Liang, Sai; Qu, Shen; Xu, Ming
2016-02-02
To develop industry-specific policies for mitigating environmental pressures, previous studies primarily focus on identifying sectors that directly generate large amounts of environmental pressures (a.k.a. production-based method) or indirectly drive large amounts of environmental pressures through supply chains (e.g., consumption-based method). In addition to those sectors as important environmental pressure producers or drivers, there exist sectors that are also important to environmental pressure mitigation as transmission centers. Economy-wide environmental pressure mitigation might be achieved by improving production efficiency of these key transmission sectors, that is, using less upstream inputs to produce unitary output. We develop a betweenness-based method to measure the importance of transmission sectors, borrowing the betweenness concept from network analysis. We quantify the betweenness of sectors by examining supply chain paths extracted from structural path analysis that pass through a particular sector. We take China as an example and find that those critical transmission sectors identified by betweenness-based method are not always identifiable by existing methods. This indicates that betweenness-based method can provide additional insights that cannot be obtained with existing methods on the roles individual sectors play in generating economy-wide environmental pressures. Betweenness-based method proposed here can therefore complement existing methods for guiding sector-level environmental pressure mitigation strategies.
Predicting missing links via correlation between nodes
NASA Astrophysics Data System (ADS)
Liao, Hao; Zeng, An; Zhang, Yi-Cheng
2015-10-01
As a fundamental problem in many different fields, link prediction aims to estimate the likelihood of an existing link between two nodes based on the observed information. Since this problem is related to many applications ranging from uncovering missing data to predicting the evolution of networks, link prediction has been intensively investigated recently and many methods have been proposed so far. The essential challenge of link prediction is to estimate the similarity between nodes. Most of the existing methods are based on the common neighbor index and its variants. In this paper, we propose to calculate the similarity between nodes by the Pearson correlation coefficient. This method is found to be very effective when applied to calculate similarity based on high order paths. We finally fuse the correlation-based method with the resource allocation method, and find that the combined method can substantially outperform the existing methods, especially in sparse networks.
Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion
NASA Astrophysics Data System (ADS)
Zou, Cuiming; Kou, Kit Ian
2018-05-01
Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.
Innovating Method of Existing Mechanical Product Based on TRIZ Theory
NASA Astrophysics Data System (ADS)
Zhao, Cunyou; Shi, Dongyan; Wu, Han
Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.
A Novel Method to Identify Differential Pathways in Hippocampus Alzheimer's Disease.
Liu, Chun-Han; Liu, Lian
2017-05-08
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The objective of this paper is to propose a novel method to identify differential pathways in hippocampus AD. MATERIAL AND METHODS We proposed a combined method by merging existed methods. Firstly, pathways were identified by four known methods (DAVID, the neaGUI package, the pathway-based co-expressed method, and the pathway network approach), and differential pathways were evaluated through setting weight thresholds. Subsequently, we combined all pathways by a rank-based algorithm and called the method the combined method. Finally, common differential pathways across two or more of five methods were selected. RESULTS Pathways obtained from different methods were also different. The combined method obtained 1639 pathways and 596 differential pathways, which included all pathways gained from the four existing methods; hence, the novel method solved the problem of inconsistent results. Besides, a total of 13 common pathways were identified, such as metabolism, immune system, and cell cycle. CONCLUSIONS We have proposed a novel method by combining four existing methods based on a rank product algorithm, and identified 13 significant differential pathways based on it. These differential pathways might provide insight into treatment and diagnosis of hippocampus AD.
Empirical likelihood-based confidence intervals for mean medical cost with censored data.
Jeyarajah, Jenny; Qin, Gengsheng
2017-11-10
In this paper, we propose empirical likelihood methods based on influence function and jackknife techniques for constructing confidence intervals for mean medical cost with censored data. We conduct a simulation study to compare the coverage probabilities and interval lengths of our proposed confidence intervals with that of the existing normal approximation-based confidence intervals and bootstrap confidence intervals. The proposed methods have better finite-sample performances than existing methods. Finally, we illustrate our proposed methods with a relevant example. Copyright © 2017 John Wiley & Sons, Ltd.
Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting
NASA Astrophysics Data System (ADS)
Lin, Shih-Schön; Yemelyanov, Konstantin M.; Pugh, Edward N., Jr.; Engheta, Nader
2006-09-01
In forensic science the finger marks left unintentionally by people at a crime scene are referred to as latent fingerprints. Most existing techniques to detect and lift latent fingerprints require application of a certain material directly onto the exhibit. The chemical and physical processing applied to the fingerprint potentially degrades or prevents further forensic testing on the same evidence sample. Many existing methods also have deleterious side effects. We introduce a method to detect and extract latent fingerprint images without applying any powder or chemicals on the object. Our method is based on the optical phenomena of polarization and specular reflection together with the physiology of fingerprint formation. The recovered image quality is comparable to existing methods. In some cases, such as the sticky side of tape, our method shows unique advantages.
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Ensemble-based prediction of RNA secondary structures.
Aghaeepour, Nima; Hoos, Holger H
2013-04-24
Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.
A novel knowledge-based potential for RNA 3D structure evaluation
NASA Astrophysics Data System (ADS)
Yang, Yi; Gu, Qi; Zhang, Ben-Gong; Shi, Ya-Zhou; Shao, Zhi-Gang
2018-03-01
Ribonucleic acids (RNAs) play a vital role in biology, and knowledge of their three-dimensional (3D) structure is required to understand their biological functions. Recently structural prediction methods have been developed to address this issue, but a series of RNA 3D structures are generally predicted by most existing methods. Therefore, the evaluation of the predicted structures is generally indispensable. Although several methods have been proposed to assess RNA 3D structures, the existing methods are not precise enough. In this work, a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures. The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism. Based on extensive test sets generated from independent methods, the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best. Furthermore, the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing. Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation. Project supported by the National Science Foundation of China (Grants Nos. 11605125, 11105054, 11274124, and 11401448).
A New Adaptive Framework for Collaborative Filtering Prediction
Almosallam, Ibrahim A.; Shang, Yi
2010-01-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix’s system. PMID:21572924
A New Adaptive Framework for Collaborative Filtering Prediction.
Almosallam, Ibrahim A; Shang, Yi
2008-06-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.
INTEGRATION OF SPATIAL DATA: EVALUATION OF METHODS BASED ON DATA ISSUES AND ASSESSMENT QUESTIONS
EPA's Regional Vulnerability Assessment (ReVA) Program has focused initially on the synthesis of existing data. We have used the same set of spatial data and synthesized these data using a total of 11 existing and newly developed integration methods. These methods were evaluated ...
Evaluation of Traditional and Technology-Based Grocery Store Nutrition Education
ERIC Educational Resources Information Center
Schultz, Jennifer; Litchfield, Ruth
2016-01-01
Background: A literature gap exists for grocery interventions with realistic resource expectations; few technology-based publications exist, and none document traditional comparison. Purpose: Compare grocery store traditional aisle demonstrations (AD) and technology-based (TB) nutrition education treatments. Methods: A quasi-experimental 4-month…
Scene-based nonuniformity corrections for optical and SWIR pushbroom sensors.
Leathers, Robert; Downes, Trijntje; Priest, Richard
2005-06-27
We propose and evaluate several scene-based methods for computing nonuniformity corrections for visible or near-infrared pushbroom sensors. These methods can be used to compute new nonuniformity correction values or to repair or refine existing radiometric calibrations. For a given data set, the preferred method depends on the quality of the data, the type of scenes being imaged, and the existence and quality of a laboratory calibration. We demonstrate our methods with data from several different sensor systems and provide a generalized approach to be taken for any new data set.
Selecting supplier combination based on fuzzy multicriteria analysis
NASA Astrophysics Data System (ADS)
Han, Zhi-Qiu; Luo, Xin-Xing; Chen, Xiao-Hong; Yang, Wu-E.
2015-07-01
Existing multicriteria analysis (MCA) methods are probably ineffective in selecting a supplier combination. Thus, an MCA-based fuzzy 0-1 programming method is introduced. The programming relates to a simple MCA matrix that is used to select a single supplier. By solving the programming, the most feasible combination of suppliers is selected. Importantly, this result differs from selecting suppliers one by one according to a single-selection order, which is used to rank sole suppliers in existing MCA methods. An example highlights such difference and illustrates the proposed method.
Image-based corrosion recognition for ship steel structures
NASA Astrophysics Data System (ADS)
Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng
2018-03-01
Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.
Frappier, Vincent; Najmanovich, Rafael J.
2014-01-01
Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα−only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations. PMID:24762569
NASA Astrophysics Data System (ADS)
Barlow, Steven J.
1986-09-01
The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.
Hybrid statistics-simulations based method for atom-counting from ADF STEM images.
De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra
2017-06-01
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Haver, Sven; Janssen, Olaf T. A.; Braat, Joseph J. M.; Janssen, Augustus J. E. M.; Urbach, H. Paul; Pereira, Silvania F.
2008-03-01
In this paper we introduce a new mask imaging algorithm that is based on the source point integration method (or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of diffraction. An introduction to ENZ-theory and its application in general imaging is provided after which we describe the mask imaging scheme that can be derived from it. The remainder of the paper is devoted to illustrating the advantages of the new method over existing methods (Hopkins-based). To this extent several simulation results are included that illustrate advantages arising from: the accurate incorporation of isolated structures, the rigorous treatment of the object (mask topography) and the fully vectorial through-focus image formation of the ENZ-based algorithm.
Generalized Ordinary Differential Equation Models 1
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-01-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses.
Ye, Jun
2015-03-01
In pattern recognition and medical diagnosis, similarity measure is an important mathematical tool. To overcome some disadvantages of existing cosine similarity measures of simplified neutrosophic sets (SNSs) in vector space, this paper proposed improved cosine similarity measures of SNSs based on cosine function, including single valued neutrosophic cosine similarity measures and interval neutrosophic cosine similarity measures. Then, weighted cosine similarity measures of SNSs were introduced by taking into account the importance of each element. Further, a medical diagnosis method using the improved cosine similarity measures was proposed to solve medical diagnosis problems with simplified neutrosophic information. The improved cosine similarity measures between SNSs were introduced based on cosine function. Then, we compared the improved cosine similarity measures of SNSs with existing cosine similarity measures of SNSs by numerical examples to demonstrate their effectiveness and rationality for overcoming some shortcomings of existing cosine similarity measures of SNSs in some cases. In the medical diagnosis method, we can find a proper diagnosis by the cosine similarity measures between the symptoms and considered diseases which are represented by SNSs. Then, the medical diagnosis method based on the improved cosine similarity measures was applied to two medical diagnosis problems to show the applications and effectiveness of the proposed method. Two numerical examples all demonstrated that the improved cosine similarity measures of SNSs based on the cosine function can overcome the shortcomings of the existing cosine similarity measures between two vectors in some cases. By two medical diagnoses problems, the medical diagnoses using various similarity measures of SNSs indicated the identical diagnosis results and demonstrated the effectiveness and rationality of the diagnosis method proposed in this paper. The improved cosine measures of SNSs based on cosine function can overcome some drawbacks of existing cosine similarity measures of SNSs in vector space, and then their diagnosis method is very suitable for handling the medical diagnosis problems with simplified neutrosophic information and demonstrates the effectiveness and rationality of medical diagnoses. Copyright © 2014 Elsevier B.V. All rights reserved.
Brain Network Regional Synchrony Analysis in Deafness
Xu, Lei; Liang, Mao-Jin
2018-01-01
Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method. PMID:29854776
Shrinkage regression-based methods for microarray missing value imputation.
Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng
2013-01-01
Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.
Prediction and Validation of Disease Genes Using HeteSim Scores.
Zeng, Xiangxiang; Liao, Yuanlu; Liu, Yuansheng; Zou, Quan
2017-01-01
Deciphering the gene disease association is an important goal in biomedical research. In this paper, we use a novel relevance measure, called HeteSim, to prioritize candidate disease genes. Two methods based on heterogeneous networks constructed using protein-protein interaction, gene-phenotype associations, and phenotype-phenotype similarity, are presented. In HeteSim_MultiPath (HSMP), HeteSim scores of different paths are combined with a constant that dampens the contributions of longer paths. In HeteSim_SVM (HSSVM), HeteSim scores are combined with a machine learning method. The 3-fold experiments show that our non-machine learning method HSMP performs better than the existing non-machine learning methods, our machine learning method HSSVM obtains similar accuracy with the best existing machine learning method CATAPULT. From the analysis of the top 10 predicted genes for different diseases, we found that HSSVM avoid the disadvantage of the existing machine learning based methods, which always predict similar genes for different diseases. The data sets and Matlab code for the two methods are freely available for download at http://lab.malab.cn/data/HeteSim/index.jsp.
A 3D model retrieval approach based on Bayesian networks lightfield descriptor
NASA Astrophysics Data System (ADS)
Xiao, Qinhan; Li, Yanjun
2009-12-01
A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.
Infrared Ship Target Segmentation Based on Spatial Information Improved FCM.
Bai, Xiangzhi; Chen, Zhiguo; Zhang, Yu; Liu, Zhaoying; Lu, Yi
2016-12-01
Segmentation of infrared (IR) ship images is always a challenging task, because of the intensity inhomogeneity and noise. The fuzzy C-means (FCM) clustering is a classical method widely used in image segmentation. However, it has some shortcomings, like not considering the spatial information or being sensitive to noise. In this paper, an improved FCM method based on the spatial information is proposed for IR ship target segmentation. The improvements include two parts: 1) adding the nonlocal spatial information based on the ship target and 2) using the spatial shape information of the contour of the ship target to refine the local spatial constraint by Markov random field. In addition, the results of K -means are used to initialize the improved FCM method. Experimental results show that the improved method is effective and performs better than the existing methods, including the existing FCM methods, for segmentation of the IR ship images.
New Internet search volume-based weighting method for integrating various environmental impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr
Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. Themore » resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.« less
Fault management for data systems
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann
1993-01-01
Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.
Virus Particle Detection by Convolutional Neural Network in Transmission Electron Microscopy Images.
Ito, Eisuke; Sato, Takaaki; Sano, Daisuke; Utagawa, Etsuko; Kato, Tsuyoshi
2018-06-01
A new computational method for the detection of virus particles in transmission electron microscopy (TEM) images is presented. Our approach is to use a convolutional neural network that transforms a TEM image to a probabilistic map that indicates where virus particles exist in the image. Our proposed approach automatically and simultaneously learns both discriminative features and classifier for virus particle detection by machine learning, in contrast to existing methods that are based on handcrafted features that yield many false positives and require several postprocessing steps. The detection performance of the proposed method was assessed against a dataset of TEM images containing feline calicivirus particles and compared with several existing detection methods, and the state-of-the-art performance of the developed method for detecting virus was demonstrated. Since our method is based on supervised learning that requires both the input images and their corresponding annotations, it is basically used for detection of already-known viruses. However, the method is highly flexible, and the convolutional networks can adapt themselves to any virus particles by learning automatically from an annotated dataset.
Determination of Network Attributes from a High Resolution Terrain Data Base
1987-09-01
and existing models is in the method used to make decisions. All of ,he models- reviewed when developing the ALARM strategy depended either on threshold...problems with the methods currently accepted and used to *model the decision process. These methods are recognized because they have their uses...observation, detection, and lines of sight along a narrow strip of terrain relative to the overall size of the sectors of the two forces. Existing methods of
Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng
2017-05-10
Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .
Efficient sidelobe ASK based dual-function radar-communications
NASA Astrophysics Data System (ADS)
Hassanien, Aboulnasr; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia
2016-05-01
Recently, dual-function radar-communications (DFRC) has been proposed as means to mitigate the spectrum congestion problem. Existing amplitude-shift keying (ASK) methods for information embedding do not take full advantage of the highest permissable sidelobe level. In this paper, a new ASK-based signaling strategy for enhancing the signal-to-noise ratio (SNR) at the communication receiver is proposed. The proposed method employs one reference waveform and simultaneously transmits a number of orthogonal waveforms equals to the number of 1's in the binary sequence being embedded. 3 dB SNR gain is achieved using the proposed method as compared to existing sidelobe ASK methods. The effectiveness of the proposed information embedding strategy is verified using simulations examples.
Schargus, Marc; Grehn, Franz; Glaucocard Workgroup
2008-12-01
To evaluate existing international IT-based ophthalmological medical data projects, and to define a glaucoma data set based on existing international standards of medical and ophthalmological documentation. To develop the technical environment for easy data mining and data exchange in different countries in Europe. Existing clinical and IT-based projects for documentation of medical data in general medicine and ophthalmology were analyzed to create new data sets for medical documentation in glaucoma patients. Different types of data transfer methods were evaluated to find the best method of data exchange between ophthalmologists in different European countries. Data sets from existing IT projects showed a wide variability in specifications, use of codes, terms and graphical data (perimetry, optic nerve analysis etc.) in glaucoma patients. New standardized digital datasets for glaucoma patients were defined, based on existing standards, which can be used by general ophthalmologists for follow-up examinations and for glaucoma specialists to perform teleconsultation, also across country borders. Datasets are available in different languages. Different types of data exchange methods using secure medical data transfer by internet, USB stick and smartcard were tested for different countries with regard to legal acceptance, practicability and technical realization (e.g. compatibility with EMR systems). By creating new standardized glaucoma specific cross-national datasets, it is now possible to develop an electronic glaucoma patient record system for data storage and transfer based on internet, smartcard or USB stick. The digital data can be used for referrals and for teleconsultation of glaucoma specialists in order to optimize glaucoma treatment. This should lead to an increase of quality in glaucoma care, and prevent expenses in health care costs by unnecessary repeated examinations.
Li, Jian-Long; Wang, Peng; Fung, Wing Kam; Zhou, Ji-Yuan
2017-10-16
For dichotomous traits, the generalized disequilibrium test with the moment estimate of the variance (GDT-ME) is a powerful family-based association method. Genomic imprinting is an important epigenetic phenomenon and currently, there has been increasing interest of incorporating imprinting to improve the test power of association analysis. However, GDT-ME does not take imprinting effects into account, and it has not been investigated whether it can be used for association analysis when the effects indeed exist. In this article, based on a novel decomposition of the genotype score according to the paternal or maternal source of the allele, we propose the generalized disequilibrium test with imprinting (GDTI) for complete pedigrees without any missing genotypes. Then, we extend GDTI and GDT-ME to accommodate incomplete pedigrees with some pedigrees having missing genotypes, by using a Monte Carlo (MC) sampling and estimation scheme to infer missing genotypes given available genotypes in each pedigree, denoted by MCGDTI and MCGDT-ME, respectively. The proposed GDTI and MCGDTI methods evaluate the differences of the paternal as well as maternal allele scores for all discordant relative pairs in a pedigree, including beyond first-degree relative pairs. Advantages of the proposed GDTI and MCGDTI test statistics over existing methods are demonstrated by simulation studies under various simulation settings and by application to the rheumatoid arthritis dataset. Simulation results show that the proposed tests control the size well under the null hypothesis of no association, and outperform the existing methods under various imprinting effect models. The existing GDT-ME and the proposed MCGDT-ME can be used to test for association even when imprinting effects exist. For the application to the rheumatoid arthritis data, compared to the existing methods, MCGDTI identifies more loci statistically significantly associated with the disease. Under complete and incomplete imprinting effect models, our proposed GDTI and MCGDTI methods, by considering the information on imprinting effects and all discordant relative pairs within each pedigree, outperform all the existing test statistics and MCGDTI can recapture much of the missing information. Therefore, MCGDTI is recommended in practice.
A Novel Method for Block Size Forensics Based on Morphological Operations
NASA Astrophysics Data System (ADS)
Luo, Weiqi; Huang, Jiwu; Qiu, Guoping
Passive forensics analysis aims to find out how multimedia data is acquired and processed without relying on pre-embedded or pre-registered information. Since most existing compression schemes for digital images are based on block processing, one of the fundamental steps for subsequent forensics analysis is to detect the presence of block artifacts and estimate the block size for a given image. In this paper, we propose a novel method for blind block size estimation. A 2×2 cross-differential filter is first applied to detect all possible block artifact boundaries, morphological operations are then used to remove the boundary effects caused by the edges of the actual image contents, and finally maximum-likelihood estimation (MLE) is employed to estimate the block size. The experimental results evaluated on over 1300 nature images show the effectiveness of our proposed method. Compared with existing gradient-based detection method, our method achieves over 39% accuracy improvement on average.
Alternative methods of flexible base compaction acceptance.
DOT National Transportation Integrated Search
2012-05-01
In the Texas Department of Transportation, flexible base construction is governed by a series of stockpile : and field tests. A series of concerns with these existing methods, along with some premature failures in the : field, led to this project inv...
Analogs of microgravity: head-down tilt and water immersion.
Watenpaugh, Donald E
2016-04-15
This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability. Copyright © 2016 the American Physiological Society.
Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC
2008-01-01
Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020
Hard exudates segmentation based on learned initial seeds and iterative graph cut.
Kusakunniran, Worapan; Wu, Qiang; Ritthipravat, Panrasee; Zhang, Jian
2018-05-01
(Background and Objective): The occurrence of hard exudates is one of the early signs of diabetic retinopathy which is one of the leading causes of the blindness. Many patients with diabetic retinopathy lose their vision because of the late detection of the disease. Thus, this paper is to propose a novel method of hard exudates segmentation in retinal images in an automatic way. (Methods): The existing methods are based on either supervised or unsupervised learning techniques. In addition, the learned segmentation models may often cause miss-detection and/or fault-detection of hard exudates, due to the lack of rich characteristics, the intra-variations, and the similarity with other components in the retinal image. Thus, in this paper, the supervised learning based on the multilayer perceptron (MLP) is only used to identify initial seeds with high confidences to be hard exudates. Then, the segmentation is finalized by unsupervised learning based on the iterative graph cut (GC) using clusters of initial seeds. Also, in order to reduce color intra-variations of hard exudates in different retinal images, the color transfer (CT) is applied to normalize their color information, in the pre-processing step. (Results): The experiments and comparisons with the other existing methods are based on the two well-known datasets, e_ophtha EX and DIARETDB1. It can be seen that the proposed method outperforms the other existing methods in the literature, with the sensitivity in the pixel-level of 0.891 for the DIARETDB1 dataset and 0.564 for the e_ophtha EX dataset. The cross datasets validation where the training process is performed on one dataset and the testing process is performed on another dataset is also evaluated in this paper, in order to illustrate the robustness of the proposed method. (Conclusions): This newly proposed method integrates the supervised learning and unsupervised learning based techniques. It achieves the improved performance, when compared with the existing methods in the literature. The robustness of the proposed method for the scenario of cross datasets could enhance its practical usage. That is, the trained model could be more practical for unseen data in the real-world situation, especially when the capturing environments of training and testing images are not the same. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Dongling; Xiao, Aiguo; Li, Xueyang
2013-02-01
Based on W-transformation, some parametric symplectic partitioned Runge-Kutta (PRK) methods depending on a real parameter α are developed. For α=0, the corresponding methods become the usual PRK methods, including Radau IA-IA¯ and Lobatto IIIA-IIIB methods as examples. For any α≠0, the corresponding methods are symplectic and there exists a value α∗ such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results.
A Weighted Multipath Measurement Based on Gene Ontology for Estimating Gene Products Similarity
Liu, Lizhen; Dai, Xuemin; Song, Wei; Lu, Jingli
2014-01-01
Abstract Many different methods have been proposed for calculating the semantic similarity of term pairs based on gene ontology (GO). Most existing methods are based on information content (IC), and the methods based on IC are used more commonly than those based on the structure of GO. However, most IC-based methods not only fail to handle identical annotations but also show a strong bias toward well-annotated proteins. We propose a new method called weighted multipath measurement (WMM) for estimating the semantic similarity of gene products based on the structure of the GO. We not only considered the contribution of every path between two GO terms but also took the depth of the lowest common ancestors into account. We assigned different weights for different kinds of edges in GO graph. The similarity values calculated by WMM can be reused because they are only relative to the characteristics of GO terms. Experimental results showed that the similarity values obtained by WMM have a higher accuracy. We compared the performance of WMM with that of other methods using GO data and gene annotation datasets for yeast and humans downloaded from the GO database. We found that WMM is more suited for prediction of gene function than most existing IC-based methods and that it can distinguish proteins with identical annotations (two proteins are annotated with the same terms) from each other. PMID:25229994
Sunyit Visiting Faculty Research
2012-01-01
deblurring with Gaussian and impulse noise . Improvements in both PSNR and visual quality of IFASDA over a typical existing method are demonstrated...blurring Images Corrupted by Mixed Impulse plus Gaussian Noise / Department of Mathematics Syracuse University This work studies a problem of image...restoration that observed images are contaminated by Gaussian and impulse noise . Existing methods in the literature are based on minimizing an objective
NASA Technical Reports Server (NTRS)
Xue, W.-M.; Atluri, S. N.
1985-01-01
In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.
Chen, Gang; Song, Yongduan; Guan, Yanfeng
2018-03-01
This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.
Walking on a user similarity network towards personalized recommendations.
Gan, Mingxin
2014-01-01
Personalized recommender systems have been receiving more and more attention in addressing the serious problem of information overload accompanying the rapid evolution of the world-wide-web. Although traditional collaborative filtering approaches based on similarities between users have achieved remarkable success, it has been shown that the existence of popular objects may adversely influence the correct scoring of candidate objects, which lead to unreasonable recommendation results. Meanwhile, recent advances have demonstrated that approaches based on diffusion and random walk processes exhibit superior performance over collaborative filtering methods in both the recommendation accuracy and diversity. Building on these results, we adopt three strategies (power-law adjustment, nearest neighbor, and threshold filtration) to adjust a user similarity network from user similarity scores calculated on historical data, and then propose a random walk with restart model on the constructed network to achieve personalized recommendations. We perform cross-validation experiments on two real data sets (MovieLens and Netflix) and compare the performance of our method against the existing state-of-the-art methods. Results show that our method outperforms existing methods in not only recommendation accuracy and diversity, but also retrieval performance.
Tchebichef moment based restoration of Gaussian blurred images.
Kumar, Ahlad; Paramesran, Raveendran; Lim, Chern-Loon; Dass, Sarat C
2016-11-10
With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.
Braschel, Melissa C; Svec, Ivana; Darlington, Gerarda A; Donner, Allan
2016-04-01
Many investigators rely on previously published point estimates of the intraclass correlation coefficient rather than on their associated confidence intervals to determine the required size of a newly planned cluster randomized trial. Although confidence interval methods for the intraclass correlation coefficient that can be applied to community-based trials have been developed for a continuous outcome variable, fewer methods exist for a binary outcome variable. The aim of this study is to evaluate confidence interval methods for the intraclass correlation coefficient applied to binary outcomes in community intervention trials enrolling a small number of large clusters. Existing methods for confidence interval construction are examined and compared to a new ad hoc approach based on dividing clusters into a large number of smaller sub-clusters and subsequently applying existing methods to the resulting data. Monte Carlo simulation is used to assess the width and coverage of confidence intervals for the intraclass correlation coefficient based on Smith's large sample approximation of the standard error of the one-way analysis of variance estimator, an inverted modified Wald test for the Fleiss-Cuzick estimator, and intervals constructed using a bootstrap-t applied to a variance-stabilizing transformation of the intraclass correlation coefficient estimate. In addition, a new approach is applied in which clusters are randomly divided into a large number of smaller sub-clusters with the same methods applied to these data (with the exception of the bootstrap-t interval, which assumes large cluster sizes). These methods are also applied to a cluster randomized trial on adolescent tobacco use for illustration. When applied to a binary outcome variable in a small number of large clusters, existing confidence interval methods for the intraclass correlation coefficient provide poor coverage. However, confidence intervals constructed using the new approach combined with Smith's method provide nominal or close to nominal coverage when the intraclass correlation coefficient is small (<0.05), as is the case in most community intervention trials. This study concludes that when a binary outcome variable is measured in a small number of large clusters, confidence intervals for the intraclass correlation coefficient may be constructed by dividing existing clusters into sub-clusters (e.g. groups of 5) and using Smith's method. The resulting confidence intervals provide nominal or close to nominal coverage across a wide range of parameters when the intraclass correlation coefficient is small (<0.05). Application of this method should provide investigators with a better understanding of the uncertainty associated with a point estimator of the intraclass correlation coefficient used for determining the sample size needed for a newly designed community-based trial. © The Author(s) 2015.
Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.
Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan
2014-09-22
A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.
Pathway analysis with next-generation sequencing data.
Zhao, Jinying; Zhu, Yun; Boerwinkle, Eric; Xiong, Momiao
2015-04-01
Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
Guiding Conformation Space Search with an All-Atom Energy Potential
Brunette, TJ; Brock, Oliver
2009-01-01
The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015
The Development of a Robot-Based Learning Companion: A User-Centered Design Approach
ERIC Educational Resources Information Center
Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong
2015-01-01
A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…
Predicting future discoveries from current scientific literature.
Petrič, Ingrid; Cestnik, Bojan
2014-01-01
Knowledge discovery in biomedicine is a time-consuming process starting from the basic research, through preclinical testing, towards possible clinical applications. Crossing of conceptual boundaries is often needed for groundbreaking biomedical research that generates highly inventive discoveries. We demonstrate the ability of a creative literature mining method to advance valuable new discoveries based on rare ideas from existing literature. When emerging ideas from scientific literature are put together as fragments of knowledge in a systematic way, they may lead to original, sometimes surprising, research findings. If enough scientific evidence is already published for the association of such findings, they can be considered as scientific hypotheses. In this chapter, we describe a method for the computer-aided generation of such hypotheses based on the existing scientific literature. Our literature-based discovery of NF-kappaB with its possible connections to autism was recently approved by scientific community, which confirms the ability of our literature mining methodology to accelerate future discoveries based on rare ideas from existing literature.
Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer
2017-04-01
Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
Calibration of streamflow gauging stations at the Tenderfoot Creek Experimental Forest
Scott W. Woods
2007-01-01
We used tracer based methods to calibrate eleven streamflow gauging stations at the Tenderfoot Creek Experimental Forest in western Montana. At six of the stations the measured flows were consistent with the existing rating curves. At Lower and Upper Stringer Creek, Upper Sun Creek and Upper Tenderfoot Creek the published flows, based on the existing rating curves,...
Analysis of a Knowledge-Management-Based Process of Transferring Project Management Skills
ERIC Educational Resources Information Center
Ioi, Toshihiro; Ono, Masakazu; Ishii, Kota; Kato, Kazuhiko
2012-01-01
Purpose: The purpose of this paper is to propose a method for the transfer of knowledge and skills in project management (PM) based on techniques in knowledge management (KM). Design/methodology/approach: The literature contains studies on methods to extract experiential knowledge in PM, but few studies exist that focus on methods to convert…
Mandoda, Shilpa; Landry, Michel D.
