-01-01
We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.
a Method for the Measurements of Children's Feet
NASA Astrophysics Data System (ADS)
Bernard, , M.; Buffevant, B.; Querio, R.; Rigal, R.
1980-07-01
The Centre Technique du Cuir (Leather Technical Center) has been entrusted with the task of measuring children's feet. A new equipement has been devised which makes the precision measures sure and which is quick to give informations. The paper will present : 1 - the existing engineerings, 2 - the research's and analysis's methodology, 3 - the CTC apparatus actually used in schools.
Direct measurement of local material properties within living embryonic tissues
NASA Astrophysics Data System (ADS)
Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger
The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.
Rectenna array measurement results
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolen, James; Harris, Philip; Marzani, Simone
Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.
Microwave holographic metrology for antenna diagnosis
NASA Astrophysics Data System (ADS)
Rahmat-Samii, Y.
1990-11-01
Advances in antenna diagnostic methodologies have been very significant in recent years. In particular, microwave holographic diagnostic techniques have been applied very successfully in improving the performance of reflector and array antennas. These techniques use the knowledge of the measured amplitude and phase of the antenna radiated fields and then take advantage of the existing Fourier transform relationships between the radiated fields and the effective aperture or current distribution to eventually determine the reflector surface or array excitation coefficients anomalies. In this paper an overview of the recent developments in applying microwave holography is presented. The theoretical, numerical and measurement aspects of this technique is detailed by providing representative results.
Anisotropic thermal conductivity of thin polycrystalline oxide samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, A., E-mail: abhishektiwariiitr@gmail.com; Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800; Boussois, K.
2013-11-15
This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for suchmore » anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.« less
Measurement of lung volumes from supine portable chest radiographs.
Ries, A L; Clausen, J L; Friedman, P J
1979-12-01
Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.
Measurement of absolute regional lung air volumes from near-field x-ray speckles.
Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J
2013-11-18
Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.
Damage identification in beams using speckle shearography and an optimal spatial sampling
NASA Astrophysics Data System (ADS)
Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.
2016-10-01
Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.
ERIC Educational Resources Information Center
Peat, Gerry; Jones, Meriel
2012-01-01
Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…
2017-10-16
characterized via temperature dependent Hall effect measurements up to 1000 K and found to have a donor energy of 110 meV. The existence of the...unintentional donor is confirmed by temperature dependent admittance spectroscopy, with an activation energy of 131 meV determined via that technique, in...characterized via temperature dependent Hall effect measurements up to 1000 K and found to have a donor energy of 110 meV. The existence of the
M.J. Wald; J.M. Considine; K.T. Turner
2013-01-01
Instrumented indentation is a technique that can be used to measure the elastic properties of soft thin films supported on stiffer substrates, including polymer films, cellulosic sheets, and thin layers of biological materials. When measuring thin film properties using indentation, the effect of the substrate must be considered. Most existing models for determining the...
Multidirectional four-dimensional shape measurement system
NASA Astrophysics Data System (ADS)
Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin
2012-03-01
Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.
NASA Astrophysics Data System (ADS)
Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.
2018-03-01
In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.
Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Gartrell, L. R.; Gooderum, P. B.; Hunter, W. W., Jr.; Meyers, J. F.
1981-01-01
A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system.
Effect of lithium on thermal and structural properties of zinc vanadate tellurite glass
NASA Astrophysics Data System (ADS)
Rani, Sunita; Kundu, R. S.; Ahlawat, Neetu; Rani, Suman; Sangwan, Kanta Maan; Ahlawat, Navneet
2018-04-01
Glasses having composition 60TeO2-15V2O5-(25-x) ZnO-xLi2O where x= 0, 5, 10 mol% were prepared by standard melt quench technique. The glass transition temperature is measured by DSC technique using TA instrument and found to decrease with increase in Li2O signifies that glass formation tendency, thermal stability and compactness of glass structure decreases. The deconvolution of FTIR spectra evidenced the existence of TeO4, TeO3 and TeO6 structural units in glass network and vanadium exists as VO4 and VO5 structural units.
An investigation of the marine boundary layer during cold air outbreak
NASA Technical Reports Server (NTRS)
Stage, S. A.
1986-01-01
Methods for use in the remote estimation of ocean surface sensible and latent heat fluxes were developed and evaluated. Three different techniques were developed for determining these fluxes. These methods are: (1) Obtaining surface sensible and latent heat fluxes from satellite measurements; (2)Obtaining surface sensible and latent heat fluxes from an MABL model; (3) A method using horizontal transfer coefficients. These techniques are not very sensitive to errors in the data and therefore appear to hold promise of producing useful answers. Questions remain about how closely the structure of the real atmosphere agrees with the assumptions made for each of these techniques, and, therefore about how well these techniques can perform in actual use. The value of these techniques is that they promise to provide methods for the determination of fluxes over regions where very few traditional measurement exist.
Measuring ocean coherence time with dual-baseline interferometry
NASA Technical Reports Server (NTRS)
Carande, Richard E.
1992-01-01
Using the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) interferometer, measurements of the ocean coherence time at L and C band can be made at high spatial resolution. Fundamental to this measurement is the ability to image the ocean interferometrically at two different time-lags, or baselines. By modifying the operating procedure of the existing two antenna interferometer, a technique was developed make these measurements. L band coherence times are measured and presented.
NASA Astrophysics Data System (ADS)
Tong, Minh Q.; Hasan, M. Monirul; Gregory, Patrick D.; Shah, Jasmine; Park, B. Hyle; Hirota, Koji; Liu, Junze; Choi, Andy; Low, Karen; Nam, Jin
2017-02-01
We demonstrate a computationally-efficient optical coherence elastography (OCE) method based on fringe washout. By introducing ultrasound in alternating depth profile, we can obtain information on the mechanical properties of a sample within acquisition of a single image. This can be achieved by simply comparing the intensity in adjacent depth profiles in order to quantify the degree of fringe washout. Phantom agar samples with various densities were measured and quantified by our OCE technique, the correlation to Young's modulus measurement by atomic force micrscopy (AFM) were observed. Knee cartilage samples of monoiodo acetate-induced arthiritis (MIA) rat models were utilized to replicate cartilage damages where our proposed OCE technique along with intensity and birefringence analyses and AFM measurements were applied. The results indicate that our OCE technique shows a correlation to the techniques as polarization-sensitive OCT, AFM Young's modulus measurements and histology were promising. Our OCE is applicable to any of existing OCT systems and demonstrated to be computationally-efficient.
Schiffres, Scott N; Malen, Jonathan A
2011-06-01
A novel 3ω thermal conductivity measurement technique called metal-coated 3ω is introduced for use with liquids, gases, powders, and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3ω exceeds alternate 3ω based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases), using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques, including transient hot-wire, steady-state methods, and solid-wire 3ω are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3ω was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.
2000-11-01
The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.
NASA Astrophysics Data System (ADS)
Schulze, H. Georg; Greek, L. Shane; Blades, Michael W.; Bree, Alan V.; Gorzalka, Boris B.; Turner, Robin F. B.
1997-05-01
Many techniques have been developed to investigate the chemistry associated with brain activity. These techniques generally fall into two categories: fast techniques with species restricted sensitivity and slow techniques with generally unrestricted species sensitivity. Therefore, a need exists for a fast non-invasive technique sensitive to a wide array of biologically relevant compounds in order to measure chemical brain events in real time. The work presented here describes the progress made toward the development of a novel neurotransmitter probe. A fiber-optic linked Raman and tunable ultraviolet resonance Raman system was assembled with custom designed optical fiber probes. Probes of several different geometries were constructed and their working curves obtained in aqueous mixtures of methyl orange and potassium nitrate to determine the best probe configuration given particular sample characteristics. Using this system, the ultraviolet resonance Raman spectra of some neurotransmitters were measured with a fiber-optic probe and are reported here for the first time. The probe has also been used to measure neurotransmitter secretions obtained from depolarized rat pheochromocytoma cells.
3D model assisted fully automated scanning laser Doppler vibrometer measurements
NASA Astrophysics Data System (ADS)
Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve
2017-12-01
In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle
Infrared experiments for spaceborne planetary atmospheres research. Full report
NASA Technical Reports Server (NTRS)
1981-01-01
The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.
Stern-Gerlach-like approach to electron orbital angular momentum measurement
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
2017-02-28
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Stern-Gerlach-like approach to electron orbital angular momentum measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Rectenna array measurement results. [Satellite power transmission and reception
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.
[Aging explosive detection using terahertz time-domain spectroscopy].
Meng, Kun; Li, Ze-ren; Liu, Qiao
2011-05-01
Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.
System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements
NASA Technical Reports Server (NTRS)
Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.
2003-01-01
A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.
Communication: Electron ionization of DNA bases.
Rahman, M A; Krishnakumar, E
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.
Mediratta, Anuj; Addetia, Karima; Medvedofsky, Diego; Schneider, Robert J; Kruse, Eric; Shah, Atman P; Nathan, Sandeep; Paul, Jonathan D; Blair, John E; Ota, Takeyoshi; Balkhy, Husam H; Patel, Amit R; Mor-Avi, Victor; Lang, Roberto M
2017-05-01
With the increasing use of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis (AS), computed tomography (CT) remains the standard for annulus sizing. However, 3D transesophageal echocardiography (TEE) has been an alternative in patients with contraindications to CT. We sought to (1) test the feasibility, accuracy, and reproducibility of prototype 3DTEE analysis software (Philips) for aortic annular measurements and (2) compare the new approach to the existing echocardiographic techniques. We prospectively studied 52 patients who underwent gated contrast CT, procedural 3DTEE, and TAVR. 3DTEE images were analyzed using novel semi-automated software designed for 3D measurements of the aortic root, which uses multiplanar reconstruction, similar to CT analysis. Aortic annulus measurements included area, perimeter, and diameter calculations from these measurements. The results were compared to CT-derived values. Additionally, 3D echocardiographic measurements (3D planimetry and mitral valve analysis software adapted for the aortic valve) were also compared to the CT reference values. 3DTEE image quality was sufficient in 90% of patients for aortic annulus measurements using the new software, which were in good agreement with CT (r-values: .89-.91) and small (<4%) inter-modality nonsignificant biases. Repeated measurements showed <10% measurements variability. The new 3D analysis was the more accurate and reproducible of the existing echocardiographic techniques. Novel semi-automated 3DTEE analysis software can accurately measure aortic annulus in patients with severe AS undergoing TAVR, in better agreement with CT than the existing methodology. Accordingly, intra-procedural TEE could potentially replace CT in patients where CT carries significant risk. © 2017, Wiley Periodicals, Inc.
Regional geothermal exploration in Egypt
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Swanberg, C. A.
1983-01-01
A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.
Jackson, Brian A; Faith, Kay Sullivan
2013-02-01
Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.
Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen
2014-01-27
A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.
Measurement of indoor formaldehyde concentrations with a passive sampler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillett, R.W.; Kreibich, H.; Ayers, G.P.
2000-05-15
An existing Ferm-type passive sampler technique has been further developed to measure concentrations of formaldehyde gas in indoor air. Formaldehyde forms a derivative after reaction with a filter coated with 2,4-dinitrophenylhydrazine (2,4-DNPH). The formaldehyde 2,4-dinitrophenylhydrazine derivative (formaldehyde-2,4-DNPH) is extracted from the filter, and the concentration is determined by high-performance liquid chromatography. The technique has been validated against an active sampling method, and the agreement is close when the appropriate laminar boundary layer depth is applied to the passive measurement. For this technique an exposure period of 3 days is equivalent to a limit of detection of formaldehyde of 3.4 ppbvmore » and a limit of quantification of 7.6 ppbv. To test the performance of the passive samplers ambient formaldehyde measurements were carried out inside homes and in a range of workplace environments.« less
Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen
2014-01-01
A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment. PMID:24473282
Application of laser differential confocal technique in back vertex power measurement for phoropters
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli
2012-10-01
A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.
NASA Technical Reports Server (NTRS)
Roder, H. M.
1974-01-01
Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.
1980-09-02
laser or searchlight measurements . The study program consisted of three basic tasks: (1) a review of existing techniques for measuring aerosol extinction ...to aerosol extinction along a path can be deduced. Solutions to this problcaii fall into several classes. One class of solutions invoLves measuring ...employed such a windowless system to measure the absorption of an artificial aerosol consisting of quartz particles, using a CO 2 laser in the
Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.
Suomi, Irene; Vihma, Timo
2018-04-23
Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.
Lunar surface magnetometer experiment
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.
1972-01-01
The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.
Particle Streak Anemometry: A New Method for Proximal Flow Sensing from Aircraft
NASA Astrophysics Data System (ADS)
Nichols, T. W.
Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft (sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree direction accuracy is generally not available on such systems and disturbances to the local flow field, induced by the airframe, introduce an additional error source. An optical imaging approach to make a relative air velocity measurement with high-directional accuracy is presented. Optical methods offer the capability to make a proximal measurement in undisturbed air outside of the local flow field without the need to place sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analysis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated hardware and intensity thresholding in low-background conditions. A new method is derived and assessed using a particle streak imaging technique that can be implemented with low-cost commercial cameras and illumination systems, and can function in imaged volumes of arbitrary depth with complex background signal. The new technique, referred to as particle streak anemometry (PSA) (to differentiate from particle streak velocimetry which makes a field measurement rather than a single bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected component analysis and principle component analysis to detect streak ends in complex imaging conditions. A linear solution for the air velocity direction is then implemented with a random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-convex optimization problem is then solved for the air speed through an iterative approach. The technique was tested through simulation and wind tunnel tests yielding angular accuracies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of implementation. While air speed sensing is secondary to accurate flow direction measurement, the air speed results were in line with commercial pitot static systems at low speeds.
NASA Technical Reports Server (NTRS)
Smith, J. L.
1983-01-01
Existing techniques were surveyed, an experimental procedure was developed, a laboratory test model was fabricated, limited data were recovered for proof of principle, and the relationship between particle size distribution and amplitude measurements was illustrated in an effort to develop a low cost, simplified optical technique for measuring particle size distributions and velocities in fluidized bed combustors and gasifiers. A He-Ne laser illuminated Rochi Rulings (range 10 to 500 lines per inch). Various samples of known particle size distributions were passed through the fringe pattern produced by the rulings. A photomultiplier tube converted light from the fringe volume to an electrical signal which was recorded using an oscilloscope and camera. The signal amplitudes were correlated against the known particle size distributions. The correlation holds true for various samples.
Choi, D J; Park, H
2001-11-01
For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.
Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants
Patra, Amlan K.
2016-01-01
Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurements and dietary mitigation of enteric CH4 emissions technologies. PMID:27243027
Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants.
Patra, Amlan K
2016-01-01
Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurements and dietary mitigation of enteric CH4 emissions technologies.
Relaxation-based distance measurements between a nitroxide and a lanthanide spin label
NASA Astrophysics Data System (ADS)
Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.
2008-10-01
Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
Applying manifold learning techniques to the CAESAR database
NASA Astrophysics Data System (ADS)
Mendoza-Schrock, Olga; Patrick, James; Arnold, Gregory; Ferrara, Matthew
2010-04-01
Understanding and organizing data is the first step toward exploiting sensor phenomenology for dismount tracking. What image features are good for distinguishing people and what measurements, or combination of measurements, can be used to classify the dataset by demographics including gender, age, and race? A particular technique, Diffusion Maps, has demonstrated the potential to extract features that intuitively make sense [1]. We want to develop an understanding of this tool by validating existing results on the Civilian American and European Surface Anthropometry Resource (CAESAR) database. This database, provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International, is a rich dataset which includes 40 traditional, anthropometric measurements of 4400 human subjects. If we could specifically measure the defining features for classification, from this database, then the future question will then be to determine a subset of these features that can be measured from imagery. This paper briefly describes the Diffusion Map technique, shows potential for dimension reduction of the CAESAR database, and describes interesting problems to be further explored.
Communication: Electron ionization of DNA bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less
NASA Technical Reports Server (NTRS)
Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.
1974-01-01
Observations of Saturn's satellites were reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey (PSS) plates. This involved the use of 39 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measurements demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.
Astrometric observations of Saturn's satellites from McDonald Observatory, 1972
NASA Technical Reports Server (NTRS)
Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.
1975-01-01
Observations of Saturn's satellites have been reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey plates. This involved the use of 29 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measures appears to demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.
CONTINUOUS PERFORMANCE MONITORING TECHNIQUES FOR HAZARDOUS WASTE INCINERATORS
The report describes a study to determine the feasibility of utilizing realtime continuous exhaust measurements of combustion intermediates as a way to monitor incinerator performance. The key issue was to determine if a direct correlation exists between destruction efficiency (D...
An experimental study of nonlinear dynamic system identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1990-01-01
A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure
Dolen, James; Harris, Philip; Marzani, Simone; ...
2016-05-26
Here, we explore the scale-dependence and correlations of jet substructure observables to improve upon existing techniques in the identification of highly Lorentz-boosted objects. Modified observables are designed to remove correlations from existing theoretically well-understood observables, providing practical advantages for experimental measurements and searches for new phenomena. We study such observables in W jet tagging and provide recommendations for observables based on considerations beyond signal and background efficiencies.
Strain gage measurement errors in the transient heating of structural components
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1993-01-01
Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.
Measuring Surface Tension of a Flowing Soap Film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Kim, Ildoo; Mandre, Shreyas
2016-11-01
It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.
Storlazzi, Curt; Dartnell, Peter; Hatcher, Gerry; Gibbs, Ann E.
2016-01-01
The rugosity or complexity of the seafloor has been shown to be an important ecological parameter for fish, algae, and corals. Historically, rugosity has been measured either using simple and subjective manual methods such as ‘chain-and-tape’ or complicated and expensive geophysical methods. Here, we demonstrate the application of structure-from-motion (SfM) photogrammetry to generate high-resolution, three-dimensional bathymetric models of a fringing reef from existing underwater video collected to characterize the seafloor. SfM techniques are capable of achieving spatial resolution that can be orders of magnitude greater than large-scale lidar and sonar mapping of coral reef ecosystems. The resulting data provide finer-scale measurements of bathymetry and rugosity that are more applicable to ecological studies of coral reefs than provided by the more expensive and time-consuming geophysical methods. Utilizing SfM techniques for characterizing the benthic habitat proved to be more effective and quantitatively powerful than conventional methods and thus might portend the end of the ‘chain-and-tape’ method for measuring benthic complexity.
Limits of optical transmission measurements with application to particle sizing techniques.
Swanson, N L; Billard, B D; Gennaro, T L
1999-09-20
Considerable confusion exists regarding the applicability limits of the Bouguer-Lambert-Beer law of optical transmission. We review the derivation of the law and discuss its application to the optical thickness of the light-scattering medium. We demonstrate the range of applicability by presenting a method for determining particle size by measuring optical transmission at two wavelengths.
Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.
Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K
2012-01-01
Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.
Measuring Children’s Media Use in the Digital Age
Vandewater, Elizabeth A.; Lee, Sook-Jung
2009-01-01
In this new and rapidly changing era of digital technology, there is increasing consensus among media scholars that there is an urgent need to develop measurement approaches which more adequately capture media use The overarching goal of this paper is facilitate the development of measurement approaches appropriate for capturing children’s media use in the digital age. The paper outlines various approaches to measurement, focusing mainly on those which have figured prominently in major existing studies of children’s media use. We identify issues related to each technique, including advantages and disadvantages. We also include a review of existing empirical comparisons of various methodologies. The paper is intended to foster discussion of the best ways to further research and knowledge regarding the impact of media on children. PMID:19763246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta
2014-05-15
The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occursmore » at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.« less
NASA Astrophysics Data System (ADS)
Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar
2014-05-01
The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.
Innovative research on the group teaching mode based on the LabVIEW virtual environment
NASA Astrophysics Data System (ADS)
Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia
2017-08-01
This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.
Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Beedle, Christopher Craig; Sinha, Dipen N.
The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).
2015-01-01
emissivity and the radiative intensity of the gas over a spectral band. The temperature is then calculated from the Planck function. The technique does not...pressure budget for cooling channels reduces pump horsepower and turbine inlet temperature DISTRIBUTION STATEMENT A – Approved for public release...distribution unlimited 4 Status of Modeling and Simulation • Existing data set for film cooling effectiveness consists of wall heat flux measurements • CFD
Preliminary thermal imaging of cotton impurities
USDA-ARS?s Scientific Manuscript database
Discrepancies exist between the Advanced Fiber Information Systems (AFIS) seed coat nep measurements and the seed coat fragment count upon visual inspection. Various studies have indicated that the two techniques may not be sensing the same contaminants as seed coat entities. Thermal imaging is an...
A proposal for revising TXDOT ride specification to account for ride quality improvement.
DOT National Transportation Integrated Search
2017-03-01
The objectives of this project were to i) develop a rational and financially justifiable pay adjustment system that incorporates new versus old ride quality and ii) evaluate the existing techniques to measure ride quality using Surface Te...
Accuracy of lagoon gas emissions using an inverse dispersion method
USDA-ARS?s Scientific Manuscript database
Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions. These include those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish ...
Multimodal assessment of hemispheric lateralization for language and its relevance for behavior.
Piervincenzi, C; Petrilli, A; Marini, A; Caulo, M; Committeri, G; Sestieri, C
2016-11-15
Although different MRI-based techniques have been proposed to assess the hemispheric lateralization for language (HLL), the agreement across methods, and its relationship with language abilities, are still a matter of debate. In the present study we obtained measures of HLL using both task-evoked activity during the execution of three different protocols and task-free methods of functional [resting state functional connectivity (rs-FC)] and anatomical [diffusion tensor imaging (DTI) tractography] connectivity. Regional analyses focusing on the perisylvian language network were conducted to assess the consistency of HLL across techniques. In addition, following a multimodal approach, we identified macro-factors of lateralization and examined their relationship with language performance. Our findings indicate the existence of a negative relationship between the structural asymmetry of the direct segment of the arcuate fasciculus (AF) and the inter-hemispheric rs-FC of key nodes of the perisylvian network. Instead, despite all the language tasks exhibited a leftward pattern of asymmetry, measures of HLL derived from task-evoked activity did not show a direct relationship with those obtained with the two task-free methods. Furthermore, a robust brain-behavioral relationship was observed only with a specific macro-factor that combined HLL measures derived from all MRI techniques. In particular, general language performance was positively related to more symmetrical structural organization, stronger inter-hemispheric communication at rest but more lateralized activation of Wernicke's territory during production tasks. Our findings, while not supporting the existence of a direct relationship between indices of hemispheric lateralization for language derived from different MRI techniques, indicate that general language performance can be indexed using combined MRI measures. The same approach might prove successful for likewise complex human behaviours. Copyright © 2016 Elsevier Inc. All rights reserved.
Robust volcano plot: identification of differential metabolites in the presence of outliers.
Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro
2018-04-11
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
Determining the semantic similarities among Gene Ontology terms.
Taha, Kamal
2013-05-01
We present in this paper novel techniques that determine the semantic relationships among GeneOntology (GO) terms. We implemented these techniques in a prototype system called GoSE, which resides between user application and GO database. Given a set S of GO terms, GoSE would return another set S' of GO terms, where each term in S' is semantically related to each term in S. Most current research is focused on determining the semantic similarities among GO ontology terms based solely on their IDs and proximity to one another in the GO graph structure, while overlooking the contexts of the terms, which may lead to erroneous results. The context of a GO term T is the set of other terms, whose existence in the GO graph structure is dependent on T. We propose novel techniques that determine the contexts of terms based on the concept of existence dependency. We present a stack-based sort-merge algorithm employing these techniques for determining the semantic similarities among GO terms.We evaluated GoSE experimentally and compared it with three existing methods. The results of measuring the semantic similarities among genes in KEGG and Pfam pathways retrieved from the DBGET and Sanger Pfam databases, respectively, have shown that our method outperforms the other three methods in recall and precision.
Adapting Cognitive Interviewing for Early Adolescent Hispanic Girls and Sensitive Topics
Norris, Anne E.; Torres-Thomas, Sylvia; Williams, Ellita T.
2015-01-01
Cognitive interviewing is a research technique commonly used in survey research to improve measurement validity. However, this technique is useful to researchers planning to use self-report measures in intervention research because invalidity of such measures jeopardizes detection of intervention effects. Little research currently exists regarding the use of cognitive interviewing techniques with adolescent populations, particularly those who are Hispanic. This article describes common challenges to conducting cognitive interviewing with early adolescent girls and how these challenges are impacted by Hispanic culture and sensitive topics. A focus group approach is recommended over the traditional one-on-one cognitive interview format, and experiences from actual focus groups, conducted in preparation for an intervention study are used to illustrate strategies for accomplishing the goals of cognitive interviewing. Creative and careful planning, attention to developmental considerations, and incorporation of cultural values are essential to the success of this approach. PMID:25239207
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Ibrahim, El-Sayed H; Stojanovska, Jadranka; Hassanein, Azza; Duvernoy, Claire; Croisille, Pierre; Pop-Busui, Rodica; Swanson, Scott D
2018-05-16
Cardiac MRI tagging is a valuable technique for evaluating regional heart function. Currently, there are a number of different techniques for analyzing the tagged images. Specifically, k-space-based analysis techniques showed to be much faster than image-based techniques, where harmonic-phase (HARP) and sine-wave modeling (SinMod) stand as two famous techniques of the former group, which are frequently used in clinical studies. In this study, we compared HARP and SinMod and studied inter-observer variability between the two techniques for evaluating myocardial strain and apical-to-base torsion in numerical phantom, nine healthy controls, and thirty diabetic patients. Based on the ground-truth numerical phantom measurements (strain = -20% and rotation angle = -4.4°), HARP and SinMod resulted in overestimation (in absolute value terms) of strain by 1% and 5% (strain values), and of rotation angle by 0.4° and 2.0°, respectively. For the in-vivo results, global strain and torsion ranges were -10.6 to -35.3% and 1.8-12.7°/cm in patients, and -17.8 to -32.7% and 1.8-12.3°/cm in volunteers. On average, SinMod overestimated strain measurements by 5.7% and 5.9% (strain values) in the patients and volunteers, respectively, compared to HARP, and overestimated torsion measurements by 2.9°/cm and 2.5°/cm in the patients and volunteers, respectively, compared to HARP. Location-wise, the ranges for basal, mid-ventricular, and apical strain in patients (volunteers) were -8.4 to -31.5% (-11.6 to -33.3%), -6.3 to -37.2% (-17.8 to -33.3%), and -5.2 to -38.4% (-20.0 to -33.2%), respectively. SinMod overestimated strain in the basal, mid-ventricular, and apical slices by 4.7% (5.7%), 5.9% (5.5%), and 8.9% (6.8%), respectively, compared to HARP in the patients (volunteers). Nevertheless, there existed good correlation between the HARP and SinMod measurements. Finally, there were no significant strain or torsion measurement differences between patients and volunteers. There existed good inter-observer agreement, as all measurement differences lied within the Bland-Altman ± 2 standard-deviation (SD) difference limits. In conclusion, despite the consistency of the results by either HARP or SinMod and acceptable agreement of the generated strain and torsion patterns by both techniques, SinMod systematically overestimated the measurements compared to HARP. Under current operating conditions, the measurements from HARP and SinMod cannot be used interchangeably. Copyright © 2017. Published by Elsevier Inc.
Pang, Kun; Sun, Xiao-Wen; Liu, Shi-Bo; Li, Wei-Guo; Shao, Yi; Zhuo, Jian; Wei, Hai-Bin; Xia, Shu-Jie
2012-11-13
To explore the application of thulium laser (2 µm laser) in managing bladder cuff in nephroureterectomy for upper urinary tract urothelium carcinoma (UUT-UC). The medical records of 56 patients undergoing nephroureterectomy at our hospital were reviewed retrospectively. The operative indicators, oncologic outcomes and clinicopathologic data were compared among the groups of open surgery (Group A), electric coagulation (Group B) and thulium laser technique (Group C). Furthermore a model of burst pressure measurement was built to measure the different burst pressures of sealing distal ureter. The follow-up results: when the indicators of operative duration, intraoperative blood loss volume, removal time of drainage tube, removal time of catheter and hospital stays were compared among three groups, Group A had no statistical differences with Group B/C in terms of removal time of drainage tube and removal time of catheter. But significant statistical differences existed in terms of operative duration, intraoperative blood loss volume and hospital stays ((232 ± 52) vs (148 ± 47) and (130 ± 49) min, (358 ± 81) vs (136 ± 74) and (145 ± 70) ml, (13 ± 3) vs (11 ± 4) and (10 ± 3) d, all P < 0.05). No statistical differences existed between Groups B and C in terms of all the above indicators. Burst pressure measurement results: no statistical differences existed between Group C and B ((116 ± 21) vs (139 ± 32) cm H2O, P > 0.05). For the surgical treatment of UUT-UC, thulium laser technique has no difference in operation indicators and oncologic outcomes compared to open surgery. Besides, it has the advantages of improved spatial beam quality and more precise tissue incision.
Optical control and diagnostics sensors for gas turbine machinery
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke
2012-10-01
There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).
NASA Technical Reports Server (NTRS)
Naifeh, K.
