A Unified Approach to Modeling Multidisciplinary Interactions
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Bhatia, Kumar G.
2000-01-01
There are a number of existing methods to transfer information among various disciplines. For a multidisciplinary application with n disciplines, the traditional methods may be required to model (n(exp 2) - n) interactions. This paper presents a unified three-dimensional approach that reduces the number of interactions from (n(exp 2) - n) to 2n by using a computer-aided design model. The proposed modeling approach unifies the interactions among various disciplines. The approach is independent of specific discipline implementation, and a number of existing methods can be reformulated in the context of the proposed unified approach. This paper provides an overview of the proposed unified approach and reformulations for two existing methods. The unified approach is specially tailored for application environments where the geometry is created and managed through a computer-aided design system. Results are presented for a blended-wing body and a high-speed civil transport.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2017-05-01
Existing approaches to derive decision models from plaintext clinical data frequently depend on medical dictionaries as the sources of potential features. Prior research suggests that decision models developed using non-dictionary based feature sourcing approaches and "off the shelf" tools could predict cancer with performance metrics between 80% and 90%. We sought to compare non-dictionary based models to models built using features derived from medical dictionaries. We evaluated the detection of cancer cases from free text pathology reports using decision models built with combinations of dictionary or non-dictionary based feature sourcing approaches, 4 feature subset sizes, and 5 classification algorithms. Each decision model was evaluated using the following performance metrics: sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using dictionary and non-dictionary feature sourcing approaches produced performance metrics between 70 and 90%. The source of features and feature subset size had no impact on the performance of a decision model. Our study suggests there is little value in leveraging medical dictionaries for extracting features for decision model building. Decision models built using features extracted from the plaintext reports themselves achieve comparable results to those built using medical dictionaries. Overall, this suggests that existing "off the shelf" approaches can be leveraged to perform accurate cancer detection using less complex Named Entity Recognition (NER) based feature extraction, automated feature selection and modeling approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This manuscript reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, inver...
Modeling of ETL-Processes and Processed Information in Clinical Data Warehousing.
Tute, Erik; Steiner, Jochen
2018-01-01
Literature describes a big potential for reuse of clinical patient data. A clinical data warehouse (CDWH) is a means for that. To support management and maintenance of processes extracting, transforming and loading (ETL) data into CDWHs as well as to ease reuse of metadata between regular IT-management, CDWH and secondary data users by providing a modeling approach. Expert survey and literature review to find requirements and existing modeling techniques. An ETL-modeling-technique was developed extending existing modeling techniques. Evaluation by exemplarily modeling existing ETL-process and a second expert survey. Nine experts participated in the first survey. Literature review yielded 15 included publications. Six existing modeling techniques were identified. A modeling technique extending 3LGM2 and combining it with openEHR information models was developed and evaluated. Seven experts participated in the evaluation. The developed approach can help in management and maintenance of ETL-processes and could serve as interface between regular IT-management, CDWH and secondary data users.
NASA Technical Reports Server (NTRS)
Hamilton, George S.; Williams, Jermaine C.
1998-01-01
This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.
Modeling integrated biomass gasification business concepts
Peter J. Ince; Ted Bilek; Mark A. Dietenberger
2011-01-01
Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...
A cost-effectiveness comparison of existing and Landsat-aided snow water content estimation systems
NASA Technical Reports Server (NTRS)
Sharp, J. M.; Thomas, R. W.
1975-01-01
This study describes how Landsat imagery can be cost-effectively employed to augment an operational hydrologic model. Attention is directed toward the estimation of snow water content, a major predictor variable in the volumetric runoff forecasting model presently used by the California Department of Water Resources. A stratified double sampling scheme is supplemented with qualitative and quantitative analyses of existing operations to develop a comparison between the existing and satellite-aided approaches to snow water content estimation. Results show a decided advantage for the Landsat-aided approach.
NASA Technical Reports Server (NTRS)
1978-01-01
The costs and benefits of existing/planned systems, new propulsion concepts, and adaptations of existing/planned systems (as supported by Orbiter interface requirements and operations requirements) were quantified. Scenarios of these propulsion approaches were established which accommodate the low energy regime as defined by the new low energy payload mission model. These scenarios were screened on a cost and then a benefits basis. A propulsion approach comprising existing/planned systems and a new propulsion concept were selected as the most cost effective approach to accommodate the model payloads and the low energy regime they represent. Key cost drivers and sensitivity trends were identified. All costs were derived in 1977 dollars.