2011-01-01
ABSTRACT Purpose: To explore the potential for different models of incorporating physical therapy (PT) services within the emerging network of family health teams (FHTs) in Ontario and to identify challenges and opportunities of each model. Methods: A two-phase mixed-methods qualitative descriptive approach was used. First, FHTs were mapped in relation to existing community-based PT practices. Second, semi-structured key-informant interviews were conducted with representatives from urban and rural FHTs and from a variety of community-based PT practices. Interviews were digitally recorded, transcribed verbatim, and analyzed using a categorizing/editing approach. Results: Most participants agreed that the ideal model involves embedding physical therapists directly into FHTs; in some situations, however, partnering with an existing external PT provider may be more feasible and sustainable. Access and funding remain the key issues, regardless of the model adopted. Conclusion: Although there are differences across the urban/rural divide, there exist opportunities to enhance and optimize existing delivery models so as to improve client access and address emerging demand for community-based PT services. PMID:22654231
Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-01-01
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502
Cheng, Shu-Fen; Rose, Susan
2009-01-01
This study investigated the technical adequacy of curriculum-based measures of written expression (CBM-W) in terms of writing prompts and scoring methods for deaf and hard-of-hearing students. Twenty-two students at the secondary school-level completed 3-min essays within two weeks, which were scored for nine existing and alternative curriculum-based measurement (CBM) scoring methods. The technical features of the nine scoring methods were examined for interrater reliability, alternate-form reliability, and criterion-related validity. The existing CBM scoring method--number of correct minus incorrect word sequences--yielded the highest reliability and validity coefficients. The findings from this study support the use of the CBM-W as a reliable and valid tool for assessing general writing proficiency with secondary students who are deaf or hard of hearing. The CBM alternative scoring methods that may serve as additional indicators of written expression include correct subject-verb agreements, correct clauses, and correct morphemes.
Laser spot tracking based on modified circular Hough transform and motion pattern analysis.
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-10-27
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.
NASA Astrophysics Data System (ADS)
Bekkouche, Toufik; Bouguezel, Saad
2018-03-01
We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.
Sanni, Steinar; Lyng, Emily; Pampanin, Daniela M
2017-06-01
Offshore oil and gas activities are required not to cause adverse environmental effects, and risk based management has been established to meet environmental standards. In some risk assessment schemes, Risk Indicators (RIs) are parameters to monitor the development of risk affecting factors. RIs have not yet been established in the Environmental Risk Assessment procedures for management of oil based discharges offshore. This paper evaluates the usefulness of biomarkers as RIs, based on their properties, existing laboratory biomarker data and assessment methods. Data shows several correlations between oil concentrations and biomarker responses, and assessment principles exist that qualify biomarkers for integration into risk procedures. Different ways that these existing biomarkers and methods can be applied as RIs in a probabilistic risk assessment system when linked with whole organism responses are discussed. This can be a useful approach to integrate biomarkers into probabilistic risk assessment related to oil based discharges, representing a potential supplement to information that biomarkers already provide about environmental impact and risk related to these kind of discharges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao
2018-03-01
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
Power System Transient Diagnostics Based on Novel Traveling Wave Detection
NASA Astrophysics Data System (ADS)
Hamidi, Reza Jalilzadeh
Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma, wind speed, air pressure, and humidity. Therefore, the dead-time (the de-energization duration of the faulty phase) is unpredictable. Accordingly, conservatively long dead-times are usually considered by protection engineers. However, if the exact arc distinction time is determined, the power system stability and quality will enhance. Therefore, a new method for detection of arc extinction times leading to a new ASPAR method utilizing power line carrier (PLC) signals is presented. The efficiency of the proposed ASPAR method is verified through simulations and compared with the existing ASPAR methods. High-sampling measurements are prone to be skewed by the environmental noises and analog-to-digital (A/D) converters quantization errors. Therefore noise-contaminated measurements are the major source of uncertainties and errors in the outcomes of traveling wave-based diagnostic applications. The existing AT-detection methods do not provide enough sensitivity and selectivity at the same time. Therefore, a new AT-detection method based on short-time matrix pencil (STMPM) is developed to accurately detect ATs of the traveling waves with low signal-to-noise (SNR) ratios. As STMPM is based on matrix algebra, it is a challenging to implement this new technique in microprocessor-based fault locators. Hence, a fully recursive and computationally efficient method based on adaptive discrete Kalman filter (ADKF) is introduced for AT-detection, which is proper for microprocessors and able to accomplish accurate AT-detection for online applications such as ultra-high-speed protection. Both proposed AT-detection methods are evaluated based on extensive simulation studies, and the superior outcomes are compared to the existing methods.
A note on the kappa statistic for clustered dichotomous data.
Zhou, Ming; Yang, Zhao
2014-06-30
The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.
Montessori education: a review of the evidence base
NASA Astrophysics Data System (ADS)
Marshall, Chloë
2017-10-01
The Montessori educational method has existed for over 100 years, but evaluations of its effectiveness are scarce. This review paper has three aims, namely to (1) identify some key elements of the method, (2) review existing evaluations of Montessori education, and (3) review studies that do not explicitly evaluate Montessori education but which evaluate the key elements identified in (1). The goal of the paper is therefore to provide a review of the evidence base for Montessori education, with the dual aspirations of stimulating future research and helping teachers to better understand whether and why Montessori education might be effective.
A reconsideration of negative ratings for network-based recommendation
NASA Astrophysics Data System (ADS)
Hu, Liang; Ren, Liang; Lin, Wenbin
2018-01-01
Recommendation algorithms based on bipartite networks have become increasingly popular, thanks to their accuracy and flexibility. Currently, many of these methods ignore users' negative ratings. In this work, we propose a method to exploit negative ratings for the network-based inference algorithm. We find that negative ratings play a positive role regardless of sparsity of data sets. Furthermore, we improve the efficiency of our method and compare it with the state-of-the-art algorithms. Experimental results show that the present method outperforms the existing algorithms.
An Extraction Method of an Informative DOM Node from a Web Page by Using Layout Information
NASA Astrophysics Data System (ADS)
Tsuruta, Masanobu; Masuyama, Shigeru
We propose an informative DOM node extraction method from a Web page for preprocessing of Web content mining. Our proposed method LM uses layout data of DOM nodes generated by a generic Web browser, and the learning set consists of hundreds of Web pages and the annotations of informative DOM nodes of those Web pages. Our method does not require large scale crawling of the whole Web site to which the target Web page belongs. We design LM so that it uses the information of the learning set more efficiently in comparison to the existing method that uses the same learning set. By experiments, we evaluate the methods obtained by combining one that consists of the method for extracting the informative DOM node both the proposed method and the existing methods, and the existing noise elimination methods: Heur removes advertisements and link-lists by some heuristics and CE removes the DOM nodes existing in the Web pages in the same Web site to which the target Web page belongs. Experimental results show that 1) LM outperforms other methods for extracting the informative DOM node, 2) the combination method (LM, {CE(10), Heur}) based on LM (precision: 0.755, recall: 0.826, F-measure: 0.746) outperforms other combination methods.
On Federated and Proof Of Validation Based Consensus Algorithms In Blockchain
NASA Astrophysics Data System (ADS)
Ambili, K. N.; Sindhu, M.; Sethumadhavan, M.
2017-08-01
Almost all real world activities have been digitized and there are various client server architecture based systems in place to handle them. These are all based on trust on third parties. There is an active attempt to successfully implement blockchain based systems which ensures that the IT systems are immutable, double spending is avoided and cryptographic strength is provided to them. A successful implementation of blockchain as backbone of existing information technology systems is bound to eliminate various types of fraud and ensure quicker delivery of the item on trade. To adapt IT systems to blockchain architecture, an efficient consensus algorithm need to be designed. Blockchain based on proof of work first came up as the backbone of cryptocurrency. After this, several other methods with variety of interesting features have come up. In this paper, we conduct a survey on existing attempts to achieve consensus in block chain. A federated consensus method and a proof of validation method are being compared.
A two-fluid model of the solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, O.; Leer, E.; Holzer, T. E.
1992-01-01
A method is presented for the integration of the two-fluid solar-wind equations which is applicable to a wide variety of coronal base densities and temperatures. The method involves proton heat conduction, and may be applied to coronal base conditions for which subsonic-supersonic solar wind solutions exist.
Robust digital image watermarking using distortion-compensated dither modulation
NASA Astrophysics Data System (ADS)
Li, Mianjie; Yuan, Xiaochen
2018-04-01
In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.
Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra
2016-05-03
A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra
2015-06-02
Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.
As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems.
Color normalization of histology slides using graph regularized sparse NMF
NASA Astrophysics Data System (ADS)
Sha, Lingdao; Schonfeld, Dan; Sethi, Amit
2017-03-01
Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.
A STANDARDIZED ASSESSMENT METHOD (SAM) FOR RIVERINE MACROINVERTEBRATES
A macroinvertebrate sampling method for large rivers based on desirable characteristics of existing nonwadeable methods was developed and tested. Six sites each were sampled on the Great Miami and Kentucky Rivers, reflecting a human disturbance gradient. Samples were collected ...
Evaluating the benefits of geogrid reinforced bases in flexible pavement : technical summary report.
DOT National Transportation Integrated Search
2009-09-01
The inadequacy of many existing roads due to rapid growth in traffic volume provides a motivation for exploring alternatives to existing methods of constructing and rehabilitating roads. The use of geosynthetics to stabilize and reinforce paved and u...
Development of Image Segmentation Methods for Intracranial Aneurysms
Qian, Yi; Morgan, Michael
2013-01-01
Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study, we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon this validation study, we propose a new Threshold-Based Level Set (TLS) method in order to overcome the existing problems. With divergent methods of segmentation, we discovered that the volumes of the aneurysm models reached a maximum difference of 24%. The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations. In contrast, however, the volume differences calculated via use of the TLS method remained at a relatively low figure, at only around 5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing for more accurate and efficient simulations of medical imagery. PMID:23606905
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei
2018-01-01
Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Zhang, Junming; Wu, Yan
2018-03-28
Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.
Joint histogram-based cost aggregation for stereo matching.
Min, Dongbo; Lu, Jiangbo; Do, Minh N
2013-10-01
This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.
A dynamic programming approach to estimate the capacity value of energy storage
Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul
2013-09-17
Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less
Estimating clinical chemistry reference values based on an existing data set of unselected animals.
Dimauro, Corrado; Bonelli, Piero; Nicolussi, Paola; Rassu, Salvatore P G; Cappio-Borlino, Aldo; Pulina, Giuseppe
2008-11-01
In an attempt to standardise the determination of biological reference values, the International Federation of Clinical Chemistry (IFCC) has published a series of recommendations on developing reference intervals. The IFCC recommends the use of an a priori sampling of at least 120 healthy individuals. However, such a high number of samples and laboratory analysis is expensive, time-consuming and not always feasible, especially in veterinary medicine. In this paper, an alternative (a posteriori) method is described and is used to determine reference intervals for biochemical parameters of farm animals using an existing laboratory data set. The method used was based on the detection and removal of outliers to obtain a large sample of animals likely to be healthy from the existing data set. This allowed the estimation of reliable reference intervals for biochemical parameters in Sarda dairy sheep. This method may also be useful for the determination of reference intervals for different species, ages and gender.
Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun
2016-01-01
An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260
Comparing biomarkers as principal surrogate endpoints.
Huang, Ying; Gilbert, Peter B
2011-12-01
Recently a new definition of surrogate endpoint, the "principal surrogate," was proposed based on causal associations between treatment effects on the biomarker and on the clinical endpoint. Despite its appealing interpretation, limited research has been conducted to evaluate principal surrogates, and existing methods focus on risk models that consider a single biomarker. How to compare principal surrogate value of biomarkers or general risk models that consider multiple biomarkers remains an open research question. We propose to characterize a marker or risk model's principal surrogate value based on the distribution of risk difference between interventions. In addition, we propose a novel summary measure (the standardized total gain) that can be used to compare markers and to assess the incremental value of a new marker. We develop a semiparametric estimated-likelihood method to estimate the joint surrogate value of multiple biomarkers. This method accommodates two-phase sampling of biomarkers and is more widely applicable than existing nonparametric methods by incorporating continuous baseline covariates to predict the biomarker(s), and is more robust than existing parametric methods by leaving the error distribution of markers unspecified. The methodology is illustrated using a simulated example set and a real data set in the context of HIV vaccine trials. © 2011, The International Biometric Society.
Walking on a User Similarity Network towards Personalized Recommendations
Gan, Mingxin
2014-01-01
Personalized recommender systems have been receiving more and more attention in addressing the serious problem of information overload accompanying the rapid evolution of the world-wide-web. Although traditional collaborative filtering approaches based on similarities between users have achieved remarkable success, it has been shown that the existence of popular objects may adversely influence the correct scoring of candidate objects, which lead to unreasonable recommendation results. Meanwhile, recent advances have demonstrated that approaches based on diffusion and random walk processes exhibit superior performance over collaborative filtering methods in both the recommendation accuracy and diversity. Building on these results, we adopt three strategies (power-law adjustment, nearest neighbor, and threshold filtration) to adjust a user similarity network from user similarity scores calculated on historical data, and then propose a random walk with restart model on the constructed network to achieve personalized recommendations. We perform cross-validation experiments on two real data sets (MovieLens and Netflix) and compare the performance of our method against the existing state-of-the-art methods. Results show that our method outperforms existing methods in not only recommendation accuracy and diversity, but also retrieval performance. PMID:25489942
Global antioxidant response of meat.
Carrillo, Celia; Barrio, Ángela; Del Mar Cavia, María; Alonso-Torre, Sara
2017-06-01
The global antioxidant response (GAR) method uses an enzymatic digestion to release antioxidants from foods. Owing to the importance of digestion for protein breakdown and subsequent release of bioactive compounds, the aim of the present study was to compare the GAR method for meat with the existing methodologies: the extraction-based method and QUENCHER. Seven fresh meats were analyzed using ABTS and FRAP assays. Our results indicated that the GAR of meat was higher than the total antioxidant capacity (TAC) assessed with the traditional extraction-based method. When evaluated with GAR, the thermal treatment led to an increase in the TAC of the soluble fraction, contrasting with a decreased TAC after cooking measured using the extraction-based method. The effect of thermal treatment on the TAC assessed by the QUENCHER method seemed to be dependent on the assay applied, since results from ABTS differed from FRAP. Our results allow us to hypothesize that the activation of latent bioactive peptides along the gastrointestinal tract should be taken into consideration when evaluating the TAC of meat. Therefore, we conclude that the GAR method may be more appropriate for assessing the TAC of meat than the existing, most commonly used methods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Nonlinear scalar forcing based on a reaction analogy
NASA Astrophysics Data System (ADS)
Daniel, Don; Livescu, Daniel
2017-11-01
We present a novel reaction analogy (RA) based forcing method for generating stationary passive scalar fields in incompressible turbulence. The new method can produce more general scalar PDFs (e.g. double-delta) than current methods, while ensuring that scalar fields remain bounded, unlike existent forcing methodologies that can potentially violate naturally existing bounds. Such features are useful for generating initial fields in non-premixed combustion or for studying non-Gaussian scalar turbulence. The RA method mathematically models hypothetical chemical reactions that convert reactants in a mixed state back into its pure unmixed components. Various types of chemical reactions are formulated and the corresponding mathematical expressions derived. For large values of the scalar dissipation rate, the method produces statistically steady double-delta scalar PDFs. Gaussian scalar statistics are recovered for small values of the scalar dissipation rate. In contrast, classical forcing methods consistently produce unimodal Gaussian scalar fields. The ability of the new method to produce fully developed scalar fields is discussed using 2563, 5123, and 10243 periodic box simulations.
Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research
Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi
2016-01-01
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637
Using reinforcement-based methods to enhance membership recruitment in a volunteer organization.
Herndon, E J; Mikulas, W L
1996-01-01
The present study employed reinforcement-based methods to induce existing members to recruit new members to join a chamber of commerce. Three interventions took place during June and July of 3 successive years. The investigators trained chamber leaders to use reinforcement methods (e.g., contingent tokens) to reinforce recruitment and dues collections. All three interventions produced substantial increases in their targets. PMID:8995839
Using reinforcement-based methods to enhance membership recruitment in a volunteer organization.
Herndon, E J; Mikulas, W L
1996-01-01
The present study employed reinforcement-based methods to induce existing members to recruit new members to join a chamber of commerce. Three interventions took place during June and July of 3 successive years. The investigators trained chamber leaders to use reinforcement methods (e.g., contingent tokens) to reinforce recruitment and dues collections. All three interventions produced substantial increases in their targets.
Pedagogical Strategies Used by Selected Leading Mixed Methodologists in Mixed Research Courses
ERIC Educational Resources Information Center
Frels, Rebecca K.; Onwuegbuzie, Anthony J.; Leech, Nancy L.; Collins, Kathleen M. T.
2014-01-01
The teaching of research methods is common across multiple fields in the social and educational sciences for establishing evidence-based practices and furthering the knowledge base through scholarship. Yet, specific to mixed methods, scant information exists as to how to approach teaching complex concepts for meaningful learning experiences. Thus,…
Development of a Computer-Based Visualised Quantitative Learning System for Playing Violin Vibrato
ERIC Educational Resources Information Center
Ho, Tracy Kwei-Liang; Lin, Huann-shyang; Chen, Ching-Kong; Tsai, Jih-Long
2015-01-01
Traditional methods of teaching music are largely subjective, with the lack of objectivity being particularly challenging for violin students learning vibrato because of the existence of conflicting theories. By using a computer-based analysis method, this study found that maintaining temporal coincidence between the intensity peak and the target…
ERIC Educational Resources Information Center
Roberts, Richie; Edwards, M. Craig
2015-01-01
American education's journey has witnessed the rise and fall of various progressive education approaches, including service-learning. In many respects, however, service-learning is still undergoing formation and adoption as a teaching method, specifically in School-Based, Agricultural Education (SBAE). For this reason, the interest existed to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyüre, B.; Márkus, B. G.; Bernáth, B.
2015-09-15
We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less
Catchment area-based evaluation of the AMC-dependent SCS-CN-based rainfall-runoff models
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jain, M. K.; Pandey, R. P.; Singh, V. P.
2005-09-01
Using a large set of rainfall-runoff data from 234 watersheds in the USA, a catchment area-based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS-CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS-CN method showed that the modified version performed better than did the existing one on the data of all seven area-based groups of watersheds ranging from 0.01 to 310.3 km2.
An Abstraction-Based Data Model for Information Retrieval
NASA Astrophysics Data System (ADS)
McAllister, Richard A.; Angryk, Rafal A.
Language ontologies provide an avenue for automated lexical analysis that may be used to supplement existing information retrieval methods. This paper presents a method of information retrieval that takes advantage of WordNet, a lexical database, to generate paths of abstraction, and uses them as the basis for an inverted index structure to be used in the retrieval of documents from an indexed corpus. We present this method as a entree to a line of research on using ontologies to perform word-sense disambiguation and improve the precision of existing information retrieval techniques.
Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395
Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
Mutually unbiased bases and semi-definite programming
NASA Astrophysics Data System (ADS)
Brierley, Stephen; Weigert, Stefan
2010-11-01
A complex Hilbert space of dimension six supports at least three but not more than seven mutually unbiased bases. Two computer-aided analytical methods to tighten these bounds are reviewed, based on a discretization of parameter space and on Gröbner bases. A third algorithmic approach is presented: the non-existence of more than three mutually unbiased bases in composite dimensions can be decided by a global optimization method known as semidefinite programming. The method is used to confirm that the spectral matrix cannot be part of a complete set of seven mutually unbiased bases in dimension six.
Method of preliminary localization of the iris in biometric access control systems
NASA Astrophysics Data System (ADS)
Minacova, N.; Petrov, I.
2015-10-01
This paper presents a method of preliminary localization of the iris, based on the stable brightness features of the iris in images of the eye. In tests on images of eyes from publicly available databases method showed good accuracy and speed compared to existing methods preliminary localization.
Trial Sequential Methods for Meta-Analysis
ERIC Educational Resources Information Center
Kulinskaya, Elena; Wood, John
2014-01-01
Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual…
NASA Astrophysics Data System (ADS)
Hafezalkotob, Arian; Hafezalkotob, Ashkan
2017-06-01
A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
Reinforcement learning for resource allocation in LEO satellite networks.
Usaha, Wipawee; Barria, Javier A
2007-06-01
In this paper, we develop and assess online decision-making algorithms for call admission and routing for low Earth orbit (LEO) satellite networks. It has been shown in a recent paper that, in a LEO satellite system, a semi-Markov decision process formulation of the call admission and routing problem can achieve better performance in terms of an average revenue function than existing routing methods. However, the conventional dynamic programming (DP) numerical solution becomes prohibited as the problem size increases. In this paper, two solution methods based on reinforcement learning (RL) are proposed in order to circumvent the computational burden of DP. The first method is based on an actor-critic method with temporal-difference (TD) learning. The second method is based on a critic-only method, called optimistic TD learning. The algorithms enhance performance in terms of requirements in storage, computational complexity and computational time, and in terms of an overall long-term average revenue function that penalizes blocked calls. Numerical studies are carried out, and the results obtained show that the RL framework can achieve up to 56% higher average revenue over existing routing methods used in LEO satellite networks with reasonable storage and computational requirements.
Further studies using matched filter theory and stochastic simulation for gust loads prediction
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii
1993-01-01
This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.
Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method
NASA Astrophysics Data System (ADS)
Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao
2017-03-01
Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.
2017-01-01
Mass-spectrometry-based, high-throughput proteomics experiments produce large amounts of data. While typically acquired to answer specific biological questions, these data can also be reused in orthogonal ways to reveal new biological knowledge. We here present a novel method for such orthogonal data reuse of public proteomics data. Our method elucidates biological relationships between proteins based on the co-occurrence of these proteins across human experiments in the PRIDE database. The majority of the significantly co-occurring protein pairs that were detected by our method have been successfully mapped to existing biological knowledge. The validity of our novel method is substantiated by the extremely few pairs that can be mapped to existing knowledge based on random associations between the same set of proteins. Moreover, using literature searches and the STRING database, we were able to derive meaningful biological associations for unannotated protein pairs that were detected using our method, further illustrating that as-yet unknown associations present highly interesting targets for follow-up analysis. PMID:28480704
NASA Astrophysics Data System (ADS)
Adrich, Przemysław
2016-05-01
In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.
Luan, Xiaoli; Chen, Qiang; Liu, Fei
2014-09-01
This article presents a new scheme to design full matrix controller for high dimensional multivariable processes based on equivalent transfer function (ETF). Differing from existing ETF method, the proposed ETF is derived directly by exploiting the relationship between the equivalent closed-loop transfer function and the inverse of open-loop transfer function. Based on the obtained ETF, the full matrix controller is designed utilizing the existing PI tuning rules. The new proposed ETF model can more accurately represent the original processes. Furthermore, the full matrix centralized controller design method proposed in this paper is applicable to high dimensional multivariable systems with satisfactory performance. Comparison with other multivariable controllers shows that the designed ETF based controller is superior with respect to design-complexity and obtained performance. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1996-01-01
In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.
Case-based reasoning in design: An apologia
NASA Technical Reports Server (NTRS)
Pulaski, Kirt
1990-01-01
Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving.
Analytical Fuselage and Wing Weight Estimation of Transport Aircraft
NASA Technical Reports Server (NTRS)
Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.
1996-01-01
A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.
Kinematic Determination of an Unmodeled Serial Manipulator by Means of an IMU
NASA Astrophysics Data System (ADS)
Ciarleglio, Constance A.
Kinematic determination for an unmodeled manipulator is usually done through a-priori knowledge of the manipulator physical characteristics or external sensor information. The mathematics of the kinematic estimation, often based on Denavit- Hartenberg convention, are complex and have high computation requirements, in addition to being unique to the manipulator for which the method is developed. Analytical methods that can compute kinematics on-the fly have the potential to be highly beneficial in dynamic environments where different configurations and variable manipulator types are often required. This thesis derives a new screw theory based method of kinematic determination, using a single inertial measurement unit (IMU), for use with any serial, revolute manipulator. The method allows the expansion of reconfigurable manipulator design and simplifies the kinematic process for existing manipulators. A simulation is presented where the theory of the method is verified and characterized with error. The method is then implemented on an existing manipulator as a verification of functionality.
Reflections on Graduate Student PBL Experiences
ERIC Educational Resources Information Center
McDonald, Betty
2008-01-01
The study designed to contribute to existing research on Problem-Based Learning (PBL) chose a focus group comprising 16 MSc. Petroleum Engineering students (six females). Using PBL as the method of instruction, students examined a real-life petroleum engineering problem that highlighted numerous areas of their existing curriculum. They worked in…
Steps toward a Technology for the Diffusion of Innovations.
ERIC Educational Resources Information Center
Stolz, Stephanie B.
Research-based technologies for solving problems currently exist but are not being widely implemented. Although user variables, program effectiveness, and political considerations have been documented as correlates of implementation, general non-implementation of the technology still exists, due to a lack of methods. A technology of dissemination…
DOT National Transportation Integrated Search
2012-03-01
The inadequacy of many existing roads due to rapid growth in traffic volume provides a motivation for exploring alternatives to : existing methods of constructing and rehabilitating roads. The use of geosynthetics to stabilize and reinforce paved and...
Le, Duc-Hau
2015-01-01
Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.
Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors
Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech
2011-01-01
Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935
Efficient genotype compression and analysis of large genetic variation datasets
Layer, Ryan M.; Kindlon, Neil; Karczewski, Konrad J.; Quinlan, Aaron R.
2015-01-01
Genotype Query Tools (GQT) is a new indexing strategy that expedites analyses of genome variation datasets in VCF format based on sample genotypes, phenotypes and relationships. GQT’s compressed genotype index minimizes decompression for analysis, and performance relative to existing methods improves with cohort size. We show substantial (up to 443 fold) performance gains over existing methods and demonstrate GQT’s utility for exploring massive datasets involving thousands to millions of genomes. PMID:26550772
Xi, Jianing; Wang, Minghui; Li, Ao
2018-06-05
Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods incorporate interaction network as prior information. However, the prior information of mRNA expression patterns are not exploited by these existing network-based methods, which is also proven to be highly informative of cancer progressions. To incorporate prior information from both interaction network and mRNA expressions, we propose a robust and sparse co-regularized nonnegative matrix factorization to discover driver genes from mutation data. Furthermore, our framework also conducts Frobenius norm regularization to overcome overfitting issue. Sparsity-inducing penalty is employed to obtain sparse scores in gene representations, of which the top scored genes are selected as driver candidates. Evaluation experiments by known benchmarking genes indicate that the performance of our method benefits from the two type of prior information. Our method also outperforms the existing network-based methods, and detect some driver genes that are not predicted by the competing methods. In summary, our proposed method can improve the performance of driver gene discovery by effectively incorporating prior information from interaction network and mRNA expression patterns into a robust and sparse co-regularized matrix factorization framework.
Rapid field-based protocols for classifying flow permanence of headwater streams are needed to inform timely regulatory decisions. Such an existing method was developed for and has been used in North Carolina since 1997. The method uses ordinal scoring of 26 geomorphology, hydr...
Yang, Jian-Yi; Peng, Zhen-Ling; Yu, Zu-Guo; Zhang, Rui-Jie; Anh, Vo; Wang, Desheng
2009-04-21
In this paper, we intend to predict protein structural classes (alpha, beta, alpha+beta, or alpha/beta) for low-homology data sets. Two data sets were used widely, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence homology being 40% and 25%, respectively. We propose to decompose the chaos game representation of proteins into two kinds of time series. Then, a novel and powerful nonlinear analysis technique, recurrence quantification analysis (RQA), is applied to analyze these time series. For a given protein sequence, a total of 16 characteristic parameters can be calculated with RQA, which are treated as feature representation of protein sequences. Based on such feature representation, the structural class for each protein is predicted with Fisher's linear discriminant algorithm. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies with step-by-step procedure are 65.8% and 64.2% for 1189 and 25PDB data sets, respectively. With one-against-others procedure used widely, we compare our method with five other existing methods. Especially, the overall accuracies of our method are 6.3% and 4.1% higher for the two data sets, respectively. Furthermore, only 16 parameters are used in our method, which is less than that used by other methods. This suggests that the current method may play a complementary role to the existing methods and is promising to perform the prediction of protein structural classes.
Systems and methods for detection of blowout precursors in combustors
Lieuwen, Tim C.; Nair, Suraj
2006-08-15
The present invention comprises systems and methods for detecting flame blowout precursors in combustors. The blowout precursor detection system comprises a combustor, a pressure measuring device, and blowout precursor detection unit. A combustion controller may also be used to control combustor parameters. The methods of the present invention comprise receiving pressure data measured by an acoustic pressure measuring device, performing one or a combination of spectral analysis, statistical analysis, and wavelet analysis on received pressure data, and determining the existence of a blowout precursor based on such analyses. The spectral analysis, statistical analysis, and wavelet analysis further comprise their respective sub-methods to determine the existence of blowout precursors.
Uncertain decision tree inductive inference
NASA Astrophysics Data System (ADS)
Zarban, L.; Jafari, S.; Fakhrahmad, S. M.
2011-10-01
Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.
Prediction-Correction Algorithms for Time-Varying Constrained Optimization
Simonetto, Andrea; Dall'Anese, Emiliano
2017-07-26
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonetto, Andrea; Dall'Anese, Emiliano
This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
NASA Astrophysics Data System (ADS)
Fan, Xiao-Ning; Zhi, Bo
2017-07-01
Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.
A new gradient shimming method based on undistorted field map of B0 inhomogeneity.
Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang
2016-04-01
Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.
Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H
2017-07-01
Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.
Fan, Bingfei; Li, Qingguo; Liu, Tao
2017-12-28
With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.
A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.
Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun
2016-07-19
Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.
A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery
Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun
2016-01-01
Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631
Marshall, F.E.; Wingard, G.L.
2012-01-01
The upgraded method of coupled paleosalinity and hydrologic models was applied to the analysis of the circa-1900 CE segments of five estuarine sediment cores collected in Florida Bay. Comparisons of the observed mean stage (water level) data to the paleoecology-based model's averaged output show that the estimated stage in the Everglades wetlands was 0.3 to 1.6 feet higher at different locations. Observed mean flow data compared to the paleoecology-based model output show an estimated flow into Shark River Slough at Tamiami Trail of 401 to 2,539 cubic feet per second (cfs) higher than existing flows, and at Taylor Slough Bridge an estimated flow of 48 to 218 cfs above existing flows. For salinity in Florida Bay, the difference between paleoecology-based and observed mean salinity varies across the bay, from an aggregated average salinity of 14.7 less than existing in the northeastern basin to 1.0 less than existing in the western basin near the transition into the Gulf of Mexico. When the salinity differences are compared by region, the difference between paleoecology-based conditions and existing conditions are spatially consistent.