1985-01-01
A comprehensive examination of cardiovascular autonomic response to motion sickness was studied and whether differences in cardiopulmonary function exist in high and low susceptibility groups were determined. Measurement techniques were developed as was test equipment for its ability to provide accurately new measures of interest and to test the adequately of these new measures in differentiating between susceptibility groups. It was concluded that these groups can be differentiated using simple, brief stressors and measurements of cardiodynamic function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyüre, B.; Márkus, B. G.; Bernáth, B.
2015-09-15
We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less
NASA Technical Reports Server (NTRS)
Wang, Liang-Guo; Sachse, Glen
1990-01-01
Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.
Fibre Optic Sensors for Selected Wastewater Characteristics
Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.
2013-01-01
Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1982-01-01
Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.
Two-dimensional fringe probing of transient liquid temperatures in a mini space.
Xue, Zhenlan; Qiu, Huihe
2011-05-01
A 2D fringe probing transient temperature measurement technique based on photothermal deflection theory was developed. It utilizes material's refractive index dependence on temperature gradient to obtain temperature information from laser deflection. Instead of single beam, this method applies multiple laser beams to obtain 2D temperature information. The laser fringe was generated with a Mach-Zehnder interferometer. A transient heating experiment was conducted using an electric wire to demonstrate this technique. Temperature field around a heating wire and variation with time was obtained utilizing the scattering fringe patterns. This technique provides non-invasive 2D temperature measurements with spatial and temporal resolutions of 3.5 μm and 4 ms, respectively. It is possible to achieve temporal resolution to 500 μs utilizing the existing high speed camera.
Perceptual distortion analysis of color image VQ-based coding
NASA Astrophysics Data System (ADS)
Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine
1997-04-01
It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, N.; Pereira, C.; Willit, J.
2016-07-29
The purpose of the ANL MPACT Voltammetry project is to evaluate the suitability of previously developed cyclic voltammetry techniques to provide electroanalytical measurements of actinide concentrations in realistic used fuel processing scenarios. The molten salts in these scenarios are very challenging as they include high concentrations of multiple electrochemically active species, thereby creating a variety of complications. Some of the problems that arise therein include issues related to uncompensated resistance, cylindrical diffusion, and alloying of the electrodeposited metals. Improvements to the existing voltammetry technique to account for these issues have been implemented, resulting in good measurements of actinide concentrations acrossmore » a wide range of adverse conditions.« less
NASA Technical Reports Server (NTRS)
Kautz, Harold E.; Bhatt, Ramakrishna T.
1991-01-01
A technique for measuring ultrasonic velocity was used to monitor changes that occur during processing and heat treatment of a SiC/RBSM composite. Results indicated that correlations exist between the ultrasonic velocity data and elastic modulus and interfacial shear strength data determined from mechanical tests. The ultrasonic velocity data can differentiate strength. The advantages and potential of this nondestructive evaluation method for fiber reinforced ceramic matrix composite applications are discussed.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1978-01-01
The development of system models that can provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer are described. Specific topics covered include: system models; performability evaluation; capability and functional dependence; computation of trajectory set probabilities; and hierarchical modeling of an air transport mission.
DSN system performance test Doppler noise models; noncoherent configuration
NASA Technical Reports Server (NTRS)
Bunce, R.
1977-01-01
The newer model for variance, the Allan technique, now adopted for testing, is analyzed in the subject mode. A model is generated (including considerable contribution from the station secondary frequency standard), and rationalized with existing data. The variance model is definitely sound; the Allan technique mates theory and measure. The mean-frequency model is an estimate; this problem is yet to be rigorously resolved. The unaltered defining expressions are noncovergent, and the observed mean is quite erratic.
NASA Technical Reports Server (NTRS)
Cunnington, G. R.; Funaa, A. I.; Cassady, P. E.
1973-01-01
Studies were made to develop a test apparatus for the measurement of total emittance of materials under repeated exposure to simulated earth entry conditions. As no existing test facility met the emittance measurement and entry simulation goals, a new apparatus was designed, fabricated and checked out. This apparatus has the capability of performing total and spectral emittance measurements during cyclic temperature and pressure exposure under sonic and supersonic flow conditions. Emittance measurements were performed on a series of oxidized superalloys, silicide coated columbium alloys and ceramic coatings.
Adaptive strategy for joint measurements
NASA Astrophysics Data System (ADS)
Uola, Roope; Luoma, Kimmo; Moroder, Tobias; Heinosaari, Teiko
2016-08-01
We develop a technique to find simultaneous measurements for noisy quantum observables in finite-dimensional Hilbert spaces. We use the method to derive lower bounds for the noise needed to make incompatible measurements jointly measurable. Using our strategy together with recent developments in the field of one-sided quantum information processing we show that the attained lower bounds are tight for various symmetric sets of quantum measurements. We use this characterisation to prove the existence of so called 4-Specker sets, i.e. sets of four incompatible observables with compatible subsets in the qubit case.
An Overview on Measurement-While-Drilling Technique and its Scope in Excavation Industry
NASA Astrophysics Data System (ADS)
Rai, P.; Schunesson, H.; Lindqvist, P.-A.; Kumar, U.
2015-04-01
Measurement-while-drilling (MWD) aims at collecting accurate, speedy and high resolution information from the production blast hole drills with a target of characterization of highly variable rock masses encountered in sub-surface excavations. The essence of the technique rests on combining the physical drill variables in a manner to yield a fairly accurate description of the sub-surface rock mass much ahead of following downstream operations. In this light, the current paper presents an overview of the MWD by explaining the technique and its set-up, the existing drill-rock mass relationships and numerous on-going researches highlighting the real-time applications. Although the paper acknowledges the importance of concepts of specific energy, rock quality index and a couple of other indices and techniques for rock mass characterization, it must be distinctly borne in mind that the technique of MWD is highly site-specific, which entails derivation of site-specific calibration with utmost care.
Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities
2018-01-01
Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided. PMID:29690647
Through-wall image enhancement using fuzzy and QR decomposition.
Riaz, Muhammad Mohsin; Ghafoor, Abdul
2014-01-01
QR decomposition and fuzzy logic based scheme is proposed for through-wall image enhancement. QR decomposition is less complex compared to singular value decomposition. Fuzzy inference engine assigns weights to different overlapping subspaces. Quantitative measures and visual inspection are used to analyze existing and proposed techniques.
In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique
Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can
2008-01-01
Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065
Haghighat, F; Lee, C S; Ghaly, W S
2002-06-01
The measurement and prediction of building material emission rates have been the subject of intensive research over the past decade, resulting in the development of advanced sensory and chemical analysis measurement techniques as well as the development of analytical and numerical models. One of the important input parameters for these models is the diffusion coefficient. Several experimental techniques have been applied to estimate the diffusion coefficient. An extensive literature review of the techniques used to measure this coefficient was carried out, for building materials exposed to volatile organic compounds (VOC). This paper reviews these techniques; it also analyses the results and discusses the possible causes of difference in the reported data. It was noted that the discrepancy between the different results was mainly because of the assumptions made in and the techniques used to analyze the data. For a given technique, the results show that there can be a difference of up to 700% in the reported data. Moreover, the paper proposes what is referred to as the mass exchanger method, to calculate diffusion coefficients considering both diffusion and convection. The results obtained by this mass exchanger method were compared with those obtained by the existing method considering only diffusion. It was demonstrated that, for porous materials, the convection resistance could not be ignored when compared with the diffusion resistance.
Statistical approach for selection of biologically informative genes.
Das, Samarendra; Rai, Anil; Mishra, D C; Rai, Shesh N
2018-05-20
Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes from high dimensional expression data for breeding and system biology studies. Published by Elsevier B.V.
Ruppenthal, Marc; Oelmann, Yvonne; Wilcke, Wolfgang
2013-01-15
To make use of the isotope ratio of nonexchangeable hydrogen (δ(2)H(n (nonexchangeable))) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (C(org)) and organic N (N(org)) recovery of demineralized SOM concentrates was significantly increased (C(org) recovery using existing techniques vs new demineralization method: 58% vs 78%; N(org) recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ(2)H(n) values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ(2)H(n) analyses of SOM as a new tool in paleoclimatology or geospatial forensics.
Development of advanced diagnostics for characterization of burning droplets in microgravity
NASA Technical Reports Server (NTRS)
Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.
1995-01-01
Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel droplet diameter, droplet regression rate, and the droplet internal temperature profiles or gradients at very high data rates in microgravity experiments.
Laser SRS tracker for reverse prototyping tasks
NASA Astrophysics Data System (ADS)
Kolmakov, Egor; Redka, Dmitriy; Grishkanich, Aleksandr; Tsvetkov, Konstantin
2017-10-01
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.
Neural net diagnostics for VLSI test
NASA Technical Reports Server (NTRS)
Lin, T.; Tseng, H.; Wu, A.; Dogan, N.; Meador, J.
1990-01-01
This paper discusses the application of neural network pattern analysis algorithms to the IC fault diagnosis problem. A fault diagnostic is a decision rule combining what is known about an ideal circuit test response with information about how it is distorted by fabrication variations and measurement noise. The rule is used to detect fault existence in fabricated circuits using real test equipment. Traditional statistical techniques may be used to achieve this goal, but they can employ unrealistic a priori assumptions about measurement data. Our approach to this problem employs an adaptive pattern analysis technique based on feedforward neural networks. During training, a feedforward network automatically captures unknown sample distributions. This is important because distributions arising from the nonlinear effects of process variation can be more complex than is typically assumed. A feedforward network is also able to extract measurement features which contribute significantly to making a correct decision. Traditional feature extraction techniques employ matrix manipulations which can be particularly costly for large measurement vectors. In this paper we discuss a software system which we are developing that uses this approach. We also provide a simple example illustrating the use of the technique for fault detection in an operational amplifier.
Quality measures and assurance for AI (Artificial Intelligence) software
NASA Technical Reports Server (NTRS)
Rushby, John
1988-01-01
This report is concerned with the application of software quality and evaluation measures to AI software and, more broadly, with the question of quality assurance for AI software. Considered are not only the metrics that attempt to measure some aspect of software quality, but also the methodologies and techniques (such as systematic testing) that attempt to improve some dimension of quality, without necessarily quantifying the extent of the improvement. The report is divided into three parts Part 1 reviews existing software quality measures, i.e., those that have been developed for, and applied to, conventional software. Part 2 considers the characteristics of AI software, the applicability and potential utility of measures and techniques identified in the first part, and reviews those few methods developed specifically for AI software. Part 3 presents an assessment and recommendations for the further exploration of this important area.
Wind-instrument reflection function measurements in the time domain.
Keefe, D H
1996-04-01
Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.
Measuring the sea ice floe size distribution
NASA Technical Reports Server (NTRS)
Rothrock, D. A.; Thorndike, A. S.
1984-01-01
The sea ice covering the Arctic Ocean is broken into distinct pieces,called floes. In the summer, these floes, which have diameters ranging up to 100 km, are separated from each other by a region of open water. In the winter, floes still exist, but they are less easily identified. An understanding of the geometry of the ice pack is of interest for a number of practical applications associated with transportation in ice-covered seas and with the design of offshore structures intended to survive in the presence of ice. The present investigation has the objective to clarify ideas about floe sizes and to propose techniques for measuring them. Measurements are presented with the primary aim to illustrate points of technique or approach. A preliminary discussion of the floe size distribution of sea ice is devoted to questions of definition and of measurement.
Calibration of CR-39-based thoron progeny device.
Fábián, F; Csordás, A; Shahrokhi, A; Somlai, J; Kovács, T
2014-07-01
Radon isotopes and their progenies have proven significant role in respiratory tumour formation. In most cases, the radiological effect of one of the radon isotopes (thoron) and its progenies has been neglected together with its measurement technique; however, latest surveys proved that thoron's existence is expectable in flats and in workplace in Europe. Detectors based on different track detector measurement technologies have recently spread for measuring thoron progenies; however, the calibration is not yet completely elaborated. This study deals with the calibration of the track detector measurement method suitable for measuring thoron progenies using different devices with measurement techniques capable of measuring several progenies (Pylon AB5 and WLx, Sarad EQF 3220). The calibration factor values related to the thoron progeny monitors, the measurement uncertainty, reproducibility and other parameters were found using the calibration chamber. In the future, the effects of the different parameters (aerosol distribution, etc.) will be determined. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak
2011-01-01
The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.
Coordinate measuring system based on microchip lasers for reverse prototyping
NASA Astrophysics Data System (ADS)
Iakovlev, Alexey; Grishkanich, Alexsandr S.; Redka, Dmitriy; Tsvetkov, Konstantin
2017-02-01
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.
MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
Drainage basin characteristics from ERTS data
NASA Technical Reports Server (NTRS)
Hollyday, E. F. (Principal Investigator)
1975-01-01
The author has identified the following significant results. ERTS-derived measurements of forests, riparian vegetation, open water, and combined agricultural and urban land use were added to an available matrix of map-derived basin characteristics. The matrix of basin characteristics was correlated with 40 stream flow characteristics by multiple regression techniques. Fifteen out of the 40 equations were improved. If the technique can be transferred to other physiographic regions in the nation, the opportunity exists for a potential annual savings in operations of about $250,000.
Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan
2016-01-01
Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023
A Generalized Measurement Model to Quantify Health: The Multi-Attribute Preference Response Model
Krabbe, Paul F. M.
2013-01-01
After 40 years of deriving metric values for health status or health-related quality of life, the effective quantification of subjective health outcomes is still a challenge. Here, two of the best measurement tools, the discrete choice and the Rasch model, are combined to create a new model for deriving health values. First, existing techniques to value health states are briefly discussed followed by a reflection on the recent revival of interest in patients’ experience with regard to their possible role in health measurement. Subsequently, three basic principles for valid health measurement are reviewed, namely unidimensionality, interval level, and invariance. In the main section, the basic operation of measurement is then discussed in the framework of probabilistic discrete choice analysis (random utility model) and the psychometric Rasch model. It is then shown how combining the main features of these two models yields an integrated measurement model, called the multi-attribute preference response (MAPR) model, which is introduced here. This new model transforms subjective individual rank data into a metric scale using responses from patients who have experienced certain health states. Its measurement mechanism largely prevents biases such as adaptation and coping. Several extensions of the MAPR model are presented. The MAPR model can be applied to a wide range of research problems. If extended with the self-selection of relevant health domains for the individual patient, this model will be more valid than existing valuation techniques. PMID:24278141
3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs
NASA Astrophysics Data System (ADS)
Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando
2014-05-01
One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals.
Singh, Anurag; Dandapat, Samarendra
2017-04-01
In recent years, compressed sensing (CS) has emerged as an effective alternative to conventional wavelet based data compression techniques. This is due to its simple and energy-efficient data reduction procedure, which makes it suitable for resource-constrained wireless body area network (WBAN)-enabled electrocardiogram (ECG) telemonitoring applications. Both spatial and temporal correlations exist simultaneously in multi-channel ECG (MECG) signals. Exploitation of both types of correlations is very important in CS-based ECG telemonitoring systems for better performance. However, most of the existing CS-based works exploit either of the correlations, which results in a suboptimal performance. In this work, within a CS framework, the authors propose to exploit both types of correlations simultaneously using a sparse Bayesian learning-based approach. A spatiotemporal sparse model is employed for joint compression/reconstruction of MECG signals. Discrete wavelets transform domain block sparsity of MECG signals is exploited for simultaneous reconstruction of all the channels. Performance evaluations using Physikalisch-Technische Bundesanstalt MECG diagnostic database show a significant gain in the diagnostic reconstruction quality of the MECG signals compared with the state-of-the art techniques at reduced number of measurements. Low measurement requirement may lead to significant savings in the energy-cost of the existing CS-based WBAN systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, T. H.; Bohrer, G.; Stefanik, K. C.
Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less
Morin, T. H.; Bohrer, G.; Stefanik, K. C.; ...
2017-02-17
Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less
High-Temperature Strain Sensing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.
2008-01-01
Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borring, J.; Gundtoft, H.E.; Borum, K.K.
1997-08-01
In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptancemore » of a thinner nominal cladding than normally used today.« less
Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management
McAnally, W.H.; Teeter, A.; Schoellhamer, David H.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.
2007-01-01
Techniques for measurement, modeling, and management of fluid mud are available, but research is needed to improve them. Fluid mud can be difficult to detect, measure, or sample, which has led to new instruments and new ways of using existing instruments. Multifrequency acoustic fathometers sense neither density nor viscosity and are, therefore, unreliable in measuring fluid mud. Nuclear density probes, towed sleds, seismic, and drop probes equipped with density meters offer the potential for accurate measurements. Numerical modeling of fluid mud requires solving governing equations for flow velocity, density, pressure, salinity, water surface, plus sediment submodels. A number of such models exist in one-, two-, and three-dimensional form, but they rely on empirical relationships that require substantial site-specific validation to observations. Management of fluid mud techniques can be classified as those that accomplish: Source control, formation control, and removal. Nautical depth, a fourth category, defines the channel bottom as a specific fluid mud density or alternative parameter as safe for navigation. Source control includes watershed management measures to keep fine sediment out of waterways and in-water measures such as structures and traps. Formation control methods include streamlined channels and structures plus other measures to reduce flocculation and structures that train currents. Removal methods include the traditional dredging and transport of dredged material plus agitation that contributes to formation control and/or nautical depth. Conditioning of fluid mud by dredging and aerating offers the possibility of improved navigability. Two examples—the Atchafalaya Bar Channel and Savannah Harbor—illustrate the use of measurements and management of fluid mud.
Digression and Value Concatenation to Enable Privacy-Preserving Regression.
Li, Xiao-Bai; Sarkar, Sumit
2014-09-01
Regression techniques can be used not only for legitimate data analysis, but also to infer private information about individuals. In this paper, we demonstrate that regression trees, a popular data-analysis and data-mining technique, can be used to effectively reveal individuals' sensitive data. This problem, which we call a "regression attack," has not been addressed in the data privacy literature, and existing privacy-preserving techniques are not appropriate in coping with this problem. We propose a new approach to counter regression attacks. To protect against privacy disclosure, our approach introduces a novel measure, called digression , which assesses the sensitive value disclosure risk in the process of building a regression tree model. Specifically, we develop an algorithm that uses the measure for pruning the tree to limit disclosure of sensitive data. We also propose a dynamic value-concatenation method for anonymizing data, which better preserves data utility than a user-defined generalization scheme commonly used in existing approaches. Our approach can be used for anonymizing both numeric and categorical data. An experimental study is conducted using real-world financial, economic and healthcare data. The results of the experiments demonstrate that the proposed approach is very effective in protecting data privacy while preserving data quality for research and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.
2015-01-12
GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.
Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov
This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work coversmore » the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.« less
Measurement of the properties of lossy materials inside a finite conducting cylinder
NASA Technical Reports Server (NTRS)
Dominek, A.; Park, A.; Caldecott, R.
1988-01-01
Broadband, swept frequency measurement techniques were investigated for the evaluation of the electrical performance of thin, high temperature material coatings. Reflections and transmission measurements using an HP8510B Network Analyzer were developed for an existing high temperature test rig at NASA Lewis Research Center. Reflection measurements will be the initial approach used due to fixture simplicity even though surface wave transmission measurements would be more sensitive. The minimum goal is to monitor the electrical change of the material's performance as a function of temperature. If possible, the materials constitutive parameters, epsilon and muon will be found.
Magnetic moment investigation by frequency mixing techniques.
Teliban, I; Thede, C; Chemnitz, S; Bechtold, C; Quadakkers, W J; Schütze, M; Quandt, E
2009-11-01
Gas turbines and other large industrial equipment are subjected to high-temperature oxidation and corrosion. Research and development of efficient protective coatings is the main task in the field. Also, knowledge about the depletion state of the coating during the operation time is important. To date, practical nondestructive methods for the measurement of the depletion state do not exist. By integrating magnetic phases into the coating, the condition of the coating can be determined by measuring its magnetic properties. In this paper, a new technique using frequency mixing is proposed to investigate the thickness of the coatings based on their magnetic properties. A sensor system is designed and tested on specific magnetic coatings. New approaches are proposed to overcome the dependency of the measurement on the distance between coil and sample that all noncontact techniques face. The novelty is a low cost sensor with high sensibility and selectivity which can provide very high signal-to-noise ratios. Prospects and limitations are discussed for future use of the sensor in industrial applications.
NASA Technical Reports Server (NTRS)
Bair, C. H.; Allario, F.
1977-01-01
An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.
NASA Technical Reports Server (NTRS)
Craig, Roger A.; Davy, William C.; Whiting, Ellis E.
1994-01-01
This paper describes the techniques developed for measuring stagnation-point radiation in NASA's cancelled Aeroassist Flight Experiment (AFE). It specifies the need for such a measurement; the types and requirements for the needed instruments; the Radiative Heating Experiment (RHE) developed for the AFE; the requirements, design parameters, and performance of the window developed for the RHE; the procedures and summary of the technique; and results of the arc-jet wind tunnel experiment conducted to demonstrate the overall concept. Subjects emphasized are the commercial implications of the knowledge to be gained by this experiment in connection with the Aeroassisted Space Transfer Vehicle (ASTV), the nonequilibrium nature of the radiation, concerns over the contribution of vacuum-ultraviolet radiation to the overall radiation, and the limit on the flight environment of the vehicle imposed by the limitations on the window material. Results show that a technique exists with which the stagnation-point radiation can be measured in flight in an environment of interest to commercial ASTV applications.
Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli
2014-01-01
Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.
Measure Guideline. Air Sealing Attics in Multifamily Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otis, Casey; Maxwell, Sean
2012-06-01
This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.
Measure Guideline: Air Sealing Attics in Multifamily Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otis, C.; Maxwell, S.
2012-06-01
This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.
Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography
NASA Astrophysics Data System (ADS)
Mohd Salleh, Khairul Anuar
Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.
A new similarity measure for link prediction based on local structures in social networks
NASA Astrophysics Data System (ADS)
Aghabozorgi, Farshad; Khayyambashi, Mohammad Reza
2018-07-01
Link prediction is a fundamental problem in social network analysis. There exist a variety of techniques for link prediction which applies the similarity measures to estimate proximity of vertices in the network. Complex networks like social networks contain structural units named network motifs. In this study, a newly developed similarity measure is proposed where these structural units are applied as the source of similarity estimation. This similarity measure is tested through a supervised learning experiment framework, where other similarity measures are compared with this similarity measure. The classification model trained with this similarity measure outperforms others of its kind.
NASA Astrophysics Data System (ADS)
Schmid, David; Spekkens, Robert W.; Wolfe, Elie
2018-06-01
Within the framework of generalized noncontextuality, we introduce a general technique for systematically deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many measurements, each of which has a finite number of outcomes. Given any fixed sets of operational equivalences among the preparations and among the measurements as input, the algorithm returns a set of noncontextuality inequalities whose satisfaction is necessary and sufficient for a set of operational data to admit of a noncontextual model. Additionally, we show that the space of noncontextual data tables always defines a polytope. Finally, we provide a computationally efficient means for testing whether any set of numerical data admits of a noncontextual model, with respect to any fixed operational equivalences. Together, these techniques provide complete methods for characterizing arbitrary noncontextuality scenarios, both in theory and in practice. Because a quantum prepare-and-measure experiment admits of a noncontextual model if and only if it admits of a positive quasiprobability representation, our techniques also determine the necessary and sufficient conditions for the existence of such a representation.
Virtual environment assessment for laser-based vision surface profiling
NASA Astrophysics Data System (ADS)
ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.
2015-03-01
Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.
NASA Astrophysics Data System (ADS)
Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji
2006-04-01
We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.
Report of the panel on international programs
NASA Technical Reports Server (NTRS)
Anderson, Allen Joel; Fuchs, Karl W.; Ganeka, Yasuhiro; Gaur, Vinod; Green, Andrew A.; Siegfried, W.; Lambert, Anthony; Rais, Jacub; Reighber, Christopher; Seeger, Herman
1991-01-01
The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations.
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
NASA Astrophysics Data System (ADS)
Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua
2018-01-01
A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.
NASA Technical Reports Server (NTRS)
Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.
1980-01-01
A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.
Mortimer, Duncan; Segal, Leonie
2008-01-01
Algorithms for converting descriptive measures of health status into quality-adjusted life year (QALY)--weights are now widely available, and their application in economic evaluation is increasingly commonplace. The objective of this study is to describe and compare existing conversion algorithms and to highlight issues bearing on the derivation and interpretation of the QALY-weights so obtained. Systematic review of algorithms for converting descriptive measures of health status into QALY-weights. The review identified a substantial body of literature comprising 46 derivation studies and 16 studies that provided evidence or commentary on the validity of conversion algorithms. Conversion algorithms were derived using 1 of 4 techniques: 1) transfer to utility regression, 2) response mapping, 3) effect size translation, and 4) "revaluing" outcome measures using preference-based scaling techniques. Although these techniques differ in their methodological/theoretical tradition, data requirements, and ease of derivation and application, the available evidence suggests that the sensitivity and validity of derived QALY-weights may be more dependent on the coverage and sensitivity of measures and the disease area/patient group under evaluation than on the technique used in derivation. Despite the recent proliferation of conversion algorithms, a number of questions bearing on the derivation and interpretation of derived QALY-weights remain unresolved. These unresolved issues suggest directions for future research in this area. In the meantime, analysts seeking guidance in selecting derived QALY-weights should consider the validity and feasibility of each conversion algorithm in the disease area and patient group under evaluation rather than restricting their choice to weights from a particular derivation technique.
When Using the Mean is Meaningless: Examples from Probability Theory and Cardiology.
ERIC Educational Resources Information Center
Liebovitch, Larry S.; Todorov, Angelo T.; Wood, Mark A.; Ellenbogen, Kenneth A.
This chapter describes how the mean of fractal processes does not exist and is not a meaningful measure of some data. It discusses how important it is to stay open to the possibility that sometimes analytic techniques fail to satisfy some assumptions on which the mean is based. (KHR)
Metabolic Assessment of Suited Mobility Using Functional Tasks
NASA Technical Reports Server (NTRS)
Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert
2016-01-01
Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.
The Delphi Process: Some Assumptions and Some Realities.
ERIC Educational Resources Information Center
Waldron, James S.
The effectiveness of the Delphi Technique is evaluated in terms of immediate and delayed controlled information feedback (feedback within 5 seconds as compared with a 24-hour delay); and the relationships that exist among measures of integrative complexity, estimations about the time of occurrence of future events, and time delay between task…
Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics
Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas
2014-01-01
Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727
Quantitative imaging of volcanic plumes — Results, needs, and future trends
Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph
2015-01-01
Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.
Field evaluation of ventilation system performance in enclosed parking garages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, A.M.; Grot, D.A.; Krarti, M.
2000-07-01
This paper summarizes the results of a field study to determine the ventilation requirements and the contaminant levels in existing enclosed parking garages. The testing was conducted in seven parking garages with different sizes, traffic flow patterns, vehicle types, and locations. In particular, the study compares the actual ventilation rates measured using the tracer gas technique with the ventilation requirements of ANSI/ASHRAE Standard 62-1989. In addition, the field test evaluated the effectiveness of the existing ventilation systems in maintaining acceptable contaminant levels within enclosed parking garages.
Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui; ...
2017-05-02
Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui
Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less
Use of Objective Metrics in Dynamic Facial Reanimation: A Systematic Review.
Revenaugh, Peter C; Smith, Ryan M; Plitt, Max A; Ishii, Lisa; Boahene, Kofi; Byrne, Patrick J
2018-06-21
Facial nerve deficits cause significant functional and social consequences for those affected. Existing techniques for dynamic restoration of facial nerve function are imperfect and result in a wide variety of outcomes. Currently, there is no standard objective instrument for facial movement as it relates to restorative techniques. To determine what objective instruments of midface movement are used in outcome measurements for patients treated with dynamic methods for facial paralysis. Database searches from January 1970 to June 2017 were performed in PubMed, Embase, Cochrane Library, Web of Science, and Scopus. Only English-language articles on studies performed in humans were considered. The search terms used were ("Surgical Flaps"[Mesh] OR "Nerve Transfer"[Mesh] OR "nerve graft" OR "nerve grafts") AND (face [mh] OR facial paralysis [mh]) AND (innervation [sh]) OR ("Face"[Mesh] OR facial paralysis [mh]) AND (reanimation [tiab]). Two independent reviewers evaluated the titles and abstracts of all articles and included those that reported objective outcomes of a surgical technique in at least 2 patients. The presence or absence of an objective instrument for evaluating outcomes of midface reanimation. Additional outcome measures were reproducibility of the test, reporting of symmetry, measurement of multiple variables, and test validity. Of 241 articles describing dynamic facial reanimation techniques, 49 (20.3%) reported objective outcome measures for 1898 patients. Of those articles reporting objective measures, there were 29 different instruments, only 3 of which reported all outcome measures. Although instruments are available to objectively measure facial movement after reanimation techniques, most studies do not report objective outcomes. Of objective facial reanimation instruments, few are reproducible and able to measure symmetry and multiple data points. To accurately compare objective outcomes in facial reanimation, a reproducible, objective, and universally applied instrument is needed.
Atmospheric Fluorescence Yield
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.
Assessment of a simple, novel endoluminal method for gastrotomy closure in NOTES.