A review of statistical updating methods for clinical prediction models.
Su, Ting-Li; Jaki, Thomas; Hickey, Graeme L; Buchan, Iain; Sperrin, Matthew
2018-01-01
A clinical prediction model is a tool for predicting healthcare outcomes, usually within a specific population and context. A common approach is to develop a new clinical prediction model for each population and context; however, this wastes potentially useful historical information. A better approach is to update or incorporate the existing clinical prediction models already developed for use in similar contexts or populations. In addition, clinical prediction models commonly become miscalibrated over time, and need replacing or updating. In this article, we review a range of approaches for re-using and updating clinical prediction models; these fall in into three main categories: simple coefficient updating, combining multiple previous clinical prediction models in a meta-model and dynamic updating of models. We evaluated the performance (discrimination and calibration) of the different strategies using data on mortality following cardiac surgery in the United Kingdom: We found that no single strategy performed sufficiently well to be used to the exclusion of the others. In conclusion, useful tools exist for updating existing clinical prediction models to a new population or context, and these should be implemented rather than developing a new clinical prediction model from scratch, using a breadth of complementary statistical methods.
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal
2017-11-01
Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.
Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A
2013-06-01
The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.
NASA Astrophysics Data System (ADS)
Benjanirat, Sarun
Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.
Integrated Spatio-Temporal Ecological Modeling System
1998-07-01
models that we hold in our conscious (and subconscious ) minds. Chapter 3 explores how this approach is being augmented with the more formal capture...This approach makes it possible to add new simulation model components to I- STEMS without having to reprogram existing components. The steps required
Mandoda, Shilpa; Landry, Michel D.
2011-01-01
ABSTRACT Purpose: To explore the potential for different models of incorporating physical therapy (PT) services within the emerging network of family health teams (FHTs) in Ontario and to identify challenges and opportunities of each model. Methods: A two-phase mixed-methods qualitative descriptive approach was used. First, FHTs were mapped in relation to existing community-based PT practices. Second, semi-structured key-informant interviews were conducted with representatives from urban and rural FHTs and from a variety of community-based PT practices. Interviews were digitally recorded, transcribed verbatim, and analyzed using a categorizing/editing approach. Results: Most participants agreed that the ideal model involves embedding physical therapists directly into FHTs; in some situations, however, partnering with an existing external PT provider may be more feasible and sustainable. Access and funding remain the key issues, regardless of the model adopted. Conclusion: Although there are differences across the urban/rural divide, there exist opportunities to enhance and optimize existing delivery models so as to improve client access and address emerging demand for community-based PT services. PMID:22654231
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.
2016-10-01
Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in broad sense, of meta-heuristics, and describe free-accessible software frameworks which can be used to make easier the implementation of these algorithms.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... an improved understanding of methodological challenges associated with integrating existing tools and... methodological challenges associated with integrating existing tools (e.g., climate models, downscaling... sensitivity to methodological choices such as different approaches for downscaling global climate change...
Various approaches and tools exist to estimate local and regional PM2.5 impacts from a single emissions source, ranging from simple screening techniques to Gaussian based dispersion models and complex grid-based Eulerian photochemical transport models. These approache...
Watershed Nitrogen Modeling: Benefits of Diverse Approaches Using a Case Study from New York State
Watershed-scale models have evolved as an important tool for estimating the sources, transformation, and transport of contaminants to surface water systems. A wide variety of modeling approaches exist for estimating inputs, fate, and transport of constituents but most are broadl...
NASA Technical Reports Server (NTRS)
Sharp, J. M.; Thomas, R. W.
1975-01-01
How LANDSAT imagery can be cost effectively employed to augment an operational hydrologic model is described. Attention is directed toward the estimation of snow water content, a major predictor variable in the volumetric runoff forecasting model. A stratified double sampling scheme is supplemented with qualitative and quantitative analyses of existing operations to develop a comparison between the existing and satellite-aided approaches to snow water content estimation. Results show a decided advantage for the LANDSAT-aided approach.