Methods for Force Analysis of Overconstrained Parallel Mechanisms: A Review
NASA Astrophysics Data System (ADS)
Liu, Wen-Lan; Xu, Yun-Dou; Yao, Jian-Tao; Zhao, Yong-Sheng
2017-11-01
The force analysis of overconstrained PMs is relatively complex and difficult, for which the methods have always been a research hotspot. However, few literatures analyze the characteristics and application scopes of the various methods, which is not convenient for researchers and engineers to master and adopt them properly. A review of the methods for force analysis of both passive and active overconstrained PMs is presented. The existing force analysis methods for these two kinds of overconstrained PMs are classified according to their main ideas. Each category is briefly demonstrated and evaluated from such aspects as the calculation amount, the comprehensiveness of considering limbs' deformation, and the existence of explicit expressions of the solutions, which provides an important reference for researchers and engineers to quickly find a suitable method. The similarities and differences between the statically indeterminate problem of passive overconstrained PMs and that of active overconstrained PMs are discussed, and a universal method for these two kinds of overconstrained PMs is pointed out. The existing deficiencies and development directions of the force analysis methods for overconstrained systems are indicated based on the overview.
Advanced Computational Techniques for Hypersonic Propulsion
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1996-01-01
CFD has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow us to perform simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Felix; Quach, Tu-Thach; Wheeler, Jason
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less
Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification
Wang, Felix; Quach, Tu-Thach; Wheeler, Jason; ...
2018-04-05
File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less
Efficient option valuation of single and double barrier options
NASA Astrophysics Data System (ADS)
Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin
2017-12-01
In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.
Eddylicious: A Python package for turbulent inflow generation
NASA Astrophysics Data System (ADS)
Mukha, Timofey; Liefvendahl, Mattias
2018-01-01
A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.
NASA Technical Reports Server (NTRS)
Johnson, Paul E.; Smith, Milton O.; Adams, John B.
1992-01-01
Algorithms were developed, based on Hapke's (1981) equations, for remote determinations of mineral abundances and particle sizes from reflectance spectra. In this method, spectra are modeled as a function of end-member abundances and illumination/viewing geometry. The method was tested on a laboratory data set. It is emphasized that, although there exist more sophisticated models, the present algorithms are particularly suited for remotely sensed data, where little opportunity exists to independently measure reflectance versus article size and phase function.
Liu, Guang-Hui; Shen, Hong-Bin; Yu, Dong-Jun
2016-04-01
Accurately predicting protein-protein interaction sites (PPIs) is currently a hot topic because it has been demonstrated to be very useful for understanding disease mechanisms and designing drugs. Machine-learning-based computational approaches have been broadly utilized and demonstrated to be useful for PPI prediction. However, directly applying traditional machine learning algorithms, which often assume that samples in different classes are balanced, often leads to poor performance because of the severe class imbalance that exists in the PPI prediction problem. In this study, we propose a novel method for improving PPI prediction performance by relieving the severity of class imbalance using a data-cleaning procedure and reducing predicted false positives with a post-filtering procedure: First, a machine-learning-based data-cleaning procedure is applied to remove those marginal targets, which may potentially have a negative effect on training a model with a clear classification boundary, from the majority samples to relieve the severity of class imbalance in the original training dataset; then, a prediction model is trained on the cleaned dataset; finally, an effective post-filtering procedure is further used to reduce potential false positive predictions. Stringent cross-validation and independent validation tests on benchmark datasets demonstrated the efficacy of the proposed method, which exhibits highly competitive performance compared with existing state-of-the-art sequence-based PPIs predictors and should supplement existing PPI prediction methods.
Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun
2016-05-05
An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Combining Biomarkers Linearly and Nonlinearly for Classification Using the Area Under the ROC Curve
Fong, Youyi; Yin, Shuxin; Huang, Ying
2016-01-01
In biomedical studies, it is often of interest to classify/predict a subject’s disease status based on a variety of biomarker measurements. A commonly used classification criterion is based on AUC - Area under the Receiver Operating Characteristic Curve. Many methods have been proposed to optimize approximated empirical AUC criteria, but there are two limitations to the existing methods. First, most methods are only designed to find the best linear combination of biomarkers, which may not perform well when there is strong nonlinearity in the data. Second, many existing linear combination methods use gradient-based algorithms to find the best marker combination, which often result in sub-optimal local solutions. In this paper, we address these two problems by proposing a new kernel-based AUC optimization method called Ramp AUC (RAUC). This method approximates the empirical AUC loss function with a ramp function, and finds the best combination by a difference of convex functions algorithm. We show that as a linear combination method, RAUC leads to a consistent and asymptotically normal estimator of the linear marker combination when the data is generated from a semiparametric generalized linear model, just as the Smoothed AUC method (SAUC). Through simulation studies and real data examples, we demonstrate that RAUC out-performs SAUC in finding the best linear marker combinations, and can successfully capture nonlinear pattern in the data to achieve better classification performance. We illustrate our method with a dataset from a recent HIV vaccine trial. PMID:27058981
Intelligent Tutoring System Using Decision Based Learning for Thermodynamic Phase Diagrams
ERIC Educational Resources Information Center
Hagge, Mathew; Amin-Naseri, Mostafa; Jackman, John; Guo, Enruo; Gilbert, Stephen B.; Starns, Gloria; Faidley, Leann
2017-01-01
Students learn when they connect new information to existing understanding or when they modify existing understanding to accept new information. Most current teaching methods focus on trying to get students to solve problems in a manner identical to that of an expert. This study investigates the effectiveness of assessing student understanding…
NASA Astrophysics Data System (ADS)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2010-04-01
For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.
NASA Astrophysics Data System (ADS)
Gusriani, N.; Firdaniza
2018-03-01
The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
...The Nuclear Regulatory Commission (NRC) is amending its regulations to provide alternate fracture toughness requirements for protection against pressurized thermal shock (PTS) events for pressurized water reactor (PWR) pressure vessels. This final rule provides alternate PTS requirements based on updated analysis methods. This action is desirable because the existing requirements are based on unnecessarily conservative probabilistic fracture mechanics analyses. This action reduces regulatory burden for those PWR licensees who expect to exceed the existing requirements before the expiration of their licenses, while maintaining adequate safety, and may choose to comply with the final rule as an alternative to complying with the existing requirements.
ERIC Educational Resources Information Center
Elder, Anastasia D.
2015-01-01
Problem based learning (PBL) is an instructional method aimed at engaging students in collaboratively solving an ill-structured problem. PBL has been presented and researched as an overhaul of existing curriculum design, yet a modified version may be attractive to college instructors who desire active learning on the part of their students, but…
ERIC Educational Resources Information Center
Golovachyova, Viktoriya N.; Menlibekova, Gulbakhyt Zh.; Abayeva, Nella F.; Ten, Tatyana L.; Kogaya, Galina D.
2016-01-01
Using computer-based monitoring systems that rely on tests could be the most effective way of knowledge evaluation. The problem of objective knowledge assessment by means of testing takes on a new dimension in the context of new paradigms in education. The analysis of the existing test methods enabled us to conclude that tests with selected…
Conditions for the existence of Kelvin-Helmholtz instability in a CME
NASA Astrophysics Data System (ADS)
Jatenco-Pereira, Vera; Páez, Andrés; Falceta-Gonçalves, Diego; Opher, Merav
2015-08-01
The presence of Kelvin-Helmholtz instability (KHI) in the sheaths of the Coronal Mass Ejection (CME) has motivated several analysis and simulations to test their existence. In the present work we assume the existence of the KHI and propose a method to identify the regions where it is possible the development of KHI for a CME propagating in a fast and slow solar wind. We build functions for the velocities, densities and magnetic fields for two different zones of interaction between the solar wind and a CME. Based on the theory of magnetic KHI proposed by Chandrasekhar (1961) and we found conditions for the existence of KHI in the CME sheaths. Using this method it is possible to determine the range of parameters, in particular CME magnetic fields in which the KHI could exist. We conclude that KHI may exist in the two CME flanks and it is perceived that the zone with boundaries with the slow solar wind is more appropriated for the formation of the KHI.
Quantifying construction and demolition waste: an analytical review.
Wu, Zezhou; Yu, Ann T W; Shen, Liyin; Liu, Guiwen
2014-09-01
Quantifying construction and demolition (C&D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C&D waste generation at both regional and project levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C&D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.
Singh, Parth Raj; Wang, Yide; Chargé, Pascal
2017-03-30
In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.
Yu, Liyang; Han, Qi; Niu, Xiamu; Yiu, S M; Fang, Junbin; Zhang, Ye
2016-02-01
Most of the existing image modification detection methods which are based on DCT coefficient analysis model the distribution of DCT coefficients as a mixture of a modified and an unchanged component. To separate the two components, two parameters, which are the primary quantization step, Q1, and the portion of the modified region, α, have to be estimated, and more accurate estimations of α and Q1 lead to better detection and localization results. Existing methods estimate α and Q1 in a completely blind manner, without considering the characteristics of the mixture model and the constraints to which α should conform. In this paper, we propose a more effective scheme for estimating α and Q1, based on the observations that, the curves on the surface of the likelihood function corresponding to the mixture model is largely smooth, and α can take values only in a discrete set. We conduct extensive experiments to evaluate the proposed method, and the experimental results confirm the efficacy of our method. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Robustly detecting differential expression in RNA sequencing data using observation weights
Zhou, Xiaobei; Lindsay, Helen; Robinson, Mark D.
2014-01-01
A popular approach for comparing gene expression levels between (replicated) conditions of RNA sequencing data relies on counting reads that map to features of interest. Within such count-based methods, many flexible and advanced statistical approaches now exist and offer the ability to adjust for covariates (e.g. batch effects). Often, these methods include some sort of ‘sharing of information’ across features to improve inferences in small samples. It is important to achieve an appropriate tradeoff between statistical power and protection against outliers. Here, we study the robustness of existing approaches for count-based differential expression analysis and propose a new strategy based on observation weights that can be used within existing frameworks. The results suggest that outliers can have a global effect on differential analyses. We demonstrate the effectiveness of our new approach with real data and simulated data that reflects properties of real datasets (e.g. dispersion-mean trend) and develop an extensible framework for comprehensive testing of current and future methods. In addition, we explore the origin of such outliers, in some cases highlighting additional biological or technical factors within the experiment. Further details can be downloaded from the project website: http://imlspenticton.uzh.ch/robinson_lab/edgeR_robust/. PMID:24753412
Determining the semantic similarities among Gene Ontology terms.
Taha, Kamal
2013-05-01
We present in this paper novel techniques that determine the semantic relationships among GeneOntology (GO) terms. We implemented these techniques in a prototype system called GoSE, which resides between user application and GO database. Given a set S of GO terms, GoSE would return another set S' of GO terms, where each term in S' is semantically related to each term in S. Most current research is focused on determining the semantic similarities among GO ontology terms based solely on their IDs and proximity to one another in the GO graph structure, while overlooking the contexts of the terms, which may lead to erroneous results. The context of a GO term T is the set of other terms, whose existence in the GO graph structure is dependent on T. We propose novel techniques that determine the contexts of terms based on the concept of existence dependency. We present a stack-based sort-merge algorithm employing these techniques for determining the semantic similarities among GO terms.We evaluated GoSE experimentally and compared it with three existing methods. The results of measuring the semantic similarities among genes in KEGG and Pfam pathways retrieved from the DBGET and Sanger Pfam databases, respectively, have shown that our method outperforms the other three methods in recall and precision.
2014-01-01
Linear algebraic concept of subspace plays a significant role in the recent techniques of spectrum estimation. In this article, the authors have utilized the noise subspace concept for finding hidden periodicities in DNA sequence. With the vast growth of genomic sequences, the demand to identify accurately the protein-coding regions in DNA is increasingly rising. Several techniques of DNA feature extraction which involves various cross fields have come up in the recent past, among which application of digital signal processing tools is of prime importance. It is known that coding segments have a 3-base periodicity, while non-coding regions do not have this unique feature. One of the most important spectrum analysis techniques based on the concept of subspace is the least-norm method. The least-norm estimator developed in this paper shows sharp period-3 peaks in coding regions completely eliminating background noise. Comparison of proposed method with existing sliding discrete Fourier transform (SDFT) method popularly known as modified periodogram method has been drawn on several genes from various organisms and the results show that the proposed method has better as well as an effective approach towards gene prediction. Resolution, quality factor, sensitivity, specificity, miss rate, and wrong rate are used to establish superiority of least-norm gene prediction method over existing method. PMID:24386895
A simulation-based evaluation of methods for inferring linear barriers to gene flow
Christopher Blair; Dana E. Weigel; Matthew Balazik; Annika T. H. Keeley; Faith M. Walker; Erin Landguth; Sam Cushman; Melanie Murphy; Lisette Waits; Niko Balkenhol
2012-01-01
Different analytical techniques used on the same data set may lead to different conclusions about the existence and strength of genetic structure. Therefore, reliable interpretation of the results from different methods depends on the efficacy and reliability of different statistical methods. In this paper, we evaluated the performance of multiple analytical methods to...
Ndabarora, Eléazar; Mchunu, Gugu
2014-01-01
Various studies have reported that university students, who are mostly young people, rarely use existing HIV/AIDS preventive methods. Although studies have shown that young university students have a high degree of knowledge about HIV/AIDS and HIV modes of transmission, they are still not utilising the existing HIV prevention methods and still engage in risky sexual practices favourable to HIV. Some variables, such as awareness of existing HIV/AIDS prevention methods, have been associated with utilisation of such methods. The study aimed to explore factors that influence use of existing HIV/AIDS prevention methods among university students residing in a selected campus, using the Health Belief Model (HBM) as a theoretical framework. A quantitative research approach and an exploratory-descriptive design were used to describe perceived factors that influence utilisation by university students of HIV/AIDS prevention methods. A total of 335 students completed online and manual questionnaires. Study findings showed that the factors which influenced utilisation of HIV/AIDS prevention methods were mainly determined by awareness of the existing university-based HIV/AIDS prevention strategies. Most utilised prevention methods were voluntary counselling and testing services and free condoms. Perceived susceptibility and perceived threat of HIV/AIDS score was also found to correlate with HIV risk index score. Perceived susceptibility and perceived threat of HIV/AIDS showed correlation with self-efficacy on condoms and their utilisation. Most HBM variables were not predictors of utilisation of HIV/AIDS prevention methods among students. Intervention aiming to improve the utilisation of HIV/AIDS prevention methods among students at the selected university should focus on removing identified barriers, promoting HIV/AIDS prevention services and providing appropriate resources to implement such programmes.
Quantification of Shape, Angularity, and Surface texture of Base Course Materials
DOT National Transportation Integrated Search
1998-01-01
A state-of-the-art review was conducted to determine existing test methods for characterizing the shape, angularity, and surface texture of coarse aggregates. The review found direct methods used by geologists to determine these characteristics. Thes...
ASSESSING AND COMBINING RELIABILITY OF PROTEIN INTERACTION SOURCES
LEACH, SONIA; GABOW, AARON; HUNTER, LAWRENCE; GOLDBERG, DEBRA S.
2008-01-01
Integrating diverse sources of interaction information to create protein networks requires strategies sensitive to differences in accuracy and coverage of each source. Previous integration approaches calculate reliabilities of protein interaction information sources based on congruity to a designated ‘gold standard.’ In this paper, we provide a comparison of the two most popular existing approaches and propose a novel alternative for assessing reliabilities which does not require a gold standard. We identify a new method for combining the resultant reliabilities and compare it against an existing method. Further, we propose an extrinsic approach to evaluation of reliability estimates, considering their influence on the downstream tasks of inferring protein function and learning regulatory networks from expression data. Results using this evaluation method show 1) our method for reliability estimation is an attractive alternative to those requiring a gold standard and 2) the new method for combining reliabilities is less sensitive to noise in reliability assignments than the similar existing technique. PMID:17990508
Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia
2016-01-01
An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996
Image steganalysis using Artificial Bee Colony algorithm
NASA Astrophysics Data System (ADS)
Sajedi, Hedieh
2017-09-01
Steganography is the science of secure communication where the presence of the communication cannot be detected while steganalysis is the art of discovering the existence of the secret communication. Processing a huge amount of information takes extensive execution time and computational sources most of the time. As a result, it is needed to employ a phase of preprocessing, which can moderate the execution time and computational sources. In this paper, we propose a new feature-based blind steganalysis method for detecting stego images from the cover (clean) images with JPEG format. In this regard, we present a feature selection technique based on an improved Artificial Bee Colony (ABC). ABC algorithm is inspired by honeybees' social behaviour in their search for perfect food sources. In the proposed method, classifier performance and the dimension of the selected feature vector depend on using wrapper-based methods. The experiments are performed using two large data-sets of JPEG images. Experimental results demonstrate the effectiveness of the proposed steganalysis technique compared to the other existing techniques.
A method to classify schizophrenia using inter-task spatial correlations of functional brain images.
Michael, Andrew M; Calhoun, Vince D; Andreasen, Nancy C; Baum, Stefi A
2008-01-01
The clinical heterogeneity of schizophrenia (scz) and the overlap of self reported and observed symptoms with other mental disorders makes its diagnosis a difficult task. At present no laboratory-based or image-based diagnostic tool for scz exists and such tools are desired to support existing methods for more precise diagnosis. Functional magnetic resonance imaging (fMRI) is currently employed to identify and correlate cognitive processes related to scz and its symptoms. Fusion of multiple fMRI tasks that probe different cognitive processes may help to better understand hidden networks of this complex disorder. In this paper we utilize three different fMRI tasks and introduce an approach to classify subjects based on inter-task spatial correlations of brain activation. The technique was applied to groups of patients and controls and its validity was checked with the leave-one-out method. We show that the classification rate increases when information from multiple tasks are combined.
Feature selection using probabilistic prediction of support vector regression.
Yang, Jian-Bo; Ong, Chong-Jin
2011-06-01
This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.
Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Kolmakova, D.; Popov, G.
2018-01-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation.
Jimeno-Yepes, Antonio J; McInnes, Bridget T; Aronson, Alan R
2011-06-02
Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD. In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE.We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods. The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions.
Szatkiewicz, Jin P; Wang, WeiBo; Sullivan, Patrick F; Wang, Wei; Sun, Wei
2013-02-01
Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.
Inquiry-Based Instruction for Students with Special Needs in School Based Agricultural Education
ERIC Educational Resources Information Center
Easterly, R. G., III; Myers, Brian E.
2011-01-01
Educating students with special needs in school based agricultural education (SBAE) is a problem that should be addressed. While many students in SBAE classes have special needs, contradicting research exists establishing the best method of instruction for students with special needs. Inquiry-based instruction shows some promise, but little is…
Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452
From empirical data to time-inhomogeneous continuous Markov processes.
Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G
2016-03-01
We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.
Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.
Lakshmi, Priya G G; Domnic, S
2014-12-01
Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.
A Voice-Radio Method for Collecting Human Factors Data.
ERIC Educational Resources Information Center
Askren, William B.; And Others
Available methods for collecting human factors data rely heavily on observations, interviews, and questionnaires. A need exists for other methods. The feasibility of using two-way voice-radio for this purpose was studied. The data collection methodology consisted of a human factors analyst talking from a radio base station with technicians wearing…
An Analytical Method for Measuring Competence in Project Management
ERIC Educational Resources Information Center
González-Marcos, Ana; Alba-Elías, Fernando; Ordieres-Meré, Joaquín
2016-01-01
The goal of this paper is to present a competence assessment method in project management that is based on participants' performance and value creation. It seeks to close an existing gap in competence assessment in higher education. The proposed method relies on information and communication technology (ICT) tools and combines Project Management…
VALIDATION OF A METHOD FOR ESTIMATING LONG-TERM EXPOSURES BASED ON SHORT-TERM MEASUREMENTS
A method for estimating long-term exposures from short-term measurements is validated using data from a recent EPA study of exposure to fine particles. The method was developed a decade ago but data to validate it did not exist until recently. In this paper, data from repeated ...
VALIDATION OF A METHOD FOR ESTIMATING LONG-TERM EXPOSURES BASED ON SHORT-TERM MEASUREMENTS
A method for estimating long-term exposures from short-term measurements is validated using data from a recent EPA study of exposure to fine particles. The method was developed a decade ago but long-term exposure data to validate it did not exist until recently. In this paper, ...
Characterizing Task-Based OpenMP Programs
Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats
2015-01-01
Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023
Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method
NASA Astrophysics Data System (ADS)
Mehl, S.
2012-12-01
Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.
Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging
Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.
2017-01-01
Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800
Rahman, Mohd Nasrull Abdol; Mohamad, Siti Shafika
2017-01-01
Computer works are associated with Musculoskeletal Disorders (MSDs). There are several methods have been developed to assess computer work risk factor related to MSDs. This review aims to give an overview of current techniques available for pen-and-paper-based observational methods in assessing ergonomic risk factors of computer work. We searched an electronic database for materials from 1992 until 2015. The selected methods were focused on computer work, pen-and-paper observational methods, office risk factors and musculoskeletal disorders. This review was developed to assess the risk factors, reliability and validity of pen-and-paper observational method associated with computer work. Two evaluators independently carried out this review. Seven observational methods used to assess exposure to office risk factor for work-related musculoskeletal disorders were identified. The risk factors involved in current techniques of pen and paper based observational tools were postures, office components, force and repetition. From the seven methods, only five methods had been tested for reliability. They were proven to be reliable and were rated as moderate to good. For the validity testing, from seven methods only four methods were tested and the results are moderate. Many observational tools already exist, but no single tool appears to cover all of the risk factors including working posture, office component, force, repetition and office environment at office workstations and computer work. Although the most important factor in developing tool is proper validation of exposure assessment techniques, the existing observational method did not test reliability and validity. Futhermore, this review could provide the researchers with ways on how to improve the pen-and-paper-based observational method for assessing ergonomic risk factors of computer work.
Wavelet-based image compression using shuffling and bit plane correlation
NASA Astrophysics Data System (ADS)
Kim, Seungjong; Jeong, Jechang
2000-12-01
In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.
ERIC Educational Resources Information Center
Johnson, Andrew; Kuglitsch, Rebecca; Bresnahan, Megan
2015-01-01
This study used participatory and service design methods to identify emerging research needs and existing perceptions of library services among science and engineering faculty, post-graduate, and graduate student researchers based at a satellite campus at the University of Colorado Boulder. These methods, and the results of the study, allowed us…
ERIC Educational Resources Information Center
Dania, Aspasia; Tyrovola, Vasiliki; Koutsouba, Maria
2017-01-01
The aim of this paper is to present the design and evaluate the impact of a Laban Notation-based method for Teaching Dance (LANTD) on novice dancers' performance, in the case of Greek traditional dance. In this research, traditional dance is conceived in its "second existence" as a kind of presentational activity performed outside its…
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
NASA Astrophysics Data System (ADS)
Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C.
2011-08-01
In this paper we present a semi-automatic method to infer groundwater flow-paths based on the extraction of lineaments from digital elevation models. This method is especially adequate in remote and inaccessible areas where in-situ data are scarce. The combined method of linear filtering and object-based classification provides a lineament map with a high degree of accuracy. Subsequently, lineaments are differentiated into geological and morphological lineaments using auxiliary information and finally evaluated in terms of hydro-geological significance. Using the example of the western catchment of the Dead Sea (Israel/Palestine), the orientation and location of the differentiated lineaments are compared to characteristics of known structural features. We demonstrate that a strong correlation between lineaments and structural features exists. Using Euclidean distances between lineaments and wells provides an assessment criterion to evaluate the hydraulic significance of detected lineaments. Based on this analysis, we suggest that the statistical analysis of lineaments allows a delineation of flow-paths and thus significant information on groundwater movements. To validate the flow-paths we compare them to existing results of groundwater models that are based on well data.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process
Chen, Yang; Zhang, Michael Q.
2018-01-01
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282
Fernández-Carrobles, M. Milagro; Tadeo, Irene; Bueno, Gloria; Noguera, Rosa; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial
2013-01-01
Given that angiogenesis and lymphangiogenesis are strongly related to prognosis in neoplastic and other pathologies and that many methods exist that provide different results, we aim to construct a morphometric tool allowing us to measure different aspects of the shape and size of vascular vessels in a complete and accurate way. The developed tool presented is based on vessel closing which is an essential property to properly characterize the size and the shape of vascular and lymphatic vessels. The method is fast and accurate improving existing tools for angiogenesis analysis. The tool also improves the accuracy of vascular density measurements, since the set of endothelial cells forming a vessel is considered as a single object. PMID:24489494
Differential privacy based on importance weighting
Ji, Zhanglong
2014-01-01
This paper analyzes a novel method for publishing data while still protecting privacy. The method is based on computing weights that make an existing dataset, for which there are no confidentiality issues, analogous to the dataset that must be kept private. The existing dataset may be genuine but public already, or it may be synthetic. The weights are importance sampling weights, but to protect privacy, they are regularized and have noise added. The weights allow statistical queries to be answered approximately while provably guaranteeing differential privacy. We derive an expression for the asymptotic variance of the approximate answers. Experiments show that the new mechanism performs well even when the privacy budget is small, and when the public and private datasets are drawn from different populations. PMID:24482559
Why conventional detection methods fail in identifying the existence of contamination events.
Liu, Shuming; Li, Ruonan; Smith, Kate; Che, Han
2016-04-15
Early warning systems are widely used to safeguard water security, but their effectiveness has raised many questions. To understand why conventional detection methods fail to identify contamination events, this study evaluates the performance of three contamination detection methods using data from a real contamination accident and two artificial datasets constructed using a widely applied contamination data construction approach. Results show that the Pearson correlation Euclidean distance (PE) based detection method performs better for real contamination incidents, while the Euclidean distance method (MED) and linear prediction filter (LPF) method are more suitable for detecting sudden spike-like variation. This analysis revealed why the conventional MED and LPF methods failed to identify existence of contamination events. The analysis also revealed that the widely used contamination data construction approach is misleading. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng
2018-04-01
This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.
Qian, Song S; Lyons, Regan E
2006-10-01
We present a Bayesian approach for characterizing background contaminant concentration distributions using data from sites that may have been contaminated. Our method, focused on estimation, resolves several technical problems of the existing methods sanctioned by the U.S. Environmental Protection Agency (USEPA) (a hypothesis testing based method), resulting in a simple and quick procedure for estimating background contaminant concentrations. The proposed Bayesian method is applied to two data sets from a federal facility regulated under the Resource Conservation and Restoration Act. The results are compared to background distributions identified using existing methods recommended by the USEPA. The two data sets represent low and moderate levels of censorship in the data. Although an unbiased estimator is elusive, we show that the proposed Bayesian estimation method will have a smaller bias than the EPA recommended method.
Gagnon, Jessica K.; Law, Sean M.; Brooks, Charles L.
2016-01-01
Protein-ligand docking is a commonly used method for lead identification and refinement. While traditional structure-based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an inter-converting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well-appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid-based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced-fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re-docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs. PMID:26691274
Gagnon, Jessica K; Law, Sean M; Brooks, Charles L
2016-03-30
Protein-ligand docking is a commonly used method for lead identification and refinement. While traditional structure-based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an interconverting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well-appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid-based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced-fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re-docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs. © 2015 Wiley Periodicals, Inc.
Curvelet-domain multiple matching method combined with cubic B-spline function
NASA Astrophysics Data System (ADS)
Wang, Tong; Wang, Deli; Tian, Mi; Hu, Bin; Liu, Chengming
2018-05-01
Since the large amount of surface-related multiple existed in the marine data would influence the results of data processing and interpretation seriously, many researchers had attempted to develop effective methods to remove them. The most successful surface-related multiple elimination method was proposed based on data-driven theory. However, the elimination effect was unsatisfactory due to the existence of amplitude and phase errors. Although the subsequent curvelet-domain multiple-primary separation method achieved better results, poor computational efficiency prevented its application. In this paper, we adopt the cubic B-spline function to improve the traditional curvelet multiple matching method. First, select a little number of unknowns as the basis points of the matching coefficient; second, apply the cubic B-spline function on these basis points to reconstruct the matching array; third, build constraint solving equation based on the relationships of predicted multiple, matching coefficients, and actual data; finally, use the BFGS algorithm to iterate and realize the fast-solving sparse constraint of multiple matching algorithm. Moreover, the soft-threshold method is used to make the method perform better. With the cubic B-spline function, the differences between predicted multiple and original data diminish, which results in less processing time to obtain optimal solutions and fewer iterative loops in the solving procedure based on the L1 norm constraint. The applications to synthetic and field-derived data both validate the practicability and validity of the method.
Comparing and improving reconstruction methods for proxies based on compositional data
NASA Astrophysics Data System (ADS)
Nolan, C.; Tipton, J.; Booth, R.; Jackson, S. T.; Hooten, M.
2017-12-01
Many types of studies in paleoclimatology and paleoecology involve compositional data. Often, these studies aim to use compositional data to reconstruct an environmental variable of interest; the reconstruction is usually done via the development of a transfer function. Transfer functions have been developed using many different methods. Existing methods tend to relate the compositional data and the reconstruction target in very simple ways. Additionally, the results from different methods are rarely compared. Here we seek to address these two issues. First, we introduce a new hierarchical Bayesian multivariate gaussian process model; this model allows for the relationship between each species in the compositional dataset and the environmental variable to be modeled in a way that captures the underlying complexities. Then, we compare this new method to machine learning techniques and commonly used existing methods. The comparisons are based on reconstructing the water table depth history of Caribou Bog (an ombrotrophic Sphagnum peat bog in Old Town, Maine, USA) from a new 7500 year long record of testate amoebae assemblages. The resulting reconstructions from different methods diverge in both their resulting means and uncertainties. In particular, uncertainty tends to be drastically underestimated by some common methods. These results will help to improve inference of water table depth from testate amoebae. Furthermore, this approach can be applied to test and improve inferences of past environmental conditions from a broad array of paleo-proxies based on compositional data
Extrinsic Calibration of Camera Networks Based on Pedestrians
Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried
2016-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080
Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L
2015-07-15
Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. Copyright © 2015 Elsevier Inc. All rights reserved.
Noniterative implicit method for tracking particles in mixed Lagrangian-Eulerian formulations
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Dasgupta, A.
1993-01-01
The existing implicit methods for the current initial value problems (IVPs) concerning particle-laden flows are complicated and iterative in nature. This paper presents a noniterative implicit method which can be used with pressure-based as well as with density-based algorithms. The method is illustrated by analyzing a dilute dispersion of noninteracting solid particles in an isothermal flow in a passage bounded by one straight wall and one wavy wall, in which all particles are spherical and have a finite velociy relative to the continuum phase at the inflow boundary.
Research and Implementation of Tibetan Word Segmentation Based on Syllable Methods
NASA Astrophysics Data System (ADS)
Jiang, Jing; Li, Yachao; Jiang, Tao; Yu, Hongzhi
2018-03-01
Tibetan word segmentation (TWS) is an important problem in Tibetan information processing, while abbreviated word recognition is one of the key and most difficult problems in TWS. Most of the existing methods of Tibetan abbreviated word recognition are rule-based approaches, which need vocabulary support. In this paper, we propose a method based on sequence tagging model for abbreviated word recognition, and then implement in TWS systems with sequence labeling models. The experimental results show that our abbreviated word recognition method is fast and effective and can be combined easily with the segmentation model. This significantly increases the effect of the Tibetan word segmentation.