Lee, Sang Soo; Oelschlager, Brant K; Wright, Andrew S; Soares, Renato V; Sinan, Huseyin; Montenovo, Martin I; Hwang, Joo Ha
2011-10-01
A reliable method for gastrotomy closure in NOTES will be essential for NOTES to become viable clinically. However, methods using existing and widely available endoscopic accessories have been ineffective. The objective of this study was to evaluate the feasibility and safety of a new simple method for gastric closure (retracted clip-assisted loop closure) that uses existing endoscopic accessories with minor modifications. The retracted clip-assisted loop closure technique involves deploying 3-4 Resolution(®) clips (modified by attaching a 90-cm length of suture to the end of each clip) along the margin of the gastrotomy with one jaw on the serosal surface and the other jaw on the mucosal surface. The suture strings are threaded through an endoloop. Traction is then applied to the strings causing the gastric wall to tent. The endoloop is secured below the tip of the clips, completing a full-thickness gastrotomy closure. The main outcome measures were feasibility, efficacy, and safety of the new retracted clip-assisted loop closure technique for NOTES gastrotomy closure. An air-tight seal was achieved in 100% (n = 9) of stomachs. The mean leak pressure was 116.3 (±19.4) mmHg. The retracted clip-assisted loop closure technique can be used to perform NOTES gastrotomy closure by using existing endoscopic accessories with minor modifications.
High-throughput electrical characterization for robust overlay lithography control
NASA Astrophysics Data System (ADS)
Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.
2017-03-01
Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.
Current issues with standards in the measurement and documentation of human skeletal anatomy.
Magee, Justin; McClelland, Brian; Winder, John
2012-09-01
Digital modeling of human anatomy has become increasingly important and relies on well-documented quantitative anatomy literature. This type of documentation is common for the spine and pelvis; however, significant issues exist due to the lack of standardization in measurement and technique. Existing literature on quantitative anatomy for the spine and pelvis of white adults (aged 18-65 years, separated into decadal categories) was reviewed from the disciplines of anatomy, manipulative therapy, anthropometrics, occupational ergonomics, biomechanics and forensic science. The data were unified into a single normative model of the sub-axial spine. Two-dimensional orthographic drawings were produced from the 590 individual measurements identified, which informed the development of a 3D digital model. A similar review of full range of motion data was conducted as a meta-analysis and the results were applied to the existing model, providing an inter-connected, articulated digital spine. During these data analysis processes several inconsistencies were observed accompanied by an evidential lack of standardization with measurement and recording of data. These have been categorized as: anatomical terminology; scaling of measurements; measurement methodology, dimension and anatomical reference positions; global coordinate systems. There is inconsistency in anatomical terminology where independent researchers use the same terms to describe different aspects of anatomy or different terms for the same anatomy. Published standards exist for measurement methods of the human body regarding spatial interaction, anthropometric databases, automotive applications, clothing industries and for computer manikins, but none exists for skeletal anatomy. Presentation of measurements often lacks formal structure in clinical publications, seldom providing geometric reference points, therefore making digital reconstruction difficult. Published quantitative data does not follow existing international published standards relating to engineering drawing and visual communication. Large variations are also evident in standards or guidelines used for global coordinate systems across biomechanics, ergonomics, software systems and 3D software applications. This paper identifies where established good practice exists and suggests additional recommendations, informing an improved communication protocol, to assist reconstruction of skeletal anatomy using 3D digital modeling. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Current issues with standards in the measurement and documentation of human skeletal anatomy
Magee, Justin; McClelland, Brian; Winder, John
2012-01-01
Digital modeling of human anatomy has become increasingly important and relies on well-documented quantitative anatomy literature. This type of documentation is common for the spine and pelvis; however, significant issues exist due to the lack of standardization in measurement and technique. Existing literature on quantitative anatomy for the spine and pelvis of white adults (aged 18–65 years, separated into decadal categories) was reviewed from the disciplines of anatomy, manipulative therapy, anthropometrics, occupational ergonomics, biomechanics and forensic science. The data were unified into a single normative model of the sub-axial spine. Two-dimensional orthographic drawings were produced from the 590 individual measurements identified, which informed the development of a 3D digital model. A similar review of full range of motion data was conducted as a meta-analysis and the results were applied to the existing model, providing an inter-connected, articulated digital spine. During these data analysis processes several inconsistencies were observed accompanied by an evidential lack of standardization with measurement and recording of data. These have been categorized as: anatomical terminology; scaling of measurements; measurement methodology, dimension and anatomical reference positions; global coordinate systems. There is inconsistency in anatomical terminology where independent researchers use the same terms to describe different aspects of anatomy or different terms for the same anatomy. Published standards exist for measurement methods of the human body regarding spatial interaction, anthropometric databases, automotive applications, clothing industries and for computer manikins, but none exists for skeletal anatomy. Presentation of measurements often lacks formal structure in clinical publications, seldom providing geometric reference points, therefore making digital reconstruction difficult. Published quantitative data does not follow existing international published standards relating to engineering drawing and visual communication. Large variations are also evident in standards or guidelines used for global coordinate systems across biomechanics, ergonomics, software systems and 3D software applications. This paper identifies where established good practice exists and suggests additional recommendations, informing an improved communication protocol, to assist reconstruction of skeletal anatomy using 3D digital modeling. PMID:22747678
A potential drop strain sensor for in-situ power station creep monitoring
NASA Astrophysics Data System (ADS)
Corcoran, Joseph; Cawley, Peter; Nagy, Peter B.
2014-02-01
Creep is a high temperature damage mechanism of interest to the power industry and at present lacks a satisfactory inspection technique. Existing material inspection techniques are extremely laborious while strain measurements rely on often infrequent off-load measurements. A quasi-DC directional potential drop technique has been suggested that is able to suppress the effects of permeability and is primarily sensitive to changes in resistivity and also the geometry that will develop through strain. The change in creep related resistivity is shown by an equivalent effective resistivity approach to be small at <2% change when compared to the >100% change in transfer resistance that occurs due to strain as observed in laboratory tests. A biaxial inversion is then presented and demonstrated on in-lab samples showing good performance. The result is a sensor that performs as a very robust high temperature strain gauge.
NASA Technical Reports Server (NTRS)
Bemra, R. S.; Rastogi, P. K.; Balsley, B. B.
1986-01-01
An analysis of frequency spectra at periods of about 5 days to 5 min from two 20-day sets of velocity measurements in the stratosphere and troposphere region obtained with the Poker Flat mesosphere-stratosphere-troposphere (MST) radar during January and June, 1984 is presented. A technique based on median filtering and averaged order statistics for automatic editing, smoothing and spectral analysis of velocity time series contaminated with spurious data points or outliers is outlined. The validity of this technique and its effects on the inferred spectral index was tested through simulation. Spectra obtained with this technique are discussed. The measured spectral indices show variability with season and height, especially across the tropopause. The discussion briefly outlines the need for obtaining better climatologies of velocity spectra and for the refinements of the existing theories to explain their behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sermage, B.; Essa, Z.; Taleb, N.
2016-04-21
The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C{sup 2} versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, wemore » show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.« less
Instrumentation Working Group Summary
NASA Technical Reports Server (NTRS)
Zaller, Michelle; Miake-Lye, Richard
1999-01-01
The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered samples are obtained need to be developed. Particulate speciation was also assigned a high priority for quantifying the fractions of carbon soot, PAH, refractory materials, metals, sulfates, and nitrates. High priority was also placed on performing a comparison of particle sizing instruments. Concern was expressed by the workshop attendees who routinely make particulate measurements about the variation in number density measured during in-flight tests by different instruments. In some cases, measurements performed by different groups of researchers during the same flight tests showed an order of magnitude variation. Second priority was assigned to measuring concentrations of odd hydrogen and oxidizing species. Since OH, HO2, H2O2, and O are extremely reactive, non-extractive measurements are recommended. A combination of absorption and fluorescence is anticipated to be effective for OH measurements in the combustor and at the engine exit. Extractive measurements of HO2 have been made in the stratosphere, where the ambient level of OH is relatively low. Use of techniques that convert HO2 to OH for combustor and engine exit measurements needs to be evaluated, since the ratio of HO2/OH may be 1% or less at both the combustor and engine exit. CI-MS might be a viable option for H2O2, subject to sampling line conversion issues. However, H2O2 is a low priority oxidizing species in the combustor and at the engine exit. Two candidates for atomic oxygen measurements are Resonance Enhanced Multi-Photon Ionization (REMPI) and Laser-Induced Fluorescence (LIF). Particulate measurement by simultaneous extractive and non-extractive techniques was given equal priority to the oxidizer measurements. Concern was expressed over the ability of typical ground test sampling lines to deliver an unaltered sample to a remotely located instrument. It was suggested that the sampling probe and line losses be checked out by attempting measurements using an optical or non-extractive technique immediately upstream of the sampling probe. This is a possible application for Laser Induced Incandescence (LII) as a check on the volume fraction of soot. Optical measurements of size distribution are not well developed for ultrafine particles less than about 20 nm in diameter, so a non-extractive technique for particulate size distribution cannot be recommended without further development. Carbon dioxide measurements need to be made to complement other extractive measurement techniques. CO2 measurements enable conversion of other species concentrations to emission indices. Carbon monoxide, which acts as a sink for oxidizing species, should be measured using non-extractive techniques. CO can be rapidly converted to CO2 in extractive probes, and a comparison between extractive and non-extractive measurements should be performed. Development of non-extractive techniques would help to assess the degree of CO conversion, and might be needed to improve the concentration measurement accuracy. Measurements of NO(x) will continue to be critical due to the role of NO and NO2 in atmospheric chemistry, and their influence on atmospheric ozone. Time-resolved measurements of temperature, velocity, and species concentrations were included on the list of desired measurement. Thermocouples are typically adequate for engine exit measurements. PIV and LDV are well established for obtaining velocity profiles. The techniques are listed in the accompanying table; are divided into extractive and non-extractive techniques. Efforts were made to include a measurement uncertainty for each technique. An assessment of the technology readiness was included.
Measures of Human Mobility Using Mobile Phone Records Enhanced with GIS Data.
Williams, Nathalie E; Thomas, Timothy A; Dunbar, Matthew; Eagle, Nathan; Dobra, Adrian
2015-01-01
In the past decade, large scale mobile phone data have become available for the study of human movement patterns. These data hold an immense promise for understanding human behavior on a vast scale, and with a precision and accuracy never before possible with censuses, surveys or other existing data collection techniques. There is already a significant body of literature that has made key inroads into understanding human mobility using this exciting new data source, and there have been several different measures of mobility used. However, existing mobile phone based mobility measures are inconsistent, inaccurate, and confounded with social characteristics of local context. New measures would best be developed immediately as they will influence future studies of mobility using mobile phone data. In this article, we do exactly this. We discuss problems with existing mobile phone based measures of mobility and describe new methods for measuring mobility that address these concerns. Our measures of mobility, which incorporate both mobile phone records and detailed GIS data, are designed to address the spatial nature of human mobility, to remain independent of social characteristics of context, and to be comparable across geographic regions and time. We also contribute a discussion of the variety of uses for these new measures in developing a better understanding of how human mobility influences micro-level human behaviors and well-being, and macro-level social organization and change.
3D shape reconstruction of specular surfaces by using phase measuring deflectometry
NASA Astrophysics Data System (ADS)
Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan
2016-10-01
The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.
Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.
Das, Bhargab; Chandra, Vikash
2016-10-10
We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.
López-Rodríguez, Patricia; Escot-Bocanegra, David; Poyatos-Martínez, David; Weinmann, Frank
2016-01-01
The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique. PMID:27347966
Study of TEC and foF2 with the Help of GPS and Ionosonde Data over Maitri, Antarctica
NASA Astrophysics Data System (ADS)
Khatarkar, Prakash; Gwal, Ashok Kumar
Prakash Khatarkar, Purusottam Bhaware, Azad Ahmad Mansoori, Varsha Kachneria, Shweta Thakur, and A. K. Gwal Abstract The behavior of ionosphere can be diagnosed by a number of techniques. The common techniques used are the space based Global Positioning System and the ground based Ionosonde. We have compared the variability of ionospheric parameters by using two different techniques GPS and Ionosonde, during December 2009 to November 2010 at the Indian base station Maitri (11.45E, 70.45S). The comparison between the measurements of two techniques was realized through the Total Electron Content (TEC) parameters derived by using different methods. The comparison was made diurnally, seasonally, polar day and polar night variations and the annually. From our analysis we found that a strong correlation exists between the GPS derived TEC and Ionosonde derived foF2 during the day period while during the night time the correlation is insignificant. At the same time we found that a strong correlation exists between the Ionosonde and GPS derived TEC. The pattern of variation of ionospheric parameters derived from two techniques is strikingly similar indicating that the high degree of synchronization between them. This has a practical applicability by allowing calculating the error in one technique by comparing with other. Keywords: Ionosphere, Ionosonde, GPS, foF2, TEC.
Requirements for Calibration in Noninvasive Glucose Monitoring by Raman Spectroscopy
Lipson, Jan; Bernhardt, Jeff; Block, Ueyn; Freeman, William R.; Hofmeister, Rudy; Hristakeva, Maya; Lenosky, Thomas; McNamara, Robert; Petrasek, Danny; Veltkamp, David; Waydo, Stephen
2009-01-01
Background In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration). Method By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics–physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm. Results For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges. Conclusions Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial. PMID:20144354
Effective evaluation of privacy protection techniques in visible and thermal imagery
NASA Astrophysics Data System (ADS)
Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael
2017-09-01
Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.
Helmer, R; Koschorek, F; Terwey, B; Frauen, T
1986-01-01
Nuclear spin tomography since its beginnings in the seventies has steadily gained in importance as a method of examination in medical diagnostics as it produces a picture. In the field of forensic medicine the NMR technique as used for anatomic-anthropologic issues attempting to identify skulls this is a valuable supplement to an extension of the existing methods of investigation. The results of a measurement of the thickness of soft facial tissue in a live test person is shown as compared to measures obtained by sonography.
A Stochastic Approach For Extending The Dimensionality Of Observed Datasets
NASA Technical Reports Server (NTRS)
Varnai, Tamas
2002-01-01
This paper addresses the problem that in many cases, observations cannot provide complete fields of the measured quantities, because they yield data only along a single cross-section through the examined fields. The paper describes a new Fourier-adjustment technique that allows existing fractal models to build realistic surroundings to the measured cross-sections. This new approach allows more representative calculations of cloud radiative processes and may be used in other areas as well.
Davies, James F; Wilson, Kevin R
2016-02-16
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.
Davies, James F.; Wilson, Kevin R.
2016-01-11
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less
Retrieval of the atmospheric compounds using a spectral optical thickness information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioltukhovski, A.A.
A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).
Mehta, S; Antich, P
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Quantitative Tools for Examining the Vocalizations of Juvenile Songbirds
Wellock, Cameron D.; Reeke, George N.
2012-01-01
The singing of juvenile songbirds is highly variable and not well stereotyped, a feature that makes it difficult to analyze with existing computational techniques. We present here a method suitable for analyzing such vocalizations, windowed spectral pattern recognition (WSPR). Rather than performing pairwise sample comparisons, WSPR measures the typicality of a sample against a large sample set. We also illustrate how WSPR can be used to perform a variety of tasks, such as sample classification, song ontogeny measurement, and song variability measurement. Finally, we present a novel measure, based on WSPR, for quantifying the apparent complexity of a bird's singing. PMID:22701474
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)
NASA Technical Reports Server (NTRS)
Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Shear Stress Sensing using Elastomer Micropillar Arrays
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.
2013-01-01
The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.
Speed scanning system based on solid-state microchip laser for architectural planning
NASA Astrophysics Data System (ADS)
Redka, Dmitriy; Grishkanich, Alexsandr S.; Kolmakov, Egor; Tsvetkov, Konstantin
2017-10-01
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.
New methods of generation of ultrashort laser pulses for ranging
NASA Technical Reports Server (NTRS)
Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan
1993-01-01
To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.
NASA Technical Reports Server (NTRS)
Glick, B. J.
1985-01-01
Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.
The motional stark effect with laser-induced fluorescence diagnostic
NASA Astrophysics Data System (ADS)
Foley, E. L.; Levinton, F. M.
2010-05-01
The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Yamashita, Tatsuya; Ando, Keita
2016-11-01
Microbubble aeration is used to dissolved gases into water and is an important technique in agriculture and industry. We can measure concentration of dissolved oxygen (DO) in aerated water by commercial DO meters. However, there do not exist commercially available techniques to measure concentration to dissolved nitrogen (DN). In the present study, we propose the method to measure DN in aerated water with the aid of Epstein-Plesset-type analysis. Gas-supersaturated tap water is produced by applying aeration with micro-sized air bubbles and is then stored in a glass container open to the atmosphere. Diffusion-driven growth of bubbles nucleated at the container surface is recorded with a video camera. The bubble growth rate is compare to the extended Epstein-Plesset theory that models mass transfer of both DO and DN into the surface-attached bubbles base on the diffusion equation. Given the DO measurements, we can obtain the DN level by fitting in the comparison.
A Structured Light Sensor System for Tree Inventory
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong; Zemek, Michael C.
2000-01-01
Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters.
Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.
2017-01-01
Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930
Comparison of Content Structure and Cognitive Structure in the Learning of Probability.
ERIC Educational Resources Information Center
Geeslin, William E.
Digraphs, graphs, and task analysis were used to map out the content structure of a programed text (SMSG) in elementary probability. Mathematical structure was defined as the relationship between concepts within a set of abstract systems. The word association technique was used to measure the existing relations (cognitive structure) in S's memory…
Development of Instrumental Techniques for Color Assessment of Camouflage Patterns
ERIC Educational Resources Information Center
Fang, Gang
2012-01-01
Camouflage fabrics are produced on a large scale for use in the US military and other applications. One of the highest volume camouflage fabrics is known as the Universal Camouflage Pattern (UCP) which is produced for the US Department of Defense. At present, no standard measurement-based color quality control method exists for camouflage…
The effects of water and lipids on NIR optical breast measurements
NASA Astrophysics Data System (ADS)
Cerussi, Albert E.; Bevilacqua, Frederic; Shah, Natasha; Jakubowski, Dorota B.; Berger, Andrew J.; Lanning, Ryan M.; Tromberg, Bruce J.
2001-06-01
Near infrared diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR spectroscopy yields quantitative functional information that cannot be obtained with other non-invasive radiological techniques. In this study we focused upon the origins of this contrast in healthy breast, especially from water and lipids.
DOT National Transportation Integrated Search
1985-03-01
A report is offered on a study of the information activities within the Right-of-Way section of ADOT. The objectives of the study were to adapt and apply techniques to measure user-perceived needs, satisfaction and utility of services provided Right-...
DOT National Transportation Integrated Search
1985-03-01
A report is offered on a study of the information activities within the Right-of-Way section of ADOT. The objectives of the study were to adapt and apply techniques to measure user-perceived needs, satisfaction and utility of services provided Right-...
Nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratios are an important surrogate for nitric oxide (NO) NO-to-NO2 chemistry in dispersion models when estimating NOX emissions in a near-road environment. Existing dispersion models use different techniques and assumptions to represe...
NASA Astrophysics Data System (ADS)
Avitabile, Peter; Baqersad, Javad; Niezrecki, Christopher
2014-05-01
Large structures pose unique difficulties in the acquisition of measured dynamic data with conventional techniques that are further complicated when the structure also has rotating members such as wind turbine blades and helicopter blades. Optical techniques (digital image correlation and dynamic point tracking) are used to measure line of sight data without the need to contact the structure, eliminating cumbersome cabling issues. The data acquired from these optical approaches are used in conjunction with a unique real time operating data expansion process to obtain full-field dynamic displacement and dynamic strain. The measurement approaches are described in this paper along with the expansion procedures. The data is collected for a single blade from a wind turbine and also for a three bladed assembled wind turbine configuration. Measured strains are compared to results from a limited set of optical measurements used to perform the expansion to obtain full-field strain results including locations that are not available from the line of sight measurements acquired. The success of the approach clearly shows that there are some very extraordinary possibilities that exist to provide very desperately needed full field displacement and strain information that can be used to help identify the structural health of structures.
NASA Astrophysics Data System (ADS)
Vázquez-Suñé, E.; Serrano-Juan, A.; Pujades, E.; Crosetto, M.
2016-12-01
Construction processes require monitoring to ensure safety and to control the new and existing structures. The most accurate and spread monitoring method to measure displacements is levelling, a point-like surveying technique that tipically allows for tens of discrete in-situ sub-millimetric measures per squared kilometer. Another emerging technique for mapping soil deformation is the Interferometric Synthetic Aperture Radar (InSAR), which is based on SAR images acquired from orbiting satellites. This remote sensing technique can provide better spatial point density than levelling, more extensive spatial coverage and cheaper acquisitions. This paper analyses, compares and discusses levelling and InSAR measurements when they are used to measure the soil deformation induced by the dewatering associated to underground constructions in urban areas. To do so, an experiment was performed in the future railway station of La Sagrera, Barcelona (Spain), in which levelling and InSAR were used to accurately quantify ground deformation by dewatering. Results showed that soil displacements measured by levelling and InSAR were not always consisting. InSAR measurements were more accurate with respect the soil deformation produced by the dewatering while levelling was really useful to determine the real impact of the construction on the nearby buildings.
Ultrasonic measurements of the bulk flow field in foams
NASA Astrophysics Data System (ADS)
Nauber, Richard; Büttner, Lars; Eckert, Kerstin; Fröhlich, Jochen; Czarske, Jürgen; Heitkam, Sascha
2018-01-01
The flow field of moving foams is relevant for basic research and for the optimization of industrial processes such as froth flotation. However, no adequate measurement technique exists for the local velocity distribution inside the foam bulk. We have investigated the ultrasound Doppler velocimetry (UDV), providing the first two-dimensional, non-invasive velocity measurement technique with an adequate spatial (10 mm ) and temporal resolution (2.5 Hz ) that is applicable to medium scale foam flows. The measurement object is dry aqueous foam flowing upward in a rectangular channel. An array of ultrasound transducers is mounted within the channel, sending pulses along the main flow axis, and receiving echoes from the foam bulk. This results in a temporally and spatially resolved, planar velocity field up to a measurement depth of 200 mm , which is approximately one order of magnitude larger than those of optical techniques. A comparison with optical reference measurements of the surface velocity of the foam allows to validate the UDV results. At 2.5 Hz frame rate an uncertainty below 15 percent and an axial spatial resolution better than 10 mm is found. Therefore, UDV is a suitable tool for monitoring of industrial processes as well as the scientific investigation of three-dimensional foam flows on medium scales.
NASA Astrophysics Data System (ADS)
Cloninger, Alexander; Czaja, Wojciech; Doster, Timothy
2017-07-01
As the popularity of non-linear manifold learning techniques such as kernel PCA and Laplacian Eigenmaps grows, vast improvements have been seen in many areas of data processing, including heterogeneous data fusion and integration. One problem with the non-linear techniques, however, is the lack of an easily calculable pre-image. Existence of such pre-image would allow visualization of the fused data not only in the embedded space, but also in the original data space. The ability to make such comparisons can be crucial for data analysts and other subject matter experts who are the end users of novel mathematical algorithms. In this paper, we propose a pre-image algorithm for Laplacian Eigenmaps. Our method offers major improvements over existing techniques, which allow us to address the problem of noisy inputs and the issue of how to calculate the pre-image of a point outside the convex hull of training samples; both of which have been overlooked in previous studies in this field. We conclude by showing that our pre-image algorithm, combined with feature space rotations, allows us to recover occluded pixels of an imaging modality based off knowledge of that image measured by heterogeneous modalities. We demonstrate this data recovery on heterogeneous hyperspectral (HS) cameras, as well as by recovering LIDAR measurements from HS data.
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
NASA Astrophysics Data System (ADS)
Moon, H.; Kim, C.; Lee, W.
2016-06-01
Regarding spatial location positioning, indoor location positioning theories based on wireless communication techniques such as Wi-Fi, beacon, UWB and Bluetooth has widely been developing across the world. These techniques are mainly focusing on spatial location detection of customers using fixed wireless APs and unique Tags in the indoor environment. Besides, since existing detection equipment and techniques using ultrasound or sound etc. to detect buried persons and identify survival status for them cause 2nd damages on the collapsed debris for rescuers. In addition, it might take time to check the buried persons. However, the collapsed disaster sites should consider both outdoor and indoor environments because empty spaces under collapsed debris exists. In order to detect buried persons from the empty spaces, we should collect wireless signals with Wi-Fi from their mobile phone. Basically, the Wi-Fi signal measure 2-D location. However, since the buried persons have Z value with burial depth, we also should collect barometer sensor data from their mobile phones in order to measure Z values according to weather conditions. Specially, for quick accessibility to the disaster area, a drone (UAV; Unmanned Arial Vehicle) system, which is equipped with a wireless detection module, was introduced. Using these framework, this study aims to provide the rescuers with effective rescue information by calculating 3-D location for buried persons based on the wireless and barometer sensor fusion.
The Microstructure and Physical Properties of Incinerated Paper-Cullet-Clay Ceramics
NASA Astrophysics Data System (ADS)
Sahar, M. R.; Hamzah, K.; Rohani, M. S.; Samah, K. A.; Razi, M. M.
A series of ceramic based on (x) incinerated recycle paper - (80-x) cullet - 20 Kaolin clay (where 10×45 wt%) has successfully been made by slip casting technique followed by sintering at 1000 °C. The actual composition of ceramic is analyzed using Energy Dispersive of X-Ray (EDAX) while the phase existence is determined using X-Ray Diffraction (XRD) technique. Their microstructural morphology is observed under Scanning Electron Microscope (SEM) and the physical properties are measured in term of their thermal shrinkage and hardness. It is found that the ceramic contain mostly of Silica and the phase is dominated by the existence of Quartz (SiO2), Wollastonite (CaSiO3) and Anorthite (Ca(Al2SiO8)). The SEM micrograph shows that the morphology is dominated by the existence of granular structure, and then become smoother as the cullet level is further increased. It is also found out that the thermal shrinkage is in the range 18% - 6.5% while the hardness is in the range of 152MPa- 1.463 GPa depending on composition.
Middle Atmosphere Program. Handbook for MAP, volume 9
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1983-01-01
The term Mesosphere-Stratosphere-Troposphere radar (MST) was invented to describe the use of a high power radar transmitter together with a large vertically, or near vertically, pointing antenna to study the dynamics and structure of the atmosphere from about 10 to 100 km, using the very weak coherently scattered radiation returned from small scale irregularities in refractive index. Nine topics were addressed including: meteorological and dynamic requirements for MST radar networks; interpretation of radar returns for clear air; techniques for the measurement of horizontal and vertical velocities; techniques for studying gravity waves and turbulence; capabilities and limitations of existing MST radar; design considerations for high power VHF radar transceivers; optimum radar antenna configurations; and data analysis techniques.
Measurements of the (n,2n) Reaction Cross Section of 181Ta from 8 to 15 MeV
NASA Astrophysics Data System (ADS)
Bhatia, C.; Gooden, M. E.; Tornow, W.; Tonchev, A. P.
2014-05-01
The cross section for the reaction 181Ta(n,2n)180Tag was measured from 8 to 15 MeV in small energy steps to resolve inconsistencies in the existing databases. The activation technique was used, and the 93.4 keV γ-ray from the decay of the 180Tag ground state was recorded with a HPGe detector. In addition, the γ-rays from the monitor reactions 27Al(n,α)24Na and 197Au(n,2n)196Au were measured for neutron fluence determination. As a cross check, a calibrated neutron detector was also used. The ENDF/B-VII.1 and TENDL-2011 evaluations are in considerable disagreement with the present data, which in turn agree very well with the majority of the existing data in the 14 MeV energy region.
Global civil aviation black carbon emissions.
Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H
2013-09-17
Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.
NASA Technical Reports Server (NTRS)
Hayakawa, K. K.; Udell, D. R.; Iwata, M. M.; Lytle, C. F.; Chrisco, R. M.; Greenough, C. S.; Walling, J. A.
1972-01-01
The results are presented of an investigation into the availability and performance capability of measurement components in the area of cryogenic temperature, pressure, flow and liquid detection components and high temperature strain gages. In addition, technical subjects allied to the components were researched and discussed. These selected areas of investigation were: (1) high pressure flange seals, (2) hydrogen embrittlement of pressure transducer diaphragms, (3) The effects of close-coupled versus remote transducer installation on pressure measurement, (4) temperature transducer configuration effects on measurements, and (5) techniques in temperature compensation of strain gage pressure transducers. The purpose of the program was to investigate the latest design and application techniques in measurement component technology and to document this information along with recommendations for upgrading measurement component designs for future S-2 derivative applications. Recommendations are provided for upgrading existing state-of-the-art in component design, where required, to satisfy performance requirements of S-2 derivative vehicles.
Some fuzzy techniques for staff selection process: A survey
NASA Astrophysics Data System (ADS)
Md Saad, R.; Ahmad, M. Z.; Abu, M. S.; Jusoh, M. S.