A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs
NASA Astrophysics Data System (ADS)
Elahi, Golnaz; Yu, Eric
In designing software systems, security is typically only one design objective among many. It may compete with other objectives such as functionality, usability, and performance. Too often, security mechanisms such as firewalls, access control, or encryption are adopted without explicit recognition of competing design objectives and their origins in stakeholder interests. Recently, there is increasing acknowledgement that security is ultimately about trade-offs. One can only aim for "good enough" security, given the competing demands from many parties. In this paper, we examine how conceptual modeling can provide explicit and systematic support for analyzing security trade-offs. After considering the desirable criteria for conceptual modeling methods, we examine several existing approaches for dealing with security trade-offs. From analyzing the limitations of existing methods, we propose an extension to the i* framework for security trade-off analysis, taking advantage of its multi-agent and goal orientation. The method was applied to several case studies used to exemplify existing approaches.
Facilities Management of Existing School Buildings: Two Models.
ERIC Educational Resources Information Center
Building Technology, Inc., Silver Spring, MD.
While all school districts are responsible for the management of their existing buildings, they often approach the task in different ways. This document presents two models that offer ways a school district administration, regardless of size, may introduce activities into its ongoing management process that will lead to improvements in earthquake…
Windt, Jennifer M; Noreika, Valdas
2011-12-01
In this paper, we address the different ways in which dream research can contribute to interdisciplinary consciousness research. As a second global state of consciousness aside from wakefulness, dreaming is an important contrast condition for theories of waking consciousness. However, programmatic suggestions for integrating dreaming into broader theories of consciousness, for instance by regarding dreams as a model system of standard or pathological wake states, have not yielded straightforward results. We review existing proposals for using dreaming as a model system, taking into account concerns about the concept of modeling and the adequacy and practical feasibility of dreaming as a model system. We conclude that existing modeling approaches are premature and rely on controversial background assumptions. Instead, we suggest that contrastive analysis of dreaming and wakefulness presents a more promising strategy for integrating dreaming into a broader research context and solving many of the problems involved in the modeling approach. Copyright © 2010 Elsevier Inc. All rights reserved.
Models and theories of prescribing decisions: A review and suggested a new model.
Murshid, Mohsen Ali; Mohaidin, Zurina
2017-01-01
To date, research on the prescribing decisions of physician lacks sound theoretical foundations. In fact, drug prescribing by doctors is a complex phenomenon influenced by various factors. Most of the existing studies in the area of drug prescription explain the process of decision-making by physicians via the exploratory approach rather than theoretical. Therefore, this review is an attempt to suggest a value conceptual model that explains the theoretical linkages existing between marketing efforts, patient and pharmacist and physician decision to prescribe the drugs. The paper follows an inclusive review approach and applies the previous theoretical models of prescribing behaviour to identify the relational factors. More specifically, the report identifies and uses several valuable perspectives such as the 'persuasion theory - elaboration likelihood model', the stimuli-response marketing model', the 'agency theory', the theory of planned behaviour,' and 'social power theory,' in developing an innovative conceptual paradigm. Based on the combination of existing methods and previous models, this paper suggests a new conceptual model of the physician decision-making process. This unique model has the potential for use in further research.
Peterson, J.; Dunham, J.B.
2003-01-01
Effective conservation efforts for at-risk species require knowledge of the locations of existing populations. Species presence can be estimated directly by conducting field-sampling surveys or alternatively by developing predictive models. Direct surveys can be expensive and inefficient, particularly for rare and difficult-to-sample species, and models of species presence may produce biased predictions. We present a Bayesian approach that combines sampling and model-based inferences for estimating species presence. The accuracy and cost-effectiveness of this approach were compared to those of sampling surveys and predictive models for estimating the presence of the threatened bull trout ( Salvelinus confluentus ) via simulation with existing models and empirical sampling data. Simulations indicated that a sampling-only approach would be the most effective and would result in the lowest presence and absence misclassification error rates for three thresholds of detection probability. When sampling effort was considered, however, the combined approach resulted in the lowest error rates per unit of sampling effort. Hence, lower probability-of-detection thresholds can be specified with the combined approach, resulting in lower misclassification error rates and improved cost-effectiveness.
Bohme, Andrea; van Rienen, Ursula
2016-08-01
Computational modeling of the stimulating field distribution during Deep Brain Stimulation provides an opportunity to advance our knowledge of this neurosurgical therapy for Parkinson's disease. There exist several approaches to model the target region for Deep Brain Stimulation in Hemi-parkinson Rats with volume conductor models. We have described and compared the normalized mapping approach as well as the modeling with three-dimensional structures, which include curvilinear coordinates to assure an anatomically realistic conductivity tensor orientation.
Patil, Ravindra B; Krishnamoorthy, P; Sethuraman, Shriram
2015-01-01
This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.