Li, Qingguo
2017-01-01
With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method. PMID:29283432
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Research on Operation Assessment Method for Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
A Method of Evaluating Operation of Electric Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin
2018-05-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
Haghverdi, Laleh; Lun, Aaron T L; Morgan, Michael D; Marioni, John C
2018-06-01
Large-scale single-cell RNA sequencing (scRNA-seq) data sets that are produced in different laboratories and at different times contain batch effects that may compromise the integration and interpretation of the data. Existing scRNA-seq analysis methods incorrectly assume that the composition of cell populations is either known or identical across batches. We present a strategy for batch correction based on the detection of mutual nearest neighbors (MNNs) in the high-dimensional expression space. Our approach does not rely on predefined or equal population compositions across batches; instead, it requires only that a subset of the population be shared between batches. We demonstrate the superiority of our approach compared with existing methods by using both simulated and real scRNA-seq data sets. Using multiple droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect-correction method can be scaled to large numbers of cells.
Analysis of modal behavior at frequency cross-over
NASA Astrophysics Data System (ADS)
Costa, Robert N., Jr.
1994-11-01
The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.
DOT National Transportation Integrated Search
2014-01-01
Structural Health Monitoring has great potential to provide valuable information about the actual structural condition and can help optimize the management activities. However, few effective and robust monitoring methods exist which hinders a nationw...
NASA Astrophysics Data System (ADS)
Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu
2016-05-01
The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.
A New Approach for Mining Order-Preserving Submatrices Based on All Common Subsequences.
Xue, Yun; Liao, Zhengling; Li, Meihang; Luo, Jie; Kuang, Qiuhua; Hu, Xiaohui; Li, Tiechen
2015-01-01
Order-preserving submatrices (OPSMs) have been applied in many fields, such as DNA microarray data analysis, automatic recommendation systems, and target marketing systems, as an important unsupervised learning model. Unfortunately, most existing methods are heuristic algorithms which are unable to reveal OPSMs entirely in NP-complete problem. In particular, deep OPSMs, corresponding to long patterns with few supporting sequences, incur explosive computational costs and are completely pruned by most popular methods. In this paper, we propose an exact method to discover all OPSMs based on frequent sequential pattern mining. First, an existing algorithm was adjusted to disclose all common subsequence (ACS) between every two row sequences, and therefore all deep OPSMs will not be missed. Then, an improved data structure for prefix tree was used to store and traverse ACS, and Apriori principle was employed to efficiently mine the frequent sequential pattern. Finally, experiments were implemented on gene and synthetic datasets. Results demonstrated the effectiveness and efficiency of this method.
The biometric-based module of smart grid system
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Ermoshkina, A.
2015-10-01
Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne
2016-01-05
In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.
DOT National Transportation Integrated Search
2007-09-01
Two competing approaches to travel demand modeling exist today. The more traditional 4-step travel demand models rely on aggregate demographic data at a traffic analysis zone (TAZ) level. Activity-based microsimulation methods employ more robus...
MICKENAUTSCH, Steffen; YENGOPAL, Veerasamy
2013-01-01
Objective To demonstrate the application of the modified Ottawa method by establishing the update need of a systematic review with focus on the caries preventive effect of GIC versus resin pit and fissure sealants; to answer the question as to whether the existing conclusions of this systematic review are still current; to establish whether a new update of this systematic review was needed. Methods: Application of the Modified Ottawa method. Application date: April/May 2012. Results Four signals aligned with the criteria of the modified Ottawa method were identified. The content of these signals suggest that higher precision of the current systematic review results might be achieved if an update of the current review were conducted at this point in time. However, these signals further indicate that such systematic review update, despite its higher precision, would only confirm the existing review conclusion that no statistically significant difference exists in the caries-preventive effect of GIC and resin-based fissure sealants. Conclusion In conclusion, this study demonstrated the modified Ottawa method as an effective tool in establishing the update need of the systematic review. In addition, it was established that the conclusions of the systematic review in relation to the caries preventive effect of GIC versus resin based fissure sealants are still current, and that no update of this systematic review was warranted at date of application. PMID:24212996
Methods for artifact detection and removal from scalp EEG: A review.
Islam, Md Kafiul; Rastegarnia, Amir; Yang, Zhi
2016-11-01
Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lysdahl, Kristin Bakke; Mozygemba, Kati; Burns, Jacob; Brönneke, Jan Benedikt; Chilcott, James B; Ward, Sue; Hofmann, Bjørn
2017-01-01
Despite recent development of health technology assessment (HTA) methods, there are still methodological gaps for the assessment of complex health technologies. The INTEGRATE-HTA guidance for effectiveness, economic, ethical, socio-cultural, and legal aspects, deals with challenges when assessing complex technologies, such as heterogeneous study designs, multiple stakeholder perspectives, and unpredictable outcomes. The objective of this article is to outline this guidance and describe the added value of integrating these assessment aspects. Different methods were used to develop the various parts of the guidance, but all draw on existing, published knowledge and were supported by stakeholder involvement. The guidance was modified after application in a case study and in response to feedback from internal and external reviewers. The guidance consists of five parts, addressing five core aspects of HTA, all presenting stepwise approaches based on the assessment of complexity, context, and stakeholder involvement. The guidance on effectiveness, health economics and ethics aspects focus on helping users choose appropriate, or further develop, existing methods. The recommendations are based on existing methods' applicability for dealing with problems arising with complex interventions. The guidance offers new frameworks to identify socio-cultural and legal issues, along with overviews of relevant methods and sources. The INTEGRATE-HTA guidance outlines a wide range of methods and facilitates appropriate choices among them. The guidance enables understanding of how complexity matters for HTA and brings together assessments from disciplines, such as epidemiology, economics, ethics, law, and social theory. This indicates relevance for a broad range of technologies.
Fast frequency domain method to detect skew in a document image
NASA Astrophysics Data System (ADS)
Mehta, Sunita; Walia, Ekta; Dutta, Maitreyee
2015-12-01
In this paper, a new fast frequency domain method based on Discrete Wavelet Transform and Fast Fourier Transform has been implemented for the determination of the skew angle in a document image. Firstly, image size reduction is done by using two-dimensional Discrete Wavelet Transform and then skew angle is computed using Fast Fourier Transform. Skew angle error is almost negligible. The proposed method is experimented using a large number of documents having skew between -90° and +90° and results are compared with Moments with Discrete Wavelet Transform method and other commonly used existing methods. It has been determined that this method works more efficiently than the existing methods. Also, it works with typed, picture documents having different fonts and resolutions. It overcomes the drawback of the recently proposed method of Moments with Discrete Wavelet Transform that does not work with picture documents.
Research of Litchi Diseases Diagnosis Expertsystem Based on Rbr and Cbr
NASA Astrophysics Data System (ADS)
Xu, Bing; Liu, Liqun
To conquer the bottleneck problems existing in the traditional rule-based reasoning diseases diagnosis system, such as low reasoning efficiency and lack of flexibility, etc.. It researched the integrated case-based reasoning (CBR) and rule-based reasoning (RBR) technology, and put forward a litchi diseases diagnosis expert system (LDDES) with integrated reasoning method. The method use data mining and knowledge obtaining technology to establish knowledge base and case library. It adopt rules to instruct the retrieval and matching for CBR, and use association rule and decision trees algorithm to calculate case similarity.The experiment shows that the method can increase the system's flexibility and reasoning ability, and improve the accuracy of litchi diseases diagnosis.
NASA Technical Reports Server (NTRS)
Mcmillan, O. J.; Mendenhall, M. R.; Perkins, S. C., Jr.
1984-01-01
Work is described dealing with two areas which are dominated by the nonlinear effects of vortex flows. The first area concerns the stall/spin characteristics of a general aviation wing with a modified leading edge. The second area concerns the high-angle-of-attack characteristics of high performance military aircraft. For each area, the governing phenomena are described as identified with the aid of existing experimental data. Existing analytical methods are reviewed, and the most promising method for each area used to perform some preliminary calculations. Based on these results, the strengths and weaknesses of the methods are defined, and research programs recommended to improve the methods as a result of better understanding of the flow mechanisms involved.
An automated and universal method for measuring mean grain size from a digital image of sediment
Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.
2010-01-01
Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.
Hammerly, Susan C; Morrow, Michael E; Johnson, Jeff A
2013-11-01
The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree- and DNA-based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie-chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree-based inbreeding coefficients (f(pedigree)) was less than that obtained from DNA-based methods (f(DNA)). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (r(DNA)) and f(DNA), respectively, while no correlation was observed with pedigree-based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie-chickens. This study highlights the importance of using DNA-based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings. © 2013 John Wiley & Sons Ltd.
Nicholson, Joanne; Hinden, Beth R; Biebel, Kathleen; Henry, Alexis D; Katz-Leavy, Judith
2007-10-01
The rationale for the development of effective programs for parents with serious mental illness and their children is compelling. Using qualitative methods and a grounded theory approach with data obtained in site visits, seven existing programs for parents with mental illness and their children in the United States are described and compared across core components: target population, theory and assumptions, funding, community and agency contexts, essential services and intervention strategies, moderators, and outcomes. The diversity across programs is strongly complemented by shared characteristics, the identification of which provides the foundation for future testing and the development of an evidence base. Challenges in program implementation and sustainability are identified. Qualitative methods are useful, particularly when studying existing programs, in taking steps toward building the evidence base for effective programs for parents with serious mental illness and their children.
A Different Web-Based Geocoding Service Using Fuzzy Techniques
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.
2015-12-01
Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.
Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators
NASA Astrophysics Data System (ADS)
Ho, Ky; Sim, Inbo
2017-01-01
We show the various existence results for degenerate $p(x)$-Laplace equations with Leray-Lions type operators. A suitable condition on degeneracy is discussed and proofs are mainly based on direct methods and critical point theories in Calculus of Variations. In particular, we investigate the various situations of the growth rates between principal operators and nonlinearities.
Time warp operating system version 2.7 internals manual
NASA Technical Reports Server (NTRS)
1992-01-01
The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.
A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.
Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A
2018-02-08
Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.
A comparison of viscoelastic damping models
NASA Technical Reports Server (NTRS)
Slater, Joseph C.; Belvin, W. Keith; Inman, Daniel J.
1993-01-01
Modern finite element methods (FEM's) enable the precise modeling of mass and stiffness properties in what were in the past overwhelmingly large and complex structures. These models allow the accurate determination of natural frequencies and mode shapes. However, adequate methods for modeling highly damped and high frequency dependent structures did not exist until recently. The most commonly used method, Modal Strain Energy, does not correctly predict complex mode shapes since it is based on the assumption that the mode shapes of a structure are real. Recently, many techniques have been developed which allow the modeling of frequency dependent damping properties of materials in a finite element compatible form. Two of these methods, the Golla-Hughes-McTavish method and the Lesieutre-Mingori method, model the frequency dependent effects by adding coordinates to the existing system thus maintaining the linearity of the model. The third model, proposed by Bagley and Torvik, is based on the Fractional Calculus method and requires fewer empirical parameters to model the frequency dependence at the expense of linearity of the governing equations. This work examines the Modal Strain Energy, Golla-Hughes-McTavish and Bagley and Torvik models and compares them to determine the plausibility of using them for modeling viscoelastic damping in large structures.
A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination
2018-01-01
Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods. PMID:29419759
Theoretical Background and Prognostic Modeling for Benchmarking SHM Sensors for Composite Structures
2010-10-01
minimum flaw size can be detected by the existing SHM based monitoring methods. Sandwich panels with foam , WebCore and honeycomb structures were...Whether it be hat stiffened, corrugated sandwich, honeycomb sandwich, or foam filled sandwich, all composite structures have one basic handicap in...based monitoring methods. Sandwich panels with foam , WebCore and honeycomb structures were considered for use in this study. Eigenmode frequency
ERIC Educational Resources Information Center
Foote, Kathleen T.
2016-01-01
Over the past few decades, a growing body of evidence demonstrates that students learn best in engaging, interactive, collaborative, and inquiry-based environments. However, most college science classes are still taught with traditional methods suggesting the existing selection of research-based instructional materials has not widely transformed…
A low delay transmission method of multi-channel video based on FPGA
NASA Astrophysics Data System (ADS)
Fu, Weijian; Wei, Baozhi; Li, Xiaobin; Wang, Quan; Hu, Xiaofei
2018-03-01
In order to guarantee the fluency of multi-channel video transmission in video monitoring scenarios, we designed a kind of video format conversion method based on FPGA and its DMA scheduling for video data, reduces the overall video transmission delay.In order to sace the time in the conversion process, the parallel ability of FPGA is used to video format conversion. In order to improve the direct memory access (DMA) writing transmission rate of PCIe bus, a DMA scheduling method based on asynchronous command buffer is proposed. The experimental results show that this paper designs a low delay transmission method based on FPGA, which increases the DMA writing transmission rate by 34% compared with the existing method, and then the video overall delay is reduced to 23.6ms.
Wang, Jue; Kwan, Mei-Po; Chai, Yanwei
2018-04-09
Scholars in the fields of health geography, urban planning, and transportation studies have long attempted to understand the relationships among human movement, environmental context, and accessibility. One fundamental question for this research area is how to measure individual activity space, which is an indicator of where and how people have contact with their social and physical environments. Conventionally, standard deviational ellipses, road network buffers, minimum convex polygons, and kernel density surfaces have been used to represent people's activity space, but they all have shortcomings. Inconsistent findings of the effects of environmental exposures on health behaviors/outcomes suggest that the reliability of existing studies may be affected by the uncertain geographic context problem (UGCoP). This paper proposes the context-based crystal-growth activity space as an innovative method for generating individual activity space based on both GPS trajectories and the environmental context. This method not only considers people's actual daily activity patterns based on GPS tracks but also takes into account the environmental context which either constrains or encourages people's daily activity. Using GPS trajectory data collected in Chicago, the results indicate that the proposed new method generates more reasonable activity space when compared to other existing methods. This can help mitigate the UGCoP in environmental health studies.
Chai, Yanwei
2018-01-01
Scholars in the fields of health geography, urban planning, and transportation studies have long attempted to understand the relationships among human movement, environmental context, and accessibility. One fundamental question for this research area is how to measure individual activity space, which is an indicator of where and how people have contact with their social and physical environments. Conventionally, standard deviational ellipses, road network buffers, minimum convex polygons, and kernel density surfaces have been used to represent people’s activity space, but they all have shortcomings. Inconsistent findings of the effects of environmental exposures on health behaviors/outcomes suggest that the reliability of existing studies may be affected by the uncertain geographic context problem (UGCoP). This paper proposes the context-based crystal-growth activity space as an innovative method for generating individual activity space based on both GPS trajectories and the environmental context. This method not only considers people’s actual daily activity patterns based on GPS tracks but also takes into account the environmental context which either constrains or encourages people’s daily activity. Using GPS trajectory data collected in Chicago, the results indicate that the proposed new method generates more reasonable activity space when compared to other existing methods. This can help mitigate the UGCoP in environmental health studies. PMID:29642530
ERIC Educational Resources Information Center
Nielsen, Richard A.
2016-01-01
This article shows how statistical matching methods can be used to select "most similar" cases for qualitative analysis. I first offer a methodological justification for research designs based on selecting most similar cases. I then discuss the applicability of existing matching methods to the task of selecting most similar cases and…
Application of Persistent Scatterer Radar Interferometry to the New Orleans delta region
NASA Astrophysics Data System (ADS)
Lohman, R.; Fielding, E.; Blom, R.
2007-12-01
Subsidence in New Orleans and along the Gulf Coast is currently monitored using a variety of ground- and satellite-based methods, and extensive geophysical modeling of the area seeks to understand the inputs to subsidence rates from sediment compaction, salt evacuation, oxidation and anthropogenic forcings such as the withdrawal or injection of subsurface fluids. Better understanding of the temporal and spatial variability of these subsidence rates can help us improve civic planning and disaster mitigation efforts with the goal of protecting lives and property over the long term. Existing ground-based surveys indicate that subsidence gradients of up to 1 cm/yr or more over length scales of several 10's of km exist in the region, especially in the vicinity of the city of New Orleans. Modeling results based on sediment inputs and post-glacial sea level change tend to predict lower gradients, presumably because there is a large input from unmodeled crustal faults and anthropogenic activity. The broad spatial coverage of InSAR can both add to the existing network of ground-based geodetic surveys, and can help to identify areas that are deforming anomalously with respect to surrounding areas. Here we present the use of a modified point scatterer method applied to radar data from the Radarsat satellite for New Orleans and the Gulf Coast. Point target analysis of InSAR data has already been successfully applied to the New Orleans area by Dixon et al (2006). Our method is similar to the Stanford Method for PS (StaMPS) developed by Andy Hooper, adapted to rely on combinations of small orbital baselines and the inclusion of coherent regions from the time span of each interferogram during phase unwrapping rather than only using points that are stable within all interferograms.
Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman; Xu, Feng; Wan Abas, Wan Abu Bakar; Choi, Jane Ru; Pingguan-Murphy, Belinda
2015-08-01
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Analyzing Association Mapping in Pedigree-Based GWAS Using a Penalized Multitrait Mixed Model
Liu, Jin; Yang, Can; Shi, Xingjie; Li, Cong; Huang, Jian; Zhao, Hongyu; Ma, Shuangge
2017-01-01
Genome-wide association studies (GWAS) have led to the identification of many genetic variants associated with complex diseases in the past 10 years. Penalization methods, with significant numerical and statistical advantages, have been extensively adopted in analyzing GWAS. This study has been partly motivated by the analysis of Genetic Analysis Workshop (GAW) 18 data, which have two notable characteristics. First, the subjects are from a small number of pedigrees and hence related. Second, for each subject, multiple correlated traits have been measured. Most of the existing penalization methods assume independence between subjects and traits and can be suboptimal. There are a few methods in the literature based on mixed modeling that can accommodate correlations. However, they cannot fully accommodate the two types of correlations while conducting effective marker selection. In this study, we develop a penalized multitrait mixed modeling approach. It accommodates the two different types of correlations and includes several existing methods as special cases. Effective penalization is adopted for marker selection. Simulation demonstrates its satisfactory performance. The GAW 18 data are analyzed using the proposed method. PMID:27247027
Li, Zhixun; Zhang, Yingtao; Gong, Huiling; Li, Weimin; Tang, Xianglong
2016-12-01
Coronary artery disease has become the most dangerous diseases to human life. And coronary artery segmentation is the basis of computer aided diagnosis and analysis. Existing segmentation methods are difficult to handle the complex vascular texture due to the projective nature in conventional coronary angiography. Due to large amount of data and complex vascular shapes, any manual annotation has become increasingly unrealistic. A fully automatic segmentation method is necessary in clinic practice. In this work, we study a method based on reliable boundaries via multi-domains remapping and robust discrepancy correction via distance balance and quantile regression for automatic coronary artery segmentation of angiography images. The proposed method can not only segment overlapping vascular structures robustly, but also achieve good performance in low contrast regions. The effectiveness of our approach is demonstrated on a variety of coronary blood vessels compared with the existing methods. The overall segmentation performances si, fnvf, fvpf and tpvf were 95.135%, 3.733%, 6.113%, 96.268%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation
2011-01-01
Background Evaluation of Word Sense Disambiguation (WSD) methods in the biomedical domain is difficult because the available resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We present a method that can be used to automatically develop a WSD test collection using the Unified Medical Language System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. We demonstrate the use of this method by developing such a data set, called MSH WSD. Methods In our method, the Metathesaurus is first screened to identify ambiguous terms whose possible senses consist of two or more MeSH headings. We then use each ambiguous term and its corresponding MeSH heading to extract MEDLINE citations where the term and only one of the MeSH headings co-occur. The term found in the MEDLINE citation is automatically assigned the UMLS CUI linked to the MeSH heading. Each instance has been assigned a UMLS Concept Unique Identifier (CUI). We compare the characteristics of the MSH WSD data set to the previously existing NLM WSD data set. Results The resulting MSH WSD data set consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203 ambiguous entities. For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from MEDLINE. We evaluated the reliability of the MSH WSD data set using existing knowledge-based methods and compared their performance to that of the results previously obtained by these algorithms on the pre-existing data set, NLM WSD. We show that the knowledge-based methods achieve different results but keep their relative performance except for the Journal Descriptor Indexing (JDI) method, whose performance is below the other methods. Conclusions The MSH WSD data set allows the evaluation of WSD algorithms in the biomedical domain. Compared to previously existing data sets, MSH WSD contains a larger number of biomedical terms/abbreviations and covers the largest set of UMLS Semantic Types. Furthermore, the MSH WSD data set has been generated automatically reusing already existing annotations and, therefore, can be regenerated from subsequent UMLS versions. PMID:21635749
Liu, Zhenqiu; Hsiao, William; Cantarel, Brandi L; Drábek, Elliott Franco; Fraser-Liggett, Claire
2011-12-01
Direct sequencing of microbes in human ecosystems (the human microbiome) has complemented single genome cultivation and sequencing to understand and explore the impact of commensal microbes on human health. As sequencing technologies improve and costs decline, the sophistication of data has outgrown available computational methods. While several existing machine learning methods have been adapted for analyzing microbiome data recently, there is not yet an efficient and dedicated algorithm available for multiclass classification of human microbiota. By combining instance-based and model-based learning, we propose a novel sparse distance-based learning method for simultaneous class prediction and feature (variable or taxa, which is used interchangeably) selection from multiple treatment populations on the basis of 16S rRNA sequence count data. Our proposed method simultaneously minimizes the intraclass distance and maximizes the interclass distance with many fewer estimated parameters than other methods. It is very efficient for problems with small sample sizes and unbalanced classes, which are common in metagenomic studies. We implemented this method in a MATLAB toolbox called MetaDistance. We also propose several approaches for data normalization and variance stabilization transformation in MetaDistance. We validate this method on several real and simulated 16S rRNA datasets to show that it outperforms existing methods for classifying metagenomic data. This article is the first to address simultaneous multifeature selection and class prediction with metagenomic count data. The MATLAB toolbox is freely available online at http://metadistance.igs.umaryland.edu/. zliu@umm.edu Supplementary data are available at Bioinformatics online.
Generalized Redistribute-to-the-Right Algorithm: Application to the Analysis of Censored Cost Data
CHEN, SHUAI; ZHAO, HONGWEI
2013-01-01
Medical cost estimation is a challenging task when censoring of data is present. Although researchers have proposed methods for estimating mean costs, these are often derived from theory and are not always easy to understand. We provide an alternative method, based on a replace-from-the-right algorithm, for estimating mean costs more efficiently. We show that our estimator is equivalent to an existing one that is based on the inverse probability weighting principle and semiparametric efficiency theory. We also propose an alternative method for estimating the survival function of costs, based on the redistribute-to-the-right algorithm, that was originally used for explaining the Kaplan–Meier estimator. We show that this second proposed estimator is equivalent to a simple weighted survival estimator of costs. Finally, we develop a more efficient survival estimator of costs, using the same redistribute-to-the-right principle. This estimator is naturally monotone, more efficient than some existing survival estimators, and has a quite small bias in many realistic settings. We conduct numerical studies to examine the finite sample property of the survival estimators for costs, and show that our new estimator has small mean squared errors when the sample size is not too large. We apply both existing and new estimators to a data example from a randomized cardiovascular clinical trial. PMID:24403869
NASA Astrophysics Data System (ADS)
Matsumoto, Kensaku; Okada, Takashi; Takeuchi, Atsuo; Yazawa, Masato; Uchibori, Sumio; Shimizu, Yoshihiko
Field Measurement of Self Potential Method using Copper Sulfate Electrode was performed in base of riverbank in WATARASE River, where has leakage problem to examine leakage characteristics. Measurement results showed typical S-shape what indicates existence of flow groundwater. The results agreed with measurement results by Ministry of Land, Infrastructure and Transport with good accuracy. Results of 1m depth ground temperature detection and Chain-Array detection showed good agreement with results of the Self Potential Method. Correlation between Self Potential value and groundwater velocity was examined model experiment. The result showed apparent correlation. These results indicate that the Self Potential Method was effective method to examine the characteristics of ground water of base of riverbank in leakage problem.
HGML: a hypertext guideline markup language.
Hagerty, C. G.; Pickens, D.; Kulikowski, C.; Sonnenberg, F.
2000-01-01
Existing text-based clinical practice guidelines can be difficult to put into practice. While a growing number of such documents have gained acceptance in the medical community and contain a wealth of valuable information, the time required to digest them is substantial. Yet the expressive power, subtlety and flexibility of natural language pose challenges when designing computer tools that will help in their application. At the same time, formal computer languages typically lack such expressiveness and the effort required to translate existing documents into these languages may be costly. We propose a method based on the mark-up concept for converting text-based clinical guidelines into a machine-operable form. This allows existing guidelines to be manipulated by machine, and viewed in different formats at various levels of detail according to the needs of the practitioner, while preserving their originally published form. PMID:11079898
Tucker, George; Loh, Po-Ru; Berger, Bonnie
2013-10-04
Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely possible. Fruitful future directions may include investigating more sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein complex prediction methods.
Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model.
Tan, Tao; Gubern-Mérida, Albert; Borelli, Cristina; Manniesing, Rashindra; van Zelst, Jan; Wang, Lei; Zhang, Wei; Platel, Bram; Mann, Ritse M; Karssemeijer, Nico
2016-07-01
Automated 3D breast ultrasound (ABUS) has been proposed as a complementary screening modality to mammography for early detection of breast cancers. To facilitate the interpretation of ABUS images, automated diagnosis and detection techniques are being developed, in which malignant lesion segmentation plays an important role. However, automated segmentation of cancer in ABUS is challenging since lesion edges might not be well defined. In this study, the authors aim at developing an automated segmentation method for malignant lesions in ABUS that is robust to ill-defined cancer edges and posterior shadowing. A segmentation method using depth-guided dynamic programming based on spiral scanning is proposed. The method automatically adjusts aggressiveness of the segmentation according to the position of the voxels relative to the lesion center. Segmentation is more aggressive in the upper part of the lesion (close to the transducer) than at the bottom (far away from the transducer), where posterior shadowing is usually visible. The authors used Dice similarity coefficient (Dice) for evaluation. The proposed method is compared to existing state of the art approaches such as graph cut, level set, and smart opening and an existing dynamic programming method without depth dependence. In a dataset of 78 cancers, our proposed segmentation method achieved a mean Dice of 0.73 ± 0.14. The method outperforms an existing dynamic programming method (0.70 ± 0.16) on this task (p = 0.03) and it is also significantly (p < 0.001) better than graph cut (0.66 ± 0.18), level set based approach (0.63 ± 0.20) and smart opening (0.65 ± 0.12). The proposed depth-guided dynamic programming method achieves accurate breast malignant lesion segmentation results in automated breast ultrasound.
A Group Contribution Method for Estimating Cetane and Octane Numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubic, William Louis
Much of the research on advanced biofuels is devoted to the study of novel chemical pathways for converting nonfood biomass into liquid fuels that can be blended with existing transportation fuels. Many compounds under consideration are not found in the existing fuel supplies. Often, the physical properties needed to assess the viability of a potential biofuel are not available. The only reliable information available may be the molecular structure. Group contribution methods for estimating physical properties from molecular structure have been used for more than 60 years. The most common application is estimation of thermodynamic properties. More recently, group contributionmore » methods have been developed for estimating rate dependent properties including cetane and octane numbers. Often, published group contribution methods are limited in terms of types of function groups and range of applicability. In this study, a new, broadly-applicable group contribution method based on an artificial neural network was developed to estimate cetane number research octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. The new method is more accurate over a greater range molecular weights and structural complexity than existing group contribution methods for estimating cetane and octane numbers.« less
Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.
Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong
2018-01-01
Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.
An Isometric Mapping Based Co-Location Decision Tree Algorithm
NASA Astrophysics Data System (ADS)
Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.
2018-05-01
Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.
Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment
NASA Technical Reports Server (NTRS)
Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun
2006-01-01
Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to integrate existing mission applications for sequence development, sequence validation, and high level activity planning, and other functions into a component-based environment. For each of these, we used a somewhat different technique based upon the structure and usage of the existing application.
A study of active learning methods for named entity recognition in clinical text.
Chen, Yukun; Lasko, Thomas A; Mei, Qiaozhu; Denny, Joshua C; Xu, Hua
2015-12-01
Named entity recognition (NER), a sequential labeling task, is one of the fundamental tasks for building clinical natural language processing (NLP) systems. Machine learning (ML) based approaches can achieve good performance, but they often require large amounts of annotated samples, which are expensive to build due to the requirement of domain experts in annotation. Active learning (AL), a sample selection approach integrated with supervised ML, aims to minimize the annotation cost while maximizing the performance of ML-based models. In this study, our goal was to develop and evaluate both existing and new AL methods for a clinical NER task to identify concepts of medical problems, treatments, and lab tests from the clinical notes. Using the annotated NER corpus from the 2010 i2b2/VA NLP challenge that contained 349 clinical documents with 20,423 unique sentences, we simulated AL experiments using a number of existing and novel algorithms in three different categories including uncertainty-based, diversity-based, and baseline sampling strategies. They were compared with the passive learning that uses random sampling. Learning curves that plot performance of the NER model against the estimated annotation cost (based on number of sentences or words in the training set) were generated to evaluate different active learning and the passive learning methods and the area under the learning curve (ALC) score was computed. Based on the learning curves of F-measure vs. number of sentences, uncertainty sampling algorithms outperformed all other methods in ALC. Most diversity-based methods also performed better than random sampling in ALC. To achieve an F-measure of 0.80, the best method based on uncertainty sampling could save 66% annotations in sentences, as compared to random sampling. For the learning curves of F-measure vs. number of words, uncertainty sampling methods again outperformed all other methods in ALC. To achieve 0.80 in F-measure, in comparison to random sampling, the best uncertainty based method saved 42% annotations in words. But the best diversity based method reduced only 7% annotation effort. In the simulated setting, AL methods, particularly uncertainty-sampling based approaches, seemed to significantly save annotation cost for the clinical NER task. The actual benefit of active learning in clinical NER should be further evaluated in a real-time setting. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Luk, B. L.; Liu, K. P.; Tong, F.; Man, K. F.
2010-05-01
The impact-acoustics method utilizes different information contained in the acoustic signals generated by tapping a structure with a small metal object. It offers a convenient and cost-efficient way to inspect the tile-wall bonding integrity. However, the existence of the surface irregularities will cause abnormal multiple bounces in the practical inspection implementations. The spectral characteristics from those bounces can easily be confused with the signals obtained from different bonding qualities. As a result, it will deteriorate the classic feature-based classification methods based on frequency domain. Another crucial difficulty posed by the implementation is the additive noise existing in the practical environments that may also cause feature mismatch and false judgment. In order to solve this problem, the work described in this paper aims to develop a robust inspection method that applies model-based strategy, and utilizes the wavelet domain features with hidden Markov modeling. It derives a bonding integrity recognition approach with enhanced immunity to surface roughness as well as the environmental noise. With the help of the specially designed artificial sample slabs, experiments have been carried out with impact acoustic signals contaminated by real environmental noises acquired under practical inspection background. The results are compared with those using classic method to demonstrate the effectiveness of the proposed method.