2013-04-01
With high level of business competition, it is vital to have flexible staff that are able to adapt themselves with work circumstances. However, staff selection process is not an easy task to be solved, even when it is tackled in a simplified version containing only a single criterion and a homogeneous skill. When multiple criteria and various skills are involved, the problem becomes much more complicated. In adddition, there are some information that could not be measured precisely. This is patently obvious when dealing with opinions, thoughts, feelings, believes, etc. One possible tool to handle this issue is by using fuzzy set theory. Therefore, the objective of this paper is to review the existing fuzzy techniques for solving staff selection process. It classifies several existing research methods and identifies areas where there is a gap and need further research. Finally, this paper concludes by suggesting new ideas for future research based on the gaps identified.
Novel method for fog monitoring using cellular networks infrastructures
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2012-08-01
A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.
Advanced flow-polishing and surface metrology of the SO56 X Ray Telescope
NASA Technical Reports Server (NTRS)
1992-01-01
The surface finishing of X ray grazing incidence optics is a most demanding area of optical processing, both in terms of metrology and application of optical finishing techniques. An existing optical mirror was processed using a new removal technique that uses a jet of finely dispersed and extremely small particles that impact a surface, which under the correct conditions, produces an ultrasmooth surface, especially on aspheric curvatures. The surfaces of the SO56 mirror are tapered conical shapes that have a continuously changing radius with the primary mirror having a parabolic shape and the secondary mirror a hyperbolic shape. An optical ray trace that was conducted of a telescope used the measured parameters from the existing substrates to set up the prescription for the optical layout. The optimization indicated a wavefront performance of 0.10 A at 0.633 micron.
The Future of Pharmaceutical Manufacturing Sciences
2015-01-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993
The Future of Pharmaceutical Manufacturing Sciences.
Rantanen, Jukka; Khinast, Johannes
2015-11-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
Using decision-tree classifier systems to extract knowledge from databases
NASA Technical Reports Server (NTRS)
St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.
1990-01-01
One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.
Mean-Square Error Due to Gradiometer Field Measuring Devices
1991-06-01
convolving the gradiometer data with the inverse transform of I /T(a, 13), applying an ap- Hence (2) may be expressed in the transform domain as propriate... inverse transform of I / T(ot, 1) will not be possible quency measurements," Superconductor Applications: SQUID’s and because its inverse does not exist...and because it is a high- Machines, B. B. Schwartz and S. Foner, Eds. New York: Plenum pass function its use in an inverse transform technique Press
Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep
2017-04-01
Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holmes, W J M; Timmons, M J; Kauser, S
2015-10-01
Techniques used to estimate implant size for primary breast augmentation have evolved since the 1970s. Currently no consensus exists on the optimal method to select implant size for primary breast augmentation. In 2013 we asked United Kingdom consultant plastic surgeons who were full members of BAPRAS or BAAPS what was their technique for implant size selection for primary aesthetic breast augmentation. We also asked what was the range of implant sizes they commonly used. The answers to question one were grouped into four categories: experience, measurements, pre-operative external sizers and intra-operative sizers. The response rate was 46% (164/358). Overall, 95% (153/159) of all respondents performed some form of pre-operative assessment, the others relied on "experience" only. The most common technique for pre-operative assessment was by external sizers (74%). Measurements were used by 57% of respondents and 3% used intra-operative sizers only. A combination of measurements and sizers was used by 34% of respondents. The most common measurements were breast base (68%), breast tissue compliance (19%), breast height (15%), and chest diameter (9%). The median implant size commonly used in primary breast augmentation was 300cc. Pre-operative external sizers are the most common technique used by UK consultant plastic surgeons to select implant size for primary breast augmentation. We discuss the above findings in relation to the evolution of pre-operative planning techniques for breast augmentation. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer
NASA Astrophysics Data System (ADS)
Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa
2016-08-01
We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.
Assessment of cell concentration and viability of isolated hepatocytes using flow cytometry.
Wigg, Alan J; Phillips, John W; Wheatland, Loretta; Berry, Michael N
2003-06-01
The assessment of cell concentration and viability of freshly isolated hepatocyte preparations has been traditionally performed using manual counting with a Neubauer counting chamber and staining for trypan blue exclusion. Despite the simple and rapid nature of this assessment, concerns about the accuracy of these methods exist. Simple flow cytometry techniques which determine cell concentration and viability are available yet surprisingly have not been extensively used or validated with isolated hepatocyte preparations. We therefore investigated the use of flow cytometry using TRUCOUNT Tubes and propidium iodide staining to measure cell concentration and viability of isolated rat hepatocytes in suspension. Analysis using TRUCOUNT Tubes provided more accurate and reproducible measurement of cell concentration than manual cell counting. Hepatocyte viability, assessed using propidium iodide, correlated more closely than did trypan blue exclusion with all indicators of hepatocyte integrity and function measured (lactate dehydrogenase leakage, cytochrome p450 content, cellular ATP concentration, ammonia and lactate removal, urea and albumin synthesis). We conclude that flow cytometry techniques can be used to measure cell concentration and viability of isolated hepatocyte preparations. The techniques are simple, rapid, and more accurate than manual cell counting and trypan blue staining and the results are not affected by protein-containing media.
The microscopes of Antoni van Leeuwenhoek.
van Zuylen, J
1981-03-01
The seventeenth-century Dutch microscopist, Antoni van Leeuwenhoek, was the first man to make a protracted study of microscopical objects, and, unlike his contemporary Robert Hooke, he viewed by transmitted light. Leeuwenhoek made over 500 of his own, curious, simple microscopes, but now only nine are known to exist. The exact nature of the lenses Leeuwenhoek made, has for long been a puzzle. The existing microscopes have now been examined in detail, and their optical characteristics measured and tabulated. It is proposed that the lens of highest magnification, x 266, was made using a special blown bubble technique.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.
2017-12-01
For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.
Present and future prospects of accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
Kutschera, Walter
1988-05-01
Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.
Noninvasive oxygen monitoring techniques.
Wahr, J A; Tremper, K K
1995-01-01
As this article demonstrates, tremendous progress has been made in the techniques of oxygen measurement and monitoring over the past 50 years. From the early developments during and after World War II, to the most recent applications of solid state and microprocessor technology today, every patient in a critical care situation will have several continuous measurements of oxygenation applied simultaneously. Information therefore is available readily to alert personnel of acute problems and to guide appropriate therapy. The majority of effort to date has been placed on measuring oxygenation of arterial or venous blood. The next generation of devices will attempt to provide information about living tissue. Unlike the devices monitoring arterial or venous oxygen content, no "gold standards" exist for tissue oxygenation, so calibration will be difficult, as will interpretation of the data provided. The application of these devices ultimately may lead to a much better understanding of how disease (and the treatment of disease) alters the utilization of oxygen by the tissues.
Swift, B
1998-11-30
Estimating the post-mortem interval in skeletal remains is a notoriously difficult task; forensic pathologists often rely heavily upon experience in recognising morphological appearances. Previous techniques have involved measuring physical or chemical changes within the hydroxyapatite matrix, radiocarbon dating and 90Sr dating, though no individual test has been advocated. Within this paper it is proposed that measuring the equilibrium between two naturally occurring radio-isotopes, 210Po and 210Pb, and comparison with post-mortem examination samples would produce a new method of dating human skeletal remains. Possible limitations exist, notably the effect of diagenesis, time limitations and relative cost, though this technique could provide a relatively accurate means of determining the post-mortem interval. It is therefore proposed that a large study be undertaken to provide a calibration scale against which bones uncovered can be dated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M
2014-01-01
Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insightsmore » into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang
In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less
NASA Astrophysics Data System (ADS)
Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.
2010-05-01
Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.
The development of experimental techniques for the study of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Widnall, S. E.; Harris, W. L.; Lee, Y. C. A.; Drees, H. M.
1974-01-01
The features of existing wind tunnels involved in noise studies are discussed. The acoustic characteristics of the MIT low noise open jet wind tunnel are obtained by employing calibration techniques: one technique is to measure the decay of sound pressure with distance in the far field; the other technique is to utilize a speaker, which was calibrated, as a sound source. The sound pressure level versus frequency was obtained in the wind tunnel chamber and compared with the corresponding calibrated values. Fiberglas board-block units were installed on the chamber interior. The free field was increased significantly after this treatment and the chamber cut-off frequency was reduced to 160 Hz from the original designed 250 Hz. The flow field characteristics of the rotor-tunnel configuration were studied by using flow visualization techniques. The influence of open-jet shear layer on the sound transmission was studied by using an Aeolian tone as the sound source. A dynamometer system was designed to measure the steady and low harmonics of the rotor thrust. A theoretical Mach number scaling formula was developed to scale the rotational noise and blade slap noise data of model rotors to full scale helicopter rotors.
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2009-04-01
We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.
Assessment of the Impacts of Radio Frequency Interference on SMAP Radar and Radiometer Measurements
NASA Technical Reports Server (NTRS)
Chen, Curtis W.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Hirad Ghaemi
2012-01-01
The NASA Soil Moisture Active and Passive (SMAP) mission will measure soil moisture with a combination of Lband radar and radiometer measurements. We present an assessment of the expected impact of radio frequency interference (RFI) on SMAP performance, incorporating projections based on recent data collected by the Aquarius and SMOS missions. We discuss the impacts of RFI on the radar and radiometer separately given the differences in (1) RFI environment between the shared radar band and the protected radiometer band, (2) mitigation techniques available for the different measurements, and (3) existing data sources available that can inform predictions for SMAP.
Observations of large parallel electric fields in the auroral ionosphere
NASA Technical Reports Server (NTRS)
Mozer, F. S.
1976-01-01
Rocket borne measurements employing a double probe technique were used to gather evidence for the existence of electric fields in the auroral ionosphere having components parallel to the magnetic field direction. An analysis of possible experimental errors leads to the conclusion that no known uncertainties can account for the roughly 10 mV/m parallel electric fields that are observed.
Error Sources in Asteroid Astrometry
NASA Technical Reports Server (NTRS)
Owen, William M., Jr.
2000-01-01
Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, J.A.
1987-01-01
The latest attempt to summarise the wealth of knowledge now available on geomagnetic phenomena has resulted in this multi-volume treatise, with contributions and reviews from many scientists. The first volume in the series contains a thorough review of all existing information on measuring the Earth's magnetic field, both on land and at sea, and includes a comparative analysis of the techniques available for this purpose.
NASA Astrophysics Data System (ADS)
Vana, Sudha; Uijt de Haag, Maarten
2010-04-01
This paper discusses an alternative ADS-B implementation that uses available provisions (Mode-S, UAT and GPS receivers) and existing GPS algorithms and techniques. This alternative has many advantages over the current ADS-B implementation, especially with respect to integrity of the solution. The paper will describe the methodology, its advantages, simulation results and implementation issues.
Priorities for Advancing Research on Youth with Autism Spectrum Disorder and Co-Occurring Anxiety
ERIC Educational Resources Information Center
Vasa, Roma A.; Keefer, Amy; Reaven, Judy; South, Mikle; White, Susan W.
2018-01-01
Research on anxiety disorders in youth with autism spectrum disorder (ASD) has burgeoned in the past two decades. Yet, critical gaps exist with respect to measuring and treating anxiety in this population. This study used the nominal group technique to identify the most important research priorities on co-occurring anxiety in ASD. An international…
A method for evaluating discoverability and navigability of recommendation algorithms.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis
2017-01-01
Recommendations are increasingly used to support and enable discovery, browsing, and exploration of items. This is especially true for entertainment platforms such as Netflix or YouTube, where frequently, no clear categorization of items exists. Yet, the suitability of a recommendation algorithm to support these use cases cannot be comprehensively evaluated by any recommendation evaluation measures proposed so far. In this paper, we propose a method to expand the repertoire of existing recommendation evaluation techniques with a method to evaluate the discoverability and navigability of recommendation algorithms. The proposed method tackles this by means of first evaluating the discoverability of recommendation algorithms by investigating structural properties of the resulting recommender systems in terms of bow tie structure, and path lengths. Second, the method evaluates navigability by simulating three different models of information seeking scenarios and measuring the success rates. We show the feasibility of our method by applying it to four non-personalized recommendation algorithms on three data sets and also illustrate its applicability to personalized algorithms. Our work expands the arsenal of evaluation techniques for recommendation algorithms, extends from a one-click-based evaluation towards multi-click analysis, and presents a general, comprehensive method to evaluating navigability of arbitrary recommendation algorithms.
NMF-Based Image Quality Assessment Using Extreme Learning Machine.
Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun
2017-01-01
Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.
Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay
2012-01-01
An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.
Space charge distributions in insulating polymers: A new non-contacting way of measurement.
Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L
2015-04-01
A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2017-08-01
Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.
The potential for actigraphy to be used as an indicator of sitting discomfort.
Telfer, Scott; Spence, William D; Solomonidis, Stephan E
2009-10-01
A novel technique that uses actigraphy, the study of activity involving the use of body-mounted accelerometers, to detect the discomfort-related movements of a sitting individual has been proposed as a potential indicator of sitting discomfort, and the purpose of this study was to test its validity. Objective measurement of sitting discomfort has always been challenging for researchers. Electromyographic measurements, pressure mapping, and a wide range of other techniques have all been investigated with limited success. The activity monitor's ability to detect and measure seated movement was assessed, and 12 participants were tested on four different chairs (100-min sessions for each). The activity monitor was able to detect participants' sitting movements (Pearson coefficients > 0.9). The chairs were shown to have significantly different subjective discomfort ratings, all of which increased over time. The movements detected by the activity monitor also increased significantly with time, and the amount measured was greater in the chairs rated as most uncomfortable. Regression analysis indicated that the actigraphy data were able to account for 29.6% of the variation in perceived discomfort ratings. Actigraphy can reliably detect sitting movements and may be of use in measuring sitting discomfort. Potential applications of this technique exist for seating research in the automotive industry, health care, and office and leisure chairs.
Kuster, William C; Harren, Frans J M; de Gouw, Joost A
2005-06-15
Laser photoacoustic spectroscopy (LPAS) is highly suitable for the detection of ethene in air due to the overlap between its strongest absorption lines and the wavelengths accessible by high-powered CO2 lasers. Here, we test the ability of LPAS to measure ethene in ambient air by comparing the measurements in urban air with those from a gas chromatography flame-ionization detection (GC-FID) instrument. Over the course of several days, we obtained quantitative agreement between the two measurements. Over this period, the LPAS instrument had a positive offset of 330 +/- 140 pptv (parts-per-trillion by volume) relative to the GC-FID instrument, possibly caused by interference from other species. The detection limit of the LPAS instrument is currently estimated around 1 ppbv and is limited by this offset and the statistical noise in the data. We conclude that LPAS has the potential to provide fast-response measurements of ethene in the atmosphere, with significant advantages over existing techniques when measuring from moving platforms and in the vicinity of emission sources.
NASA Technical Reports Server (NTRS)
Jarosik, Norman
1994-01-01
Low frequency gain fluctuations of a 30 GHz cryogenic HEMT amplifier have been measured with the input of the amplifier connected to a 15 K load. Effects of fluctuations of other components of the test set-up were eliminated by use of a power-power correlation technique. Strong correlation between output power fluctuations of the amplifier and drain current fluctuations of the transistors comprising the amplifier are observed. The existence of these correlations introduces the possibility of regressing some of the excess noise from the HEMT amplifier's output using the measured drain currents.
NASA Astrophysics Data System (ADS)
Stoddart, P. R.; Comins, J. D.; Every, A. G.
1995-06-01
Brillouin-scattering measurements of the angular dependence of surface-acoustic-wave velociites at high temperatures are reported. The measurements have been performed on the (001) surface of a silicon single crystal at temperatures up to 800 °C, allowing comparison of the results with calculated velocities based on existing data for the elastic constants and thermal expansion of silicon in this temperature range. The change in surface-acoustic-wave velocity with temperature is reproduced well, demonstrating the value of this technique for the characterization of the high-temperature elastic properties of opaque materials.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
Acoustic emission signal processing technique to characterize reactor in-pile phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek, E-mail: vivek.agarwal@inl.gov; Tawfik, Magdy S., E-mail: magdy.tawfik@inl.gov; Smith, James A., E-mail: james.smith@inl.gov
2015-03-31
Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failuremore » modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.« less
Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems
NASA Astrophysics Data System (ADS)
Lemaire, Bruno J.; Noss, Christian; Lorke, Andreas
2017-09-01
Solute transport across the sediment-water interface has major implications for water quality and biogeochemical cycling in aquatic ecosystems. Existing measurement techniques, however, are not capable of resolving sediment-water fluxes of most constituents under in situ flow conditions. We investigated whether relaxed eddy accumulation (REA), a micrometeorological technique with conditional sampling of turbulent updrafts and downdrafts, can be adapted to the aquatic environment. We simulated REA fluxes by reanalyzing eddy covariance measurements from a riverine lake. We found that the empirical coefficient that relates mass fluxes to the concentration difference between both REA samples is invariant with scalar and flow and responds as predicted by a joint Gaussian distribution of linearly correlated variables. Simulated REA fluxes differed on average by around 30% from eddy covariance fluxes (mean absolute error). Assessment of the lower quantification limit suggests that REA can potentially be applied for measuring benthic fluxes of a new range of constituents that cannot be assessed by standard eddy covariance methods.
Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.
1999-01-01
Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain S.; Wray, Craig P.; Guillot, Cyril
2003-08-01
In this report, we discuss the accuracy of flow hoods for residential applications, based on laboratory tests and field studies. The results indicate that commercially available hoods are often inadequate to measure flows in residential systems, and that there can be a wide range of performance between different flow hoods. The errors are due to poor calibrations, sensitivity of existing hoods to grille flow non-uniformities, and flow changes from added flow resistance. We also evaluated several simple techniques for measuring register airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics that are often as accuratemore » as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, organizations such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow hoods.« less
Statistical methodology: II. Reliability and validity assessment in study design, Part B.
Karras, D J
1997-02-01
Validity measures the correspondence between a test and other purported measures of the same or similar qualities. When a reference standard exists, a criterion-based validity coefficient can be calculated. If no such standard is available, the concepts of content and construct validity may be used, but quantitative analysis may not be possible. The Pearson and Spearman tests of correlation are often used to assess the correspondence between tests, but do not account for measurement biases and may yield misleading results. Techniques that measure interest differences may be more meaningful in validity assessment, and the kappa statistic is useful for analyzing categorical variables. Questionnaires often can be designed to allow quantitative assessment of reliability and validity, although this may be difficult. Inclusion of homogeneous questions is necessary to assess reliability. Analysis is enhanced by using Likert scales or similar techniques that yield ordinal data. Validity assessment of questionnaires requires careful definition of the scope of the test and comparison with previously validated tools.
Xu, Xiao Wu; Yu, Xin Xiao; Jia, Guo Dong; Li, Han Zhi; Lu, Wei Wei; Liu, Zi Qiang
2017-07-18
Soil-vegetation-atmosphere continuum (SPAC) is one of the important research objects in the field of terrestrial hydrology, ecology and global change. The process of water and carbon cycling, and their coupling mechanism are frontier issues. With characteristics of tracing, integration and indication, stable isotope techniques contribute to the estimation of the relationship between carbon sequestration and water consumption in ecosystems. In this review, based on a brief introduction of stable isotope principles and techniques, the applications of stable isotope techniques to water and carbon exchange in SPAC using optical stable isotope techniques were mainly explained, including: partitioning of net carbon exchange into photosynthesis and respiration; partitioning of evapotranspiration into transpiration and evaporation; coupling of water and carbon cycle at the ecosystem scale. Advanced techniques and methods provided long-term and high frequency measurements for isotope signals at the ecosystem scale, but the issues about the precision and accuracy for measurements, partitioning of ecosystem respiration, adaptability for models under non-steady state, scaling up, coupling mechanism of water and carbon cycles, were challenging. The main existing research findings, limitations and future research prospects were discussed, which might help new research and technology development in the field of stable isotope ecology.
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses
Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.
Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.
Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique
Riaz, Muhammad Mohsin; Ghafoor, Abdul
2014-01-01
Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332
Mohan, Suresh; Fuller, Jennifer C; Ford, Stephanie Friree; Lindsay, Robin W
2018-05-10
Nasal airway obstruction (NAO) is a common complaint in the otolaryngologist's office and can have a negative influence on quality of life (QOL). Existing diagnostic methods have improved, but little consensus exists on optimal tools. Furthermore, although surgical techniques for nasal obstruction continue to be developed, effective outcome measurement is lacking. An update of recent advances in diagnostic and therapeutic management of NAO is warranted. To review advances in diagnosis and treatment of NAO from the last 5 years. PubMed, Embase, CINAHL, the Cochrane Library, LILACS, Web of Science, and Guideline.gov were searched with the terms nasal obstruction and nasal blockage and their permutations from July 26, 2012, through October 23, 2017. Studies were included if they evaluated NAO using a subjective and an objective technique, and in the case of intervention-based studies, the Nasal Obstruction Symptom Evaluation (NOSE) scale and an objective technique. Exclusion criteria consisted of animal studies; patients younger than 14 years; nasal foreign bodies; nasal masses including polyps; choanal atresia; sinus disease; obstructive sleep apnea or sleep-disordered breathing; allergic rhinitis; and studies not specific to nasal obstruction. The initial search resulted in 942 articles. After independent screening by 2 investigators, 46 unique articles remained, including 2 randomized clinical trials, 3 systematic reviews, 3 meta-analyses, and 39 nonrandomized cohort studies (including a combined systematic review and meta-analysis). An aggregate of approximately 32 000 patients were reviewed (including meta-analyses). Of the subjective measures available for NAO, the NOSE scale is outstanding with regard to disease-specific validation and correlation with symptoms. No currently available objective measure can be considered a criterion standard. Structural measures of flow, pressure, and volume appear to be necessary but insufficient to assess NAO. Therefore, novel variables and techniques must continue to be explored in search of an ideal instrument to aid in assessment of surgical outcomes. Nasal airway obstruction is a clinical diagnosis with considerable effects on QOL. An adequate diagnosis begins with a focused history and physical examination and requires a patient QOL measure such as the NOSE scale. Objective measures should be adjunctive and require further validation for widespread adoption. These results are limited by minimal high-quality evidence among studies and the risk of bias in observational studies. NA.
Usability-driven pruning of large ontologies: the case of SNOMED CT.
López-García, Pablo; Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan
2012-06-01
To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Graph-traversal heuristics provided high coverage (71-96% of terms in the test sets of discharge summaries) at the expense of subset size (17-51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24-55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available.
A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings
Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; ...
2014-05-16
Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si 3N 4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less
Numerical Simulation of Delamination Growth in Composite Materials
NASA Technical Reports Server (NTRS)
Camanho, P. P.; Davila, C. G.; Ambur, D. R.
2001-01-01
The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.
NASA Technical Reports Server (NTRS)
Biemann, K.
1973-01-01
Data processing techniques were developed to measure with high precision and sensitivity the line spectra produced by a high resolution mass spectrometer. The most important aspect of this phase was the interfacing of a modified precision microphotometer-comparator with a computer and the improvement of existing software to serve the special needs of the investigation of lunar samples. In addition, a gas-chromatograph mass spectrometer system was interfaced with the same computer to allow continuous recording of mass spectra on a gas chromatographic effluent and efficient evaluation of the resulting data. These techniques were then used to detect and identify organic compounds present in the samples returned by the Apollo 11 and 12 missions.
NASA Astrophysics Data System (ADS)
Kumar, Karanam Kishore; Ramkumar, Geetha; Shelbi, S. T.
2007-12-01
In the present communication, initial results from the allSKy interferometric METeor (SKiYMET) radar installed at Thumba (8.5°N, 77°E) are presented. The meteor radar system provides hourly zonal and meridional winds in the mesosphere lower thermosphere (MLT) region. The meteor radar measured zonal and meridional winds are compared with nearby MF radar at Tirunalveli (8.7°N, 77.8°E). The present study provided an opportunity to compare the winds measured by the two different techniques, namely, interferometry and spaced antenna drift methods. Simultaneous wind measurements for a total number of 273 days during September 2004 to May 2005 are compared. The comparison showed a very good agreement between these two techniques in the height region 82-90 km and poor agreement above this height region. In general, the zonal winds compare very well as compared to the meridional winds. The observed discrepancies in the wind comparison above 90 km are discussed in the light of existing limitations of both the radars. The detailed analysis revealed the consistency of the measured winds by both the techniques. However, the discrepancies are observed at higher altitudes and are attributed to the contamination of MF radar neutral wind measurements with Equatorial Electro Jet (EEJ) induced inospheric drifts rather than the limitations of the spaced antenna technique. The comparison of diurnal variation of zonal winds above 90 km measured by both the radars is in reasonably good agreement in the absence of EEJ (during local nighttime). It is also been noted that the difference in the zonal wind measurements by both the radars is directly related to the strength of EEJ, which is a noteworthy result from the present study.
Validation of protein carbonyl measurement: A multi-centre study
Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Willetts, Rachel; Korkmaz, Ayhan; Atalay, Mustafa; Weber, Daniela; Grune, Tilman; Borsa, Claudia; Gradinaru, Daniela; Chand Bollineni, Ravi; Fedorova, Maria; Griffiths, Helen R.
2014-01-01
Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique. PMID:25560243
A force-based, parallel assay for the quantification of protein-DNA interactions.
Limmer, Katja; Pippig, Diana A; Aschenbrenner, Daniela; Gaub, Hermann E
2014-01-01
Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the intricate regulatory mechanisms that underlie gene expression. Several techniques exist that quantify DNA-protein affinity, but they are either very time-consuming or suffer from possible misinterpretation due to complicated algorithms or approximations like many high-throughput techniques. We present a more direct method to quantify DNA-protein interaction in a force-based assay. In contrast to single-molecule force spectroscopy, our technique, the Molecular Force Assay (MFA), parallelizes force measurements so that it can test one or multiple proteins against several DNA sequences in a single experiment. The interaction strength is quantified by comparison to the well-defined rupture stability of different DNA duplexes. As a proof-of-principle, we measured the interaction of the zinc finger construct Zif268/NRE against six different DNA constructs. We could show the specificity of our approach and quantify the strength of the protein-DNA interaction.
Designing and Building to ``Impossible'' Tolerances for Vibration Sensitive Equipment
NASA Astrophysics Data System (ADS)
Hertlein, Bernard H.
2003-03-01
As the precision and production capabilities of modern machines and factories increase, our expectations of them rise commensurately. Facility designers and engineers find themselves increasingly involved with measurement needs and design tolerances that were almost unthinkable a few years ago. An area of expertise that demonstrates this very clearly is the field of vibration measurement and control. Magnetic Resonance Imaging, Semiconductor manufacturing, micro-machining, surgical microscopes — These are just a few examples of equipment or techniques that need an extremely stable vibration environment. The challenge to architects, engineers and contractors is to provide that level of stability without undue cost or sacrificing the aesthetics and practicality of a structure. In addition, many facilities have run out of expansion room, so the design is often hampered by the need to reuse all or part of an existing structure, or to site vibration-sensitive equipment close to an existing vibration source. High resolution measurements and nondestructive testing techniques have proven to be invaluable additions to the engineer's toolbox in meeting these challenges. The author summarizes developments in this field over the last fifteen years or so, and lists some common errors of design and construction that can cost a lot of money in retrofit if missed, but can easily be avoided with a little foresight, an appropriate testing program and a carefully thought out checklist.
Statistical analysis of fNIRS data: a comprehensive review.
Tak, Sungho; Ye, Jong Chul
2014-01-15
Functional near-infrared spectroscopy (fNIRS) is a non-invasive method to measure brain activities using the changes of optical absorption in the brain through the intact skull. fNIRS has many advantages over other neuroimaging modalities such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), or magnetoencephalography (MEG), since it can directly measure blood oxygenation level changes related to neural activation with high temporal resolution. However, fNIRS signals are highly corrupted by measurement noises and physiology-based systemic interference. Careful statistical analyses are therefore required to extract neuronal activity-related signals from fNIRS data. In this paper, we provide an extensive review of historical developments of statistical analyses of fNIRS signal, which include motion artifact correction, short source-detector separation correction, principal component analysis (PCA)/independent component analysis (ICA), false discovery rate (FDR), serially-correlated errors, as well as inference techniques such as the standard t-test, F-test, analysis of variance (ANOVA), and statistical parameter mapping (SPM) framework. In addition, to provide a unified view of various existing inference techniques, we explain a linear mixed effect model with restricted maximum likelihood (ReML) variance estimation, and show that most of the existing inference methods for fNIRS analysis can be derived as special cases. Some of the open issues in statistical analysis are also described. Copyright © 2013 Elsevier Inc. All rights reserved.