A review of propeller noise prediction methodology: 1919-1994
NASA Technical Reports Server (NTRS)
Metzger, F. Bruce
1995-01-01
This report summarizes a review of the literature regarding propeller noise prediction methods. The review is divided into six sections: (1) early methods; (2) more recent methods based on earlier theory; (3) more recent methods based on the Acoustic Analogy; (4) more recent methods based on Computational Acoustics; (5) empirical methods; and (6) broadband methods. The report concludes that there are a large number of noise prediction procedures available which vary markedly in complexity. Deficiencies in accuracy of methods in many cases may be related, not to the methods themselves, but the accuracy and detail of the aerodynamic inputs used to calculate noise. The steps recommended in the report to provide accurate and easy to use prediction methods are: (1) identify reliable test data; (2) define and conduct test programs to fill gaps in the existing data base; (3) identify the most promising prediction methods; (4) evaluate promising prediction methods relative to the data base; (5) identify and correct the weaknesses in the prediction methods, including lack of user friendliness, and include features now available only in research codes; (6) confirm the accuracy of improved prediction methods to the data base; and (7) make the methods widely available and provide training in their use.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.
Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q
2018-02-12
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.
Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint.
Henderson, Christopher E; Higginson, Jill S; Barrance, Peter J
2011-01-01
Knee osteoarthritis (OA) detrimentally impacts the lives of millions of older Americans through pain and decreased functional ability. Unfortunately, the pathomechanics and associated deviations from joint homeostasis that OA patients experience are not well understood. Alterations in mechanical stress in the knee joint may play an essential role in OA; however, existing literature in this area is limited. The purpose of this study was to evaluate the ability of an existing magnetic resonance imaging (MRI)-based modeling method to estimate articular cartilage contact area in vivo. Imaging data of both knees were collected on a single subject with no history of knee pathology at three knee flexion angles. Intra-observer reliability and sensitivity studies were also performed to determine the role of operator-influenced elements of the data processing on the results. The method's articular cartilage contact area estimates were compared with existing contact area estimates in the literature. The method demonstrated an intra-observer reliability of 0.95 when assessed using Pearson's correlation coefficient and was found to be most sensitive to changes in the cartilage tracings on the peripheries of the compartment. The articular cartilage contact area estimates at full extension were similar to those reported in the literature. The relationships between tibiofemoral articular cartilage contact area and knee flexion were also qualitatively and quantitatively similar to those previously reported. The MRI-based knee modeling method was found to have high intra-observer reliability, sensitivity to peripheral articular cartilage tracings, and agreeability with previous investigations when using data from a single healthy adult. Future studies will implement this modeling method to investigate the role that mechanical stress may play in progression of knee OA through estimation of articular cartilage contact area.
Measuring cognition in teams: a cross-domain review.
Wildman, Jessica L; Salas, Eduardo; Scott, Charles P R
2014-08-01
The purpose of this article is twofold: to provide a critical cross-domain evaluation of team cognition measurement options and to provide novice researchers with practical guidance when selecting a measurement method. A vast selection of measurement approaches exist for measuring team cognition constructs including team mental models, transactive memory systems, team situation awareness, strategic consensus, and cognitive processes. Empirical studies and theoretical articles were reviewed to identify all of the existing approaches for measuring team cognition. These approaches were evaluated based on theoretical perspective assumed, constructs studied, resources required, level of obtrusiveness, internal consistency reliability, and predictive validity. The evaluations suggest that all existing methods are viable options from the point of view of reliability and validity, and that there are potential opportunities for cross-domain use. For example, methods traditionally used only to measure mental models may be useful for examining transactive memory and situation awareness. The selection of team cognition measures requires researchers to answer several key questions regarding the theoretical nature of team cognition and the practical feasibility of each method. We provide novice researchers with guidance regarding how to begin the search for a team cognition measure and suggest several new ideas regarding future measurement research. We provide (1) a broad overview and evaluation of existing team cognition measurement methods, (2) suggestions for new uses of those methods across research domains, and (3) critical guidance for novice researchers looking to measure team cognition.
NEAT: an efficient network enrichment analysis test.
Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C
2016-09-05
Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).
On Systems Thinking and Ways of Building It in Learning
ERIC Educational Resources Information Center
Abdyrova, Aitzhan; Galiyev, Temir; Yessekeshova, Maral; Aldabergenova, Saule; Alshynbayeva, Zhuldyz
2016-01-01
The article focuses on the issue of shaping learners' systems thinking skills in the context of traditional education using specially elaborated system methods that are implemented based on the standard textbook. Applying these methods naturally complements the existing learning process and contributes to an efficient development of learners'…
Integration of Fall Prevention into State Policy in Connecticut
ERIC Educational Resources Information Center
Murphy, Terrence E.; Baker, Dorothy I.; Leo-Summers, Linda S.; Bianco, Luann; Gottschalk, Margaret; Acampora, Denise; King, Mary B.
2013-01-01
Purpose of Study: To describe the ongoing efforts of the Connecticut Collaboration for Fall Prevention (CCFP) to move evidence regarding fall prevention into clinical practice and state policy. Methods: A university-based team developed methods of networking with existing statewide organizations to influence clinical practice and state policy.…
The development of rigorous biological assessments is dependent upon well-constructed abscissa, and various methods, both subjective and objective, exist to measure expected impairment at both the landscape and local scale. A new, landscape-scale method has recently been offered...
A Vector Representation for Thermodynamic Relationships
ERIC Educational Resources Information Center
Pogliani, Lionello
2006-01-01
The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…
A cross-correlation-based estimate of the galaxy luminosity function
NASA Astrophysics Data System (ADS)
van Daalen, Marcel P.; White, Martin
2018-06-01
We extend existing methods for using cross-correlations to derive redshift distributions for photometric galaxies, without using photometric redshifts. The model presented in this paper simultaneously yields highly accurate and unbiased redshift distributions and, for the first time, redshift-dependent luminosity functions, using only clustering information and the apparent magnitudes of the galaxies as input. In contrast to many existing techniques for recovering unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply our method to a mock galaxy survey and discuss improvements to be made before applying our model to real data.
Lee, Soohyun; Seo, Chae Hwa; Alver, Burak Han; Lee, Sanghyuk; Park, Peter J
2015-09-03
RNA-seq has been widely used for genome-wide expression profiling. RNA-seq data typically consists of tens of millions of short sequenced reads from different transcripts. However, due to sequence similarity among genes and among isoforms, the source of a given read is often ambiguous. Existing approaches for estimating expression levels from RNA-seq reads tend to compromise between accuracy and computational cost. We introduce a new approach for quantifying transcript abundance from RNA-seq data. EMSAR (Estimation by Mappability-based Segmentation And Reclustering) groups reads according to the set of transcripts to which they are mapped and finds maximum likelihood estimates using a joint Poisson model for each optimal set of segments of transcripts. The method uses nearly all mapped reads, including those mapped to multiple genes. With an efficient transcriptome indexing based on modified suffix arrays, EMSAR minimizes the use of CPU time and memory while achieving accuracy comparable to the best existing methods. EMSAR is a method for quantifying transcripts from RNA-seq data with high accuracy and low computational cost. EMSAR is available at https://github.com/parklab/emsar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Scheuermann, Gerik; Teresniak, Sven
During the last decades, electronic textual information has become the world's largest and most important information source available. People have added a variety of daily newspapers, books, scientific and governmental publications, blogs and private messages to this wellspring of endless information and knowledge. Since neither the existing nor the new information can be read in its entirety, computers are used to extract and visualize meaningful or interesting topics and documents from this huge information clutter. In this paper, we extend, improve and combine existing individual approaches into an overall framework that supports topological analysis of high dimensional document point cloudsmore » given by the well-known tf-idf document-term weighting method. We show that traditional distance-based approaches fail in very high dimensional spaces, and we describe an improved two-stage method for topology-based projections from the original high dimensional information space to both two dimensional (2-D) and three dimensional (3-D) visualizations. To show the accuracy and usability of this framework, we compare it to methods introduced recently and apply it to complex document and patent collections.« less
Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.
Lu, Gui-Fu; Zheng, Wenming
2013-10-01
Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aggarwal, Priya; Gupta, Anubha
2017-12-01
A number of reconstruction methods have been proposed recently for accelerated functional Magnetic Resonance Imaging (fMRI) data collection. However, existing methods suffer with the challenge of greater artifacts at high acceleration factors. This paper addresses the issue of accelerating fMRI collection via undersampled k-space measurements combined with the proposed method based on l 1 -l 1 norm constraints, wherein we impose first l 1 -norm sparsity on the voxel time series (temporal data) in the transformed domain and the second l 1 -norm sparsity on the successive difference of the same temporal data. Hence, we name the proposed method as Double Temporal Sparsity based Reconstruction (DTSR) method. The robustness of the proposed DTSR method has been thoroughly evaluated both at the subject level and at the group level on real fMRI data. Results are presented at various acceleration factors. Quantitative analysis in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative analysis in terms of reproducibility of brain Resting State Networks (RSNs) demonstrate that the proposed method is accurate and robust. In addition, the proposed DTSR method preserves brain networks that are important for studying fMRI data. Compared to the existing methods, the DTSR method shows promising potential with an improvement of 10-12 dB in PSNR with acceleration factors upto 3.5 on resting state fMRI data. Simulation results on real data demonstrate that DTSR method can be used to acquire accelerated fMRI with accurate detection of RSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei
2014-06-21
As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.
Options for Sustaining School-Based Health Centers
ERIC Educational Resources Information Center
Swider, Susan M.; Valukas, Amy
2004-01-01
Several methods exist for financing and sustaining operations of school-based health centers (SBHCs). Promising sources of funds include private grants, federal grants, and state funding. Recently, federal regulation changes mandated that federal funding specifically for SBHCs go only to SBHCs affiliated with a Federally Qualified Health Center…
Modelling the monetary value of a QALY: a new approach based on UK data.
Mason, Helen; Jones-Lee, Michael; Donaldson, Cam
2009-08-01
Debate about the monetary value of a quality-adjusted life year (QALY) has existed in the health economics literature for some time. More recently, concern about such a value has arisen in UK health policy. This paper reports on an attempt to 'model' a willingness-to-pay-based value of a QALY from the existing value of preventing a statistical fatality (VPF) currently used in UK public sector decision making. Two methods of deriving the value of a QALY from the existing UK VPF are outlined: one conventional and one new. The advantages and disadvantages of each of the approaches are discussed as well as the implications of the results for policy and health economic evaluation methodology.
Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick
2012-01-01
The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103
Sociometric Indicators of Leadership: An Exploratory Analysis
2018-01-01
streamline existing observational protocols and assessment methods . This research provides an initial test of sociometric badges in the context of the U.S...understand, the requirements of the mission. Traditional research and assessment methods focusing on leader and follower interactions require direct...based methods of social network analysis. Novel Measures of Leadership Building on these findings and earlier research , it is apparent that
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, S; Zhang, Y; Ma, J
Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less
Sequence Based Prediction of Antioxidant Proteins Using a Classifier Selection Strategy
Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao; Song, Qing
2016-01-01
Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation balance and have potential therapies for some diseases. Accurate identification of antioxidant proteins could contribute to revealing physiological processes of oxidation/antioxidation balance and developing novel antioxidation-based drugs. In this study, an ensemble method is presented to predict antioxidant proteins with hybrid features, incorporating SSI (Secondary Structure Information), PSSM (Position Specific Scoring Matrix), RSA (Relative Solvent Accessibility), and CTD (Composition, Transition, Distribution). The prediction results of the ensemble predictor are determined by an average of prediction results of multiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensemble classifier composed of RF (Random Forest), SMO (Sequential Minimal Optimization), NNA (Nearest Neighbor Algorithm), and J48 with an accuracy of 0.925. A Relief combined with IFS (Incremental Feature Selection) method is adopted to obtain optimal features from hybrid features. With the optimal features, the ensemble method achieves improved performance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC (Matthew’s Correlation Coefficient) of 0.880, far better than the existing method. To evaluate the prediction performance objectively, the proposed method is compared with existing methods on the same independent testing dataset. Encouragingly, our method performs better than previous studies. In addition, our method achieves more balanced performance with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the proposed ensemble method can be a potential candidate for antioxidant protein prediction. For public access, we develop a user-friendly web server for antioxidant protein identification that is freely accessible at http://antioxidant.weka.cc. PMID:27662651
Knowledge based word-concept model estimation and refinement for biomedical text mining.
Jimeno Yepes, Antonio; Berlanga, Rafael
2015-02-01
Text mining of scientific literature has been essential for setting up large public biomedical databases, which are being widely used by the research community. In the biomedical domain, the existence of a large number of terminological resources and knowledge bases (KB) has enabled a myriad of machine learning methods for different text mining related tasks. Unfortunately, KBs have not been devised for text mining tasks but for human interpretation, thus performance of KB-based methods is usually lower when compared to supervised machine learning methods. The disadvantage of supervised methods though is they require labeled training data and therefore not useful for large scale biomedical text mining systems. KB-based methods do not have this limitation. In this paper, we describe a novel method to generate word-concept probabilities from a KB, which can serve as a basis for several text mining tasks. This method not only takes into account the underlying patterns within the descriptions contained in the KB but also those in texts available from large unlabeled corpora such as MEDLINE. The parameters of the model have been estimated without training data. Patterns from MEDLINE have been built using MetaMap for entity recognition and related using co-occurrences. The word-concept probabilities were evaluated on the task of word sense disambiguation (WSD). The results showed that our method obtained a higher degree of accuracy than other state-of-the-art approaches when evaluated on the MSH WSD data set. We also evaluated our method on the task of document ranking using MEDLINE citations. These results also showed an increase in performance over existing baseline retrieval approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Du, Pufeng; Wang, Lusheng
2014-01-01
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278
Computerized Spiral Analysis Using the iPad
Sisti, Jonathan A.; Christophe, Brandon; Seville, Audrey Rakovich; Garton, Andrew L.A.; Gupta, Vivek P.; Bandin, Alexander J.; Yu, Qiping; Pullman, Seth L.
2017-01-01
Background Digital analysis of writing and drawing has become a valuable research and clinical tool for the study of upper limb motor dysfunction in patients with essential tremor, Parkinson’s disease, dystonia, and related disorders. We developed a validated method of computerized spiral analysis of hand-drawn Archimedean spirals that provides insight into movement dynamics beyond subjective visual assessment using a Wacom graphics tablet. While the Wacom tablet method provides robust data, more widely available mobile technology platforms exist. New Method We introduce a novel adaptation of the Wacom-based method for the collection of hand-drawn kinematic data using an Apple iPad. This iPad-based system is stand-alone, easy-to-use, can capture drawing data with either a finger or capacitive stylus, is precise, and potentially ubiquitous. Results The iPad-based system acquires position and time data that is fully compatible with our original spiral analysis program. All of the important indices including degree of severity, speed, presence of tremor, tremor amplitude, tremor frequency, variability of pressure, and tightness are calculated from the digital spiral data, which the application is able to transmit. Comparison with Existing Method While the iPad method is limited by current touch screen technology, it does collect data with acceptable congruence compared to the current Wacom-based method while providing the advantages of accessibility and ease of use. Conclusions The iPad is capable of capturing precise digital spiral data for analysis of motor dysfunction while also providing a convenient, easy-to-use modality in clinics and potentially at home. PMID:27840146
An XML-based method for astronomy software designing
NASA Astrophysics Data System (ADS)
Liao, Mingxue; Aili, Yusupu; Zhang, Jin
XML-based method for standardization of software designing is introduced and analyzed and successfully applied to renovating the hardware and software of the digital clock at Urumqi Astronomical Station. Basic strategy for eliciting time information from the new digital clock of FT206 in the antenna control program is introduced. By FT206, the need to compute how many centuries passed since a certain day with sophisticated formulas is eliminated and it is no longer necessary to set right UT time for the computer holding control over antenna because the information about year, month, day are all deduced from Julian day dwelling in FT206, rather than from computer time. With XML-based method and standard for software designing, various existing designing methods are unified, communications and collaborations between developers are facilitated, and thus Internet-based mode of developing software becomes possible. The trend of development of XML-based designing method is predicted.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Place-based planning: innovations and applications from four western forests.
Jennifer O. Farnum; Linda E. Kruger
2008-01-01
Place-based planning is an emergent method of public lands planning that aims to redefine the scale at which planning occurs, using place meanings and place values to guide planning processes. Despite the approach's growing popularity, there exist few published accounts of place-based approaches. To provide practitioners and researchers with such examples, the...
What Do We Know and How Well Do We Know It? Identifying Practice-Based Insights in Education
ERIC Educational Resources Information Center
Miller, Barbara; Pasley, Joan
2012-01-01
Knowledge derived from practice forms a significant portion of the knowledge base in the education field, yet is not accessible using existing empirical research methods. This paper describes a systematic, rigorous, grounded approach to collecting and analysing practice-based knowledge using the authors' research in teacher leadership as an…
ERIC Educational Resources Information Center
Downing, Jennifer; Jones, Lisa; Bates, Geoff; Sumnall, Harry; Bellis, Mark A.
2011-01-01
Limited evidence exists about the effectiveness of parent/family-based interventions for preventing poor sexual health outcomes, thus a systematic review was conducted as part of a wider review of community-based sex and relationships and alcohol education. Method guidance from the UK's National Institute for Health and Clinical Excellence was…
Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.
Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol
2018-02-01
In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively. The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures. © 2017 American Association of Physicists in Medicine.
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
An Optimal Seed Based Compression Algorithm for DNA Sequences
Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan
2016-01-01
This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868
NASA Astrophysics Data System (ADS)
Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.
2018-03-01
This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.
Unconstrained and contactless hand geometry biometrics.
de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; Del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier
2011-01-01
This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely support vector machines (SVM) and k-nearest neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.
Serang, Oliver; Noble, William Stafford
2012-01-01
The problem of identifying the proteins in a complex mixture using tandem mass spectrometry can be framed as an inference problem on a graph that connects peptides to proteins. Several existing protein identification methods make use of statistical inference methods for graphical models, including expectation maximization, Markov chain Monte Carlo, and full marginalization coupled with approximation heuristics. We show that, for this problem, the majority of the cost of inference usually comes from a few highly connected subgraphs. Furthermore, we evaluate three different statistical inference methods using a common graphical model, and we demonstrate that junction tree inference substantially improves rates of convergence compared to existing methods. The python code used for this paper is available at http://noble.gs.washington.edu/proj/fido. PMID:22331862
Unconstrained and Contactless Hand Geometry Biometrics
de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier
2011-01-01
This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices. PMID:22346634
Embedded WENO: A design strategy to improve existing WENO schemes
NASA Astrophysics Data System (ADS)
van Lith, Bart S.; ten Thije Boonkkamp, Jan H. M.; IJzerman, Wilbert L.
2017-02-01
Embedded WENO methods utilise all adjacent smooth substencils to construct a desirable interpolation. Conventional WENO schemes under-use this possibility close to large gradients or discontinuities. We develop a general approach for constructing embedded versions of existing WENO schemes. Embedded methods based on the WENO schemes of Jiang and Shu [1] and on the WENO-Z scheme of Borges et al. [2] are explicitly constructed. Several possible choices are presented that result in either better spectral properties or a higher order of convergence for sufficiently smooth solutions. However, these improvements carry over to discontinuous solutions. The embedded methods are demonstrated to be indeed improvements over their standard counterparts by several numerical examples. All the embedded methods presented have no added computational effort compared to their standard counterparts.
Advancing Methods for U.S. Transgender Health Research
Reisner, Sari L.; Deutsch, Madeline B.; Bhasin, Shalender; Bockting, Walter; Brown, George R.; Feldman, Jamie; Garofalo, Rob; Kreukels, Baudewijntje; Radix, Asa; Safer, Joshua D.; Tangpricha, Vin; T’Sjoen, Guy; Goodman, Michael
2016-01-01
Purpose of Review To describe methodological challenges, gaps, and opportunities in U.S. transgender health research. Recent Findings Lack of large prospective observational studies and intervention trials, limited data on risks and benefits of gender affirmation (e.g., hormones and surgical interventions), and inconsistent use of definitions across studies hinder evidence-based care for transgender people. Systematic high-quality observational and intervention-testing studies may be carried out using several approaches, including general population-based, health systems-based, clinic-based, venue-based, and hybrid designs. Each of these approaches has its strength and limitations; however, harmonization of research efforts is needed. Ongoing development of evidence-based clinical recommendations will benefit from a series of observational and intervention studies aimed at identification, recruitment, and follow-up of transgender people of different ages, from different racial, ethnic, and socioeconomic backgrounds and with diverse gender identities. Summary Transgender health research faces challenges that include standardization of lexicon, agreed-upon population definitions, study design, sampling, measurement, outcome ascertainment, and sample size. Application of existing and new methods is needed to fill existing gaps, increase the scientific rigor and reach of transgender health research, and inform evidence-based prevention and care for this underserved population. PMID:26845331
A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.
Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian
2017-05-01
This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.
A Track Initiation Method for the Underwater Target Tracking Environment
NASA Astrophysics Data System (ADS)
Li, Dong-dong; Lin, Yang; Zhang, Yao
2018-04-01
A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.
NASA Astrophysics Data System (ADS)
Siade, Adam J.; Hall, Joel; Karelse, Robert N.
2017-11-01
Regional groundwater flow models play an important role in decision making regarding water resources; however, the uncertainty embedded in model parameters and model assumptions can significantly hinder the reliability of model predictions. One way to reduce this uncertainty is to collect new observation data from the field. However, determining where and when to obtain such data is not straightforward. There exist a number of data-worth and experimental design strategies developed for this purpose. However, these studies often ignore issues related to real-world groundwater models such as computational expense, existing observation data, high-parameter dimension, etc. In this study, we propose a methodology, based on existing methods and software, to efficiently conduct such analyses for large-scale, complex regional groundwater flow systems for which there is a wealth of available observation data. The method utilizes the well-established d-optimality criterion, and the minimax criterion for robust sampling strategies. The so-called Null-Space Monte Carlo method is used to reduce the computational burden associated with uncertainty quantification. And, a heuristic methodology, based on the concept of the greedy algorithm, is proposed for developing robust designs with subsets of the posterior parameter samples. The proposed methodology is tested on a synthetic regional groundwater model, and subsequently applied to an existing, complex, regional groundwater system in the Perth region of Western Australia. The results indicate that robust designs can be obtained efficiently, within reasonable computational resources, for making regional decisions regarding groundwater level sampling.
Normal response function method for mass and stiffness matrix updating using complex FRFs
NASA Astrophysics Data System (ADS)
Pradhan, S.; Modak, S. V.
2012-10-01
Quite often a structural dynamic finite element model is required to be updated so as to accurately predict the dynamic characteristics like natural frequencies and the mode shapes. Since in many situations undamped natural frequencies and mode shapes need to be predicted, it has generally been the practice in these situations to seek updating of only mass and stiffness matrix so as to obtain a reliable prediction model. Updating using frequency response functions (FRFs) has been one of the widely used approaches for updating, including updating of mass and stiffness matrices. However, the problem with FRF based methods, for updating mass and stiffness matrices, is that these methods are based on use of complex FRFs. Use of complex FRFs to update mass and stiffness matrices is not theoretically correct as complex FRFs are not only affected by these two matrices but also by the damping matrix. Therefore, in situations where updating of only mass and stiffness matrices using FRFs is required, the use of complex FRFs based updating formulation is not fully justified and would lead to inaccurate updated models. This paper addresses this difficulty and proposes an improved FRF based finite element model updating procedure using the concept of normal FRFs. The proposed method is a modified version of the existing response function method that is based on the complex FRFs. The effectiveness of the proposed method is validated through a numerical study of a simple but representative beam structure. The effect of coordinate incompleteness and robustness of method under presence of noise is investigated. The results of updating obtained by the improved method are compared with the existing response function method. The performance of the two approaches is compared for cases of light, medium and heavily damped structures. It is found that the proposed improved method is effective in updating of mass and stiffness matrices in all the cases of complete and incomplete data and with all levels and types of damping.
Automatic Syllabification in English: A Comparison of Different Algorithms
ERIC Educational Resources Information Center
Marchand, Yannick; Adsett, Connie R.; Damper, Robert I.
2009-01-01
Automatic syllabification of words is challenging, not least because the syllable is not easy to define precisely. Consequently, no accepted standard algorithm for automatic syllabification exists. There are two broad approaches: rule-based and data-driven. The rule-based method effectively embodies some theoretical position regarding the…
Evidence-Based Clinical Voice Assessment: A Systematic Review
ERIC Educational Resources Information Center
Roy, Nelson; Barkmeier-Kraemer, Julie; Eadie, Tanya; Sivasankar, M. Preeti; Mehta, Daryush; Paul, Diane; Hillman, Robert
2013-01-01
Purpose: To determine what research evidence exists to support the use of voice measures in the clinical assessment of patients with voice disorders. Method: The American Speech-Language-Hearing Association (ASHA) National Center for Evidence-Based Practice in Communication Disorders staff searched 29 databases for peer-reviewed English-language…
A Multidisciplinary Osteoporosis Service-Based Action Research Study
ERIC Educational Resources Information Center
Whitehead, Dean; Keast, John; Montgomery, Val; Hayman, Sue
2004-01-01
Objective: To investigate an existing Trust-based osteoporosis service's preventative activity, determine any issues and problems and use this data to reorganise the service, as part of a National Health Service Executive/Regional Office-commissioned and funded study. Setting: A UK Hospital Trust's Osteoporosis Service. Design & Method: A…
NASA Astrophysics Data System (ADS)
Liang, Qingguo; Li, Jie; Li, Dewu; Ou, Erfeng
2013-01-01
The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.
Evaluation and integration of existing methods for computational prediction of allergens
2013-01-01
Background Allergy involves a series of complex reactions and factors that contribute to the development of the disease and triggering of the symptoms, including rhinitis, asthma, atopic eczema, skin sensitivity, even acute and fatal anaphylactic shock. Prediction and evaluation of the potential allergenicity is of importance for safety evaluation of foods and other environment factors. Although several computational approaches for assessing the potential allergenicity of proteins have been developed, their performance and relative merits and shortcomings have not been compared systematically. Results To evaluate and improve the existing methods for allergen prediction, we collected an up-to-date definitive dataset consisting of 989 known allergens and massive putative non-allergens. The three most widely used allergen computational prediction approaches including sequence-, motif- and SVM-based (Support Vector Machine) methods were systematically compared using the defined parameters and we found that SVM-based method outperformed the other two methods with higher accuracy and specificity. The sequence-based method with the criteria defined by FAO/WHO (FAO: Food and Agriculture Organization of the United Nations; WHO: World Health Organization) has higher sensitivity of over 98%, but having a low specificity. The advantage of motif-based method is the ability to visualize the key motif within the allergen. Notably, the performances of the sequence-based method defined by FAO/WHO and motif eliciting strategy could be improved by the optimization of parameters. To facilitate the allergen prediction, we integrated these three methods in a web-based application proAP, which provides the global search of the known allergens and a powerful tool for allergen predication. Flexible parameter setting and batch prediction were also implemented. The proAP can be accessed at http://gmobl.sjtu.edu.cn/proAP/main.html. Conclusions This study comprehensively evaluated sequence-, motif- and SVM-based computational prediction approaches for allergens and optimized their parameters to obtain better performance. These findings may provide helpful guidance for the researchers in allergen-prediction. Furthermore, we integrated these methods into a web application proAP, greatly facilitating users to do customizable allergen search and prediction. PMID:23514097
Evaluation and integration of existing methods for computational prediction of allergens.
Wang, Jing; Yu, Yabin; Zhao, Yunan; Zhang, Dabing; Li, Jing
2013-01-01
Allergy involves a series of complex reactions and factors that contribute to the development of the disease and triggering of the symptoms, including rhinitis, asthma, atopic eczema, skin sensitivity, even acute and fatal anaphylactic shock. Prediction and evaluation of the potential allergenicity is of importance for safety evaluation of foods and other environment factors. Although several computational approaches for assessing the potential allergenicity of proteins have been developed, their performance and relative merits and shortcomings have not been compared systematically. To evaluate and improve the existing methods for allergen prediction, we collected an up-to-date definitive dataset consisting of 989 known allergens and massive putative non-allergens. The three most widely used allergen computational prediction approaches including sequence-, motif- and SVM-based (Support Vector Machine) methods were systematically compared using the defined parameters and we found that SVM-based method outperformed the other two methods with higher accuracy and specificity. The sequence-based method with the criteria defined by FAO/WHO (FAO: Food and Agriculture Organization of the United Nations; WHO: World Health Organization) has higher sensitivity of over 98%, but having a low specificity. The advantage of motif-based method is the ability to visualize the key motif within the allergen. Notably, the performances of the sequence-based method defined by FAO/WHO and motif eliciting strategy could be improved by the optimization of parameters. To facilitate the allergen prediction, we integrated these three methods in a web-based application proAP, which provides the global search of the known allergens and a powerful tool for allergen predication. Flexible parameter setting and batch prediction were also implemented. The proAP can be accessed at http://gmobl.sjtu.edu.cn/proAP/main.html. This study comprehensively evaluated sequence-, motif- and SVM-based computational prediction approaches for allergens and optimized their parameters to obtain better performance. These findings may provide helpful guidance for the researchers in allergen-prediction. Furthermore, we integrated these methods into a web application proAP, greatly facilitating users to do customizable allergen search and prediction.
Jelínek, Jan; Škoda, Petr; Hoksza, David
2017-12-06
Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.
Wind-induced vibration of stay cables : brief
DOT National Transportation Integrated Search
2005-02-01
The objectives of this project were to: : Identify gaps in current knowledge base : Conduct analytical and experimental research in critical areas : Study performance of existing cable-stayed bridges : Study current mitigation methods...
CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.
White, Clarence; Ismail, Hamid D; Saigo, Hiroto; Kc, Dukka B
2017-12-28
The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification.
Complex diseases are often difficult to diagnose, treat, and study due to the multi-factorial nature of the etiology. Significant challenges exist with regard to how to segregate indivdiuals into suitable subtypes of the disease. Here, we examine a range of methods for evaluati...
A Probability Based Framework for Testing the Missing Data Mechanism
ERIC Educational Resources Information Center
Lin, Johnny Cheng-Han
2013-01-01
Many methods exist for imputing missing data but fewer methods have been proposed to test the missing data mechanism. Little (1988) introduced a multivariate chi-square test for the missing completely at random data mechanism (MCAR) that compares observed means for each pattern with expectation-maximization (EM) estimated means. As an alternative,…
ERIC Educational Resources Information Center
Hardré, Patricia L.; Hackett, Shannon
2015-01-01
This manuscript chronicles the process and products of a redesign for evaluation of the graduate college experience (GCE) which was initiated by a university graduate college, based on its observed need to reconsider and update its measures and methods for assessing graduate students' experiences. We examined the existing instrumentation and…
Design and Implementation of a Studio-Based General Chemistry Course
ERIC Educational Resources Information Center
Gottfried, Amy C.; Sweeder, Ryan D.; Bartolin, Jeffrey M.; Hessler, Jessica A.; Reynolds, Benjamin P.; Stewart, Ian C.; Coppola, Brian P.; Holl, Mark Banaszak M.