Surface-based observations of volcanic emissions to the stratosphere
NASA Astrophysics Data System (ADS)
Hofmann, Dave; Barnes, John; Dutton, Ellsworth; Deshler, Terry; Jäger, Horst; Keen, Richard; Osborn, Mary
Long-term, surface-based observations of the stratospheric aerosol layer are presented and compared. These include three LIDAR aerosol backscatter measurements, at Mauna Loa Observatory (Hawaii), Langley Research Center (Virginia), and Garmisch-Partenkirchen (Germany); balloonborne in situ particle concentration measurements at Laramie, Wyoming, solar visible transmission measurements at Mauna Loa Observatory; aerosol optical depth measurements at South Pole Station and Mauna Loa Observatory; and lunar eclipse optical depth determinations, which is a globally integrating technique. Surface-based measurements have provided a useful historical record of volcanic effects on the stratospheric aerosol and the agreement between the various techniques is very good. However, some uncertainties exist when the stratosphere is relatively free of volcanic aerosol and some of the techniques are not able to easily resolve the very small amount of aerosol from natural and/or anthropogenic sources. The lunar eclipse data, which go back to the late 1800s, suggest that the Pinatubo eruption in 1991 probably perturbed the stratospheric aerosol layer at least as much as that of Krakatau in 1883. This is an important observation as it is one of the few ways to accurately compare the stratospheric effects of eruptions prior to modern measurements that began in the late 1950s. At the time of this writing (September 2002) the stratosphere appears to be at background with the lowest level of aerosol observed since the layer was discovered in 1959.
Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)
2001-01-01
Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.
Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft
NASA Technical Reports Server (NTRS)
Deckert, J. C.; Desai, M. N.; Deyst, J. J., Jr.; Willsky, A. S.
1978-01-01
A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available.
Additive Manufacturing Infrared Inspection
NASA Technical Reports Server (NTRS)
Gaddy, Darrell
2014-01-01
Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.
Measurement methods of building structures deflections
NASA Astrophysics Data System (ADS)
Wróblewska, Magdalena
2018-04-01
Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures' constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.
Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions
NASA Astrophysics Data System (ADS)
Thalman, R.; Baeza-Romero, M. T.; Ball, S. M.; Borrás, E.; Daniels, M. J. S.; Goodall, I. C. A.; Henry, S. B.; Karl, T.; Keutsch, F. N.; Kim, S.; Mak, J.; Monks, P. S.; Muñoz, A.; Orlando, J.; Peppe, S.; Rickard, A. R.; Ródenas, M.; Sánchez, P.; Seco, R.; Su, L.; Tyndall, G.; Vázquez, M.; Vera, T.; Waxman, E.; Volkamer, R.
2015-04-01
The α-dicarbonyl compounds glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO) are produced in the atmosphere by the oxidation of hydrocarbons and emitted directly from pyrogenic sources. Measurements of ambient concentrations inform about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation. We present results from a comprehensive instrument comparison effort at two simulation chamber facilities in the US and Europe that included nine instruments, and seven different measurement techniques: broadband cavity enhanced absorption spectroscopy (BBCEAS), cavity-enhanced differential optical absorption spectroscopy (CE-DOAS), white-cell DOAS, Fourier transform infrared spectroscopy (FTIR, two separate instruments), laser-induced phosphorescence (LIP), solid-phase micro extraction (SPME), and proton transfer reaction mass spectrometry (PTR-ToF-MS, two separate instruments; for methyl glyoxal only because no significant response was observed for glyoxal). Experiments at the National Center for Atmospheric Research (NCAR) compare three independent sources of calibration as a function of temperature (293-330 K). Calibrations from absorption cross-section spectra at UV-visible and IR wavelengths are found to agree within 2% for glyoxal, and 4% for methyl glyoxal at all temperatures; further calibrations based on ion-molecule rate constant calculations agreed within 5% for methyl glyoxal at all temperatures. At the European Photoreactor (EUPHORE) all measurements are calibrated from the same UV-visible spectra (either directly or indirectly), thus minimizing potential systematic bias. We find excellent linearity under idealized conditions (pure glyoxal or methyl glyoxal, R2 > 0.96), and in complex gas mixtures characteristic of dry photochemical smog systems (o-xylene/NOx and isoprene/NOx, R2 > 0.95; R2 ∼ 0.65 for offline SPME measurements of methyl glyoxal). The correlations are more variable in humid ambient air mixtures (RH > 45%) for methyl glyoxal (0.58 < R2 < 0.68) than for glyoxal (0.79 < R2 < 0.99). The intercepts of correlations were insignificant for the most part (below the instruments' experimentally determined detection limits); slopes further varied by less than 5% for instruments that could also simultaneously measure NO2. For glyoxal and methyl glyoxal the slopes varied by less than 12 and 17% (both 3-σ) between direct absorption techniques (i.e., calibration from knowledge of the absorption cross section). We find a larger variability among in situ techniques that employ external calibration sources (75-90%, 3-σ), and/or techniques that employ offline analysis. Our intercomparison reveals existing differences in reports about precision and detection limits in the literature, and enables comparison on a common basis by observing a common air mass. Finally, we evaluate the influence of interfering species (e.g., NO2, O3 and H2O) of relevance in field and laboratory applications. Techniques now exist to conduct fast and accurate measurements of glyoxal at ambient concentrations, and methyl glyoxal under simulated conditions. However, techniques to measure methyl glyoxal at ambient concentrations remain a challenge, and would be desirable.
NASA Technical Reports Server (NTRS)
Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)
2001-01-01
Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.
Integration and Improvement of Geophysical Root Biomass Measurements for Determining Carbon Credits
NASA Astrophysics Data System (ADS)
Boitet, J. I.
2013-12-01
Carbon trading schemes fundamentally rely on accurate subsurface carbon quantification in order for governing bodies to grant carbon credits inclusive of root biomass (What is Carbon Credit. 2013). Root biomass makes up a large chunk of the subsurface carbon and is difficult, labor intensive, and costly to measure. This paper stitches together the latest geophysical root measurement techniques into site-dependent recommendations for technique combinations and modifications that maximize large-scale root biomass measurement accuracy and efficiency. "Accuracy" is maximized when actual root biomass is closest to measured root biomass. "Efficiency" is maximized when time, labor, and cost of measurement is minimized. Several combinations have emerged which satisfy both criteria under different site conditions. Use of ground penetrating radar (GPR) and/or electrical resistivity tomography (ERT) allow for large tracts of land to be surveyed under appropriate conditions. Among other characteristics, GPR does best with detecting coarse roots in dry soil. ERT does best in detecting roots in moist soils, but is especially limited by electrode configuration (Mancuso, S. 2012). Integration of these two technologies into a baseline protocol based on site-specific characteristics, especially soil moisture and plants species heterogeneity, will drastically theoretically increase efficiency and accuracy of root biomass measurements. Modifications of current measurement protocols using these existing techniques will also theoretically lead to drastic improvements in both accuracy and efficiency. These modifications, such as efficient 3D imaging by adding an identical electrode array perpendicular to the first array used in the Pulled Array Continuous Electrical Profiling (PACEP) technique for ERT, should allow for more widespread application of these techniques for understanding root biomass. Where whole-site measurement is not feasible either due to financial, equipment, or physical limitations, measurements from randomly selected plots must be assumed representative of the entire system and scaled up. This scaling introduces error roughly inversely proportional to the number and size of plots measured. References Mancuso, S. (2012). Measuring roots: An updated approach Springer. What is carbon credit. (2013). Retrieved 7/20, 2013, from http://carbontradexchange.com/knowledge/what-is-carbon-credit
A study of microwave downcoverters operating in the K sub u band
NASA Technical Reports Server (NTRS)
Fellers, R. G.; Simpson, T. L.; Tseng, B.
1982-01-01
A computer program for parametric amplifier design is developed with special emphasis on practical design considerations for microwave integrated circuit degenerate amplifiers. Precision measurement techniques are developed to obtain a more realistic varactor equivalent circuit. The existing theory of a parametric amplifier is modified to include the equivalent circuit, and microwave properties, such as loss characteristics and circuit discontinuities are investigated.
ERIC Educational Resources Information Center
Miller, David; Moran, Teresa
2007-01-01
There are differences of opinion about self-esteem enhancement in the classroom; these differences exist at both conceptual and practical levels. The aim of this study was to ascertain whether techniques employed by primary school teachers as a day-to-day part of their teaching can have measurable effects on the self-esteem of their pupils. Two…
Innovative and Cost Effective Remediation of Orbital Debris
2014-04-25
to face international opposition because it could be used offensively to disable spacecraft. 4 Technical Analysis Most of StreamSat’s... LDR ). 5 They demonstrated droplet dispersion of less than 1 micro radian for some generators and devised an instrument for measuring the...error can be limited to less than one micro radian using existing technology and techniques. During transit, external forces will alter the path of
NASA Astrophysics Data System (ADS)
Buldt, J.; Müller, M.; Klas, R.; Eidam, T.; Limpert, J.; Tünnermann, A.
2018-02-01
We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered SPM broadened spectra. A measured temporal contrast enhancement by at least 7 orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.
DOT National Transportation Integrated Search
1985-03-01
A report is offered on a study of the information activities within the Right-of-Way section of ADOT. The objectives of the study were to adapt and apply techniques to measure user-perceived needs, satisfaction and utility of services provided Right-...
Absorbed dose measurement in low temperature samples:. comparative methods using simulated material
NASA Astrophysics Data System (ADS)
Garcia, Ruth; Harris, Anthony; Winters, Martell; Howard, Betty; Mellor, Paul; Patil, Deepak; Meiner, Jason
2004-09-01
There is a growing need to reliably measure absorbed dose in low temperature samples, especially in the pharmaceutical and tissue banking industries. All dosimetry systems commonly used in the irradiation industry are temperature sensitive. Radiation of low temperature samples, such as those packaged with dry ice, must therefore take these dosimeter temperature effects into consideration. This paper will suggest a method to accurately deliver an absorbed radiation dose using dosimetry techniques designed to abrogate the skewing effects of low temperature environments on existing dosimetry systems.
Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)
NASA Technical Reports Server (NTRS)
Pegg, R. J.; Henderson, H. R.; Hilton, D. A.
1974-01-01
A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data.
Numerical Modelling of Extended Leak-Off Test with a Pre-Existing Fracture
NASA Astrophysics Data System (ADS)
Lavrov, A.; Larsen, I.; Bauer, A.
2016-04-01
Extended leak-off test (XLOT) is one of the few techniques available for stress measurements in oil and gas wells. Interpretation of the test is often difficult since the results depend on a multitude of factors, including the presence of natural or drilling-induced fractures in the near-well area. Coupled numerical modelling of XLOT has been performed to investigate the pressure behaviour during the flowback phase as well as the effect of a pre-existing fracture on the test results in a low-permeability formation. Essential features of XLOT known from field measurements are captured by the model, including the saw-tooth shape of the pressure vs injected volume curve, and the change of slope in the pressure vs time curve during flowback used by operators as an indicator of the bottomhole pressure reaching the minimum in situ stress. Simulations with a pre-existing fracture running from the borehole wall in the radial direction have revealed that the results of XLOT are quite sensitive to the orientation of the pre-existing fracture. In particular, the fracture initiation pressure and the formation breakdown pressure increase steadily with decreasing angle between the fracture and the minimum in situ stress. Our findings seem to invalidate the use of the fracture initiation pressure and the formation breakdown pressure for stress measurements or rock strength evaluation purposes.
Life in Solid Ice on Earth and Other Planetary Bodies
NASA Astrophysics Data System (ADS)
Price, P. Buford
2004-06-01
Theory and direct observation indicate that micro-organisms exist in liquid veins in ice and permafrost, provided the temperature is above the eutectic for H_2O and soluble impurities present. Microbes can exist and metabolize in glacial ice and permafrost on Earth, Mars, and Europa. One can search directly (with fluorescence microscopy at liquid veins in Vostok ice core samples) or with a biologging instrument (for microbial fluorescence in a borehole in terrestrial or martian permafrost or ice). The viability lifetime against DNA destruction of bacterial spores can be measured with analytical techniques that identify calcium dipicolinate, which is unique to spores.
Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization
NASA Technical Reports Server (NTRS)
Gibson, C. E.
1979-01-01
Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.
Root resistance to cavitation is accurately measured using a centrifuge technique.
Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L
2015-02-01
Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The efficacy of the 'mind map' study technique.
Farrand, Paul; Hussain, Fearzana; Hennessy, Enid
2002-05-01
To examine the effectiveness of using the 'mind map' study technique to improve factual recall from written information. To obtain baseline data, subjects completed a short test based on a 600-word passage of text prior to being randomly allocated to form two groups: 'self-selected study technique' and 'mind map'. After a 30-minute interval the self-selected study technique group were exposed to the same passage of text previously seen and told to apply existing study techniques. Subjects in the mind map group were trained in the mind map technique and told to apply it to the passage of text. Recall was measured after an interfering task and a week later. Measures of motivation were taken. Barts and the London School of Medicine and Dentistry, University of London. 50 second- and third-year medical students. Recall of factual material improved for both the mind map and self-selected study technique groups at immediate test compared with baseline. However this improvement was only robust after a week for those in the mind map group. At 1 week, the factual knowledge in the mind map group was greater by 10% (adjusting for baseline) (95% CI -1% to 22%). However motivation for the technique used was lower in the mind map group; if motivation could have been made equal in the groups, the improvement with mind mapping would have been 15% (95% CI 3% to 27%). Mind maps provide an effective study technique when applied to written material. However before mind maps are generally adopted as a study technique, consideration has to be given towards ways of improving motivation amongst users.
Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models
NASA Astrophysics Data System (ADS)
Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.
2017-12-01
The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.
NASA Astrophysics Data System (ADS)
Gangopadhyay, A. K.; Kelton, K. F.
2017-01-01
Among the three fundamental processes of heat transfer (conduction, convection, and radiation), radiation is the most dominant at high temperatures. The total hemispherical emissivity is an important property that determines the amount of heat loss by radiation. Unfortunately, the emissivity, especially its temperature dependence (ɛ (T)), is unknown for most materials. Here, we demonstrate the feasibility of measuring ɛ (T) using an electrostatic levitation (ESL) technique that allows such measurements to be made on levitated solid and liquid samples in a contamination-free, high-vacuum environment. The ɛ (T) for solid Ni and liquid Zr_{60}Al_{10}Cu_{18}Ni9Co3 from these measurements is consistent with the existing literature data.
Civil infrastructure monitoring for IVHS using optical fiber sensors
NASA Astrophysics Data System (ADS)
de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.
1995-01-01
8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.
Mississippi Sound Remote Sensing Study
NASA Technical Reports Server (NTRS)
Atwell, B. H.
1973-01-01
The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.
Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds
Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.
2012-01-01
Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706
Noninvasive measurement of lung carbon-11-serotonin extraction in man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, G.; Firnau, G.; Meyer, G.J.
1991-04-01
The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, {sup 11}C-serotonin as the substrate, and {sup 11}CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker {sup 11}CO-erythrocytes and 10 min later {supmore » 11}C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of {sup 11}C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of {sup 11}C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium.« less
Higher Signal-to-Noise Measurements of Alpha-element Abundances in the M31 System
NASA Astrophysics Data System (ADS)
Escala, Ivanna; Kirby, Evan N.
2018-06-01
The stellar halo and tidal streams of M31 provide an essential counterpoint to the same structures around the Milky Way (MW). While measurements of [Fe/H] and [$\\alpha$/Fe] have been made in the MW, little is known about the detailed chemical abundances of the M31 system. To make progress with existing telescopes, we expand upon the technique first presented by Kirby et al., applying spectral synthesis to medium-resolution spectroscopy at lower spectral resolution (R $\\sim$ 1800) across an optical range (4100~\\AA \\ $<$ $\\lambda$ $<$ 9100~\\AA) that extends down the blue. We have obtained deep spectra of red giants in the tidal streams, smooth halo, and disk of M31 using the DEIMOS 600ZD grating, resulting in higher signal-to-noise per spectral resolution element (S/N $\\sim$ 30 \\AA$^{-1}$). By applying our technique to red giant stars in MW globular clusters with higher-resolution ($R$ $\\sim$ 6000) spectra in the blue (4100 - 6300 \\AA), we demonstrate that our technique reproduces previous measurements derived from the red side of the optical (6300 - 9100 \\AA). For the first time, we present measurements of [Fe/H] and [$\\alpha$/Fe] of sufficient quality and sample size to construct quantitative models of galactic chemical evolution in the M31 system.
Characterization of an Electroanalytical Instrument Suite Searching for Water and Life on Mars
NASA Technical Reports Server (NTRS)
Bostic, Heidi E.
2005-01-01
Seeking the existence of life on other planets is an essential part of NASA's research. Our terrestrial experience suggests that water is a mandatory resource for life to exist and thrive. However, instruments capable of detecting water at the levels likely to be present on Mars are lacking. This project tests the possibility of using electrical measurements of soils, at variable frequencies, as a water detector. Generally, the electrical resistance of soils can be described as a combination of resistance and capacitance, which can be described by a vector including a magnitude and (phase) angle. By specifically studying the impedance measurements and phase angles of different types of soil, spiked with varying concentrations of dissolved ions, measurements can be taken to provide an idea of the behavior of dry Martian soils. The presentation will describe the experimental technique, apparatus and procedures, as well as results conducted to calibrate the instrument and to establish sample preparation protocols.
Verification of Internal Dose Calculations.
NASA Astrophysics Data System (ADS)
Aissi, Abdelmadjid
The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous phantoms, such as the MIRD phantom and its physical representation, Mr. ADAM. The results indicated that the Reciprocity Theorem is valid within an average range of uncertainty of 8%.
Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.
Strelitzki, R; Paech, V; Nicholson, P H
1999-05-01
Measurements of an airborne ultrasonic wave were made in defatted cancellous bone from the human calcaneus using standard ultrasonic equipment. The wave propagating under these conditions was consistent with a decoupled Biot slow wave travelling in the air alone, as previously reported in gas-saturated foams. Reproducible measurements of phase velocity and attenuation coefficient were possible, and an estimate of the tortuosity of the trabecular framework was derived from the high frequency limit of the phase velocity. Thus the method offers a new approach to the acoustic characterisation of bone in vitro which, in contrast to existing techniques, has the potential to yield information directly characterising the trabecular structure.
Spatial calibration of an optical see-through head mounted display
Gilson, Stuart J.; Fitzgibbon, Andrew W.; Glennerster, Andrew
2010-01-01
We present here a method for calibrating an optical see-through Head Mounted Display (HMD) using techniques usually applied to camera calibration (photogrammetry). Using a camera placed inside the HMD to take pictures simultaneously of a tracked object and features in the HMD display, we could exploit established camera calibration techniques to recover both the intrinsic and extrinsic properties of the HMD (width, height, focal length, optic centre and principal ray of the display). Our method gives low re-projection errors and, unlike existing methods, involves no time-consuming and error-prone human measurements, nor any prior estimates about the HMD geometry. PMID:18599125
A Survey of Ballistic Transfers to the Lunar Surface
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Parker, Jeffrey S.
2011-01-01
In this study techniques are developed which allow an analysis of a range of different types of transfer trajectories from the Earth to the lunar surface. Trajectories ranging from those obtained using the invariant manifolds of unstable orbits to those derived from collision orbits are analyzed. These techniques allow the computation of trajectories encompassing low-energy trajectories as well as more direct transfers. The range of possible trajectory options is summarized, and a broad range of trajectories that exist as a result of the Sun's influence are computed and analyzed. The results are then classified by type, and trades between different measures of cost are discussed.
Two-dimensional photoacoustic imaging of femtosecond filament in water
NASA Astrophysics Data System (ADS)
Potemkin, F. V.; Mareev, E. I.; Rumiantsev, B. V.; Bychkov, A. S.; Karabutov, A. A.; Cherepetskaya, E. B.; Makarov, V. A.
2018-07-01
We report a first-of-its-kind optoacoustic tomography of a femtosecond filament in water. Using a broadband (~100 MHz) piezoelectric transducer and a back-projection reconstruction technique, a single filament profile was retrieved. Obtained pressure distribution induced by the femtosecond filament allowed us to identify the size of the core and the energy reservoir with spatial resolution better than 10 µm. The photoacoustic imaging provides direct measurements of the energy deposition into the medium under filamentation of ultrashort laser pulses that cannot be obtained by existing techniques. In combination with a relative simplicity and high accuracy, photoacoustic imaging can be considered as a breakthrough instrument for filamentation investigation.
Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Daykin
This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.
New measurements quantify atmospheric greenhouse effect
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-10-01
In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.
NASA Astrophysics Data System (ADS)
Smith, Roger J.
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local Bpol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local Te, ne, and B∥ along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher neB∥ product and higher ne and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
Polgár, L; Soós, P; Lajkó, E; Láng, O; Merkely, B; Kőhidai, L
2018-06-01
Thrombogenesis plays an important role in today's morbidity and mortality. Antithrombotics are among the most frequently prescribed drugs. Thorough knowledge of platelet function is needed for optimal clinical care. Platelet adhesion is a separate subprocess of platelet thrombus formation; still, no well-standardized technique for the isolated measurement of platelet adhesion exists. Impedimetry is one of the most reliable, state-of-art techniques to analyze cell adhesion, proliferation, viability, and cytotoxicity. We propose impedimetry as a feasible novel method for the isolated measurement of 2 significant platelet functions: adhesion and spreading. Laboratory reference platelet agonists (epinephrine, ADP, and collagen) were applied to characterize platelet functions by impedimetry using the xCELLigence SP system. Platelet samples were obtained from 20 healthy patients under no drug therapy. Standard laboratory parameters and clinical patient history were also analyzed. Epinephrine and ADP increased platelet adhesion in a concentration-dependent manner, while collagen tended to have a negative effect. Serum sodium and calcium levels and age had a negative correlation with platelet adhesion induced by epinephrine and ADP, while increased immunoreactivity connected with allergic diseases was associated with increased platelet adhesion induced by epinephrine and ADP. ADP increased platelet spreading in a concentration-dependent manner. Impedimetry proved to be a useful and sensitive method for the qualitative and quantitated measurement of platelet adhesion, even differentiating between subgroups of a healthy population. This novel technique is offered as an important method in the further investigation of platelet function. © 2018 John Wiley & Sons Ltd.
Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2014-02-01
Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.
A High Accuracy Measurement of the Nuclear Decay of 235mU and Search for the Nuclear Decay of 229mTh
NASA Astrophysics Data System (ADS)
Ponce, Francisco
Among all nuclear decays, there exist two isomeric states with very low-energy that belong to . {229}Th (7.8 ± 0.5 eV) and . {235}U (76.8 ± 0.5 eV) . Of particular interest is . {229}Th, because the decay energy is in the ultraviolet, and therefore in the range of modern tunable lasers. The isomer can potentially be used as the basis for a nuclear clock that is expected to be two orders of magnitude more precise than atomic clocks. However, the . {229m}Th nuclear decay energy is not sufficiently well known to design the necessary laser system for a nuclear clock. This work describes the development of a new technique using superconducting tunnel junction (STJ) detectors to directly measure the nuclear decay of low-energy isomers with a high level of accuracy. The strength of the technique is demonstrated by measuring the decay energy of the . {235}U isomer at 76.737 ± 0.018 eV. Over an order of magnitude more accurate than the current literature value. The technique is then applied to detect the transition in . {229m}Th directly and measure its energy with comparable accuracy. These experiments are unsuccessful and are discussed in light of the recent measurement of the . {229m}Th half-life of 7 ± \\SI{1}{\\micro\\second}.
Space charge distributions in insulating polymers: A new non-contacting way of measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L.
2015-04-15
A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. Thesemore » predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.« less
NASA Astrophysics Data System (ADS)
Pickworth, Louisa
2017-10-01
Hydrodynamic instabilities and asymmetries are a major obstacle in the quest to achieve ignition as they cause pre-existing capsule perturbations to grow and ultimately quench the fusion burn in experiments at the National Ignition Facility (NIF). This talk will review recent developments of the experimental platforms and techniques to measure high-mode instabilities and low-mode asymmetries in the deceleration phase of implosions. These new platforms provide a natural link between the acceleration-phase experiments and neutron performance of layered deuterium-tritium implosions. In one innovative technique, self-emission from the hot spot was enhanced with argon dopant to ``self-backlight'' the shell in-flight around peak compression. Experiments with pre-imposed 2-D perturbations measured instability growth factors, while experiments with 3-D, ``native-roughness'' perturbations measured shell integrity in the deceleration phase of implosions. In a complimentary technique, the inner surface of the shell, along with its low-mode asymmetries and high-mode perturbations were visualized in implosions using x-ray emission of a high-Z dopant added to the inner surface of the capsule. These new measurements were instrumental in revealing unexpected surprises and providing improved understanding of the role of instabilities and asymmetries on implosion performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Ardalan, Sasan H.
1992-01-01
Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.
3D volumetric modeling of grapevine biomass using Tripod LiDAR
Keightley, K.E.; Bawden, G.W.
2010-01-01
Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.
Vapor pressures of acetylene at low temperatures
NASA Technical Reports Server (NTRS)
Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.
1990-01-01
The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.
Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C
2015-06-29
Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.
NASA Technical Reports Server (NTRS)
Mcdade, Ian C.
1991-01-01
Techniques were developed for recovering two-dimensional distributions of auroral volume emission rates from rocket photometer measurements made in a tomographic spin scan mode. These tomographic inversion procedures are based upon an algebraic reconstruction technique (ART) and utilize two different iterative relaxation techniques for solving the problems associated with noise in the observational data. One of the inversion algorithms is based upon a least squares method and the other on a maximum probability approach. The performance of the inversion algorithms, and the limitations of the rocket tomography technique, were critically assessed using various factors such as (1) statistical and non-statistical noise in the observational data, (2) rocket penetration of the auroral form, (3) background sources of emission, (4) smearing due to the photometer field of view, and (5) temporal variations in the auroral form. These tests show that the inversion procedures may be successfully applied to rocket observations made in medium intensity aurora with standard rocket photometer instruments. The inversion procedures have been used to recover two-dimensional distributions of auroral emission rates and ionization rates from an existing set of N2+3914A rocket photometer measurements which were made in a tomographic spin scan mode during the ARIES auroral campaign. The two-dimensional distributions of the 3914A volume emission rates recoverd from the inversion of the rocket data compare very well with the distributions that were inferred from ground-based measurements using triangulation-tomography techniques and the N2 ionization rates derived from the rocket tomography results are in very good agreement with the in situ particle measurements that were made during the flight. Three pre-prints describing the tomographic inversion techniques and the tomographic analysis of the ARIES rocket data are included as appendices.
Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung
2014-11-21
The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.
Estimation of selected flow and water-quality characteristics of Alaskan streams
Parks, Bruce; Madison, R.J.
1985-01-01
Although hydrologic data are either sparse or nonexistent for large areas of Alaska, the drainage area, area of lakes, glacier and forest cover, and average precipitation in a hydrologic basin of interest can be measured or estimated from existing maps. Application of multiple linear regression techniques indicates that statistically significant correlations exist between properties of basins determined from maps and measured streamflow characteristics. This suggests that corresponding characteristics of ungaged basins can be estimated. Streamflow frequency characteristics can be estimated from regional equations developed for southeast, south-central and Yukon regions. Statewide or modified regional equations must be used, however, for the southwest, northwest, and Arctic Slope regions where there is a paucity of data. Equations developed from basin characteristics are given to estimate suspended-sediment values for glacial streams and, with less reliability, for nonglacial streams. Equations developed from available specific conductance data are given to estimate concentrations of major dissolved inorganic constituents. Suggestions are made for expanding the existing data base and thus improving the ability to estimate hydrologic characteristics for Alaskan streams. (USGS)
Estimating acreage by double sampling using LANDSAT data
NASA Technical Reports Server (NTRS)
Pont, F.; Horwitz, H.; Kauth, R. (Principal Investigator)
1982-01-01
Double sampling techniques employing LANDSAT data for estimating the acreage of corn and soybeans was investigated and evaluated. The evaluation was based on estimated costs and correlations between two existing procedures having differing cost/variance characteristics, and included consideration of their individual merits when coupled with a fictional 'perfect' procedure of zero bias and variance. Two features of the analysis are: (1) the simultaneous estimation of two or more crops; and (2) the imposition of linear cost constraints among two or more types of resource. A reasonably realistic operational scenario was postulated. The costs were estimated from current experience with the measurement procedures involved, and the correlations were estimated from a set of 39 LACIE-type sample segments located in the U.S. Corn Belt. For a fixed variance of the estimate, double sampling with the two existing LANDSAT measurement procedures can result in a 25% or 50% cost reduction. Double sampling which included the fictional perfect procedure results in a more cost effective combination when it is used with the lower cost/higher variance representative of the existing procedures.
Manfredini, D; Castroflorio, T; Perinetti, G; Guarda-Nardini, L
2012-06-01
The aim of this investigation was to perform a review of the literature dealing with the issue of relationships between dental occlusion, body posture and temporomandibular disorders (TMD). A search of the available literature was performed to determine what the current evidence is regarding: (i) The physiology of the dental occlusion-body posture relationship, (ii) The relationship of these two topics with TMD and (iii) The validity of the available clinical and instrumental devices (surface electromyography, kinesiography and postural platforms) to measure the dental occlusion-body posture-TMD relationship. The available posturographic techniques and devices have not consistently found any association between body posture and dental occlusion. This outcome is most likely due to the many compensation mechanisms occurring within the neuromuscular system regulating body balance. Furthermore, the literature shows that TMD are not often related to specific occlusal conditions, and they also do not have any detectable relationships with head and body posture. The use of clinical and instrumental approaches for assessing body posture is not supported by the wide majority of the literature, mainly because of wide variations in the measurable variables of posture. In conclusion, there is no evidence for the existence of a predictable relationship between occlusal and postural features, and it is clear that the presence of TMD pain is not related with the existence of measurable occluso-postural abnormalities. Therefore, the use instruments and techniques aiming to measure purported occlusal, electromyographic, kinesiographic or posturographic abnormalities cannot be justified in the evidence-based TMD practice. © 2012 Blackwell Publishing Ltd.