2007-01-01
The design and implementation of a new value-added general chemistry course, which could use the studio instructional method to incorporate the existing educational research is reviewed. These teaching methods and activities were woven into the course to provide the students with ways of learning chemical concepts and practicing scientific…
Autism Diagnosis and Screening: Factors to Consider in Differential Diagnosis
ERIC Educational Resources Information Center
Matson, Johnny L.; Beighley, Jennifer; Turygin, Nicole
2012-01-01
There has been an exponential growth in assessment methods to diagnose disorders on the autism spectrum. Many reasons for this trend exist and include advancing knowledge on how to make a diagnosis, the heterogeneity of the spectrum, the realization that different methods may be needed based on age and intellectual disability. Other factors…
A method of selecting forest sites for air pollution study
Sreedevi K. Bringi; Thomas A. Seliga; Leon S. Dochinger
1981-01-01
Presents a method of selecting suitable forested areas for meaningful assessments of air pollution effects. The approach is based on the premise that environmental influences can significantly affect the forest-air pollution relationship, and that it is, therefore, desirable to equalize such influences at different sites. From existing data on environmental factors and...
ERIC Educational Resources Information Center
Beveridge, Scott; Garcia, Jorge; Siblo, Matt
2015-01-01
Purpose: To examine the nature of ethical dilemmas most frequently reported by rehabilitation counselors in the private and public sectors and determine if significant differences exist in how practitioners experience ethical dilemmas in these two settings. Method: A mixed-methods internet-based survey design was utilized and included descriptive,…
Material identification based on electrostatic sensing technology
NASA Astrophysics Data System (ADS)
Liu, Kai; Chen, Xi; Li, Jingnan
2018-04-01
When the robot travels on the surface of different media, the uncertainty of the medium will seriously affect the autonomous action of the robot. In this paper, the distribution characteristics of multiple electrostatic charges on the surface of materials are detected, so as to improve the accuracy of the existing electrostatic signal material identification methods, which is of great significance to help the robot optimize the control algorithm. In this paper, based on the electrostatic signal material identification method proposed by predecessors, the multi-channel detection circuit is used to obtain the electrostatic charge distribution at different positions of the material surface, the weights are introduced into the eigenvalue matrix, and the weight distribution is optimized by the evolutionary algorithm, which makes the eigenvalue matrix more accurately reflect the surface charge distribution characteristics of the material. The matrix is used as the input of the k-Nearest Neighbor (kNN)classification algorithm to classify the dielectric materials. The experimental results show that the proposed method can significantly improve the recognition rate of the existing electrostatic signal material recognition methods.
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho
2018-05-01
We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
Acoustic-Liner Admittance in a Duct
NASA Technical Reports Server (NTRS)
Watson, W. R.
1986-01-01
Method calculates admittance from easily obtainable values. New method for calculating acoustic-liner admittance in rectangular duct with grazing flow based on finite-element discretization of acoustic field and reposing of unknown admittance value as linear eigenvalue problem on admittance value. Problem solved by Gaussian elimination. Unlike existing methods, present method extendable to mean flows with two-dimensional boundary layers as well. In presence of shear, results of method compared well with results of Runge-Kutta integration technique.
An auxiliary optimization method for complex public transit route network based on link prediction
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian
2018-02-01
Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.
Cheng, Jian; Deriche, Rachid; Jiang, Tianzi; Shen, Dinggang; Yap, Pew-Thian
2014-11-01
Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD), where the signal profile is represented by a discrete set of basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative and should integrate to unity throughout the unit sphere S(2). However, to our knowledge, most existing SH-based SD methods enforce non-negativity only on discretized points and not the whole continuum of S(2). Maximum Entropy SD (MESD) and Cartesian Tensor Fiber Orientation Distributions (CT-FOD) are the only SD methods that ensure non-negativity throughout the unit sphere. They are however computational intensive and are susceptible to errors caused by numerical spherical integration. Existing SD methods are also known to overestimate the number of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in peak detection owing to the angular discretization of the unit sphere. This paper proposes a SD framework, called Non-Negative SD (NNSD), to overcome all the limitations above. NNSD is significantly less susceptible to the false-positive peaks, uses SH representation for efficient analytical spherical deconvolution, and allows accurate peak detection throughout the whole unit sphere. We further show that NNSD and most existing SD methods can be extended to work on multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD in comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and an L1-norm regularized non-negative least-squares DR-SD. Experiments on synthetic and real single-/multi-shell data indicate that NNSD improves estimation performance in terms of mean difference of angles, peak detection consistency, and anisotropy contrast between isotropic and anisotropic regions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Zhiwen; Miao, Qiang; Zhang, Xin
2018-03-01
A time-frequency analysis method based on ensemble local mean decomposition (ELMD) and fast kurtogram (FK) is proposed for rotating machinery fault diagnosis. Local mean decomposition (LMD), as an adaptive non-stationary and nonlinear signal processing method, provides the capability to decompose multicomponent modulation signal into a series of demodulated mono-components. However, the occurring mode mixing is a serious drawback. To alleviate this, ELMD based on noise-assisted method was developed. Still, the existing environmental noise in the raw signal remains in corresponding PF with the component of interest. FK has good performance in impulse detection while strong environmental noise exists. But it is susceptible to non-Gaussian noise. The proposed method combines the merits of ELMD and FK to detect the fault for rotating machinery. Primarily, by applying ELMD the raw signal is decomposed into a set of product functions (PFs). Then, the PF which mostly characterizes fault information is selected according to kurtosis index. Finally, the selected PF signal is further filtered by an optimal band-pass filter based on FK to extract impulse signal. Fault identification can be deduced by the appearance of fault characteristic frequencies in the squared envelope spectrum of the filtered signal. The advantages of ELMD over LMD and EEMD are illustrated in the simulation analyses. Furthermore, the efficiency of the proposed method in fault diagnosis for rotating machinery is demonstrated on gearbox case and rolling bearing case analyses.
Ma, Chuang; Wang, Xiangfeng
2012-09-01
One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey's biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses.
Ma, Chuang; Wang, Xiangfeng
2012-01-01
One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey’s biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses. PMID:22797655
A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2016-12-06
This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments-some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models-free space path loss and ITU models-which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2-3 and 3-4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements.
A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method
Tuta, Jure; Juric, Matjaz B.
2016-01-01
This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments—some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models—free space path loss and ITU models—which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2–3 and 3–4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements. PMID:27929453
Image processing via level set curvature flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malladi, R.; Sethian, J.A.
We present a controlled image smoothing and enhancement method based on a curvature flow interpretation of the geometric heat equation. Compared to existing techniques, the model has several distinct advantages. (i) It contains just one enhancement parameter. (ii) The scheme naturally inherits a stopping criterion from the image; continued application of the scheme produces no further change. (iii) The method is one of the fastest possible schemes based on a curvature-controlled approach. 15 ref., 6 figs.
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Astrophysics Data System (ADS)
Bezmaternykh, P. V.; Nikolaev, D. P.; Arlazarov, V. L.
2018-04-01
Textual blocks rectification or slant correction is an important stage of document image processing in OCR systems. This paper considers existing methods and introduces an approach for the construction of such algorithms based on Fast Hough Transform analysis. A quality measurement technique is proposed and obtained results are shown for both printed and handwritten textual blocks processing as a part of an industrial system of identity documents recognition on mobile devices.
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Heng; Ye, Hao; Ng, Hui Wen
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. Furthermore, this algorithmmore » can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.« less
Analytical Method to Evaluate Failure Potential During High-Risk Component Development
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Clancy, Daniel (Technical Monitor)
2001-01-01
Communicating failure mode information during design and manufacturing is a crucial task for failure prevention. Most processes use Failure Modes and Effects types of analyses, as well as prior knowledge and experience, to determine the potential modes of failures a product might encounter during its lifetime. When new products are being considered and designed, this knowledge and information is expanded upon to help designers extrapolate based on their similarity with existing products and the potential design tradeoffs. This paper makes use of similarities and tradeoffs that exist between different failure modes based on the functionality of each component/product. In this light, a function-failure method is developed to help the design of new products with solutions for functions that eliminate or reduce the potential of a failure mode. The method is applied to a simplified rotating machinery example in this paper, and is proposed as a means to account for helicopter failure modes during design and production, addressing stringent safety and performance requirements for NASA applications.
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
Luo, Heng; Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Mendrick, Donna L.; Hong, Huixiao
2016-01-01
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system. PMID:27558848
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
Luo, Heng; Ye, Hao; Ng, Hui Wen; ...
2016-08-25
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. Furthermore, this algorithmmore » can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.« less
Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.
Wang, B H; Lim, J W; Lim, J S
2016-08-30
Many studies exist for reconstructing gene regulatory networks (GRNs). In this paper, we propose a method based on an advanced neuro-fuzzy system, for gene regulatory network reconstruction from microarray time-series data. This approach uses a neural network with a weighted fuzzy function to model the relationships between genes. Fuzzy rules, which determine the regulators of genes, are very simplified through this method. Additionally, a regulator selection procedure is proposed, which extracts the exact dynamic relationship between genes, using the information obtained from the weighted fuzzy function. Time-series related features are extracted from the original data to employ the characteristics of temporal data that are useful for accurate GRN reconstruction. The microarray dataset of the yeast cell cycle was used for our study. We measured the mean squared prediction error for the efficiency of the proposed approach and evaluated the accuracy in terms of precision, sensitivity, and F-score. The proposed method outperformed the other existing approaches.
Segmentation of Image Ensembles via Latent Atlases
Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina
2010-01-01
Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305
Measuring carbon in forests: current status and future challenges.
Brown, Sandra
2002-01-01
To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.
Rational-operator-based depth-from-defocus approach to scene reconstruction.
Li, Ang; Staunton, Richard; Tjahjadi, Tardi
2013-09-01
This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods.
MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data
Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong
2015-01-01
Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201
Hosseini, Marjan; Kerachian, Reza
2017-09-01
This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.
NASA Astrophysics Data System (ADS)
Doležel, Jiří; Novák, Drahomír; Petrů, Jan
2017-09-01
Transportation routes of oversize and excessive loads are currently planned in relation to ensure the transit of a vehicle through critical points on the road. Critical points are level-intersection of roads, bridges etc. This article presents a comprehensive procedure to determine a reliability and a load-bearing capacity level of the existing bridges on highways and roads using the advanced methods of reliability analysis based on simulation techniques of Monte Carlo type in combination with nonlinear finite element method analysis. The safety index is considered as a main criterion of the reliability level of the existing construction structures and the index is described in current structural design standards, e.g. ISO and Eurocode. An example of a single-span slab bridge made of precast prestressed concrete girders of the 60 year current time and its load bearing capacity is set for the ultimate limit state and serviceability limit state. The structure’s design load capacity was estimated by the full probability nonlinear MKP analysis using a simulation technique Latin Hypercube Sampling (LHS). Load-bearing capacity values based on a fully probabilistic analysis are compared with the load-bearing capacity levels which were estimated by deterministic methods of a critical section of the most loaded girders.
A Review on Human Activity Recognition Using Vision-Based Method.
Zhang, Shugang; Wei, Zhiqiang; Nie, Jie; Huang, Lei; Wang, Shuang; Li, Zhen
2017-01-01
Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research.
Li, Jun; Tibshirani, Robert
2015-01-01
We discuss the identification of features that are associated with an outcome in RNA-Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes the form of counts, so models based on the normal distribution are generally unsuitable. The problem is especially challenging because different sequencing experiments may generate quite different total numbers of reads, or ‘sequencing depths’. Existing methods for this problem are based on Poisson or negative binomial models: they are useful but can be heavily influenced by ‘outliers’ in the data. We introduce a simple, nonparametric method with resampling to account for the different sequencing depths. The new method is more robust than parametric methods. It can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We compare our proposed method to Poisson and negative binomial-based methods in simulated and real data sets, and find that our method discovers more consistent patterns than competing methods. PMID:22127579
A Review on Human Activity Recognition Using Vision-Based Method
Nie, Jie
2017-01-01
Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research. PMID:29065585
Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows
NASA Astrophysics Data System (ADS)
Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.
2016-09-01
A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.
Light Field Imaging Based Accurate Image Specular Highlight Removal
Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo
2016-01-01
Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083
Secure Indoor Localization Based on Extracting Trusted Fingerprint
Yin, Xixi; Zheng, Yanliu; Wang, Chun
2018-01-01
Indoor localization based on WiFi has attracted a lot of research effort because of the widespread application of WiFi. Fingerprinting techniques have received much attention due to their simplicity and compatibility with existing hardware. However, existing fingerprinting localization algorithms may not resist abnormal received signal strength indication (RSSI), such as unexpected environmental changes, impaired access points (APs) or the introduction of new APs. Traditional fingerprinting algorithms do not consider the problem of new APs and impaired APs in the environment when using RSSI. In this paper, we propose a secure fingerprinting localization (SFL) method that is robust to variable environments, impaired APs and the introduction of new APs. In the offline phase, a voting mechanism and a fingerprint database update method are proposed. We use the mutual cooperation between reference anchor nodes to update the fingerprint database, which can reduce the interference caused by the user measurement data. We analyze the standard deviation of RSSI, mobilize the reference points in the database to vote on APs and then calculate the trust factors of APs based on the voting results. In the online phase, we first make a judgment about the new APs and the broken APs, then extract the secure fingerprints according to the trusted factors of APs and obtain the localization results by using the trusted fingerprints. In the experiment section, we demonstrate the proposed method and find that the proposed strategy can resist abnormal RSSI and can improve the localization accuracy effectively compared with the existing fingerprinting localization algorithms. PMID:29401755
Secure Indoor Localization Based on Extracting Trusted Fingerprint.
Luo, Juan; Yin, Xixi; Zheng, Yanliu; Wang, Chun
2018-02-05
[-5]Indoor localization based on WiFi has attracted a lot of research effort because of the widespread application of WiFi. Fingerprinting techniques have received much attention due to their simplicity and compatibility with existing hardware. However, existing fingerprinting localization algorithms may not resist abnormal received signal strength indication (RSSI), such as unexpected environmental changes, impaired access points (APs) or the introduction of new APs. Traditional fingerprinting algorithms do not consider the problem of new APs and impaired APs in the environment when using RSSI. In this paper, we propose a secure fingerprinting localization (SFL) method that is robust to variable environments, impaired APs and the introduction of new APs. In the offline phase, a voting mechanism and a fingerprint database update method are proposed. We use the mutual cooperation between reference anchor nodes to update the fingerprint database, which can reduce the interference caused by the user measurement data. We analyze the standard deviation of RSSI, mobilize the reference points in the database to vote on APs and then calculate the trust factors of APs based on the voting results. In the online phase, we first make a judgment about the new APs and the broken APs, then extract the secure fingerprints according to the trusted factors of APs and obtain the localization results by using the trusted fingerprints. In the experiment section, we demonstrate the proposed method and find that the proposed strategy can resist abnormal RSSI and can improve the localization accuracy effectively compared with the existing fingerprinting localization algorithms.
Image dehazing based on non-local saturation
NASA Astrophysics Data System (ADS)
Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting
2018-04-01
In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.
NASA Astrophysics Data System (ADS)
Wang, Dong
2016-03-01
Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.
NASA Astrophysics Data System (ADS)
Ham, Youngjib
The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the associated BIM elements and update their corresponding thermal properties in the gbXML schema. By reflecting the as-is building condition in the BIM-based energy modeling process, this method bridges over the gap between the architectural information in the as-designed BIM and the as-is building condition for accurate energy performance analysis. The performance of each method was validated on ten case studies from interiors and exteriors of existing residential and instructional buildings in IL and VA. The extensive experimental results show the promise of the proposed methods in addressing the fundamental challenges of (1) visual sensing : scaling 2D visual assessments to real-world building environments and localizing energy problems; (2) analytics: subjective and qualitative assessments; and (3) BIM-based building energy analysis : a lack of procedures for reflecting the as-is building condition in the energy modeling process. Beyond the technical contributions, the domain expert surveys conducted in this dissertation show that the proposed methods have potential to improve the quality of thermographic inspection processes and complement the current building energy analysis tools.
Study of the plastic zone around the ligament of thin sheet D.E.N.T specimen subjected to tensile
NASA Astrophysics Data System (ADS)
Djebali, S.; Larbi, S.; Bilek, A.
2015-03-01
One of the assumptions of Cotterell and Reddel's method of the essential work of fracture determination is the existence of a fracture process zone surrounded by an outer plastic zone extending to the whole ligament before crack initiation. To verify this hypothesis we developed a method based on micro hardness. The hardness values measured in the domain surrounding the tensile fracture area of ST-37-2 steel sheet D.E.N.T specimens confirm the existence of the two plastic zones. The extension of the plastic deformations to the whole ligament before the crack initiation and the circular shape of the outer plastic zone are revealed by the brittle coating method.
Huang, Hao; Zhang, Guifu; Zhao, Kun; ...
2016-10-20
A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (K DP) and to improve rain estimation. Moreover, the hybrid K DP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δ hv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and K DP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid K DP estimatormore » over existing methods.« less
Convex Accelerated Maximum Entropy Reconstruction
Worley, Bradley
2016-01-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476
An efficient temporal database design method based on EER
NASA Astrophysics Data System (ADS)
Liu, Zhi; Huang, Jiping; Miao, Hua
2007-12-01
Many existing methods of modeling temporal information are based on logical model, which makes relational schema optimization more difficult and more complicated. In this paper, based on the conventional EER model, the author attempts to analyse and abstract temporal information in the phase of conceptual modelling according to the concrete requirement to history information. Then a temporal data model named BTEER is presented. BTEER not only retains all designing ideas and methods of EER which makes BTEER have good upward compatibility, but also supports the modelling of valid time and transaction time effectively at the same time. In addition, BTEER can be transformed to EER easily and automatically. It proves in practice, this method can model the temporal information well.
Visualizing dispersive features in 2D image via minimum gradient method
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yu; Wang, Yan; Shen, Zhi -Xun
Here, we developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative applicationmore » to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.« less
Visualizing dispersive features in 2D image via minimum gradient method
He, Yu; Wang, Yan; Shen, Zhi -Xun
2017-07-24
Here, we developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative applicationmore » to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.« less
Robust volcano plot: identification of differential metabolites in the presence of outliers.
Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro
2018-04-11
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
ERIC Educational Resources Information Center
Hubbard, Kristie L.; Bandini, Linda G.; Folta, Sara C.; Wansink, Brian; Must, Aviva
2014-01-01
Background: Evidenced-based health promotion programmes for youth with intellectual and developmental disabilities (I/DD) are notably absent. Barriers include a lack of understanding of how to adapt existing evidence-based programmes to their needs, maximize inclusion and support mutual goals of health and autonomy. Methods: We undertook a…
ERIC Educational Resources Information Center
Battistone, William A., Jr.
2017-01-01
Problem: There is an existing cycle of questionable grading practices at the K-12 level. As a result, districts continue to search for innovative methods of evaluating and reporting student progress. One result of this effort has been the adoption of a standards-based grading approach. Research concerning standards-based grading implementation has…
Investigation on a coupled CFD/DSMC method for continuum-rarefied flows
NASA Astrophysics Data System (ADS)
Tang, Zhenyu; He, Bijiao; Cai, Guobiao
2012-11-01
The purpose of the present work is to investigate the coupled CFD/DSMC method using the existing CFD and DSMC codes developed by the authors. The interface between the continuum and particle regions is determined by the gradient-length local Knudsen number. A coupling scheme combining both state-based and flux-based coupling methods is proposed in the current study. Overlapping grids are established between the different grid systems of CFD and DSMC codes. A hypersonic flow over a 2D cylinder has been simulated using the present coupled method. Comparison has been made between the results obtained from both methods, which shows that the coupled CFD/DSMC method can achieve the same precision as the pure DSMC method and obtain higher computational efficiency.
Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm
NASA Astrophysics Data System (ADS)
Xia, Meimei
2018-04-01
Fuzzy game theory has been applied in many decision-making problems. The matrix game with interval-valued intuitionistic fuzzy numbers (IVIFNs) is investigated based on Archimedean t-conorm and t-norm. The existing matrix games with IVIFNs are all based on Algebraic t-conorm and t-norm, which are special cases of Archimedean t-conorm and t-norm. In this paper, the intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm are employed to aggregate the payoffs of players. To derive the solution of the matrix game with IVIFNs, several mathematical programming models are developed based on Archimedean t-conorm and t-norm. The proposed models can be transformed into a pair of primal-dual linear programming models, based on which, the solution of the matrix game with IVIFNs is obtained. It is proved that the theorems being valid in the exiting matrix game with IVIFNs are still true when the general aggregation operator is used in the proposed matrix game with IVIFNs. The proposed method is an extension of the existing ones and can provide more choices for players. An example is given to illustrate the validity and the applicability of the proposed method.
NASA Astrophysics Data System (ADS)
Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi
2017-01-01
Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria
2016-11-01
Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.
A reference estimator based on composite sensor pattern noise for source device identification
NASA Astrophysics Data System (ADS)
Li, Ruizhe; Li, Chang-Tsun; Guan, Yu
2014-02-01
It has been proved that Sensor Pattern Noise (SPN) can serve as an imaging device fingerprint for source camera identification. Reference SPN estimation is a very important procedure within the framework of this application. Most previous works built reference SPN by averaging the SPNs extracted from 50 images of blue sky. However, this method can be problematic. Firstly, in practice we may face the problem of source camera identification in the absence of the imaging cameras and reference SPNs, which means only natural images with scene details are available for reference SPN estimation rather than blue sky images. It is challenging because the reference SPN can be severely contaminated by image content. Secondly, the number of available reference images sometimes is too few for existing methods to estimate a reliable reference SPN. In fact, existing methods lack consideration of the number of available reference images as they were designed for the datasets with abundant images to estimate the reference SPN. In order to deal with the aforementioned problem, in this work, a novel reference estimator is proposed. Experimental results show that our proposed method achieves better performance than the methods based on the averaged reference SPN, especially when few reference images used.
Park, Hyunseok; Magee, Christopher L
2017-01-01
The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents.
2017-01-01
The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents. PMID:28135304
NASA Astrophysics Data System (ADS)
Rohling, E. J.
2014-12-01
Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (d18O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. We have recently presented a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. A serious of caveats applies to this new method, especially in older times of its application, as is always the case with new methods. Independent validation exercises are needed to elucidate where consistency exists, and where solutions drift away from each other. A key observation from our new method is that a large temporal offset existed during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. This observation relies on relative changes within the dataset, which are more robust than absolute values. I will discuss our method and its main caveats and avenues for improvement.
NASA Astrophysics Data System (ADS)
Bouldin, J.
2010-12-01
In the reconstruction of past climates from tree rings multi-decadal to multi-centennial periods, one longstanding problem is the confounding of the natural biological growth trend of the tree with any existing long term trends in the climate. No existing analytical method is capable of resolving these two change components, so it remains unclear how accurate existing ring series standardizations are, and by implication, climate reconstructions based upon them. For example, dendrochronological at the ITRDB are typically standardized by detrending, at each site, each individual tree core, using a relatively stiff deterministic function such as a negative exponential curve or smoothing spline. Another approach, referred to as RCS (Regional Curve Standardization) attempts to solve some problems of the individual series detrending, by constructing a single growth curve from the aggregated cambial ages of the rings of the cores at a site (or collection of sites). This curve is presumed to represent the “ideal” or expected growth of the trees from which it is derived. Although an improvement in some respects, this method will be degraded in direct proportion to the lack of a mixture of tree sizes or ages throughout the span of the chronology. I present a new method of removing the biological curve from tree ring series, such that temporal changes better represent the environmental variation captured by the tree rings. The method institutes several new approaches, such as the correction for the estimated number of missed rings near the pith, and the use of tree size and ring area relationships instead of the traditional tree ages and ring widths. The most important innovation is a careful extraction of the existing information on the relationship between tree size (basal area) and ring area that exists within each single year of the chronology. This information is, by definition, not contaminated by temporal climatic changes, and so when removed, leaves the climatically caused, and random error components of the chronology. A sophisticated algorithm, based on pair-wise ring comparisons in which tree size is standardized both within and between years, forms the basis of the method. Evaluations of the method are underway with both simulated and actual (ITRDB) data, to evaluate the potentials and drawbacks of the method relative to existing methods. The ITRDB test data consists of a set of about 50 primarily high elevation sites from across western North America. Most of these sites show a pronounced 20th Century warming relative to earlier centuries, in accordance with current understanding, albeit at a non-global scale. A relative minority show cooling, occasionally strongly. Current and future work emphasizes evaluation of the method with varying, simulated data, and more thorough empirical evaluations of the method in situations where the type, and intensity, of the primary environmentally limiting factor varies (e.g temperature versus soil moisture limited sites).
Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems
NASA Astrophysics Data System (ADS)
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2016-07-01
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.
Hybrid recommendation methods in complex networks.
Fiasconaro, A; Tumminello, M; Nicosia, V; Latora, V; Mantegna, R N
2015-07-01
We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.
Acoustic window planning for ultrasound acquisition.
Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph
2017-06-01
Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
Cardiac Rehabilitation Online Pilot: Extending Reach of Cardiac Rehabilitation.
Higgins, Rosemary O; Rogerson, Michelle; Murphy, Barbara M; Navaratnam, Hema; Butler, Michael V; Barker, Lauren; Turner, Alyna; Lefkovits, Jeffrey; Jackson, Alun C
While cardiac rehabilitation (CR) is recommended for all patients after an acute cardiac event, limitations exist in reach. The purpose of the current study was to develop and pilot a flexible online CR program based on self-management principles "Help Yourself Online." The program was designed as an alternative to group-based CR as well as to complement traditional CR. The program was based on existing self-management resources developed previously by the Heart Research Centre. Twenty-one patients admitted to Cabrini Health for an acute cardiac event were recruited to test the program. The program was evaluated using qualitative and quantitative methods. Quantitative results demonstrated that patients believed the program would assist them in their self-management. Qualitative evaluation, using focus group and interview methods with 15 patients, showed that patients perceived the online CR approach to be a useful instrument for self-management. Broader implications of the data include the acceptability of the intervention, timing of intervention delivery, and patients' desire for additional online community support.
NASA Astrophysics Data System (ADS)
Liu, Sijia; Sa, Ruhan; Maguire, Orla; Minderman, Hans; Chaudhary, Vipin
2015-03-01
Cytogenetic abnormalities are important diagnostic and prognostic criteria for acute myeloid leukemia (AML). A flow cytometry-based imaging approach for FISH in suspension (FISH-IS) was established that enables the automated analysis of several log-magnitude higher number of cells compared to the microscopy-based approaches. The rotational positioning can occur leading to discordance between spot count. As a solution of counting error from overlapping spots, in this study, a Gaussian Mixture Model based classification method is proposed. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) of GMM are used as global image features of this classification method. Via Random Forest classifier, the result shows that the proposed method is able to detect closely overlapping spots which cannot be separated by existing image segmentation based spot detection methods. The experiment results show that by the proposed method we can obtain a significant improvement in spot counting accuracy.
NASA Astrophysics Data System (ADS)
Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu
2017-06-01
Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.
AISLE: an automatic volumetric segmentation method for the study of lung allometry.
Ren, Hongliang; Kazanzides, Peter
2011-01-01
We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.
Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information
McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash
2018-01-01
ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869
Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine.
Riccardi, Annalisa; Fernández-Navarro, Francisco; Carloni, Sante
2014-10-01
In this paper, the well known stagewise additive modeling using a multiclass exponential (SAMME) boosting algorithm is extended to address problems where there exists a natural order in the targets using a cost-sensitive approach. The proposed ensemble model uses an extreme learning machine (ELM) model as a base classifier (with the Gaussian kernel and the additional regularization parameter). The closed form of the derived weighted least squares problem is provided, and it is employed to estimate analytically the parameters connecting the hidden layer to the output layer at each iteration of the boosting algorithm. Compared to the state-of-the-art boosting algorithms, in particular those using ELM as base classifier, the suggested technique does not require the generation of a new training dataset at each iteration. The adoption of the weighted least squares formulation of the problem has been presented as an unbiased and alternative approach to the already existing ELM boosting techniques. Moreover, the addition of a cost model for weighting the patterns, according to the order of the targets, enables the classifier to tackle ordinal regression problems further. The proposed method has been validated by an experimental study by comparing it with already existing ensemble methods and ELM techniques for ordinal regression, showing competitive results.
On existence of the σ(600) Its physical implications and related problems
NASA Astrophysics Data System (ADS)
Ishida, Shin
1998-05-01
We make a re-analysis of 1=0 ππ scattering phase shift δ00 through a new method of S-matrix parametrization (IA; interfering amplitude method), and show a result suggesting strongly for the existence of σ-particle-long-sought Chiral partner of π-meson. Furthermore, through the phenomenological analyses of typical production processes of the 2π-system, the pp-central collision and the J/Ψ→ωππ decay, by applying an intuitive formula as sum of Breit-Wigner amplitudes, (VMW; variant mass and width method), the other evidences for the σ-existence are given. The validity of the methods used in the above analyses is investigated, using a simple field theoretical model, from the general viewpoint of unitarity and the applicability of final state interaction (FSI-) theorem, especially in relation to the "universality" argument. It is shown that the IA and VMW are obtained as the physical state representations of scattering and production amplitudes, respectively. The VMW is shown to be an effective method to obtain the resonance properties from production processes, which generally have the unknown strong-phases. The conventional analyses based on the "universality" seem to be powerless for this purpose.
Ramanujam, Nedunchelian; Kaliappan, Manivannan
2016-01-01
Nowadays, automatic multidocument text summarization systems can successfully retrieve the summary sentences from the input documents. But, it has many limitations such as inaccurate extraction to essential sentences, low coverage, poor coherence among the sentences, and redundancy. This paper introduces a new concept of timestamp approach with Naïve Bayesian Classification approach for multidocument text summarization. The timestamp provides the summary an ordered look, which achieves the coherent looking summary. It extracts the more relevant information from the multiple documents. Here, scoring strategy is also used to calculate the score for the words to obtain the word frequency. The higher linguistic quality is estimated in terms of readability and comprehensibility. In order to show the efficiency of the proposed method, this paper presents the comparison between the proposed methods with the existing MEAD algorithm. The timestamp procedure is also applied on the MEAD algorithm and the results are examined with the proposed method. The results show that the proposed method results in lesser time than the existing MEAD algorithm to execute the summarization process. Moreover, the proposed method results in better precision, recall, and F-score than the existing clustering with lexical chaining approach. PMID:27034971
Oakley, Paul A.; Harrison, Donald D.; Harrison, Deed E.; Haas, Jason W.