Final scientific and technical report: New experiments to measure the neutrino mass scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monreal, Benjamin
In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritiummore » measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even more sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.« less
NASA Technical Reports Server (NTRS)
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ significantly.
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Gerber, Scott S.
1995-01-01
The L-C resonant decay technique for measuring circuit Q or losses is improved by eliminating the switch from the inductor-capacitor loop. A MOSFET switch is used instead to momentarily connect the resonant circuit to an existing voltage source, which itself is gated off during the decay transient. Very reproducible, low duty cycle data could be taken this way over a dynamic voltage range of at least 10:1. Circuit Q is computed from a polynomial fit to the sequence of the decaying voltage maxima. This method was applied to measure the losses at 60 kHz in inductors having loose powder cores of moly permalloy and an Mn-Zn power ferrite. After the copper and capacitor losses are separated out, the resulting specific core loss is shown to be roughly as expected for the MPP powder, but anomalously high for the ferrite powder. Possible causes are mentioned.
Development of an oximeter for neurology
NASA Astrophysics Data System (ADS)
Aleinik, A.; Serikbekova, Z.; Zhukova, N.; Zhukova, I.; Nikitina, M.
2016-06-01
Cerebral desaturation can occur during surgery manipulation, whereas other parameters vary insignificantly. Prolonged intervals of cerebral anoxia can cause serious damage to the nervous system. Commonly used method for measurement of cerebral blood flow uses invasive catheters. Other techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI). Tomographic methods frequently use isotope administration, that may result in anaphylactic reactions to contrast media and associated nerve diseases. Moreover, the high cost and the need for continuous monitoring make it difficult to apply these techniques in clinical practice. Cerebral oximetry is a method for measuring oxygen saturation using infrared spectrometry. Moreover reflection pulse oximetry can detect sudden changes in sympathetic tone. For this purpose the reflectance pulse oximeter for use in neurology is developed. Reflectance oximeter has a definite advantage as it can be used to measure oxygen saturation in any part of the body. Preliminary results indicate that the device has a good resolution and high reliability. Modern applied schematics have improved device characteristics compared with existing ones.
Stokes, Caroline S; Lammert, Frank; Volmer, Dietrich A
2018-02-01
A plethora of contradictory research surrounds vitamin D and its influence on health and disease. This may, in part, result from analytical difficulties with regard to measuring vitamin D metabolites in serum. Indeed, variation exists between analytical techniques and assays used for the determination of serum 25-hydroxyvitamin D. Research studies into the effects of vitamin D on clinical endpoints rely heavily on the accurate assessment of vitamin D status. This has important implications, as findings from vitamin D-related studies to date may potentially have been hampered by the quantification techniques used. Likewise, healthcare professionals are increasingly incorporating vitamin D testing and supplementation regimens into their practice, and measurement errors may be also confounding the clinical decisions. Importantly, the Vitamin D Standardisation Programme is an initiative that aims to standardise the measurement of vitamin D metabolites. Such a programme is anticipated to eliminate the inaccuracies surrounding vitamin D quantification. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Power measurement system of ECRH on HL-2A
NASA Astrophysics Data System (ADS)
Wang, He; Lu, Zhihong; Kubo, Shin; Chen, Gangyu; Wang, Chao; Zhou, Jun; Huang, Mei; Rao, Jun
2015-03-01
Electron Cyclotron Resonance Heating (ECRH) is one of the main auxiliary heating systems for HL-2A tokamak. The ECRH system with total output power 5MW has been equipped on HL-2A which include 6 sets of 0.5MW/1.0s at a frequency of 68GHz and 2 sets of 1MW/3s at a frequency of 140GHz. The power is one of important parameters in ECRH system. In this paper, the method for measuring the power of ECRH system on HL-2A is introduced which include calorimetric techniques and directional coupler. Calorimetric techniques is an existing method, which is used successfully in ECRH commissioning and experiment, and the transmission efficiency of ECRH system is achieved by measuring the absorbed microwave power in the Match Optical Unit (MOU), gyrotron output window and tours window of the EC system use this method. Now base on the theory of electromagnetic coupling through apertures, directional couplers are being designed, which is a new way for us.
NASA Astrophysics Data System (ADS)
Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca
2017-01-01
We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.
Runtime Speculative Software-Only Fault Tolerance
2012-06-01
reliability of RSFT, a in-depth analysis on its window of vulnerability is also discussed and measured via simulated fault injection. The performance...propagation of faults through the entire program. For optimal performance, these techniques have to use herotic alias analysis to find the minimum set of...affect program output. No program source code or alias analysis is needed to analyze the fault propagation ahead of time. 2.3 Limitations of Existing
Development of Novel Noninvasive Methods of Stress Assessment in Baleen Whales
2014-09-30
large whales. Few methods exist for assessment of physiological stress levels of free-swimming cetaceans (Amaral 2010, ONR 2010, Hunt et al. 2013...hormone aldosterone . Our aim in this project is to further develop both techniques - respiratory hormone analysis and fecal hormone analysis - for use...noninvasive aldosterone assay (for both feces and blow) that can be used as an alternative measure of adrenal gland activation relative to stress
Direct Observation of Hot Jupiters and Other Faint Companions with the VLTI
NASA Astrophysics Data System (ADS)
Coudé du Foresto, Vincent
The existence of Jupiter-size planets very close to their parent stars (two examples of which are 51 Peg and τ Boo) creates a challenge for theories of planetary formation and structure. Only a direct measurement of their mass and luminosity (not accessible via the current radial velocity techniques) can help discriminate between the different models that have been proposed for this class of objects.
Relative velocity change measurement based on seismic noise analysis in exploration geophysics
NASA Astrophysics Data System (ADS)
Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.
2011-12-01
Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.
Modeling of ETL-Processes and Processed Information in Clinical Data Warehousing.
Tute, Erik; Steiner, Jochen
2018-01-01
Literature describes a big potential for reuse of clinical patient data. A clinical data warehouse (CDWH) is a means for that. To support management and maintenance of processes extracting, transforming and loading (ETL) data into CDWHs as well as to ease reuse of metadata between regular IT-management, CDWH and secondary data users by providing a modeling approach. Expert survey and literature review to find requirements and existing modeling techniques. An ETL-modeling-technique was developed extending existing modeling techniques. Evaluation by exemplarily modeling existing ETL-process and a second expert survey. Nine experts participated in the first survey. Literature review yielded 15 included publications. Six existing modeling techniques were identified. A modeling technique extending 3LGM2 and combining it with openEHR information models was developed and evaluated. Seven experts participated in the evaluation. The developed approach can help in management and maintenance of ETL-processes and could serve as interface between regular IT-management, CDWH and secondary data users.
A Review of New Surgical and Endoscopic Therapies for Gastroesophageal Reflux Disease.
Ganz, Robert A
2016-07-01
Treatment of gastroesophageal reflux disease in the United States today is binary, with the majority of patients with gastroesophageal reflux disease being treated with antisecre-tory medications and a minority of patients, typically those with volume regurgitation, undergoing Nissen fundoplication. However, there has been increasing dissatisfaction with proton pump inhibitor therapy among a significant number of patients with gastroesophageal reflux disease owing to cost, side effects, and refractory symptoms, and there has been a general reluctance to undergo surgical fundoplication due to its attendant side-effect profile. As a result, a therapy gap exists for many patients with gastroesophageal reflux disease. Alternative techniques are available for these gap patients, including 2 endoscopic fundoplication techniques, an endoscopic radiofrequency energy delivery technique, and 2 minimally invasive surgical procedures. These alternative techniques have been extensively evaluated; however, there are limitations to published studies, including arbitrary definitions of success, variable efficacy measurements, deficient reporting tools, inconsistent study designs, inconsistent lengths of follow-up postintervention, and lack of comparison data across techniques. Although all of the techniques appear to be safe, the endoscopic techniques lack demonstrable reflux control and show variable symptom improvement and variable decreases in proton pump inhibitor use. The surgical techniques are more robust, with evidence for adequate reflux control, symptom improvement, and decreased proton pump inhibitor use; however, these techniques are more difficult to perform and are more intrusive. Additionally, these alternative techniques have only been studied in patients with relatively normal anatomy. The field of gastroesophageal reflux disease treatment is in need of consistent definitions of efficacy, standardized study design and outcome measurements, and improved reporting tools before the role of these techniques can be fully ascertained.
Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation
NASA Technical Reports Server (NTRS)
Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.
2012-01-01
Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.
Usability-driven pruning of large ontologies: the case of SNOMED CT
Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan
2012-01-01
Objectives To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Materials and Methods Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Results Graph-traversal heuristics provided high coverage (71–96% of terms in the test sets of discharge summaries) at the expense of subset size (17–51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24–55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Discussion Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Conclusion Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available. PMID:22268217
Measurement of the bed material of gravel-bed rivers
Milhous, R.T.; ,
2002-01-01
The measurement of the physical properties of a gravel-bed river is important in the calculation of sediment transport and physical habitat values for aquatic animals. These properties are not always easy to measure. One recent report on flushing of fines from the Klamath River did not contain information on one location because the grain size distribution of the armour could not be measured on a dry river bar. The grain size distribution could have been measured using a barrel sampler and converting the measurements to the same as would have been measured if a dry bar existed at the site. In another recent paper the porosity was calculated from an average value relation from the literature. The results of that paper may be sensitive to the actual value of porosity. Using the bulk density sampling technique based on a water displacement process presented in this paper the porosity could have been calculated from the measured bulk density. The principle topics of this paper are the measurement of the size distribution of the armour, and measurement of the porosity of the substrate. The 'standard' method of sampling of the armour is to do a Wolman-type count of the armour on a dry section of the river bed. When a dry bar does not exist the armour in an area of the wet streambed is to sample and the measurements transformed analytically to the same type of results that would have been obtained from the standard Wolman procedure. A comparison of the results for the San Miguel River in Colorado shows significant differences in the median size of the armour. The method use to determine the porosity is not 'high-tech' and there is a need improve knowledge of the porosity because of the importance of porosity in the aquatic ecosystem. The technique is to measure the in-situ volume of a substrate sample by measuring the volume of a frame over the substrate and then repeated the volume measurement after the sample is obtained from within the frame. The difference in the volumes is the volume of the sample.
Fagevik Olsén, Monika; Westerdahl, Elisabeth
2009-01-01
Breathing exercises against a resistance during expiration are often used as treatment for patients with chronic obstructive pulmonary disease (COPD). Controversy still exists regarding the clinical application and efficacy. The aim of this systematic review was to determine the effects of chest physiotherapy techniques with positive expiratory pressure (PEP) for the prevention and treatment of pulmonary impairment in adults with COPD. The review was conducted on randomised, controlled clinical trials in which breathing exercises with positive expiratory pressure were compared with other chest physical therapy techniques or with no treatment, in adult patients with COPD. A computer-assisted literature search of available databases from 1970 to January 2008 was performed. Two reviewers extracted data independently and assessed the trials systematically with an instrument for measuring methodological quality. In total, 11 trials met the inclusion criteria, of which 5 reached an adequate level of internal validity. Several kinds of PEP techniques with a diversity of intensities and durations of treatment have been evaluated with different outcome measures and follow-up periods. Benefits of PEP were found in isolated outcome measures in separate studies with a follow-up period <1 month. Concerning long-term effects, the results are contradictory. Prior to widespread prescription of long-term PEP treatment, more research is required to establish the benefit of the technique in patients with COPD. (c) 2008 S. Karger AG, Basel.
A novel method for measurement of MR fluid sedimentation and its experimental verification
NASA Astrophysics Data System (ADS)
Roupec, J.; Berka, P.; Mazůrek, I.; Strecker, Z.; Kubík, M.; Macháček, O.; Taheri Andani, M.
2017-10-01
This article presents a novel sedimentation measurement technique based on quantifying the changes in magnetic flux density when the magnetorheological fluid (MRF) passes through the air gap of the magnetic circuit. The sedimented MRF appears to have as a result of increased iron content. Accordingly, the sedimented portion of the sample displays a higher magnetic conductivity than the unsedimented area that contains less iron particles. The data analysis and evaluation methodology is elaborated along with an example set of measurements, which are compared against the visual observations and available data in the literature. Experiments indicate that unlike the existing methods, the new technique is able to accurately generate the complete curves of the sedimentation profile in a long-term sedimentation. The proposed method is capable of successfully detecting the area with the tightest particle configuration near the bottom (‘cake’ layer). It also addresses the issues with the development of an unclear boundary between the carrier fluid and the sediment (mudline) during an accelerated sedimentation process; improves the sensitivity of the sedimentation detection and accurately measure the changes in particle concentration with a high resolution.
NASA Astrophysics Data System (ADS)
Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo
2015-03-01
Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H2O (˜10 Pa), a stability better than 1 cm H2O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.
Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.
Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George
2010-09-01
Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.
Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo
2015-03-01
Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H₂O (∼10 Pa), a stability better than 1 cm H₂O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.
Organic electrochemical transistors for cell-based impedance sensing
NASA Astrophysics Data System (ADS)
Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.
2015-01-01
Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.
Laser tracker orientation in confined space using on-board targets
NASA Astrophysics Data System (ADS)
Gao, Yang; Kyle, Stephen; Lin, Jiarui; Yang, Linghui; Ren, Yu; Zhu, Jigui
2016-08-01
This paper presents a novel orientation method for two laser trackers using on-board targets attached to the tracker head and rotating with it. The technique extends an existing method developed for theodolite intersection systems which are now rarely used. This method requires only a very narrow space along the baseline between the instrument heads, in order to establish the orientation relationship. This has potential application in environments where space is restricted. The orientation parameters can be calculated by means of two-face reciprocal measurements to the on-board targets, and measurements to a common point close to the baseline. An accurate model is then applied which can be solved through nonlinear optimization. Experimental comparison has been made with the conventional orientation method, which is based on measurements to common intersection points located off the baseline. This requires more space and the comparison has demonstrated the feasibility of the more compact technique presented here. Physical setup and testing suggest that the method is practical. Uncertainties estimated by simulation indicate good performance in terms of measurement quality.
Assessing D-Region Ionospheric Electron Densities with Transionospheric VLF Signals
NASA Astrophysics Data System (ADS)
Worthington, E. R.; Cohen, M.
2016-12-01
Very Low Frequency (VLF, 3-30 kHz) electromagnetic radiation emitted from ground-based sources, such as VLF transmitters or lightning strokes, is generally confined between the Earth's surface and the base of the ionosphere. These boundaries result in waveguide-like propagation modes that travel away from the source, often over great distances. In the vicinity of the source, a unique interference pattern exists that is largely determined by the D-region of the ionosphere which forms the upper boundary. A small portion of this VLF radiation escapes the ionosphere allowing the waveguide interference pattern to be observable to satellites in low-earth orbit (LEO). Techniques for estimating D-region electron densities using VLF satellite measurements are presented. These techniques are then validated using measurements taken by the satellite DEMETER. During its six-year mission, DEMETER completed hundreds of passes above well-characterized VLF transmitters while taking measurements of electric and magnetic field strengths. The waveguide interference pattern described above is clearly visible in these measurements, and features from the interference pattern are used to derive D-region electron density profiles.
NASA Technical Reports Server (NTRS)
Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.
Global Biomass Variation and its Geodynamic Effects, 1982-1998
NASA Technical Reports Server (NTRS)
Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.
2005-01-01
Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Gabrielle L; Magnotti, Gina M; Knox, Benjamin W
Quantitative measurements of the primary breakup process in diesel sprays are lacking due to a range of experimental and diagnostic challenges, including: high droplet number density environments, very small characteristic drop size scales (~1-10 μm), and high characteristic velocities in the primary breakup region (~600 m/s). Due to these challenges, existing measurement techniques have failed to resolve a sufficient range of the temporal and spatial scales involved and much remains unknown about the primary atomization process in practical diesel sprays. To gain a better insight into this process, we have developed a joint visible and x-ray extinction measurement technique tomore » quantify axial and radial distributions of the path-integrated Sauter Mean Diameter (SMD) and Liquid Volume Fraction (LVF) for diesel-like sprays. This technique enables measurement of the SMD in regions of moderate droplet number density, enabling construction of the temporal history of drop size development within practical diesel sprays. The experimental campaign was conducted jointly at the Georgia Institute of Technology and Argonne National Laboratory using the Engine Combustion Network “Spray D” injector. X-ray radiography liquid absorption measurements, conducted at the Advanced Photon Source at Argonne, quantify the liquid-fuel mass and volume distribution in the spray. Diffused back-illumination liquid scattering measurements were conducted at Georgia Tech to quantify the optical thickness throughout the spray. By application of Mie-scatter equations, the ratio of the absorption and scattering extinction measurements is demonstrated to yield solutions for the SMD. This work introduces the newly developed scattering-absorption measurement technique and highlights the important considerations that must be taken into account when jointly processing these measurements to extract the SMD. These considerations include co-alignment of measurements taken at different institutions, identification of viable regions where the measurement ratio can be accurately interpreted, and uncertainty analysis in the measurement ratio and resulting SMD. Because the measurement technique provides the spatial history of the SMD development, it is expected to be especially informative to the diesel spray modeling community. Results from this work will aid in understanding the effect of ambient densities and injection pressures on primary breakup and help assess the appropriateness of spray submodels for engine computational fluid dynamics codes.« less
Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE
Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh
2014-01-01
AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923
Meteorological Analysis of Icing Conditions Encountered in Low-Altitude Stratiform Clouds
NASA Technical Reports Server (NTRS)
Kline, D. B.; Walker, J. A.
1951-01-01
Liquid-water content, droplet size, and temperature data measured during 22 flights in predominatly stratiform clouds through the 1948-49 and the 1949-50 winters are presented. Several icing encounters were of greater severity than those previously measured over the same geographical area, but were within the limits of similar measurements obtained over different terrain within the United States. An analysis of meteorological conditions existing during the 74 flights conducted for four winters indicated an inverse relation of liquid-water concentration to maximum horizontal extent of icing clouds. Data on the vertical extent of supercooled clouds are also presented. Icing conditions were most likely to occur in the southwest and northwest quadrants of a cyclone area, and least likely to occur in the southeast and northeast quadrants where convergent air flow and lifting over the associated warm frontal surface usually cause precipitation. Additional data indicated that, icing conditions were usually encountered in nonprecipitating clouds existing at subfreezing temperatures and were unlikely over areas where most weather observing stations reported the existence of precipitation. Measurements of liquid-water content obtained during 12 flights near the time and location of radiosonde observations were compared with theoretical values. The average liquid-water content of a cloud layer, as measured by the multicylinder technique, seldom exceeded two-thirds of that which could be released by adiabatic lifting. Local areas near the cloud tops equaled or occasionally exceeded the calculated maximum quantity of liquid water.
Colorimetric qualification of shear sensitive liquid crystal coatings
NASA Technical Reports Server (NTRS)
Muratore, Joseph J., Jr.
1993-01-01
The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared with conventional point measurement sensors. It has yet to be determined if a repeatable correlation exists between the measured color of a liquid crystal coating and the magnitude/directional components of a shear vector imposed onto it.
Measurement of charge transport through organic semiconducting devices
NASA Astrophysics Data System (ADS)
Klenkler, Richard A.
2007-12-01
In this thesis, two important and unexplored areas of organic semiconductor device physics are investigated: The first area involves determining the effect of energy barriers and intermixing at the interfaces between hole transport layers (HTLs). This effect was discerned by first establishing a method of pressure-laminating successive solution coated HTLs to gether. It was found that in the range of 0.8--3.0 MPa a pressure-laminated interface between two identical HTLs causes no measurable perturbation to charge transport. By this method, 2 different HTLs can be sandwiched together to create a discrete interface, and by inserting a mixed HTL in the middle an intermixed interface between the 2 HTLs can be simulated. With these sandwiched devices, charge injection across discrete versus intermixed interfaces were compared using time-of-flight measurements. For the hole transport materials investigated, no perturbation to the overall charge transport was observed with the discrete interface, however in contrast the rate of charge transport was clearly reduced through the intermixed interface. The second area that was investigated pertains to the development of a bulk mobility measurement technique that has a higher resolution than existing methods. The approach that was used involved decoupling the charge carrier transient signal from the device charging circuit. With this approach, the RC time constant constraint that limits the resolution of existing methods is eliminated. The resulting method, termed the photoinduced electroluminescence (EL) mobility measurement technique, was then used to compare the electron mobility of the metal chelate, AlQ3 to that of the novel triazine material, BTB. Results showed that BTB demonstrated an order of magnitude higher mobility than AlQ3. Overall, these findings have broad implications regarding device design. The pressure-lamination method could be used, e.g., as a diagnostic tool to help in the design of multilayer xerographic photoreceptors, such as those that include an abrasion resistant overcoat. Further, the photoinduced EL technique could be use as a tool to help characterize charge flow and balance in organic light emitting devices amongst others.
Simultaneous mapping of the unsteady flow fields by Particle Displacement Velocimetry (PDV)
NASA Technical Reports Server (NTRS)
Huang, Thomas T.; Fry, David J.; Liu, Han-Lieh; Katz, Joseph; Fu, Thomas C.
1992-01-01
Current experimental and computational techniques must be improved in order to advance the prediction capability of the longitudinal vortical flows shed by underwater vehicles. The generation, development, and breakdown mechanisms of the shed vortices at high Reynolds numbers are not fully understood. The ability to measure hull separated vortices associated with vehicle maneuvering does not exist at present. The existing point-by-point measurement techniques can only capture approximately the large 'mean' eddies but fail to meet the dynamics of small vortices during the initial stage of generation. A new technique, which offers a previously unavailable capability to measure the unsteady cross-flow distribution in the plane of the laser light sheet, is called Particle Displacement Velocimetry (PDV). PDV consists of illuminating a thin section of the flowfield with a pulsed laser. The water is seeded with microscopic, neutrally buoyant particles containing imbedded fluorescing dye which responds with intense spontaneous fluorescence with the illuminated section. The seeded particles in the vortical flow structure shed by the underwater vehicle are illuminated by the pulse laser and the corresponding particle traces are recorded in a single photographic frame. Two distinct approaches were utilized for determining the velocity distribution from the particle traces. The first method is based on matching the traces of the same particle and measuring the distance between them. The direction of the flow can be identified by keeping one of the pulses longer than the other. The second method is based on selecting a small window within the image and finding the mean shift of all the particles within that region. The computation of the auto-correlation of the intensity distribution within the selected sample window is used to determine the mean displacement of particles. The direction of the flow is identified by varying the intensity of the laser light between pulses. Considerable computational resources are required to compute the auto-correction of the intensity distribution. Parallel processing will be employed to speed up the data reduction. A few examples of measured unsteady vortical flow structures shed by the underwater vehicles will be presented.
NASA Astrophysics Data System (ADS)
Lapteva, Yulia; Schmidt, Felix; Bumberger, Jan
2014-05-01
Soil water content plays a leading role in delimitating water and energy fluxes at the land surface and controlling groundwater recharging. The information about water content in the soil would be very useful in overcoming the challenge of managing water resources under conditions of increasing scarcity in Southern Europe and the Mediterranean region.For collecting data about the water content in soil, it is possible to use remote sensing and groundwater monitoring, built wireless sensor networks for water monitoring. Remote sensing provides a unique capability to get the information of soil moisture at global and regional scales. Wireless environmental sensor networks enable to connect local and regional-scale soil water content observations. There exist different ground based soil moisture measurement methods such as TDR, FDR, electromagnetic waves (EW), electrical and acoustic methods. Among these methods, the time domain reflectometry (TDR) is considered to be the most important and widely used electromagnetic approach. The special techniques for the reconstruction of the layered soil with TDR are based on differential equations in the time domain and numerical optimization algorithms. However, these techniques are time- consuming and suffering from some problems, like multiple reflections at the boundary surfaces. To overcome these limitations, frequency domain measurement (FDM) techniques could be used. With devices like vector network analyzers (VNA) the accuracy of the measurement itself and of the calibration can be improved. For field applicable methods the reflection coefficient is mathematically transformed in the time domain, which can be treated like TDR-data and the same information can be obtained. There are already existed some experiments using the frequency domain data directly as an input for inversion algorithms to find the spatial distribution of the soil parameters. The model that is used represents an exact solution of the Maxwell's equations. It describes the one-dimensional wave propagation in a multi-layered medium, assuming the wave to be transverse electromagnetic (TEM). In the particular case of transmission lines with perpendicularly arranged layer transitions this assumption is very close to reality. Such waveguides and their frequency domain measurements in layered media are promising concerning a development ways working with soil moisture detection.
Nanomechanical effects of light unveil photons momentum in medium
Verma, Gopal; Chaudhary, Komal; Singh, Kamal P.
2017-01-01
Precision measurement on momentum transfer between light and fluid interface has many implications including resolving the intriguing nature of photons momentum in a medium. For example, the existence of Abraham pressure of light under specific experimental configuration and the predictions of Chau-Amperian formalism of optical momentum for TE and TM polarizations remain untested. Here, we quantitatively and cleanly measure nanomehanical dynamics of water surface excited by radiation pressure of a laser beam. We systematically scanned wide range of experimental parameters including long exposure times, angle of incidence, spot size and laser polarization, and used two independent pump-probe techniques to validate a nano- bump on the water surface under all the tested conditions, in quantitative agreement with the Minkowski’s momentum of light. With careful experiments, we demonstrate advantages and limitations of nanometer resolved optical probing techniques and narrow down actual manifestation of optical momentum in a medium. PMID:28198468
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-01-01
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526
Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors.
Güemes, Alfredo; Fernández-López, Antonio; F Díaz-Maroto, Patricia; Lozano, Angel; Sierra-Perez, Julian
2018-04-04
Fiber-optic sensors cannot measure damage; to get information about damage from strain measurements, additional strategies are needed, and several alternatives are available in the existing literature. This paper discusses two independent procedures. The first is based on detecting new strains appearing around a damage spot. The structure does not need to be under loads, the technique is very robust, and damage detectability is high, but it requires sensors to be located very close to the damage, so it is a local technique. The second approach offers wider coverage of the structure; it is based on identifying the changes caused by damage on the strain field in the whole structure for similar external loads. Damage location does not need to be known a priori, and detectability is dependent upon the sensor's network density, the damage size, and the external loads. Examples of application to real structures are given.
Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping
2014-09-01
This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Photocurrent mapping of near-field optical antenna resonances
NASA Astrophysics Data System (ADS)
Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.
2011-09-01
An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (~50 nm) and wavelength-scale (~1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models.
Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin
2015-01-01
Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006
Tip-enhanced Raman mapping with top-illumination AFM.
Chan, K L Andrew; Kazarian, Sergei G
2011-04-29
Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.
Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors †
Güemes, Alfredo; Díaz-Maroto, Patricia F.; Lozano, Angel; Sierra-Perez, Julian
2018-01-01
Fiber-optic sensors cannot measure damage; to get information about damage from strain measurements, additional strategies are needed, and several alternatives are available in the existing literature. This paper discusses two independent procedures. The first is based on detecting new strains appearing around a damage spot. The structure does not need to be under loads, the technique is very robust, and damage detectability is high, but it requires sensors to be located very close to the damage, so it is a local technique. The second approach offers wider coverage of the structure; it is based on identifying the changes caused by damage on the strain field in the whole structure for similar external loads. Damage location does not need to be known a priori, and detectability is dependent upon the sensor’s network density, the damage size, and the external loads. Examples of application to real structures are given. PMID:29617345
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-04-21
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.
Dot-Projection Photogrammetry and Videogrammetry of Gossamer Space Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.; Blandino, Joseph R.; Jones, Thomas W.; Danehy, Paul M.; Dorrington, Adrian A.
2003-01-01
This paper documents the technique of using hundreds or thousands of projected dots of light as targets for photogrammetry and videogrammetry of gossamer space structures. Photogrammetry calculates the three-dimensional coordinates of each target on the structure, and videogrammetry tracks the coordinates versus time. Gossamer structures characteristically contain large areas of delicate, thin-film membranes. Examples include solar sails, large antennas, inflatable solar arrays, solar power concentrators and transmitters, sun shields, and planetary balloons and habitats. Using projected-dot targets avoids the unwanted mass, stiffness, and installation costs of traditional retroreflective adhesive targets. Four laboratory applications are covered that demonstrate the practical effectiveness of white-light dot projection for both static-shape and dynamic measurement of reflective and diffuse surfaces, respectively. Comparisons are made between dot-projection videogrammetry and traditional laser vibrometry for membrane vibration measurements. The paper closes by introducing a promising extension of existing techniques using a novel laser-induced fluorescence approach.
Suitability of analytical methods to measure solubility for the purpose of nanoregulation.
Tantra, Ratna; Bouwmeester, Hans; Bolea, Eduardo; Rey-Castro, Carlos; David, Calin A; Dogné, Jean-Michel; Jarman, John; Laborda, Francisco; Laloy, Julie; Robinson, Kenneth N; Undas, Anna K; van der Zande, Meike
2016-01-01
Solubility is an important physicochemical parameter in nanoregulation. If nanomaterial is completely soluble, then from a risk assessment point of view, its disposal can be treated much in the same way as "ordinary" chemicals, which will simplify testing and characterisation regimes. This review assesses potential techniques for the measurement of nanomaterial solubility and evaluates the performance against a set of analytical criteria (based on satisfying the requirements as governed by the cosmetic regulation as well as the need to quantify the concentration of free (hydrated) ions). Our findings show that no universal method exists. A complementary approach is thus recommended, to comprise an atomic spectrometry-based method in conjunction with an electrochemical (or colorimetric) method. This article shows that although some techniques are more commonly used than others, a huge research gap remains, related with the need to ensure data reliability.
Measurements of acoustic surface waves on fluid-filled porous rocks
NASA Astrophysics Data System (ADS)
Adler, Laszlo; Nagy, Peter B.
1994-09-01
Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.
Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Lezberg, E. A.
1976-01-01
Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.
NASA Astrophysics Data System (ADS)
Adam Rebeles, R.; Van den Winkel, P.; Hermanne, A.; Tárkányi, F.
2009-02-01
One of the radioisotopes for which a growing interest exists in nuclear medicine is 64Cu. Its branched decay makes it suitable for both diagnostic and therapeutic purposes. Activation cross sections of the proton induced reaction on enriched 64Ni have been studied using the stacked foil technique up to 24 MeV. The experimental cross sections are compared with values available from literature. Thick target yields, based on the discrete measured values of the cross sections are calculated and allow a better estimation of the optimum production parameters.
Superconducting Magnetometry for Cardiovascular Studies and AN Application of Adaptive Filtering.
NASA Astrophysics Data System (ADS)
Leifer, Mark Curtis
Sensitive magnetic detectors utilizing Superconducting Quantum Interference Devices (SQUID's) have been developed and used for studying the cardiovascular system. The theory of magnetic detection of cardiac currents is discussed, and new experimental data supporting the validity of the theory is presented. Measurements on both humans and dogs, in both healthy and diseased states, are presented using the new technique, which is termed vector magnetocardiography. In the next section, a new type of superconducting magnetometer with a room temperature pickup is analyzed, and techniques for optimizing its sensitivity to low-frequency sub-microamp currents are presented. Performance of the actual device displays significantly improved sensitivity in this frequency range, and the ability to measure currents in intact, in vivo biological fibers. The final section reviews the theoretical operation of a digital self-optimizing filter, and presents a four-channel software implementation of the system. The application of the adaptive filter to enhancement of geomagnetic signals for earthquake forecasting is discussed, and the adaptive filter is shown to outperform existing techniques in suppressing noise from geomagnetic records.
Applying usability testing techniques to improve a health promotion website.
Hinchliffe, Anetta; Mummery, W Kerry
2008-04-01
Use of the Internet for health promotion is increasing; however, the lack of published research regarding website usability suggests that health promotion websites are being developed without consultation with their users or formal evaluation. This study conducted usability testing of an existing health promotion website to inform modifications and to identify common usability themes that should be addressed by organisations developing or maintaining a health promotion website. A combination of qualitative and quantitative techniques were implemented during the usability testing sessions to gather data from users while completing tasks on the website. Techniques included performance measures (time taken), direct observation (participant observation) and subjective user preferences (questionnaire and interview). Improvements to the website were measured in terms of reduced problems reported, reduced time taken to complete tasks and increased subjective reports. Seven usability themes emerged from the data: design, feedback, format, instructions, navigation, terminology and learnability. This study demonstrates the application of usability testing to the design and modification of a health promotion website and illustrates the areas or themes that can be used as a framework for testing and modification.
Effects of geometric nonlinearity in an adhered microbeam for measuring the work of adhesion
NASA Astrophysics Data System (ADS)
Fang, Wenqiang; Mok, Joyce; Kesari, Haneesh
2018-03-01
Design against adhesion in microelectromechanical devices is predicated on the ability to quantify this phenomenon in microsystems. Previous research related the work of adhesion for an adhered microbeam to the beam's unadhered length, and as such, interferometric techniques were developed to measure that length. We propose a new vibration-based technique that can be easily implemented with existing atomic force microscopy tools or similar metrology systems. To make such a technique feasible, we analysed a model of the adhered microbeam using the nonlinear beam theory put forth by Woinowsky-Krieger. We found a new relation between the work of adhesion and the unadhered length; this relation is more accurate than the one by Mastrangelo & Hsu (Mastrangelo & Hsu 1993 J. Microelectromech. S., 2, 44-55. (doi:10.1109/84.232594)) which is commonly used. Then, we derived a closed-form approximate relationship between the microbeam's natural frequency and its unadhered length. Results obtained from this analytical formulation are in good agreement with numerical results from three-dimensional nonlinear finite-element analysis.
Preparation and validation of gross alpha/beta samples used in EML`s quality assessment program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpitta, S.C.
1997-10-01
A set of water and filter samples have been incorporated into the existing Environmental Measurements Laboratory`s (EML) Quality Assessment Program (QAP) for gross alpha/beta determinations by participating DOE laboratories. The participating laboratories are evaluated by comparing their results with the EML value. The preferred EML method for measuring water and filter samples, described in this report, uses gas flow proportional counters with 2 in. detectors. Procedures for sample preparation, quality control and instrument calibration are presented. Liquid scintillation (LS) counting is an alternative technique that is suitable for quantifying both the alpha ({sup 241}Am, {sup 230}Th and {sup 238}Pu) andmore » beta ({sup 90}Sr/{sup 90}Y) activity concentrations in the solutions used to prepare the QAP water and air filter samples. Three LS counting techniques (Cerenkov, dual dpm and full spectrum analysis) are compared. These techniques may be used to validate the activity concentrations of each component in the alpha/beta solution before the QAP samples are actually prepared.« less
Methods and techniques for measuring gas emissions from agricultural and animal feeding operations.
Hu, Enzhu; Babcock, Esther L; Bialkowski, Stephen E; Jones, Scott B; Tuller, Markus
2014-01-01
Emissions of gases from agricultural and animal feeding operations contribute to climate change, produce odors, degrade sensitive ecosystems, and pose a threat to public health. The complexity of processes and environmental variables affecting these emissions complicate accurate and reliable quantification of gas fluxes and production rates. Although a plethora of measurement technologies exist, each method has its limitations that exacerbate accurate quantification of gas fluxes. Despite a growing interest in gas emission measurements, only a few available technologies include real-time, continuous monitoring capabilities. Commonly applied state-of-the-art measurement frameworks and technologies were critically examined and discussed, and recommendations for future research to address real-time monitoring requirements for forthcoming regulation and management needs are provided.
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
Excavation-caused extra deformation of existing masonry residence in soft soil region
NASA Astrophysics Data System (ADS)
Tang, Y.; Franceschelli, S.
2017-04-01
Growing need for construction of infrastructures and buildings in fast urbanization process creates challenges of interaction between buildings under construction and adjacent existing buildings. This paper presents the mitigation of contradiction between two parties who are involved the interaction using civil engineering techniques. Through the in-depth analysis of the results of monitoring surveys and enhanced accuracy and reliability of surveys, a better understanding of the behavior of deformable buildings is achieved. Combination with the original construction documents, the two parties agree that both of them are responsible for building damages and a better understanding for the rehabilitation of the existing buildings is focused on. Two cases studies are used to demonstrate and describe the importance of better understanding of the behavior of existing buildings and their rehabilitations. The objective of this study is to insight into mechanisms of soil-structure interaction for buildings adjacent to deep excavations, which can result in a damage in existing masonry residence, and to take the optimized measures to make deep excavations safety and economic and adjacent buildings keep good serviceability in urban areas with soft soil conditions.
A calibration method for fringe reflection technique based on the analytical phase-slope description
NASA Astrophysics Data System (ADS)
Wu, Yuxiang; Yue, Huimin; Pan, Zhipeng; Liu, Yong
2018-05-01
The fringe reflection technique (FRT) has been one of the most popular methods to measure the shape of specular surface these years. The existing system calibration methods of FRT usually contain two parts, which are camera calibration and geometric calibration. In geometric calibration, the liquid crystal display (LCD) screen position calibration is one of the most difficult steps among all the calibration procedures, and its accuracy is affected by the factors such as the imaging aberration, the plane mirror flatness, and LCD screen pixel size accuracy. In this paper, based on the deduction of FRT analytical phase-slope description, we present a novel calibration method with no requirement to calibrate the position of LCD screen. On the other hand, the system can be arbitrarily arranged, and the imaging system can either be telecentric or non-telecentric. In our experiment of measuring the 5000mm radius sphere mirror, the proposed calibration method achieves 2.5 times smaller measurement error than the geometric calibration method. In the wafer surface measuring experiment, the measurement result with the proposed calibration method is closer to the interferometer result than the geometric calibration method.
Eye investigation with optical microradar techniques
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.; Kurashov, Vitalij N.; Chyzh, Igor H.
1997-08-01
Many problems exist in ophthalmology, where accurate measurements of eye structure and its parameters can be provided using optical radar concept is of remote sensing. Coherent and non-coherent approaches are reviewed aiming cornea shape measurement and measurement of aberration distribution in the elements and media of an eye. Coherent radar techniques are analyzed taking into account non- reciprocity of eye media and anisoplanatism of the fovea, that results in an exiting image being not an auto- correlation of the point-spread function of a single pass, even in the approximation of spatial invariance of the system. It is found, that aberrations of the cornea and lens are not additive, and may not be brought to summary aberrations on the entrance aperture of the lens. Anisoplanatism of the fovea and its roughness lead to low degree of coherence in scattered light. To estimate the result of measurements, methodology has been developed using Zernike polynomials expansions. Aberration distributions were gotten from measurements in 16 points of an eye situated on two concentric circles. Wave aberration functions have been approximated using least-square criterion. Thus, all data were provided necessary for cornea ablation with PRK procedure.
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
Status of the project TRAPSENSOR: Performance of the laser-desorption ion source
NASA Astrophysics Data System (ADS)
Cornejo, J. M.; Lorenzo, A.; Renisch, D.; Block, M.; Düllmann, Ch. E.; Rodríguez, D.
2013-12-01
Penning traps provide mass measurements on atomic nuclei with the highest accuracy and sensitivity. Depending on the experiment and on the physics goal, a relative mass uncertainty varying from 10-7 to below 10-11 is required. Regarding sensitivity, the use of only one ion for the measurement is crucial, either to perform mass measurements on superheavy elements (SHE), or to reach δm/m≈10-11 in order to contribute to the direct determination of the mass of the electron-antineutrino with accurate mass measurements on specific nuclei. This has motivated the development of a new technique called Quantum Sensor based on a laser-cooled ion stored in a Penning trap, to perform mass measurements using fluorescence photons instead of electronic detection. The device is currently under development at the University of Granada (Spain) within the project TRAPSENSOR. We describe the physics which motivates the construction of this device, the expected performance of the Quantum Sensor compared to that from existing techniques, and briefly present the main components of the project. As a specific aspect of the project, the performance of the laser-desorption ion source utilized to produce calcium, rhenium and osmium ions at different kinetic energies is presented.
Development of Novel Noninvasive Methods of Stress Assessment in Baleen Whales
2015-09-30
large whales. Few methods exist for assessment of physiological stress levels of free-swimming cetaceans (Amaral 2010, ONR 2010, Hunt et al. 2013...adrenal hormone aldosterone . Our aim in this project is to further develop both techniques - respiratory hormone analysis and fecal hormone analysis...development of a noninvasive aldosterone assay (for both feces and blow) that can be used as an alternative measure of adrenal gland activation relative to
NASA Astrophysics Data System (ADS)
Thalman, R.; Baeza-Romero, M. T.; Ball, S. M.; Borrás, E.; Daniels, M. J. S.; Goodall, I. C. A.; Henry, S. B.; Karl, T.; Keutsch, F. N.; Kim, S.; Mak, J.; Monks, P. S.; Muñoz, A.; Orlando, J.; Peppe, S.; Rickard, A. R.; Ródenas, M.; Sánchez, P.; Seco, R.; Su, L.; Tyndall, G.; Vázquez, M.; Vera, T.; Waxman, E.; Volkamer, R.
2014-08-01
The α-dicarbonyl compounds glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO) are produced in the atmosphere by the oxidation of hydrocarbons, and emitted directly from pyrogenic sources. Measurements of ambient concentrations inform about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation. We present results from a comprehensive instrument comparison effort at 2 simulation chamber facilities in the US and Europe that included 9 instruments, and 7 different measurement techniques: Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS), Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS), White-cell DOAS, Fourier Transform Infra-Red Spectroscopy (FTIR, two separate instruments), Laser Induced Phosphoresence (LIP), Solid Phase Micro Extraction (SPME), and Proton Transfer Reaction Mass Spectrometry (PTR-ToF-MS, two separate instruments; only methyl glyoxal as no significant response was observed for glyoxal). Experiments at the National Center for Atmospheric Research (NCAR) compare 3 independent sources of calibration as a function of temperature (293 K to 330 K). Calibrations from absorption cross-section spectra at UV-visible and IR wavelengths are found to agree within 2% for glyoxal, and 4% for methyl glyoxal at all temperatures; further calibrations based on ion-molecule rate constant calculations agreed within 5% for methyl glyoxal at all temperatures. At the EUropean PHOtoREactor (EUPHORE) all measurements are calibrated from the same UV-visible spectra (either directly or indirectly), thus minimizing potential systematic bias. We find excellent linearity under idealized conditions (pure glyoxal or methyl glyoxal, R2 > 0.96), and in complex gas mixtures characteristic of dry photochemical smog systems (o-xylene/NOx and isoprene/NOx, R2 > 0.95; R2 ~ 0.65 for offline SPME measurements of methyl glyoxal). The correlations are more variable in humid ambient air mixtures (RH > 45%) for methyl glyoxal (0.58 < R2 < 0.68) than for glyoxal (0.79 < R2 < 0.99). The intercepts of correlations were insignificant for the most part; slopes varied by less than 5% for instruments that also measure NO2. For glyoxal and methyl glyoxal the slopes varied by less than 12% and 17% (both 3-sigma) between inherently calibrated instruments (i.e., calibration from knowledge of the absorption cross-section). We find a larger variability among in situ techniques that employ external calibration sources (75% to 90%, 3-sigma), and/or techniques that employ offline analysis. Our inter-comparison reveal existing differences in reports about precision and detection limits in the literature, and enables comparison on a common basis by observing a common airmass. Finally, we evaluate the influence of interfering species (e.g., NO2, O3 and H2O) of relevance in field and laboratory applications. Techniques now exist to conduct fast and accurate measurements of glyoxal at ambient concentrations, and methyl glyoxal under simulated conditions. However, techniques to measure methyl glyoxal at ambient concentrations remain a challenge, and would be desirable.
Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J
2017-12-15
The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.
NASA Astrophysics Data System (ADS)
Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.
2018-01-01
The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.
Nanoscale visualization of redox activity at lithium-ion battery cathodes.
Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu
2014-11-17
Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.
NASA Astrophysics Data System (ADS)
Braban, Christine; Tang, Sim; Bealey, Bill; Roberts, Elin; Stephens, Amy; Galloway, Megan; Greenwood, Sarah; Sutton, Mark; Nemitz, Eiko; Leaver, David
2017-04-01
Ambient ammonia measurements have been undertaken both in the atmosphere to understand sources, concentrations at background and vulnerable ecosystems and for long term monitoring of concentrations. As a pollutant which is projected to increase concentration in the coming decades with significant policy challenges to implementing mitigation strategies it is useful to assess what has been measured, where and why. In this study a review of the literature, has shown that ammonia measurements are frequently not publically reported and in general not reposited in the open data centres, available for research. The specific sectors where measurements have been undertaken are: agricultural point source assessments, agricultural surface exchange measurements, sensitive ecosystem monitoring, landscape/regional studies and governmental long term monitoring. Less frequently ammonia is measured as part of an intensive atmospheric chemistry field campaign. Technology is developing which means a shift from chemical denuder methods to spectroscopic techniques may be possible, however chemical denuding techniques with off-line laboratory analysis will likely be an economical approach for some time to come. This paper reviews existing datasets from the different sectors of research and integrates them for a global picture to allow both a long term understanding and facilitate comparison with future measurements.
NASA Technical Reports Server (NTRS)
Flat, A.; Milnes, A. G.
1978-01-01
In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.
How can we maximize the diagnostic utility of uroflow?: ICI-RS 2017.
Gammie, Andrew; Rosier, Peter; Li, Rui; Harding, Chris
2018-01-09
To gauge the current level of diagnostic utility of uroflowmetry and to suggest areas needing research to improve this. A summary of the debate held at the 2017 meeting of the International Consultation on Incontinence Research Society, with subsequent analysis by the authors. Limited diagnostic sensitivity and specificity exist for maximum flow rates, multiple uroflow measurements, and flow-volume nomograms. There is a lack of clarity in flow rate curve shape description and uroflow time measurement. There is a need for research to combine uroflowmetry with other non-invasive indicators. Better standardizations of test technique, flow-volume nomograms, uroflow shape descriptions, and time measurements are required. © 2017 Wiley Periodicals, Inc.
Zwahlen, Marcel; Wells, Jonathan C.; Bender, Nicole; Henneberg, Maciej
2017-01-01
Background Manual anthropometric measurements are time-consuming and challenging to perform within acceptable intra- and inter-individual error margins in large studies. Three-dimensional (3D) laser body scanners provide a fast and precise alternative: within a few seconds the system produces a 3D image of the body topography and calculates some 150 standardised body size measurements. Objective The aim was to enhance the small number of existing validation studies and compare scan and manual techniques based on five selected measurements. We assessed the agreement between two repeated measurements within the two methods, analysed the direct agreement between the two methods, and explored the differences between the techniques when used in regressions assessing the effect of health related determinants on body shape indices. Methods We performed two repeated body scans on 123 volunteering young men using a Vitus Smart XXL body scanner. We manually measured height, waist, hip, buttock, and chest circumferences twice for each participant according to the WHO guidelines. The participants also filled in a basic questionnaire. Results Mean differences between the two scan measurements were smaller than between the two manual measurements, and precision as well as intra-class correlation coefficients were higher. Both techniques were strongly correlated. When comparing means between both techniques we found significant differences: Height was systematically shorter by 2.1 cm, whereas waist, hip and bust circumference measurements were larger in the scans by 1.17–4.37 cm. In consequence, body shape indices also became larger and the prevalence of overweight was greater when calculated from the scans. Between 4.1% and 7.3% of the probands changed risk category from normal to overweight when classified based on the scans. However, when employing regression analyses the two measurement techniques resulted in very similar coefficients, confidence intervals, and p-values. Conclusion For performing a large number of measurements in a large group of probands in a short time, body scans generally showed good feasibility, reliability, and validity in comparison to manual measurements. The systematic differences between the methods may result from their technical nature (contact vs. non-contact). PMID:28289559
Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique
NASA Astrophysics Data System (ADS)
Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech
2014-05-01
The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the mass loss, which was a measure of the amount of water that evaporated from the porous medium. Preliminary measurements demonstrated that the temperature control is dispensable for the conducted laboratory studies, because small temperature variations do not influence the results noticeably. However, field measurements would definitely require advanced temperature calibration. The aim of the research was to test the designed sensor for the effective non-rainfall intensity measurements in actual soil samples. It turned out that the device is highly sensitive to the amount of water present in the investigated medium. The geometry of the sensor allowed obtaining satisfactory resolution, which in the case of soil samples did not exceed 0.015 mm of water. Moreover, the direct translation of the TDR time into the water amount present in the examined media is straightforward and workable among the tested materials, which is the main advantage of the presented measurement method. Hence, both the applied TDR technique and the construction of the sensor proved to be adequate for the planned measurements of the effective non-rainfall intensity.
Design of surface-water data networks for regional information
Moss, Marshall E.; Gilroy, E.J.; Tasker, Gary D.; Karlinger, M.R.
1982-01-01
This report describes a technique, Network Analysis of Regional Information (NARI), and the existing computer procedures that have been developed for the specification of the regional information-cost relation for several statistical parameters of streamflow. The measure of information used is the true standard error of estimate of a regional logarithmic regression. The cost is a function of the number of stations at which hydrologic data are collected and the number of years for which the data are collected. The technique can be used to obtain either (1) a minimum cost network that will attain a prespecified accuracy and reliability or (2) a network that maximizes information given a set of budgetary and time constraints.
Techniques for detecting the Cherenkov light from cascade showers in water
NASA Astrophysics Data System (ADS)
Khomyakov, V. A.; Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.
2018-01-01
The NEVOD Cherenkov water detector (CWD) features a denser lattice of sensitive elements than the existing large-scale CWDs, whereby the spatial distribution of Cherenkov light from cascade showers is sampled with a superior resolution of 0.5 m, which is close to one radiation length for water (36 cm). The experimental techniques for investigating the Cherenkov light generated by particle cascades in water is proposed. The dependence of light intensity on the depth of shower development is for the first time measured at different distances from the shower axis. The results are compared with the Cherenkov light distributions predicted by various model descriptions for the scattering of cascade particles.
Single Molecule Approaches in RNA-Protein Interactions.
Serebrov, Victor; Moore, Melissa J
RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions. As all ensemble methods, their resolution is also limited by statistical averaging. Here we discuss recent advances in single molecule techniques that have the potential to tackle these challenges. We also provide a thorough overview of single molecule colocalization microscopy and the essential protein and RNA tagging and detection techniques.
Prediction of light aircraft interior noise
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Morales, D. A.
1976-01-01
At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.
ATMOS Spacelab 1 science investigation
NASA Technical Reports Server (NTRS)
Park, J. H.; Smith, M. A. H.; Twitty, J. T.; Russell, J. M., III
1979-01-01
Existing infrared spectra from high speed interferometer balloon flights were analyzed and experimental analysis techniques applicable to similar data from the ATMOS experiment (Spacelab 3) were investigated. Specific techniques under investigation included line-by-line simulation of the spectra to aid in the identification of absorbing gases, simultaneous retrieval of pressure and temperature profiles using carefully chosen pairs of CO2 absorption lines, and the use of these pressures and temperatures in the retrieval of gas concentration profiles for many absorbing species. A search for a new absorption features was also carried out, and special attention was given to identification of absorbing gases in spectral bandpass regions to be measured by the halogen occultation experiment.
Urban environmental health applications of remote sensing, summary report
NASA Technical Reports Server (NTRS)
Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.
1975-01-01
Health and its association with the physical environment was studied based on the hypothesis that there is a relationship between the man-made physical environment and health status of a population. The statistical technique of regression analysis was employed to show the degree of association and aspects of physical environment which accounted for the greater variation in health status. Mortality, venereal disease, tuberculosis, hepatitis, meningitis, shigella/salmonella, hypertension and cardiac arrest/myocardial infarction were examined. The statistical techniques were used to measure association and variation, not necessarily cause and effect. Conclusions drawn show that the association still exists in the decade of the 1970's and that it can be successfully monitored with the methodology of remote sensing.
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
Kisler, Kassandra; Lazic, Divna; Sweeney, Melanie D; Plunkett, Shane; El Khatib, Mirna; Vinogradov, Sergei A; Boas, David A; Sakadži, Sava; Zlokovic, Berislav V
2018-06-01
Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O 2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO 2 ) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO 2 level, which is better suited to a more experienced, postdoctoral-level researcher.
Estimation of the mechanical properties of the eye through the study of its vibrational modes
2017-01-01
Measuring the eye’s mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz–10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young’s modulus, Poisson ratio) measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye. PMID:28922351
One-Dimensional Spontaneous Raman Measurements Made in a Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
DeGroot, Wilhelmus A.; Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.
2001-01-01
The NASA Glenn Research Center and the aerospace industry are designing and testing low-emission combustor concepts to build the next generation of cleaner, more fuel efficient aircraft powerplants. These combustors will operate at much higher inlet temperatures and at pressures that are up to 3 to 5 times greater than combustors in the current fleet. From a test and analysis viewpoint, there is an increasing need for measurements from these combustors that are nonintrusive, simultaneous, multipoint, and more quantitative. Glenn researchers have developed several unique test facilities (refs. 1 and 2) that allow, for the first time, optical interrogation of combustor flow fields, including subcomponent performance, at pressures ranging from 1 to 60 bar (1 to 60 atm). Experiments conducted at Glenn are the first application of a visible laser-pumped, one-dimensional, spontaneous Raman-scattering technique to analyze the flow in a high-pressure, advanced-concept fuel injector at pressures thus far reaching 12 bar (12 atm). This technique offers a complementary method to the existing two- and three-dimensional imaging methods used, such as planar laser-induced fluorescence. Raman measurements benefit from the fact that the signal from each species is a linear function of its density, and the relative densities of all major species can be acquired simultaneously with good precision. The Raman method has the added potential to calibrate multidimensional measurements by providing an independent measurement of species number-densities at known points within the planar laser-induced fluorescence images. The visible Raman method is similar to an ultraviolet-Raman technique first tried in the same test facility (ref. 3). However, the visible method did not suffer from the ultraviolet technique's fuel-born polycyclic aromatic hydrocarbon fluorescence interferences.
Estimation of the mechanical properties of the eye through the study of its vibrational modes.
Aloy, M Á; Adsuara, J E; Cerdá-Durán, P; Obergaulinger, M; Esteve-Taboada, J J; Ferrer-Blasco, T; Montés-Micó, R
2017-01-01
Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz-10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio) measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.
Smith, Roger J
2008-10-01
A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.
Siddiqui, A; Lehmann, S; Haaksman, V; Ogier, J; Schellenberg, C; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S
2017-08-01
The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed channel porosity is required to understand and improve the hydrodynamics of spiral-wound membrane systems applied for desalination and wastewater reuse. The objectives of this study were to assess the accuracy of porosity measurement techniques for feed spacers differing in geometry and thickness and the consequences of using an inaccurate method on hydrodynamic predictions, which may affect permeate production. Six techniques were applied to measure the porosity namely, three volumetric techniques based on spacer strand count together with a cuboidal (SC), cylindrical (VCC) and ellipsoidal volume calculation (VCE) and three independent techniques based on volume displacement (VD), weight and density (WD) and computed tomography (CT) scanning. The CT method was introduced as an alternative for the other five already existing and applied methods in practice. Six feed spacers used for the porosity measurement differed in filament thickness, angle between the filaments and mesh-size. The results of the studies showed differences between the porosities, measured by the six methods. The results of the microscopic techniques SC, VCC and VCE deviated significantly from measurements by VD, WD and CT, which showed similar porosity values for all spacer types. Depending on the maximum deviation of the porosity measurement techniques from -6% to +6%, (i) the linear velocity deviations were -5.6% and +6.4% respectively and (ii) the pressure drop deviations were -31% and +43% respectively, illustrating the importance of an accurate porosity measurement. Because of the accuracy and standard deviation, the VD and WD method should be applied for the porosity determination of spacer-filled channels, while the CT method is recommended for numerical modelling purposes. The porosity has a linear relationship with the flow velocity and a superlinear effect on the pressure drop. Accurate porosity data are essential to evaluate feed spacer performance in spiral-wound membrane systems. Porosity of spacer-filled feed channels has a strong impact on membrane performance and biofouling impact. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Costs of Limiting Route Optimization to Published Waypoints in the Traffic Aware Planner
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Wing, David J.
2013-01-01
The Traffic Aware Planner (TAP) is an airborne advisory tool that generates optimized, traffic-avoiding routes to support the aircraft crew in making strategic reroute requests to Air Traffic Control (ATC). TAP is derived from a research-prototype self-separation tool, the Autonomous Operations Planner (AOP), in which optimized route modifications that avoid conflicts with traffic and weather, using waypoints at explicit latitudes and longitudes (a technique supported by self-separation concepts), are generated by maneuver patterns applied to the existing route. For use in current-day operations in which trajectory changes must be requested from ATC via voice communication, TAP produces optimized routes described by advisories that use only published waypoints prior to a reconnection waypoint on the existing route. We describe how the relevant algorithms of AOP have been modified to implement this requirement. The modifications include techniques for finding appropriate published waypoints in a maneuver pattern and a method for combining the genetic algorithm of AOP with an exhaustive search of certain types of advisory. We demonstrate methods to investigate the increased computation required by these techniques and to estimate other costs (measured in terms such as time to destination and fuel burned) that may be incurred when only published waypoints are used.
Design, fabrication and testing of hierarchical micro-optical structures and systems
NASA Astrophysics Data System (ADS)
Cannistra, Aaron Thomas
Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist application to curved surfaces combined with interference lithography is also investigated. Using this technique, we generate polarizers on curved surfaces and measure their performance. This work furthers an understanding of how combining multiple optical components affects the performance of each component, the final integrated devices, and leads towards realization of biomimetically inspired imaging systems.
Walmsley, P.; Fisher, I. R.