2005-01-01
BACKGROUND Although practice protocols exist for SMT and functional rehabilitation, no practice protocols exist for structural rehabilitation. Traditional chiropractic practice guidelines have been limited to acute and chronic pain treatment, with limited inclusion of functional and exclusion of structural rehabilitation procedures. OBJECTIVE (1) To derive an evidence-based practice protocol for structural rehabilitation from publications on Clinical Biomechanics of Posture (CBP®) methods, and (2) to compare the evidence for Diversified, SMT, and CBP®. METHODS Clinical control trials utilizing CBP® methods and spinal manipulative therapy (SMT) were obtained from searches in Mantis, CINAHL, and Index Medicus. Using data from SMT review articles, evidence for Diversified Technique (as taught in chiropractic colleges), SMT, and CBP® were rated and compared. RESULTS From the evidence from Clinical Control Trials on SMT and CBP®, there is very little evidence support for Diversified (our rating = 18), as taught in chiropractic colleges, for the treatment of pain subjects, while CBP® (our rating = 46) and SMT for neck pain (rating = 58) and low back pain (our rating = 202) have evidence-based support. CONCLUSIONS While CBP® Technique has approximately as much evidence-based support as SMT for neck pain, CBP® has more evidence to support its methods than the Diversified technique taught in chiropractic colleges, but not as much as SMT for low back pain. The evolution of chiropractic specialization has occurred, and doctors providing structural-based chiropractic care require protocol guidelines for patient quality assurance and standardization. A structural rehabilitation protocol was developed based on evidence from CBP® publications. PMID:17549209
NASA Astrophysics Data System (ADS)
Yang, Zili
2017-07-01
Heart segmentation is an important auxiliary method in the diagnosis of many heart diseases, such as coronary heart disease and atrial fibrillation, and in the planning of tumor radiotherapy. Most of the existing methods for full heart segmentation treat the heart as a whole part and cannot accurately extract the bottom of the heart. In this paper, we propose a new method based on linear gradient model to segment the whole heart from the CT images automatically and accurately. Twelve cases were tested in order to test this method and accurate segmentation results were achieved and identified by clinical experts. The results can provide reliable clinical support.
Bifurcating fronts for the Taylor-Couette problem in infinite cylinders
NASA Astrophysics Data System (ADS)
Hărăguş-Courcelle, M.; Schneider, G.
We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.
What Are High Schools Offering as Preparation for Employment?
ERIC Educational Resources Information Center
Guy, Barbara A.; Sitlington, Patricia L.; Larsen, Michael D.; Frank, Alan R.
2009-01-01
The purpose of this study is to determine (a) the patterns that existed in employment preparation courses offered by districts across a midwestern state and (b) the primary intent, primary method of instruction, and location of the classroom-based and work-based components of these courses. Findings indicated that (a) employment preparation…
A Method to Examine Content Domain Structures
ERIC Educational Resources Information Center
D'Agostino, Jerome; Karpinski, Aryn; Welsh, Megan
2011-01-01
After a test is developed, most content validation analyses shift from ascertaining domain definition to studying domain representation and relevance because the domain is assumed to be set once a test exists. We present an approach that allows for the examination of alternative domain structures based on extant test items. In our example based on…
ERIC Educational Resources Information Center
Wu, Ting-Ting
2018-01-01
Memorizing English vocabulary is often considered uninteresting, and a lack of motivation exists during learning activities. Moreover, most vocabulary practice systems automatically select words from articles and do not provide integrated model methods for students. Therefore, this study constructed a mobile game-based English vocabulary practice…
Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia
2013-01-01
Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008
Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.
Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi
2015-03-19
In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.
Genetic algorithm-based improved DOA estimation using fourth-order cumulants
NASA Astrophysics Data System (ADS)
Ahmed, Ammar; Tufail, Muhammad
2017-05-01
Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.
MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer
2007-02-01
developed practical methods for heterogeneity correction for MRI - based dose calculations (Chen et al 2007). 6) We will use existing Monte Carlo ... Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system, Phys. Med. Biol., 45:2483-95 (2000) Ma...accuracy and consistency for MR based IMRT treatment planning for prostate cancer. A short paper entitled “ Monte Carlo dose verification of MR image based
Gehrmann, Sebastian; Dernoncourt, Franck; Li, Yeran; Carlson, Eric T; Wu, Joy T; Welt, Jonathan; Foote, John; Moseley, Edward T; Grant, David W; Tyler, Patrick D; Celi, Leo A
2018-01-01
In secondary analysis of electronic health records, a crucial task consists in correctly identifying the patient cohort under investigation. In many cases, the most valuable and relevant information for an accurate classification of medical conditions exist only in clinical narratives. Therefore, it is necessary to use natural language processing (NLP) techniques to extract and evaluate these narratives. The most commonly used approach to this problem relies on extracting a number of clinician-defined medical concepts from text and using machine learning techniques to identify whether a particular patient has a certain condition. However, recent advances in deep learning and NLP enable models to learn a rich representation of (medical) language. Convolutional neural networks (CNN) for text classification can augment the existing techniques by leveraging the representation of language to learn which phrases in a text are relevant for a given medical condition. In this work, we compare concept extraction based methods with CNNs and other commonly used models in NLP in ten phenotyping tasks using 1,610 discharge summaries from the MIMIC-III database. We show that CNNs outperform concept extraction based methods in almost all of the tasks, with an improvement in F1-score of up to 26 and up to 7 percentage points in area under the ROC curve (AUC). We additionally assess the interpretability of both approaches by presenting and evaluating methods that calculate and extract the most salient phrases for a prediction. The results indicate that CNNs are a valid alternative to existing approaches in patient phenotyping and cohort identification, and should be further investigated. Moreover, the deep learning approach presented in this paper can be used to assist clinicians during chart review or support the extraction of billing codes from text by identifying and highlighting relevant phrases for various medical conditions.
New developments in transit noise and vibration criteria
NASA Astrophysics Data System (ADS)
Hanson, Carl E.
2004-05-01
Federal Transit Administration (FTA) noise and vibration impact criteria were developed in the early 1990's. Noise criteria are ambient-based, developed from the Schultz curve and fundamental research performed by the U.S. Environmental Protection Agency in the 1970's. Vibration criteria are single-value rms vibration velocity levels. After 10 years of experience applying the criteria in assessments of new transit projects throughout the United States, FTA is updating its methods. Approach to assessment of new projects in existing high-noise environments will be clarified. Method for assessing noise impacts due to horn blowing at grade crossings will be provided. Vibration criteria will be expanded to include spectral information. This paper summarizes the background of the current criteria, discusses examples where existing methods are lacking, and describes the planned remedies to improve criteria and methods.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Wiebe, Nathan
2017-08-01
A major challenge facing existing sequential Monte Carlo methods for parameter estimation in physics stems from the inability of existing approaches to robustly deal with experiments that have different mechanisms that yield the results with equivalent probability. We address this problem here by proposing a form of particle filtering that clusters the particles that comprise the sequential Monte Carlo approximation to the posterior before applying a resampler. Through a new graphical approach to thinking about such models, we are able to devise an artificial-intelligence based strategy that automatically learns the shape and number of the clusters in the support of the posterior. We demonstrate the power of our approach by applying it to randomized gap estimation and a form of low circuit-depth phase estimation where existing methods from the physics literature either exhibit much worse performance or even fail completely.
A powerful score-based test statistic for detecting gene-gene co-association.
Xu, Jing; Yuan, Zhongshang; Ji, Jiadong; Zhang, Xiaoshuai; Li, Hongkai; Wu, Xuesen; Xue, Fuzhong; Liu, Yanxun
2016-01-29
The genetic variants identified by Genome-wide association study (GWAS) can only account for a small proportion of the total heritability for complex disease. The existence of gene-gene joint effects which contains the main effects and their co-association is one of the possible explanations for the "missing heritability" problems. Gene-gene co-association refers to the extent to which the joint effects of two genes differ from the main effects, not only due to the traditional interaction under nearly independent condition but the correlation between genes. Generally, genes tend to work collaboratively within specific pathway or network contributing to the disease and the specific disease-associated locus will often be highly correlated (e.g. single nucleotide polymorphisms (SNPs) in linkage disequilibrium). Therefore, we proposed a novel score-based statistic (SBS) as a gene-based method for detecting gene-gene co-association. Various simulations illustrate that, under different sample sizes, marginal effects of causal SNPs and co-association levels, the proposed SBS has the better performance than other existed methods including single SNP-based and principle component analysis (PCA)-based logistic regression model, the statistics based on canonical correlations (CCU), kernel canonical correlation analysis (KCCU), partial least squares path modeling (PLSPM) and delta-square (δ (2)) statistic. The real data analysis of rheumatoid arthritis (RA) further confirmed its advantages in practice. SBS is a powerful and efficient gene-based method for detecting gene-gene co-association.
Synchronization of Chaotic Systems without Direct Connections Using Reinforcement Learning
NASA Astrophysics Data System (ADS)
Sato, Norihisa; Adachi, Masaharu
In this paper, we propose a control method for the synchronization of chaotic systems that does not require the systems to be connected, unlike existing methods such as that proposed by Pecora and Carroll in 1990. The method is based on the reinforcement learning algorithm. We apply our method to two discrete-time chaotic systems with mismatched parameters and achieve M step delay synchronization. Moreover, we extend the proposed method to the synchronization of continuous-time chaotic systems.
Yu, Alexander C; Cimino, James J
2011-04-01
Most existing controlled terminologies can be characterized as collections of terms, wherein the terms are arranged in a simple list or organized in a hierarchy. These kinds of terminologies are considered useful for standardizing terms and encoding data and are currently used in many existing information systems. However, they suffer from a number of limitations that make data reuse difficult. Relatively recently, it has been proposed that formal ontological methods can be applied to some of the problems of terminological design. Biomedical ontologies organize concepts (embodiments of knowledge about biomedical reality) whereas terminologies organize terms (what is used to code patient data at a certain point in time, based on the particular terminology version). However, the application of these methods to existing terminologies is not straightforward. The use of these terminologies is firmly entrenched in many systems, and what might seem to be a simple option of replacing these terminologies is not possible. Moreover, these terminologies evolve over time in order to suit the needs of users. Any methodology must therefore take these constraints into consideration, hence the need for formal methods of managing changes. Along these lines, we have developed a formal representation of the concept-term relation, around which we have also developed a methodology for management of terminology changes. The objective of this study was to determine whether our methodology would result in improved retrieval of data. Comparison of two methods for retrieving data encoded with terms from the International Classification of Diseases (ICD-9-CM), based on their recall when retrieving data for ICD-9-CM terms whose codes had changed but which had retained their original meaning (code change). Recall and interclass correlation coefficient. Statistically significant differences were detected (p<0.05) with the McNemar test for two terms whose codes had changed. Furthermore, when all the cases are combined in an overall category, our method also performs statistically significantly better (p<0.05). Our study shows that an ontology-based ICD-9-CM data retrieval method that takes into account the effects of terminology changes performs better on recall than one that does not in the retrieval of data for terms whose codes had changed but which retained their original meaning. Copyright © 2011 Elsevier Inc. All rights reserved.
Yu, Alexander C.; Cimino, James J.
2012-01-01
Objective Most existing controlled terminologies can be characterized as collections of terms, wherein the terms are arranged in a simple list or organized in a hierarchy. These kinds of terminologies are considered useful for standardizing terms and encoding data and are currently used in many existing information systems. However, they suffer from a number of limitations that make data reuse difficult. Relatively recently, it has been proposed that formal ontological methods can be applied to some of the problems of terminological design. Biomedical ontologies organize concepts (embodiments of knowledge about biomedical reality) whereas terminologies organize terms (what is used to code patient data at a certain point in time, based on the particular terminology version). However, the application of these methods to existing terminologies is not straightforward. The use of these terminologies is firmly entrenched in many systems, and what might seem to be a simple option of replacing these terminologies is not possible. Moreover, these terminologies evolve over time in order to suit the needs of users. Any methodology must therefore take these constraints into consideration, hence the need for formal methods of managing changes. Along these lines, we have developed a formal representation of the concept-term relation, around which we have also developed a methodology for management of terminology changes. The objective of this study was to determine whether our methodology would result in improved retrieval of data. Design Comparison of two methods for retrieving data encoded with terms from the International Classification of Diseases (ICD-9-CM), based on their recall when retrieving data for ICD-9-CM terms whose codes had changed but which had retained their original meaning (code change). Measurements Recall and interclass correlation coefficient. Results Statistically significant differences were detected (p<0.05) with the McNemar test for two terms whose codes had changed. Furthermore, when all the cases are combined in an overall category, our method also performs statistically significantly better (p < 0.05). Conclusion Our study shows that an ontology-based ICD-9-CM data retrieval method that takes into account the effects of terminology changes performs better on recall than one that does not in the retrieval of data for terms whose codes had changed but which retained their original meaning. PMID:21262390
A Method for Search Engine Selection using Thesaurus for Selective Meta-Search Engine
NASA Astrophysics Data System (ADS)
Goto, Shoji; Ozono, Tadachika; Shintani, Toramatsu
In this paper, we propose a new method for selecting search engines on WWW for selective meta-search engine. In selective meta-search engine, a method is needed that would enable selecting appropriate search engines for users' queries. Most existing methods use statistical data such as document frequency. These methods may select inappropriate search engines if a query contains polysemous words. In this paper, we describe an search engine selection method based on thesaurus. In our method, a thesaurus is constructed from documents in a search engine and is used as a source description of the search engine. The form of a particular thesaurus depends on the documents used for its construction. Our method enables search engine selection by considering relationship between terms and overcomes the problems caused by polysemous words. Further, our method does not have a centralized broker maintaining data, such as document frequency for all search engines. As a result, it is easy to add a new search engine, and meta-search engines become more scalable with our method compared to other existing methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hao; Zhang, Guifu; Zhao, Kun
A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (K DP) and to improve rain estimation. Moreover, the hybrid K DP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δ hv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and K DP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid K DP estimatormore » over existing methods.« less
NASA Astrophysics Data System (ADS)
Yamaguchi, Makoto; Midorikawa, Saburoh
The empirical equation for estimating the site amplification factor of ground motion by the average shear-wave velocity of ground (AVS) is examined. In the existing equations, the coefficient on dependence of the amplification factor on the AVS was treated as constant. The analysis showed that the coefficient varies with change of the AVS for short periods. A new estimation equation was proposed considering the dependence on the AVS. The new equation can represent soil characteristics that the softer soil has the longer predominant period, and can make better estimations for short periods than the existing method.
Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun
2016-01-01
The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882
2012-01-01
Background Existing methods for predicting protein solubility on overexpression in Escherichia coli advance performance by using ensemble classifiers such as two-stage support vector machine (SVM) based classifiers and a number of feature types such as physicochemical properties, amino acid and dipeptide composition, accompanied with feature selection. It is desirable to develop a simple and easily interpretable method for predicting protein solubility, compared to existing complex SVM-based methods. Results This study proposes a novel scoring card method (SCM) by using dipeptide composition only to estimate solubility scores of sequences for predicting protein solubility. SCM calculates the propensities of 400 individual dipeptides to be soluble using statistic discrimination between soluble and insoluble proteins of a training data set. Consequently, the propensity scores of all dipeptides are further optimized using an intelligent genetic algorithm. The solubility score of a sequence is determined by the weighted sum of all propensity scores and dipeptide composition. To evaluate SCM by performance comparisons, four data sets with different sizes and variation degrees of experimental conditions were used. The results show that the simple method SCM with interpretable propensities of dipeptides has promising performance, compared with existing SVM-based ensemble methods with a number of feature types. Furthermore, the propensities of dipeptides and solubility scores of sequences can provide insights to protein solubility. For example, the analysis of dipeptide scores shows high propensity of α-helix structure and thermophilic proteins to be soluble. Conclusions The propensities of individual dipeptides to be soluble are varied for proteins under altered experimental conditions. For accurately predicting protein solubility using SCM, it is better to customize the score card of dipeptide propensities by using a training data set under the same specified experimental conditions. The proposed method SCM with solubility scores and dipeptide propensities can be easily applied to the protein function prediction problems that dipeptide composition features play an important role. Availability The used datasets, source codes of SCM, and supplementary files are available at http://iclab.life.nctu.edu.tw/SCM/. PMID:23282103
2005-07-21
or solution-based methods such as spin casting or drop casting,’ 1ś self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew
USDA-ARS?s Scientific Manuscript database
The objective of the paper is to study the temporal variations of the subsurface soil properties due to seasonal and weather effects using a combination of a new seismic surface method and an existing acoustic probe system. A laser Doppler vibrometer (LDV) based multi-channel analysis of surface wav...
USDA-ARS?s Scientific Manuscript database
Although many near infrared (NIR) spectrometric calibrations exist for a variety of components in soy, current calibration methods are often limited by either a small sample size on which the calibrations are based or a wide variation in sample preparation and measurement methods, which yields unrel...
Network-Oriented Approach to Distributed Generation Planning
NASA Astrophysics Data System (ADS)
Kochukov, O.; Mutule, A.
2017-06-01
The main objective of the paper is to present an innovative complex approach to distributed generation planning and show the advantages over existing methods. The approach will be most suitable for DNOs and authorities and has specific calculation targets to support the decision-making process. The method can be used for complex distribution networks with different arrangement and legal base.
ERIC Educational Resources Information Center
Préfontaine, Yvonne; Kormos, Judit
2015-01-01
While there exists a considerable body of literature on task-based difficulty and second language (L2) fluency in English as a second language (ESL), there has been little investigation with French learners. This mixed methods study examines learner appraisals of task difficulty and their relationship to automated utterance fluency measures in…
Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water
Kirshtein, Julie D.; Anderson, Chauncey W.; Wood, J.S.; Longcore, Joyce E.; Voytek, Mary A.
2007-01-01
The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
SURVEYS OF FALLOUT SHELTER--A COMPARISON BETWEEN AERIAL PHOTOGRAPHIC AND DOCUMENTARY METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinecke, D.C.
1960-02-01
In 1959 a large part of Contra Costa County, California, was surveyed for fallout shelter areas. This survey was based on an examination of the tax assessor's records of existing buildings. A portion of this area was also surveyed independently by a method based on aerial photography. A statistical comparison of the results of these two surveys indicates that the aerial photographic method was more efficient than the documentary method in locating potential shelter space in buildings of heavy construction. This result, however, is probably not operationally significant. There is reason to believe that a combination of these two surveymore » methods could be devised which would be operationally preferable to either method. (auth)« less
Supervised segmentation of microelectrode recording artifacts using power spectral density.
Bakstein, Eduard; Schneider, Jakub; Sieger, Tomas; Novak, Daniel; Wild, Jiri; Jech, Robert
2015-08-01
Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1985-01-01
Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.
Forecasting peaks of seasonal influenza epidemics.
Nsoesie, Elaine; Mararthe, Madhav; Brownstein, John
2013-06-21
We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google Flu Trends for 2004-2005, 2007-2008 and 2012-2013 flu seasons. In some cases, the peak could be forecasted 5-6 weeks ahead. This study adds to existing resources for influenza forecasting and the proposed method can be used in conjunction with other approaches in an ensemble framework.
A fuzzy optimal threshold technique for medical images
NASA Astrophysics Data System (ADS)
Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.
2012-01-01
A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.
Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine
Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan
2011-05-17
A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.
Existence of a coupled system of fractional differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
Low Base-Substitution Mutation Rate in the Germline Genome of the Ciliate Tetrahymena thermophila
2016-09-15
generations of mutation accumulation (MA). We applied an existing mutation-calling pipeline and developed a new probabilistic mutation detection approach...noise introduced by mismapped reads. We used both our new method and an existing mutation-calling pipeline (Sung, Tucker, et al. 2012) to analyse the...and larger MA experiments will be required to confidently estimate the mutational spectrum of a species with such a low mutation rate. Materials and
NASA Astrophysics Data System (ADS)
Huang, Jian; Yuen, Pong C.; Chen, Wen-Sheng; Lai, J. H.
2005-05-01
Many face recognition algorithms/systems have been developed in the last decade and excellent performances have also been reported when there is a sufficient number of representative training samples. In many real-life applications such as passport identification, only one well-controlled frontal sample image is available for training. Under this situation, the performance of existing algorithms will degrade dramatically or may not even be implemented. We propose a component-based linear discriminant analysis (LDA) method to solve the one training sample problem. The basic idea of the proposed method is to construct local facial feature component bunches by moving each local feature region in four directions. In this way, we not only generate more samples with lower dimension than the original image, but also consider the face detection localization error while training. After that, we propose a subspace LDA method, which is tailor-made for a small number of training samples, for the local feature projection to maximize the discrimination power. Theoretical analysis and experiment results show that our proposed subspace LDA is efficient and overcomes the limitations in existing LDA methods. Finally, we combine the contributions of each local component bunch with a weighted combination scheme to draw the recognition decision. A FERET database is used for evaluating the proposed method and results are encouraging.
Yu, Fang; Chen, Ming-Hui; Kuo, Lynn; Talbott, Heather; Davis, John S
2015-08-07
Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783-802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real data application, the confident difference criterion methods successfully identified more clinically important DE genes than the other methods. The confident difference criterion method proposed in this paper provides a new efficient approach for both microarray studies and sequence-based high-throughput studies to identify differentially expressed genes.
Interpolation Method Needed for Numerical Uncertainty
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.
A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network
NASA Astrophysics Data System (ADS)
Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.
A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the simplified model, and then optimized the embattling of ground-based radar surveillance network with the artificial intelligent algorithm, which can greatly simplifies the computational complexities. Comparing with the traditional method, the proposed method greatly improved the computational efficiency.
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
Authors proposed the estimation method combining k-means algorithm and NN for evaluating massage. However, this estimation method has a problem that discrimination ratio is decreased to new user. There are two causes of this problem. One is that generalization of NN is bad. Another one is that clustering result by k-means algorithm has not high correlation coefficient in a class. Then, this research proposes k-means algorithm according to correlation coefficient and incremental learning for NN. The proposed k-means algorithm is method included evaluation function based on correlation coefficient. Incremental learning is method that NN is learned by new data and initialized weight based on the existing data. The effect of proposed methods are verified by estimation result using EEG data when testee is given massage.
Link-Based Similarity Measures Using Reachability Vectors
Yoon, Seok-Ho; Kim, Ji-Soo; Ryu, Minsoo; Choi, Ho-Jin
2014-01-01
We present a novel approach for computing link-based similarities among objects accurately by utilizing the link information pertaining to the objects involved. We discuss the problems with previous link-based similarity measures and propose a novel approach for computing link based similarities that does not suffer from these problems. In the proposed approach each target object is represented by a vector. Each element of the vector corresponds to all the objects in the given data, and the value of each element denotes the weight for the corresponding object. As for this weight value, we propose to utilize the probability of reaching from the target object to the specific object, computed using the “Random Walk with Restart” strategy. Then, we define the similarity between two objects as the cosine similarity of the two vectors. In this paper, we provide examples to show that our approach does not suffer from the aforementioned problems. We also evaluate the performance of the proposed methods in comparison with existing link-based measures, qualitatively and quantitatively, with respect to two kinds of data sets, scientific papers and Web documents. Our experimental results indicate that the proposed methods significantly outperform the existing measures. PMID:24701188
NASA Astrophysics Data System (ADS)
Zhao, Jin; Han-Ming, Zhang; Bin, Yan; Lei, Li; Lin-Yuan, Wang; Ai-Long, Cai
2016-03-01
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).
Rotorcraft Performance Model (RPM) for use in AEDT.
DOT National Transportation Integrated Search
2015-11-01
This report documents a rotorcraft performance model for use in the FAAs Aviation Environmental Design Tool. The new rotorcraft performance model is physics-based. This new model replaces the existing helicopter trajectory modeling methods in the ...
Alternative validation practice of an automated faulting measurement method.
DOT National Transportation Integrated Search
2010-03-08
A number of states have adopted profiler based systems to automatically measure faulting, : in jointed concrete pavements. However, little published work exists which documents the : validation process used for such automated faulting systems. This p...
A Nonparametric, Multiple Imputation-Based Method for the Retrospective Integration of Data Sets.
Carrig, Madeline M; Manrique-Vallier, Daniel; Ranby, Krista W; Reiter, Jerome P; Hoyle, Rick H
2015-01-01
Complex research questions often cannot be addressed adequately with a single data set. One sensible alternative to the high cost and effort associated with the creation of large new data sets is to combine existing data sets containing variables related to the constructs of interest. The goal of the present research was to develop a flexible, broadly applicable approach to the integration of disparate data sets that is based on nonparametric multiple imputation and the collection of data from a convenient, de novo calibration sample. We demonstrate proof of concept for the approach by integrating three existing data sets containing items related to the extent of problematic alcohol use and associations with deviant peers. We discuss both necessary conditions for the approach to work well and potential strengths and weaknesses of the method compared to other data set integration approaches.
A Nonparametric, Multiple Imputation-Based Method for the Retrospective Integration of Data Sets
Carrig, Madeline M.; Manrique-Vallier, Daniel; Ranby, Krista W.; Reiter, Jerome P.; Hoyle, Rick H.
2015-01-01
Complex research questions often cannot be addressed adequately with a single data set. One sensible alternative to the high cost and effort associated with the creation of large new data sets is to combine existing data sets containing variables related to the constructs of interest. The goal of the present research was to develop a flexible, broadly applicable approach to the integration of disparate data sets that is based on nonparametric multiple imputation and the collection of data from a convenient, de novo calibration sample. We demonstrate proof of concept for the approach by integrating three existing data sets containing items related to the extent of problematic alcohol use and associations with deviant peers. We discuss both necessary conditions for the approach to work well and potential strengths and weaknesses of the method compared to other data set integration approaches. PMID:26257437
Anatomical medial surfaces with efficient resolution of branches singularities.
Gil, Debora; Vera, Sergio; Borràs, Agnés; Andaluz, Albert; González Ballester, Miguel A
2017-01-01
Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility of existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a confident application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an efficient GPU-CPU implementation using standard image processing tools. We show the method computational efficiency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Basten, Van; Latief, Yusuf; Berawi, Mohammed Ali; Budiman, Rachmat; Riswanto
2017-03-01
Total completed building construction value in Indonesia increased 116% during 2009 to 2011. That's followed by increasing 11% energy consumption in Indonesia in the last three years with 70% energy met to the electricity needs of commercial building. In addition, a few application of green building concept in Indonesia made the greenhouse gas emissions or CO2 amount increased by 25%. Construction, operation, and maintain of building cost consider relatively high. The evaluation in this research is used to improve the building performance with some of green concept alternatives. The research methodology is conducted by combination of qualitative and quantitative approaches through interview and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment (LCA) Method. The result of optimization that is the largest efficiency and effective of building life cycle.
The method of a joint intraday security check system based on cloud computing
NASA Astrophysics Data System (ADS)
Dong, Wei; Feng, Changyou; Zhou, Caiqi; Cai, Zhi; Dan, Xu; Dai, Sai; Zhang, Chuancheng
2017-01-01
The intraday security check is the core application in the dispatching control system. The existing security check calculation only uses the dispatch center’s local model and data as the functional margin. This paper introduces the design of all-grid intraday joint security check system based on cloud computing and its implementation. To reduce the effect of subarea bad data on the all-grid security check, a new power flow algorithm basing on comparison and adjustment with inter-provincial tie-line plan is presented. And the numerical example illustrated the effectiveness and feasibility of the proposed method.
Machine vision application in animal trajectory tracking.
Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter
2016-04-01
This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhao, Sipei; Qiu, Xiaojun; Cheng, Jianchun
2015-09-01
This paper proposes a different method for calculating a sound field diffracted by a rigid barrier based on the integral equation method, where a virtual boundary is assumed above the rigid barrier to divide the whole space into two subspaces. Based on the Kirchhoff-Helmholtz equation, the sound field in each subspace is determined with the source inside and the boundary conditions on the surface, and then the diffracted sound field is obtained by using the continuation conditions on the virtual boundary. Simulations are carried out to verify the feasibility of the proposed method. Compared to the MacDonald method and other existing methods, the proposed method is a rigorous solution for whole space and is also much easier to understand.
Efficient method of image edge detection based on FSVM
NASA Astrophysics Data System (ADS)
Cai, Aiping; Xiong, Xiaomei
2013-07-01
For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.
Brain medical image diagnosis based on corners with importance-values.
Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao
2017-11-21
Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity calculation method for brain image classification. Experimental results on two brain image sets show the proposed corner-based brain medical image classifier outperforms the state-of-the-art studies.
NASA Astrophysics Data System (ADS)
Wang, Zhaopeng; Cuntz, Manfred
2017-10-01
We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu
We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us tomore » gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.« less
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
An information-theoretical perspective on weighted ensemble forecasts
NASA Astrophysics Data System (ADS)
Weijs, Steven V.; van de Giesen, Nick
2013-08-01
This paper presents an information-theoretical method for weighting ensemble forecasts with new information. Weighted ensemble forecasts can be used to adjust the distribution that an existing ensemble of time series represents, without modifying the values in the ensemble itself. The weighting can, for example, add new seasonal forecast information in an existing ensemble of historically measured time series that represents climatic uncertainty. A recent article in this journal compared several methods to determine the weights for the ensemble members and introduced the pdf-ratio method. In this article, a new method, the minimum relative entropy update (MRE-update), is presented. Based on the principle of minimum discrimination information, an extension of the principle of maximum entropy (POME), the method ensures that no more information is added to the ensemble than is present in the forecast. This is achieved by minimizing relative entropy, with the forecast information imposed as constraints. From this same perspective, an information-theoretical view on the various weighting methods is presented. The MRE-update is compared with the existing methods and the parallels with the pdf-ratio method are analysed. The paper provides a new, information-theoretical justification for one version of the pdf-ratio method that turns out to be equivalent to the MRE-update. All other methods result in sets of ensemble weights that, seen from the information-theoretical perspective, add either too little or too much (i.e. fictitious) information to the ensemble.
Ma, Junshui; Bayram, Sevinç; Tao, Peining; Svetnik, Vladimir
2011-03-15
After a review of the ocular artifact reduction literature, a high-throughput method designed to reduce the ocular artifacts in multichannel continuous EEG recordings acquired at clinical EEG laboratories worldwide is proposed. The proposed method belongs to the category of component-based methods, and does not rely on any electrooculography (EOG) signals. Based on a concept that all ocular artifact components exist in a signal component subspace, the method can uniformly handle all types of ocular artifacts, including eye-blinks, saccades, and other eye movements, by automatically identifying ocular components from decomposed signal components. This study also proposes an improved strategy to objectively and quantitatively evaluate artifact reduction methods. The evaluation strategy uses real EEG signals to synthesize realistic simulated datasets with different amounts of ocular artifacts. The simulated datasets enable us to objectively demonstrate that the proposed method outperforms some existing methods when no high-quality EOG signals are available. Moreover, the results of the simulated datasets improve our understanding of the involved signal decomposition algorithms, and provide us with insights into the inconsistency regarding the performance of different methods in the literature. The proposed method was also applied to two independent clinical EEG datasets involving 28 volunteers and over 1000 EEG recordings. This effort further confirms that the proposed method can effectively reduce ocular artifacts in large clinical EEG datasets in a high-throughput fashion. Copyright © 2011 Elsevier B.V. All rights reserved.