2017-04-05
Measurements of the resistivity anisotropy can provide crucial information about the electronic structure and scattering processes in anisotropic and low-dimensional materials, but quantitative measurements by conventional means often suffer very significant systematic errors. Here we describe a novel approach to measuring the resistivity anisotropy of orthorhombic materials, using a single crystal and a single measurement that is derived from a π/4 rotation of the measurement frame relative to the crystallographic axes. In this new basis, the transverse resistivity gives a direct measurement of the resistivity anisotropy, which combined with the longitudinal resistivity also gives the in-plane elements of the conventionalmore » resistivity tensor via a 5-point contact geometry. In conclusion, this is demonstrated through application to the charge-density wave compound ErTe 3, and it is concluded that this method presents a significant improvement on existing techniques, particularly when measuring small anisotropies.« less
First decadal lunar results from the Moon and Earth Radiation Budget Experiment.
Matthews, Grant
2018-03-01
A need to gain more confidence in computer model predictions of coming climate change has resulted in greater analysis of the quality of orbital Earth radiation budget (ERB) measurements being used today to constrain, validate, and hence improve such simulations. These studies conclude from time series analysis that for around a quarter of a century, no existing satellite ERB climate data record is of a sufficient standard to partition changes to the Earth from those of un-tracked and changing artificial instrumentation effects. This led to the creation of the Moon and Earth Radiation Budget Experiment (MERBE), which instead takes existing decades old climate data to a higher calibration standard using thousands of scans of Earth's Moon. The Terra and Aqua satellite ERB climate records have been completely regenerated using signal-processing improvements, combined with a substantial increase in precision from more comprehensive in-flight spectral characterization techniques. This study now builds on previous Optical Society of America work by describing new Moon measurements derived using accurate analytical mapping of telescope spatial response. That then allows a factor of three reduction in measurement noise along with an order of magnitude increase in the number of retrieved independent lunar results. Given decadal length device longevity and the use of solar and thermal lunar radiance models to normalize the improved ERB results to the International System of Units traceable radiance scale of the "MERBE Watt," the same established environmental time series analysis techniques are applied to MERBE data. They evaluate it to perhaps be of sufficient quality to immediately begin narrowing the largest of climate prediction uncertainties. It also shows that if such Terra/Aqua ERB devices can operate into the 2020s, it could become possible to halve these same uncertainties decades sooner than would be possible with existing or even planned new observing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, Laurel
In an era of budget cuts and declining resources, an increased need exists for government agencies to develop formal and informal partnerships. Such partnerships are a means through which government agencies can use their resources to accomplish together what they cannot accomplish on their own. Interagency partnerships may involve multiple government agencies, private contractors, national laboratories, technology developers, public representatives, and other stakeholders. Four elements of strong and healthy interagency partnerships are presented as well as three needs that must be satisfied for the partnership to last. A diagnostic tool to measure the strength of these building blocks within anmore » existing partnership is provided. Tools, techniques, and templates to develop these fundamental elements within a new partnership or to strengthen those within an already existing partnership are presented. This includes a comprehensive template for a partnership agreement along with practical suggestions as membership, operations, and decisions-making. (authors)« less
Correlation-coefficient-based fast template matching through partial elimination.
Mahmood, Arif; Khan, Sohaib
2012-04-01
Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.
Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding withmore » linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.« less
NASA Astrophysics Data System (ADS)
Castellini, Paolo; Esposito, Enrico; Marchetti, Barbara; Paone, Nicola; Tomasini, Enrico P.
2001-10-01
During the last years the growing importance of the correct determination of the state of conservation of artworks has been stated by all personalities in care of Cultural Heritage. There exist many analytical methodologies and techniques to individuate the physical and chemical characteristics of artworks, but at present their structural diagnostics mainly rely on the expertise of the restorer and the typical diagnostic process is accomplished mainly through manual and visual inspection of the object surface. The basic idea behind the proposed technique is to substitute human senses with measurement instruments: surfaces are very slightly vibrated by mechanical actuators, while a laser Doppler vibrometer scans the objects measuring surface velocity and producing 2D or 3D maps. Where a defect occurs velocity is higher than neighboring areas so defects can be easily spotted. Laser vibrometers also identify structural resonance frequencies thus leading to a complete characterization of defects. This work will present the most recent results coming out of the application of Scanning Laser Doppler Vibrometers (SLDV) to different types of artworks: mosaics, ceramics, inlaid wood and easel painting. Real artworks and samples realized on purpose have been studied using the proposed technique and different measuring issues resulting from each artwork category will be described.
Technique for Radiometer and Antenna Array Calibration - TRAAC
NASA Technical Reports Server (NTRS)
Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James
2012-01-01
Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.
2015-01-01
Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087
Measurement of peroxy radicals in the urban atmosphere by PERCA-LIF technique
NASA Astrophysics Data System (ADS)
Sadanaga, Y.; Matsumoto, J.; Sakurai, K.; Kato, S.; Nomaguchi, T.; Bandow, H.; Kajii, Y.
2002-12-01
A new instrument has been developed for measuring peroxy radicals (RO2) using the Chemical Amplifier-Laser Induced Fluorescence (PERCA-LIF) technique. RO2 was converted to NO2 via a chain reaction by the addition of NO and CO in a 1/4" Teflon tube. NO2 was detected by LIF using Nd:YAG laser (532 nm, 5W at 10kHz). More selective detection of NO2 is enabled by the LIF than by luminol chemiluminescence because of free from the interference by other oxidants when using luminol. LIF technique can be more sensitive detection of NO2 than the luminol detector. Optimum conditions were investigated by varying reaction time (i.e. the length of reaction tube) and the concentrations of NO and CO. Maximum chain length of approximately 300 was obtained in dry conditions using a H2O/O2 simultaneous photolysis method. Experiments were performed to characterize the dependence of the chain length on humidity for this instrument. In August 2002, RO2 measurements were performed in Osaka using this method. Maximum concentrations of RO2 in the daytime were approximately 100 pptv. Nighttime observations were also conducted and significant concentrations of RO2 were detected just after the sunset. Existence of formation processes in the dark condition was investigated.
Rezende, L F C; Arenque-Musa, B C; Moura, M S B; Aidar, S T; Von Randow, C; Menezes, R S C; Ometto, J P B H
2016-06-01
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.
Teo, Stephanie M; Ofori-Okai, Benjamin K; Werley, Christopher A; Nelson, Keith A
2015-05-01
Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.
Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A
2016-02-01
Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.
Classification of user interfaces for graph-based online analytical processing
NASA Astrophysics Data System (ADS)
Michaelis, James R.
2016-05-01
In the domain of business intelligence, user-oriented software for conducting multidimensional analysis via Online- Analytical Processing (OLAP) is now commonplace. In this setting, datasets commonly have well-defined sets of dimensions and measures around which analysis tasks can be conducted. However, many forms of data used in intelligence operations - deriving from social networks, online communications, and text corpora - will consist of graphs with varying forms of potential dimensional structure. Hence, enabling OLAP over such data collections requires explicit definition and extraction of supporting dimensions and measures. Further, as Graph OLAP remains an emerging technique, limited research has been done on its user interface requirements. Namely, on effective pairing of interface designs to different types of graph-derived dimensions and measures. This paper presents a novel technique for pairing of user interface designs to Graph OLAP datasets, rooted in Analytic Hierarchy Process (AHP) driven comparisons. Attributes of the classification strategy are encoded through an AHP ontology, developed in our alternate work and extended to support pairwise comparison of interfaces. Specifically, according to their ability, as perceived by Subject Matter Experts, to support dimensions and measures corresponding to Graph OLAP dataset attributes. To frame this discussion, a survey is provided both on existing variations of Graph OLAP, as well as existing interface designs previously applied in multidimensional analysis settings. Following this, a review of our AHP ontology is provided, along with a listing of corresponding dataset and interface attributes applicable toward SME recommendation structuring. A walkthrough of AHP-based recommendation encoding via the ontology-based approach is then provided. The paper concludes with a short summary of proposed future directions seen as essential for this research area.
ANALYSIS OF RADON MITIGATION TECHNIQUES USED IN EXISTING U.S. HOUSES
This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms,...
Ground Characterization Studies in Canakkale Pilot Site of LIQUEFACT Project
NASA Astrophysics Data System (ADS)
Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Ozer, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cengiz Cinku, M.; Ozdemir, K.
2017-12-01
The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled "Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters". Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out, additional sieve analyses and Atterberg Limit tests were carried out. It was aimed to make some correlations between geophysical measurements and other field measurements; such as SPT, blow count values.
NASA Astrophysics Data System (ADS)
Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf
2014-05-01
The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.
Molecular imaging of cannabis leaf tissue with MeV-SIMS method
NASA Astrophysics Data System (ADS)
Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož
2016-03-01
To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.
Performance Calculations for a Boundary-Layer-Ingesting Fan Stage from Sparse Measurements
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Wolter, John D.; Arend, David J.; Hearn, Tristan A.; Hardin, Larry W.; Gazzaniga, John A.
2018-01-01
A test of the Boundary Layer Ingesting-Inlet / Distortion-Tolerant Fan was completed in NASA Glenn's 8-Foot by 6-Foot supersonic wind tunnel. Inlet and fan performance were measured by surveys using a set of rotating rake arrays upstream and downstream of the fan stage. Surveys were conducted along the 100 percent speed line and a constant exit corrected flow line passing through the aerodynamic design point. These surveys represented only a small fraction of the data collected during the test. For other operating points, data was recorded as snapshots without rotating the rakes which resulted in a sparser set of recorded data. This paper will discuss analysis of these additional, lower measurement density data points to expand our coverage of the fan map. Several techniques will be used to supplement the snapshot data at test conditions where survey data also exists. The supplemented snapshot data will be compared with survey results to assess the quality of the approach. Effective methods will be used to analyze the data set for which only snapshots exist.
SMART characterisation of New Zealand's aquifers using fast and passive methods
NASA Astrophysics Data System (ADS)
Klug, H.; Daughney, C.; Verhagen, F.; Westerhoff, R.; Ward, N. Dudley
2012-04-01
Groundwater resources account for about half of New Zealand's abstractive water needs and supplies about eighty per cent of all water used in the agricultural sector. Despite the importance of New Zealand's groundwater resources, we still lack essential information related to their basic properties such as volume, hydraulic properties, interaction with surface water, and water age. These measures are required to ensure sustainable management in order to avoid overexploitation of water resources and to circumvent water scarcity situations where humans and the economy will be stressed due to insufficient water supply. A newly established research collaboration between New Zealand and Europe aims to provide a methodological framework to characterise New Zealand's groundwater aquifers. The SMART project (www.smart-project.info) will rely on existing data sources of regional councils and research institutes and will develop novel measurement techniques that can be applied to large areas with little effort, little acquisition time, and minimal cost. The project aims to synthesise in situ measurements from sensor observation services, ambient noise seismic tomography, real-time fibre optic temperature sensing, novel age tracers, airborne geophysical surveying and satellite remote sensing techniques. Validation of direct and indirect groundwater information will be achieved through use of multiple methods in case study areas and by "ground-truthing" the new methods against existing data obtained from traditional methods (e.g. drilling, aquifer pump testing, river gauging). An important overarching part of the project is the quantification of uncertainty associated with all techniques to be employed. An online Sensor WebGIS prototype will provide the project results and other case study observations (e.g. temperature, precipitation, soil moisture) in as near real-time as possible. These datasets serve as a validation source for the satellite monitoring results and present an actual view on the status of the environment. The web portal will not only visualise near real-time (station based) point measurements but also process these datasets to spatially distributed maps on climatological parameters. The OGC compliant and open source based portal will be developed towards a 3D groundwater interface and inventory. This inventory will be tailored to stakeholder needs (e.g. open access, ease of use, and interoperability with existing systems) which have already been identified through stakeholder consultation processes. The portal prototype runs on a platform-independent web browser ensuring access and visibility to all stakeholders and decision makers at regional and national level.
Extending the Measurement Range of AN Optical Surface Profiler.
NASA Astrophysics Data System (ADS)
Cochran, Eugene Rowland, III
This dissertation investigates a method for extending the measurement range of an optical surface profiling instrument. The instrument examined in these experiments is a computer -controlled phase-modulated interference microscope. Because of its ability to measure surfaces with a high degree of vertical resolution as well as excellent lateral resolution, this instrument is one of the most favorable candidates for determining the microtopography of optical surfaces. However, the data acquired by the instrument are restricted to a finite lateral and vertical range. To overcome this restriction, the feasibility of a new testing technique is explored. By overlapping a series of collinear profiles the limited field of view of this instrument can be increased and profiles that contain longer surface wavelengths can be examined. This dissertation also presents a method to augment both the vertical and horizontal dynamic range of the surface profiler by combining multiple subapertures and two-wavelength techniques. The theory, algorithms, error sources, and limitations encountered when concatenating a number of profiles are presented. In particular, the effects of accumulated piston and tilt errors on a measurement are explored. Some practical considerations for implementation and integration into an existing system are presented. Experimental findings and results of Monte Carlo simulations are also studied to explain the effects of random noise, lateral position errors, and defocus across the CCD array on measurement results. These results indicate the extent to which the field of view of the profiler may be augmented. A review of current methods of measuring surface topography is included, to provide for a more coherent text, along with a summary of pertinent measurement parameters for surface characterization. This work concludes with recommendations for future work that would make subaperture -testing techniques more reliable for measuring the microsurface structure of a material over an extended region.
Developing the Molybdenum Isotopic Proxy in Marine Barite
NASA Astrophysics Data System (ADS)
Erhardt, A. M.; Paytan, A.; Aggarwal, J.
2006-12-01
Molybdenum isotope ratios in seawater fluctuate in response to changing redox conditions and can provide clues into the degree of global ocean anoxia. The isotopic ratio of molybdenum has been shown to be sensitive to the relative proportion of oxic, suboxic, and euxinic environments. Deposition in oxic environments is isotopically light (~ -1.6‰ for δ^{97/95}Mo) relative to an average crustal source (0‰). Conversely, euxinic environments have been shown to be consistently heavier (~1.3‰) than the oxic sink through time, with suboxic sediments falling between these two signals. Shifts in the relative proportion of each sink, relative to a constant source, would alter the isotopic ratio of seawater over long time scales. Previously, this seawater value, and hence the degree of global anoxia, could only be inferred through mass balance calculations. We seek to quantify the isotopic signature of seawater though time using a phase that directly records this ratio. Marine barite precipitates inorganically in the water column directly from seawater, potentially providing a direct record of seawater characteristics. Molybdenum is a trace constituent of barite, with the molybdate ion substituting for sulfate at concentrations of about 1 ppm. To accurately determine the molybdenum isotopic ratio at these low concentrations (<15 ng per sample), modifications to existing measurement techniques are required. We will present the variations made to existing separation and mass-spectrometry techniques and the calibration of these new methods. The modifications were undertaken to reduce molybdenum blank to below 1 ng per analysis, to quantitatively remove interfering zirconium and to measure precise and reproducible isotope values. Preliminary data will be presented to illustrate potential applications for this new paleoredox proxy. This technique will allow for the measurement of molybdenum isotopic ratios at low concentrations, expanding the breath of compounds and signals that potentially record changes in planetary materials.
Scintillation-based Search for Off-pulse Radio Emission from Pulsars
NASA Astrophysics Data System (ADS)
Ravi, Kumar; Deshpande, Avinash A.
2018-05-01
We propose a new method to detect off-pulse (unpulsed and/or continuous) emission from pulsars using the intensity modulations associated with interstellar scintillation. Our technique involves obtaining the dynamic spectra, separately for on-pulse window and off-pulse region, with time and frequency resolutions to properly sample the intensity variations due to diffractive scintillation and then estimating their mutual correlation as a measure of off-pulse emission, if any. We describe and illustrate the essential details of this technique with the help of simulations, as well as real data. We also discuss the advantages of this method over earlier approaches to detect off-pulse emission. In particular, we point out how certain nonidealities inherent to measurement setups could potentially affect estimations in earlier approaches and argue that the present technique is immune to such nonidealities. We verify both of the above situations with relevant simulations. We apply this method to the observation of PSR B0329+54 at frequencies of 730 and 810 MHz made with the Green Bank Telescope and present upper limits for the off-pulse intensity at the two frequencies. We expect this technique to pave the way for extensive investigations of off-pulse emission with the help of existing dynamic spectral data on pulsars and, of course, with more sensitive long-duration data from new observations.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.
Force Sensing Applications of DNA Origami Nanodevices
NASA Astrophysics Data System (ADS)
Hudoba, Michael William
Mechanical forces in biological systems vary in both length and magnitude by orders of magnitude making them difficult to probe and characterize with existing experimental methodologies. From molecules to cells, forces can act across length scales of nanometers to microns at magnitudes ranging from picoNewtons to nanoNewtons. Although single-molecule techniques such as optical traps, magnetic tweezers, and atomic force microscopy have improved the resolution and sensitivity of such measurements, inherent drawbacks exist in their capabilities due to the nature of the tools themselves. Specifically, these techniques have limitations in their ability to measure forces in realistic cellular environments and are not amenable to in vivo applications or measurements in mimicked physiological environments. In this thesis, we present a method to develop DNA force-sensing nanodevices with sub-picoNewton resolution capable of measuring forces in realistic cellular environments, with future applications in vivo. We use a design technique known as DNA origami to assemble devices with nanoscale geometric precision through molecular self-assembly via Watson-Crick base pairing. The devices have multiple conformational states, monitored by observing a Forster Resonance Energy Transfer signal that can change under the application of force. We expanded this study by demonstrating the design of responsive structural dynamics in DNA-based nanodevices. While prior studies have relied on external inputs to drive relatively slow dynamics in DNA nanostructures, here we developed DNA nanodevices with thermally driven dynamic function. The device was designed with an ensemble of conformations, and we establish methods to tune the equilibrium distribution of conformations and the rate of switching between states. We also show this nanodynamic behavior is responsive to physical interactions with the environment by measuring molecular crowding forces in the sub-picoNewton range, which are known to play a critical role in regulating molecular interactions and processes. Broadly, this work establishes a foundation for nanodevices with thermally driven dynamics that enable new measurement and control functions. We also examine the effect that forces have on the mechanical properties of DNA origami devices by developing a method to automate mesh generation for Finite Element Analysis. With this approach we are able to determine how defects that arise during assembly affect mechanical strain within structures during force application that can ultimately lead to device failure.
Assessment methods in human body composition.
Lee, Seon Yeong; Gallagher, Dympna
2008-09-01
The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.
Assessment methods in human body composition
Lee, Seon Yeong; Gallagher, Dympna
2009-01-01
Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451
NASA Technical Reports Server (NTRS)
Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)
2001-01-01
The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.
Postmortem validation of breast density using dual-energy mammography
Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.
2014-01-01
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548
Postmortem validation of breast density using dual-energy mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun
2014-08-15
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less
Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach.
Pham, Thuy T; Thamrin, Cindy; Robinson, Paul D; McEwan, Alistair L; Leong, Philip H W
2017-08-01
Respiratory artefact removal for the forced oscillation technique can be treated as an anomaly detection problem. Manual removal is currently considered the gold standard, but this approach is laborious and subjective. Most existing automated techniques used simple statistics and/or rejected anomalous data points. Unfortunately, simple statistics are insensitive to numerous artefacts, leading to low reproducibility of results. Furthermore, rejecting anomalous data points causes an imbalance between the inspiratory and expiratory contributions. From a machine learning perspective, such methods are unsupervised and can be considered simple feature extraction. We hypothesize that supervised techniques can be used to find improved features that are more discriminative and more highly correlated with the desired output. Features thus found are then used for anomaly detection by applying quartile thresholding, which rejects complete breaths if one of its features is out of range. The thresholds are determined by both saliency and performance metrics rather than qualitative assumptions as in previous works. Feature ranking indicates that our new landmark features are among the highest scoring candidates regardless of age across saliency criteria. F1-scores, receiver operating characteristic, and variability of the mean resistance metrics show that the proposed scheme outperforms previous simple feature extraction approaches. Our subject-independent detector, 1IQR-SU, demonstrated approval rates of 80.6% for adults and 98% for children, higher than existing methods. Our new features are more relevant. Our removal is objective and comparable to the manual method. This is a critical work to automate forced oscillation technique quality control.
Consistent detection and identification of individuals in a large camera network
NASA Astrophysics Data System (ADS)
Colombo, Alberto; Leung, Valerie; Orwell, James; Velastin, Sergio A.
2007-10-01
In the wake of an increasing number of terrorist attacks, counter-terrorism measures are now a main focus of many research programmes. An important issue for the police is the ability to track individuals and groups reliably through underground stations, and in the case of post-event analysis, to be able to ascertain whether specific individuals have been at the station previously. While there exist many motion detection and tracking algorithms, the reliable deployment of them in a large network is still ongoing research. Specifically, to track individuals through multiple views, on multiple levels and between levels, consistent detection and labelling of individuals is crucial. In view of these issues, we have developed a change detection algorithm to work reliably in the presence of periodic movements, e.g. escalators and scrolling advertisements, as well as a content-based retrieval technique for identification. The change detection technique automatically extracts periodically varying elements in the scene using Fourier analysis, and constructs a Markov model for the process. Training is performed online, and no manual intervention is required, making this system suitable for deployment in large networks. Experiments on real data shows significant improvement over existing techniques. The content-based retrieval technique uses MPEG-7 descriptors to identify individuals. Given the environment under which the system operates, i.e. at relatively low resolution, this approach is suitable for short timescales. For longer timescales, other forms of identification such as gait, or if the resolution allows, face recognition, will be required.
Spreadsheet WATERSHED modeling for nonpoint-source pollution management in a Wisconsin basin
Walker, J.F.; Pickard, S.A.; Sonzogni, W.C.
1989-01-01
Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.A straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.
Hanten, W P; Chandler, S D
1994-09-01
Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.
NASA Technical Reports Server (NTRS)
Bhartia, P. K.; Taylor, S.; Mcpeters, R. D.; Wellemeyer, C.
1995-01-01
The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.
Leurs, G; O'Connell, C P; Andreotti, S; Rutzen, M; Vonk Noordegraaf, H
2015-06-01
This study employed a non-lethal measurement tool, which combined an existing photo-identification technique with a surface, parallel laser photogrammetry technique, to accurately estimate the size of free-ranging white sharks Carcharodon carcharias. Findings confirmed the hypothesis that surface laser photogrammetry is more accurate than crew-based estimations that utilized a shark cage of known size as a reference tool. Furthermore, field implementation also revealed that the photographer's angle of reference and the shark's body curvature could greatly influence technique accuracy, exposing two limitations. The findings showed minor inconsistencies with previous studies that examined pre-caudal to total length ratios of dead specimens. This study suggests that surface laser photogrammetry can successfully increase length estimation accuracy and illustrates the potential utility of this technique for growth and stock assessments on free-ranging marine organisms, which will lead to an improvement of the adaptive management of the species. © 2015 The Fisheries Society of the British Isles.
Experimental determination of entanglement with a single measurement.
Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A
2006-04-20
Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.
Laser velocimeter survey about a NACA 0012 wing at low angles of attack
NASA Technical Reports Server (NTRS)
Hoad, D. R.; Meyers, J. F.; Young, W. H., Jr.; Hepner, T. E.
1978-01-01
An investigation was conducted in the Langley V/STOL tunnel with a laser velocimeter to obtain measurements of airflow velocities about a wing at low angles of attack. The applicability of the laser velocimeter technique for this purpose in the V/STOL tunnel was demonstrated in this investigation with measurement precision bias calculated at -1.33 percent to 0.91 percent and a random uncertainty calculated at + or - 0.47 percent. Free stream measurements were obtained with this device and compared with velocity calculations from pitot static probe data taken near the laser velocimeter measurement location. The two measurements were in agreement to within 1 percent. Velocity measurement results about the centerline at 0.6 degrees angle of attack were typically those expected. At 4.75 degrees, the velocity measurements indicated that a short laminar separation bubble existed near the leading edge with an oscillating shear layer.
Shielding evaluation for IMRT implementation in an existing accelerator vault
Price, R. A.; Chibani, O.; Ma, C.‐M.
2003-01-01
A formalism is developed for evaluating the shielding in an existing vault to be used for IMRT. Existing exposure rate measurements are utilized as well as a newly developed effective modulation scaling factor. Examples are given for vaults housing 6, 10 and 18 MV linear accelerators. The use of an 18 MV Siemens linear accelerator is evaluated for IMRT delivery with respect to neutron production and the effects on individual patients. A modified modulation scaling factor is developed and the risk of the incurrence of fatal secondary malignancies is estimated. The difference in neutron production between 18 MV Varian and Siemens accelerators is estimated using Monte Carlo results. The neutron production from the Siemens accelerator is found to be approximately 4 times less than that of the Varian accelerator resulting in a risk of fatal secondary malignancy occurrence of approximately 1.6% when using the SMLC delivery technique and our measured modulation scaling factors. This compares with a previously published value of 1.6% for routine 3D CRT delivery on the Varian accelerator. PACS number(s): 87.52.Ga, 87.52.Px, 87.53.Qc, 87.53.Wz PMID:12841794
Texture functions in image analysis: A computationally efficient solution
NASA Technical Reports Server (NTRS)
Cox, S. C.; Rose, J. F.
1983-01-01
A computationally efficient means for calculating texture measurements from digital images by use of the co-occurrence technique is presented. The calculation of the statistical descriptors of image texture and a solution that circumvents the need for calculating and storing a co-occurrence matrix are discussed. The results show that existing efficient algorithms for calculating sums, sums of squares, and cross products can be used to compute complex co-occurrence relationships directly from the digital image input.
The Dark Focus of Visual Accommodation: Its Existence, Its Measurement, Its Effects
1979-11-01
DaVinci Jepicted the lens as a light focusing agent, but went virtually unnoticed as there was no available means to mass-produce his drawings (see...the Bates method of treating myopia in wni2n suggestion and relaxation techniques apparently yielded improved acuity. Working with hypnosis ,. he found...1’ Acute myopes had the greatest improvement during hypnosis . 2) Out ’f 1 49 nypnosis, acuity improvement transferred, but no refractive changes
Experimental search for hidden photon CDM in the eV mass range with a dish antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, J.; Horie, T.; Inoue, Y.
2015-09-15
A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter χ of ∼6×10{sup −12} for the hidden photon mass m{sub γ}=3.1±1.2 eV.
Treble, Ronald G; Johnson, Keith E; Xiao, Li; Thompson, Thomas S
2002-07-01
An existing gas chromatograph/mass spectrometer (GC/MS) can be used to analyze gas and liquid fractions from the same system within a few minutes. The technique was applied to (a) separate and identify the gaseous components of the products of cracking an alkane, (b) measure trace levels of acetone in ethyl acetate, (c) determine the relative partial pressures over a binary mixture, and (d) identify nine unknown compounds for the purpose of disposal.
Laser-self-mixing interferometry for mechatronics applications.
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems.
NASA Astrophysics Data System (ADS)
Bezmaternykh, P. V.; Nikolaev, D. P.; Arlazarov, V. L.
2018-04-01
Textual blocks rectification or slant correction is an important stage of document image processing in OCR systems. This paper considers existing methods and introduces an approach for the construction of such algorithms based on Fast Hough Transform analysis. A quality measurement technique is proposed and obtained results are shown for both printed and handwritten textual blocks processing as a part of an industrial system of identity documents recognition on mobile devices.
[NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].
Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu
2015-01-01
The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.
Development of a high-performance multichannel system for time-correlated single photon counting
NASA Astrophysics Data System (ADS)
Peronio, P.; Cominelli, A.; Acconcia, G.; Rech, I.; Ghioni, M.
2017-05-01
Time-Correlated Single Photon Counting (TCSPC) is one of the most effective techniques for measuring weak and fast optical signals. It outperforms traditional "analog" techniques due to its high sensitivity along with high temporal resolution. Despite those significant advantages, a main drawback still exists, which is related to the long acquisition time needed to perform a measurement. In past years many TCSPC systems have been developed with higher and higher number of channels, aimed to dealing with that limitation. Nevertheless, modern systems suffer from a strong trade-off between parallelism level and performance: the higher the number of channels the poorer the performance. In this work we present the design of a 32x32 TCSPC system meant for overtaking the existing trade-off. To this aim different technologies has been employed, to get the best performance both from detectors and sensing circuits. The exploitation of different technologies will be enabled by Through Silicon Vias (TSVs) which will be investigated as a possible solution for connecting the detectors to the sensing circuits. When dealing with a high number of channels, the count rate is inevitably set by the affordable throughput to the external PC. We targeted a throughput of 10Gb/s, which is beyond the state of the art, and designed the number of TCSPC channels accordingly. A dynamic-routing logic will connect the detectors to the lower number of acquisition chains.
Ma, Liheng; Zhan, Dejun; Jiang, Guangwen; Fu, Sihua; Jia, Hui; Wang, Xingshu; Huang, Zongsheng; Zheng, Jiaxing; Hu, Feng; Wu, Wei; Qin, Shiqiao
2015-09-01
The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.
Optimization technique for problems with an inequality constraint
NASA Technical Reports Server (NTRS)
Russell, K. J.
1972-01-01
General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Hunter, N J R; Wilson, C J L; Luzin, V
2017-02-01
Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross-polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal-plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three-dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.