Quantifying construction and demolition waste: An analytical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zezhou; Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Shen, Liyin
2014-09-15
Highlights: • Prevailing C and D waste quantification methodologies are identified and compared. • One specific methodology cannot fulfill all waste quantification scenarios. • A relevance tree for appropriate quantification methodology selection is proposed. • More attentions should be paid to civil and infrastructural works. • Classified information is suggested for making an effective waste management plan. - Abstract: Quantifying construction and demolition (C and D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C and D waste generation at both regional and projectmore » levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C and D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested.« less
Constraining the evolution of the Hubble Parameter using cosmic chronometers
NASA Astrophysics Data System (ADS)
Dickinson, Hugh
2017-08-01
Substantial investment is being made in space- and ground-based missions with the goal of revealing the nature of the observed cosmic acceleration. This is one of the most important unsolved problems in cosmology today.We propose here to constrain the evolution of the Hubble parameter [H(z)] between 1.3 < z < 2, using the cosmic chronometer method, based on differential age measurements for passively evolving galaxies. Existing WFC3-IR G102 and G141 grisms data obtained by the WISP, 3D-HST+AGHAST, FIGS, and CLEAR surveys will yield a sample of 140 suitable standard clocks, expanding existing samples by a factor of five. These additional data will enable us to improve existing constraints on the evolution of H at high redshift, and insodoing to better understand the fundamental nature of dark energy.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Xinyuan
2014-11-01
In this paper we consider multi-frequency highly oscillatory second-order differential equations x″ (t) + Mx (t) = f (t , x (t) ,x‧ (t)) where high-frequency oscillations are generated by the linear part Mx (t), and M is positive semi-definite (not necessarily nonsingular). It is known that Filon-type methods are effective approach to numerically solving highly oscillatory problems. Unfortunately, however, existing Filon-type asymptotic methods fail to apply to the highly oscillatory second-order differential equations when M is singular. We study and propose an efficient improvement on the existing Filon-type asymptotic methods, so that the improved Filon-type asymptotic methods can be able to numerically solving this class of multi-frequency highly oscillatory systems with a singular matrix M. The improved Filon-type asymptotic methods are designed by combining Filon-type methods with the asymptotic methods based on the variation-of-constants formula. We also present one efficient and practical improved Filon-type asymptotic method which can be performed at lower cost. Accompanying numerical results show the remarkable efficiency.
An integrative framework for sensor-based measurement of teamwork in healthcare
Rosen, Michael A; Dietz, Aaron S; Yang, Ting; Priebe, Carey E; Pronovost, Peter J
2015-01-01
There is a strong link between teamwork and patient safety. Emerging evidence supports the efficacy of teamwork improvement interventions. However, the availability of reliable, valid, and practical measurement tools and strategies is commonly cited as a barrier to long-term sustainment and spread of these teamwork interventions. This article describes the potential value of sensor-based technology as a methodology to measure and evaluate teamwork in healthcare. The article summarizes the teamwork literature within healthcare, including team improvement interventions and measurement. Current applications of sensor-based measurement of teamwork are reviewed to assess the feasibility of employing this approach in healthcare. The article concludes with a discussion highlighting current application needs and gaps and relevant analytical techniques to overcome the challenges to implementation. Compelling studies exist documenting the feasibility of capturing a broad array of team input, process, and output variables with sensor-based methods. Implications of this research are summarized in a framework for development of multi-method team performance measurement systems. Sensor-based measurement within healthcare can unobtrusively capture information related to social networks, conversational patterns, physical activity, and an array of other meaningful information without having to directly observe or periodically survey clinicians. However, trust and privacy concerns present challenges that need to be overcome through engagement of end users in healthcare. Initial evidence exists to support the feasibility of sensor-based measurement to drive feedback and learning across individual, team, unit, and organizational levels. Future research is needed to refine methods, technologies, theory, and analytical strategies. PMID:25053579
NASA Astrophysics Data System (ADS)
Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan
2018-02-01
Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.
Xu, Changjin; Li, Peiluan; Pang, Yicheng
2016-12-01
In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).
A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.
Yang, Harry; Zhang, Jianchun
2015-01-01
The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current methods. Analytical methods are often used to ensure safety, efficacy, and quality of medicinal products. According to government regulations and regulatory guidelines, these methods need to be validated through well-designed studies to minimize the risk of accepting unsuitable methods. This article describes a novel statistical test for analytical method validation, which provides better protection for the risk of accepting unsuitable analytical methods. © PDA, Inc. 2015.
ERIC Educational Resources Information Center
Lee, Yee Ming; Kwon, Junehee; Park, Eunhye; Wang, Yujia; Rushing, Keith
2017-01-01
Purpose/Objectives: This study investigated the use of electronic and paper-based point-of-service (POS) systems in school nutrition programs (SNPs), including associated challenges and the desired skills and existing training practices for personnel handling such systems. Methods: A questionnaire was developed based on interviews with 25 SNP…
The Relationship between Agriculture Knowledge Bases for Teaching and Sources of Knowledge
ERIC Educational Resources Information Center
Rice, Amber H.; Kitchel, Tracy
2015-01-01
The purpose of this study was to describe the agriculture knowledge bases for teaching of agriculture teachers and to see if a relationship existed between years of teaching experience, sources of knowledge, and development of pedagogical content knowledge (PCK), using quantitative methods. A model of PCK from mathematics was utilized as a…
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Dualism-Based Design of the Introductory Chinese MOOC "Kit de contact en langue chinoise"
ERIC Educational Resources Information Center
Wang-Szilas, Jue; Bellassen, Joël
2017-01-01
This article reviews the existing Chinese language Massive Open Online Courses (MOOCs) and points out three problems in their design: the monism-based teaching method, the non-integration of cultural elements, and the lack of learner-learner interactions. It then presents the design principles of the Introductory Chinese MOOC in an attempt to…
User-Centered Design Guidelines for Collaborative Software for Intelligence Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Endert, Alexander N.
In this position paper we discuss the necessity of using User-Centered Design (UCD) methods in order to design collaborative software for the intelligence community. We present some standing issues in collaborative software based on existing work within the intelligence community. Based on this information we present opportunities to address some of these challenges.
Enhancing the Effectiveness of Juvenile Drug Courts by Integrating Evidence-Based Practices
ERIC Educational Resources Information Center
Henggeler, Scott W.; McCart, Michael R.; Cunningham, Phillippe B.; Chapman, Jason E.
2012-01-01
Objective: The primary purpose of this study was to test a relatively efficient strategy for enhancing the capacity of juvenile drug courts (JDC) to reduce youth substance use and criminal behavior by incorporating components of evidence-based treatments into their existing services. Method: Six JDCs were randomized to a condition in which…
New methods of MR image intensity standardization via generalized scale
NASA Astrophysics Data System (ADS)
Madabhushi, Anant; Udupa, Jayaram K.
2005-04-01
Image intensity standardization is a post-acquisition processing operation designed for correcting acquisition-to-acquisition signal intensity variations (non-standardness) inherent in Magnetic Resonance (MR) images. While existing standardization methods based on histogram landmarks have been shown to produce a significant gain in the similarity of resulting image intensities, their weakness is that, in some instances the same histogram-based landmark may represent one tissue, while in other cases it may represent different tissues. This is often true for diseased or abnormal patient studies in which significant changes in the image intensity characteristics may occur. In an attempt to overcome this problem, in this paper, we present two new intensity standardization methods based on the concept of generalized scale. In reference 1 we introduced the concept of generalized scale (g-scale) to overcome the shape, topological, and anisotropic constraints imposed by other local morphometric scale models. Roughly speaking, the g-scale of a voxel in a scene was defined as the largest set of voxels connected to the voxel that satisfy some homogeneity criterion. We subsequently formulated a variant of the generalized scale notion, referred to as generalized ball scale (gB-scale), which, in addition to having the advantages of g-scale, also has superior noise resistance properties. These scale concepts are utilized in this paper to accurately determine principal tissue regions within MR images, and landmarks derived from these regions are used to perform intensity standardization. The new methods were qualitatively and quantitatively evaluated on a total of 67 clinical 3D MR images corresponding to four different protocols and to normal, Multiple Sclerosis (MS), and brain tumor patient studies. The generalized scale-based methods were found to be better than the existing methods, with a significant improvement observed for severely diseased and abnormal patient studies.
Prediction of protein-protein interaction network using a multi-objective optimization approach.
Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit
2016-06-01
Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score.
Business Process-Based Resource Importance Determination
NASA Astrophysics Data System (ADS)
Fenz, Stefan; Ekelhart, Andreas; Neubauer, Thomas
Information security risk management (ISRM) heavily depends on realistic impact values representing the resources’ importance in the overall organizational context. Although a variety of ISRM approaches have been proposed, well-founded methods that provide an answer to the following question are still missing: How can business processes be used to determine resources’ importance in the overall organizational context? We answer this question by measuring the actual importance level of resources based on business processes. Therefore, this paper presents our novel business process-based resource importance determination method which provides ISRM with an efficient and powerful tool for deriving realistic resource importance figures solely from existing business processes. The conducted evaluation has shown that the calculation results of the developed method comply to the results gained in traditional workshop-based assessments.
Open-source platform to benchmark fingerprints for ligand-based virtual screening
2013-01-01
Similarity-search methods using molecular fingerprints are an important tool for ligand-based virtual screening. A huge variety of fingerprints exist and their performance, usually assessed in retrospective benchmarking studies using data sets with known actives and known or assumed inactives, depends largely on the validation data sets used and the similarity measure used. Comparing new methods to existing ones in any systematic way is rather difficult due to the lack of standard data sets and evaluation procedures. Here, we present a standard platform for the benchmarking of 2D fingerprints. The open-source platform contains all source code, structural data for the actives and inactives used (drawn from three publicly available collections of data sets), and lists of randomly selected query molecules to be used for statistically valid comparisons of methods. This allows the exact reproduction and comparison of results for future studies. The results for 12 standard fingerprints together with two simple baseline fingerprints assessed by seven evaluation methods are shown together with the correlations between methods. High correlations were found between the 12 fingerprints and a careful statistical analysis showed that only the two baseline fingerprints were different from the others in a statistically significant way. High correlations were also found between six of the seven evaluation methods, indicating that despite their seeming differences, many of these methods are similar to each other. PMID:23721588
The method of planning the energy consumption for electricity market
NASA Astrophysics Data System (ADS)
Russkov, O. V.; Saradgishvili, S. E.
2017-10-01
The limitations of existing forecast models are defined. The offered method is based on game theory, probabilities theory and forecasting the energy prices relations. New method is the basis for planning the uneven energy consumption of industrial enterprise. Ecological side of the offered method is disclosed. The program module performed the algorithm of the method is described. Positive method tests at the industrial enterprise are shown. The offered method allows optimizing the difference between planned and factual consumption of energy every hour of a day. The conclusion about applicability of the method for addressing economic and ecological challenges is made.
A general-purpose machine learning framework for predicting properties of inorganic materials
Ward, Logan; Agrawal, Ankit; Choudhary, Alok; ...
2016-08-26
A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less
A general-purpose machine learning framework for predicting properties of inorganic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Logan; Agrawal, Ankit; Choudhary, Alok
A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less
NASA Astrophysics Data System (ADS)
Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah
2017-08-01
Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Wu, C. F. Jeff
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Nondestructive equipment study
NASA Technical Reports Server (NTRS)
1985-01-01
Identification of existing nondestructive Evaluation (NDE) methods that could be used in a low Earth orbit environment; evaluation of each method with respect to the set of criteria called out in the statement of work; selection of the most promising NDE methods for further evaluation; use of selected NDE methods to test samples of pressure vessel materials in a vacuum; pressure testing of a complex monolythic pressure vessel with known flaws using acoustic emissions in a vacuum; and recommendations for further studies based on analysis and testing are covered.
Using Mathematical Modeling and Set-Based Design Principles to Recommend an Existing CVL Design
2017-09-01
designs, it would be worth researching the feasibility of varying the launch method on some of the larger light aircraft carriers, such as the Liaoning...thesis examines the trade space in major design areas such as tonnage, aircraft launch method , propulsion, and performance in order to illustrate...future conflict. This thesis examines the trade space in major design areas such as tonnage, aircraft launch method , propulsion, and performance in
Term Cancellations in Computing Floating-Point Gröbner Bases
NASA Astrophysics Data System (ADS)
Sasaki, Tateaki; Kako, Fujio
We discuss the term cancellation which makes the floating-point Gröbner basis computation unstable, and show that error accumulation is never negligible in our previous method. Then, we present a new method, which removes accumulated errors as far as possible by reducing matrices constructed from coefficient vectors by the Gaussian elimination. The method manifests amounts of term cancellations caused by the existence of approximate linearly dependent relations among input polynomials.
Two- and three-photon ionization of hydrogen and lithium
NASA Technical Reports Server (NTRS)
Chang, T. N.; Poe, R. T.
1977-01-01
We present the detailed result of a calculation on two- and three-photon ionization of hydrogen and lithium based on a recently proposed calculational method. Our calculation has demonstrated that this method is capable of retaining the numerical advantages enjoyed by most of the existing calculational methods and, at the same time, circumventing their limitations. In particular, we have concentrated our discussion on the relative contribution from the resonant and nonresonant intermediate states.
NASA Technical Reports Server (NTRS)
Stone, J. R.
1976-01-01
It was demonstrated that static and in flight jet engine exhaust noise can be predicted with reasonable accuracy when the multiple source nature of the problem is taken into account. Jet mixing noise was predicted from the interim prediction method. Provisional methods of estimating internally generated noise and shock noise flight effects were used, based partly on existing prediction methods and partly on recent reported engine data.
Frequency-dependent FDTD methods using Z transforms
NASA Technical Reports Server (NTRS)
Sullivan, Dennis M.
1992-01-01
While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.
Looking for trees in the forest: summary tree from posterior samples
2013-01-01
Background Bayesian phylogenetic analysis generates a set of trees which are often condensed into a single tree representing the whole set. Many methods exist for selecting a representative topology for a set of unrooted trees, few exist for assigning branch lengths to a fixed topology, and even fewer for simultaneously setting the topology and branch lengths. However, there is very little research into locating a good representative for a set of rooted time trees like the ones obtained from a BEAST analysis. Results We empirically compare new and known methods for generating a summary tree. Some new methods are motivated by mathematical constructions such as tree metrics, while the rest employ tree concepts which work well in practice. These use more of the posterior than existing methods, which discard information not directly mapped to the chosen topology. Using results from a large number of simulations we assess the quality of a summary tree, measuring (a) how well it explains the sequence data under the model and (b) how close it is to the “truth”, i.e to the tree used to generate the sequences. Conclusions Our simulations indicate that no single method is “best”. Methods producing good divergence time estimates have poor branch lengths and lower model fit, and vice versa. Using the results presented here, a user can choose the appropriate method based on the purpose of the summary tree. PMID:24093883
Looking for trees in the forest: summary tree from posterior samples.
Heled, Joseph; Bouckaert, Remco R
2013-10-04
Bayesian phylogenetic analysis generates a set of trees which are often condensed into a single tree representing the whole set. Many methods exist for selecting a representative topology for a set of unrooted trees, few exist for assigning branch lengths to a fixed topology, and even fewer for simultaneously setting the topology and branch lengths. However, there is very little research into locating a good representative for a set of rooted time trees like the ones obtained from a BEAST analysis. We empirically compare new and known methods for generating a summary tree. Some new methods are motivated by mathematical constructions such as tree metrics, while the rest employ tree concepts which work well in practice. These use more of the posterior than existing methods, which discard information not directly mapped to the chosen topology. Using results from a large number of simulations we assess the quality of a summary tree, measuring (a) how well it explains the sequence data under the model and (b) how close it is to the "truth", i.e to the tree used to generate the sequences. Our simulations indicate that no single method is "best". Methods producing good divergence time estimates have poor branch lengths and lower model fit, and vice versa. Using the results presented here, a user can choose the appropriate method based on the purpose of the summary tree.
Schuemie, Martijn J; Mons, Barend; Weeber, Marc; Kors, Jan A
2007-06-01
Gene and protein name identification in text requires a dictionary approach to relate synonyms to the same gene or protein, and to link names to external databases. However, existing dictionaries are incomplete. We investigate two complementary methods for automatic generation of a comprehensive dictionary: combination of information from existing gene and protein databases and rule-based generation of spelling variations. Both methods have been reported in literature before, but have hitherto not been combined and evaluated systematically. We combined gene and protein names from several existing databases of four different organisms. The combined dictionaries showed a substantial increase in recall on three different test sets, as compared to any single database. Application of 23 spelling variation rules to the combined dictionaries further increased recall. However, many rules appeared to have no effect and some appear to have a detrimental effect on precision.
Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef
2017-09-19
Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.
Herbrand, Martin; Classen, Martin; Kueres, Dominik; Hegger, Josef
2017-01-01
Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented. PMID:28925962
Exploring the notion of space coupling propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.
1990-01-01
All existing methods of space propulsion are based on expelling a reaction mass (propellant) to induce motion. Alternatively, 'space coupling propulsion' refers to speculations about reacting with space-time itself to generate propulsive forces. Conceivably, the resulting increases in payload, range, and velocity would constitute a breakthrough in space propulsion. Such speculations are still considered science fiction for a number of reasons: (1) it appears to violate conservation of momentum; (2) no reactive media appear to exist in space; (3) no 'Grand Uniform Theories' exist to link gravity, an acceleration field, to other phenomena of nature such as electrodynamics. The rationale behind these objectives is the focus of interest. Various methods to either satisfy or explore these issues are presented along with secondary considerations. It is found that it may be useful to consider alternative conventions of science to further explore speculations of space coupling propulsion.
Shi, Yan
2014-02-01
Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.
NASA Astrophysics Data System (ADS)
Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping
2018-01-01
Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.
Monte Carlo based statistical power analysis for mediation models: methods and software.
Zhang, Zhiyong
2014-12-01
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
Advanced space-based InSAR risk analysis of planned and existing transportation infrastructure.
DOT National Transportation Integrated Search
2017-03-21
The purpose of this document is to summarize activities by Stanford University and : MDA Geospatial Services Inc. (MDA) to estimate surface deformation and associated : risk to transportation infrastructure using SAR Interferometric methods for the :...
Instrumentation development for drug detection on the breath
DOT National Transportation Integrated Search
1972-09-01
Based on a survey of candidate analytical methods, mass spectrometry was identified as a promising technique for drug detection on the breath. To demonstrate its capabilities, an existing laboratory mass spectrometer was modified by the addition of a...
The Effects of Two Sight Word Teaching Methods on Featural Attention of Children Beginning to Read.
ERIC Educational Resources Information Center
Ceprano, Maria A.
Designed to add to the existing knowledge base concerning the saliency of features used by children to identify isolated words, a study examined whether the method of instruction influences the extent to which various features are used for word identification and recall. Subjects, 117 kindergarten students from a suburban Buffalo, New York, school…
Impossibility Theorem in Proportional Representation Problem
NASA Astrophysics Data System (ADS)
Karpov, Alexander
2010-09-01
The study examines general axiomatics of Balinski and Young and analyzes existed proportional representation methods using this approach. The second part of the paper provides new axiomatics based on rational choice models. New system of axioms is applied to study known proportional representation systems. It is shown that there is no proportional representation method satisfying a minimal set of the axioms (monotonicity and neutrality).
On the evaluation of segmentation editing tools
Heckel, Frank; Moltz, Jan H.; Meine, Hans; Geisler, Benjamin; Kießling, Andreas; D’Anastasi, Melvin; dos Santos, Daniel Pinto; Theruvath, Ashok Joseph; Hahn, Horst K.
2014-01-01
Abstract. Efficient segmentation editing tools are important components in the segmentation process, as no automatic methods exist that always generate sufficient results. Evaluating segmentation editing algorithms is challenging, because their quality depends on the user’s subjective impression. So far, no established methods for an objective, comprehensive evaluation of such tools exist and, particularly, intermediate segmentation results are not taken into account. We discuss the evaluation of editing algorithms in the context of tumor segmentation in computed tomography. We propose a rating scheme to qualitatively measure the accuracy and efficiency of editing tools in user studies. In order to objectively summarize the overall quality, we propose two scores based on the subjective rating and the quantified segmentation quality over time. Finally, a simulation-based evaluation approach is discussed, which allows a more reproducible evaluation without the need for human input. This automated evaluation complements user studies, allowing a more convincing evaluation, particularly during development, where frequent user studies are not possible. The proposed methods have been used to evaluate two dedicated editing algorithms on 131 representative tumor segmentations. We show how the comparison of editing algorithms benefits from the proposed methods. Our results also show the correlation of the suggested quality score with the qualitative ratings. PMID:26158063
NASA Astrophysics Data System (ADS)
Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei
2014-11-01
Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.
Levitt, Joshua; Nitenson, Adam; Koyama, Suguru; Heijmans, Lonne; Curry, James; Ross, Jason T; Kamerling, Steven; Saab, Carl Y
2018-06-23
Electroencephalography (EEG) invariably contains extra-cranial artifacts that are commonly dealt with based on qualitative and subjective criteria. Failure to account for EEG artifacts compromises data interpretation. We have developed a quantitative and automated support vector machine (SVM)-based algorithm to accurately classify artifactual EEG epochs in awake rodent, canine and humans subjects. An embodiment of this method also enables the determination of 'eyes open/closed' states in human subjects. The levels of SVM accuracy for artifact classification in humans, Sprague Dawley rats and beagle dogs were 94.17%, 83.68%, and 85.37%, respectively, whereas 'eyes open/closed' states in humans were labeled with 88.60% accuracy. Each of these results was significantly higher than chance. Comparison with Existing Methods: Other existing methods, like those dependent on Independent Component Analysis, have not been tested in non-human subjects, and require full EEG montages, instead of only single channels, as this method does. We conclude that our EEG artifact detection algorithm provides a valid and practical solution to a common problem in the quantitative analysis and assessment of EEG in pre-clinical research settings across evolutionary spectra. Copyright © 2018. Published by Elsevier B.V.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-10-01
In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.
Pseudorange Measurement Method Based on AIS Signals.
Zhang, Jingbo; Zhang, Shufang; Wang, Jinpeng
2017-05-22
In order to use the existing automatic identification system (AIS) to provide additional navigation and positioning services, a complete pseudorange measurements solution is presented in this paper. Through the mathematical analysis of the AIS signal, the bit-0-phases in the digital sequences were determined as the timestamps. Monte Carlo simulation was carried out to compare the accuracy of the zero-crossing and differential peak, which are two timestamp detection methods in the additive white Gaussian noise (AWGN) channel. Considering the low-speed and low-dynamic motion characteristics of ships, an optimal estimation method based on the minimum mean square error is proposed to improve detection accuracy. Furthermore, the α difference filter algorithm was used to achieve the fusion of the optimal estimation results of the two detection methods. The results show that the algorithm can greatly improve the accuracy of pseudorange estimation under low signal-to-noise ratio (SNR) conditions. In order to verify the effectiveness of the scheme, prototypes containing the measurement scheme were developed and field tests in Xinghai Bay of Dalian (China) were performed. The test results show that the pseudorange measurement accuracy was better than 28 m (σ) without any modification of the existing AIS system.
Pseudorange Measurement Method Based on AIS Signals
Zhang, Jingbo; Zhang, Shufang; Wang, Jinpeng
2017-01-01
In order to use the existing automatic identification system (AIS) to provide additional navigation and positioning services, a complete pseudorange measurements solution is presented in this paper. Through the mathematical analysis of the AIS signal, the bit-0-phases in the digital sequences were determined as the timestamps. Monte Carlo simulation was carried out to compare the accuracy of the zero-crossing and differential peak, which are two timestamp detection methods in the additive white Gaussian noise (AWGN) channel. Considering the low-speed and low-dynamic motion characteristics of ships, an optimal estimation method based on the minimum mean square error is proposed to improve detection accuracy. Furthermore, the α difference filter algorithm was used to achieve the fusion of the optimal estimation results of the two detection methods. The results show that the algorithm can greatly improve the accuracy of pseudorange estimation under low signal-to-noise ratio (SNR) conditions. In order to verify the effectiveness of the scheme, prototypes containing the measurement scheme were developed and field tests in Xinghai Bay of Dalian (China) were performed. The test results show that the pseudorange measurement accuracy was better than 28 m (σ) without any modification of the existing AIS system. PMID:28531153
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yupeng; Gorkin, David U.; Dickel, Diane E.
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...
2017-02-13
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Jung, Ji-Young; Seo, Dong-Yoon; Lee, Jung-Ryun
2018-01-04
A wireless sensor network (WSN) is emerging as an innovative method for gathering information that will significantly improve the reliability and efficiency of infrastructure systems. Broadcast is a common method to disseminate information in WSNs. A variety of counter-based broadcast schemes have been proposed to mitigate the broadcast-storm problems, using the count threshold value and a random access delay. However, because of the limited propagation of the broadcast-message, there exists a trade-off in a sense that redundant retransmissions of the broadcast-message become low and energy efficiency of a node is enhanced, but reachability become low. Therefore, it is necessary to study an efficient counter-based broadcast scheme that can dynamically adjust the random access delay and count threshold value to ensure high reachability, low redundant of broadcast-messages, and low energy consumption of nodes. Thus, in this paper, we first measure the additional coverage provided by a node that receives the same broadcast-message from two neighbor nodes, in order to achieve high reachability with low redundant retransmissions of broadcast-messages. Second, we propose a new counter-based broadcast scheme considering the size of the additional coverage area, distance between the node and the broadcasting node, remaining battery of the node, and variations of the node density. Finally, we evaluate performance of the proposed scheme compared with the existing counter-based broadcast schemes. Simulation results show that the proposed scheme outperforms the existing schemes in terms of saved rebroadcasts, reachability, and total energy consumption.
IMU-based online kinematic calibration of robot manipulator.
Du, Guanglong; Zhang, Ping
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.
Evaluating user reputation in online rating systems via an iterative group-based ranking method
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao
2017-05-01
Reputation is a valuable asset in online social lives and it has drawn increased attention. Due to the existence of noisy ratings and spamming attacks, how to evaluate user reputation in online rating systems is especially significant. However, most of the previous ranking-based methods either follow a debatable assumption or have unsatisfied robustness. In this paper, we propose an iterative group-based ranking method by introducing an iterative reputation-allocation process into the original group-based ranking method. More specifically, the reputation of users is calculated based on the weighted sizes of the user rating groups after grouping all users by their rating similarities, and the high reputation users' ratings have larger weights in dominating the corresponding user rating groups. The reputation of users and the user rating group sizes are iteratively updated until they become stable. Results on two real data sets with artificial spammers suggest that the proposed method has better performance than the state-of-the-art methods and its robustness is considerably improved comparing with the original group-based ranking method. Our work highlights the positive role of considering users' grouping behaviors towards a better online user reputation evaluation.
NASA Technical Reports Server (NTRS)
LOVE EUGENE S
1957-01-01
An analysis has been made of available experimental data to show the effects of most of the variables that are more predominant in determining base pressure at supersonic speeds. The analysis covers base pressures for two-dimensional airfoils and for bodies of revolution with and without stabilizing fins and is restricted to turbulent boundary layers. The present status of available experimental information is summarized as are the existing methods for predicting base pressure. A simple semiempirical method is presented for estimating base pressure. For two-dimensional bases, this method stems from an analogy established between the base-pressure phenomena and the peak pressure rise associated with the separation of the boundary layer. An analysis made for axially symmetric flow indicates that the base pressure for bodies of revolution is subject to the same analogy. Based upon the methods presented, estimations are made of such effects as Mach number, angle of attack, boattailing, fineness ratio, and fins. These estimations give fair predictions of experimental results. (author)
On evaluating the robustness of spatial-proximity-based regionalization methods
NASA Astrophysics Data System (ADS)
Lebecherel, Laure; Andréassian, Vazken; Perrin, Charles
2016-08-01
In absence of streamflow data to calibrate a hydrological model, its parameters are to be inferred by a regionalization method. In this technical note, we discuss a specific class of regionalization methods, those based on spatial proximity, which transfers hydrological information (typically calibrated parameter sets) from neighbor gauged stations to the target ungauged station. The efficiency of any spatial-proximity-based regionalization method will depend on the density of the available streamgauging network, and the purpose of this note is to discuss how to assess the robustness of the regionalization method (i.e., its resilience to an increasingly sparse hydrometric network). We compare two options: (i) the random hydrometrical reduction (HRand) method, which consists in sub-sampling the existing gauging network around the target ungauged station, and (ii) the hydrometrical desert method (HDes), which consists in ignoring the closest gauged stations. Our tests suggest that the HDes method should be preferred, because it provides a more realistic view on regionalization performance.
Variable Selection in the Presence of Missing Data: Imputation-based Methods.
Zhao, Yize; Long, Qi
2017-01-01
Variable selection plays an essential role in regression analysis as it identifies important variables that associated with outcomes and is known to improve predictive accuracy of resulting models. Variable selection methods have been widely investigated for fully observed data. However, in the presence of missing data, methods for variable selection need to be carefully designed to account for missing data mechanisms and statistical techniques used for handling missing data. Since imputation is arguably the most popular method for handling missing data due to its ease of use, statistical methods for variable selection that are combined with imputation are of particular interest. These methods, valid used under the assumptions of missing at random (MAR) and missing completely at random (MCAR), largely fall into three general strategies. The first strategy applies existing variable selection methods to each imputed dataset and then combine variable selection results across all imputed datasets. The second strategy applies existing variable selection methods to stacked imputed datasets. The third variable selection strategy combines resampling techniques such as bootstrap with imputation. Despite recent advances, this area remains under-developed and offers fertile ground for further research.
Mechanism-based Pharmacovigilance over the Life Sciences Linked Open Data Cloud.
Kamdar, Maulik R; Musen, Mark A
2017-01-01
Adverse drug reactions (ADR) result in significant morbidity and mortality in patients, and a substantial proportion of these ADRs are caused by drug-drug interactions (DDIs). Pharmacovigilance methods are used to detect unanticipated DDIs and ADRs by mining Spontaneous Reporting Systems, such as the US FDA Adverse Event Reporting System (FAERS). However, these methods do not provide mechanistic explanations for the discovered drug-ADR associations in a systematic manner. In this paper, we present a systems pharmacology-based approach to perform mechanism-based pharmacovigilance. We integrate data and knowledge from four different sources using Semantic Web Technologies and Linked Data principles to generate a systems network. We present a network-based Apriori algorithm for association mining in FAERS reports. We evaluate our method against existing pharmacovigilance methods for three different validation sets. Our method has AUROC statistics of 0.7-0.8, similar to current methods, and event-specific thresholds generate AUROC statistics greater than 0.75 for certain ADRs. Finally, we discuss the benefits of using Semantic Web technologies to attain the objectives for mechanism-based pharmacovigilance.
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13. Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract PMID:27504009