A Research Roadmap for Computation-Based Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald; Mandelli, Diego; Joe, Jeffrey
2015-08-01
The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is oftenmore » secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.« less
A 3D model retrieval approach based on Bayesian networks lightfield descriptor
NASA Astrophysics Data System (ADS)
Xiao, Qinhan; Li, Yanjun
2009-12-01
A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2015-05-01
Sensitivity analysis is an essential paradigm in Earth and Environmental Systems modeling. However, the term "sensitivity" has a clear definition, based in partial derivatives, only when specified locally around a particular point (e.g., optimal solution) in the problem space. Accordingly, no unique definition exists for "global sensitivity" across the problem space, when considering one or more model responses to different factors such as model parameters or forcings. A variety of approaches have been proposed for global sensitivity analysis, based on different philosophies and theories, and each of these formally characterizes a different "intuitive" understanding of sensitivity. These approaches focus on different properties of the model response at a fundamental level and may therefore lead to different (even conflicting) conclusions about the underlying sensitivities. Here we revisit the theoretical basis for sensitivity analysis, summarize and critically evaluate existing approaches in the literature, and demonstrate their flaws and shortcomings through conceptual examples. We also demonstrate the difficulty involved in interpreting "global" interaction effects, which may undermine the value of existing interpretive approaches. With this background, we identify several important properties of response surfaces that are associated with the understanding and interpretation of sensitivities in the context of Earth and Environmental System models. Finally, we highlight the need for a new, comprehensive framework for sensitivity analysis that effectively characterizes all of the important sensitivity-related properties of model response surfaces.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2016-04-01
Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches. We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics. Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field. Copyright © 2016 Elsevier Inc. All rights reserved.
Berzosa, Álvaro; Barandica, Jesús M; Fernández-Sánchez, Gonzalo
2014-01-01
In recent years, several methodologies have been developed for the quantification of greenhouse gas (GHG) emissions. However, determining who is responsible for these emissions is also quite challenging. The most common approach is to assign emissions to the producer (based on the Kyoto Protocol), but proposals also exist for its allocation to the consumer (based on an ecological footprint perspective) and for a hybrid approach called shared responsibility. In this study, the existing proposals and standards regarding the allocation of GHG emissions responsibilities are analyzed, focusing on their main advantages and problems. A new model of shared responsibility that overcomes some of the existing problems is also proposed. This model is based on applying the best available technologies (BATs). This new approach allocates the responsibility between the producers and the final consumers based on the real capacity of each agent to reduce emissions. The proposed approach is demonstrated using a simple case study of a 4-step life cycle of ammonia nitrate (AN) fertilizer production. The proposed model has the characteristics that the standards and publications for assignment of GHG emissions responsibilities demand. This study presents a new way to assign responsibilities that pushes all the actors in the production chain, including consumers, to reduce pollution. © 2013 SETAC.
Acute oral toxicity data are used to meet both regulatory and non-regulatory needs. Recently, there have been efforts to explore alternative approaches for predicting acute oral toxicity such as QSARs. Evaluating the performance and scope of existing models and investigating the ...
Extending BPM Environments of Your Choice with Performance Related Decision Support
NASA Astrophysics Data System (ADS)
Fritzsche, Mathias; Picht, Michael; Gilani, Wasif; Spence, Ivor; Brown, John; Kilpatrick, Peter
What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools, process optimizations or a combination of such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.
A toolbox and a record for scientific model development
NASA Technical Reports Server (NTRS)
Ellman, Thomas
1994-01-01
Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.
An Odds Ratio Approach for Detecting DDF under the Nested Logit Modeling Framework
ERIC Educational Resources Information Center
Terzi, Ragip; Suh, Youngsuk
2015-01-01
An odds ratio approach (ORA) under the framework of a nested logit model was proposed for evaluating differential distractor functioning (DDF) in multiple-choice items and was compared with an existing ORA developed under the nominal response model. The performances of the two ORAs for detecting DDF were investigated through an extensive…
Mingguang Xu; Timothy B. Harrington; M. Boyd Edwards
1997-01-01
Data from an existing site preparation experiment in the Georgia Piedmont were subjected to a modeling approach to analyze effects of site preparation intensity on stand development of loblolly pine (Pinus taeda L.) 5 to 12 years since treatment. An average stand height model that incorporated indicator variables for treatment provided an accurate...
MOOC Quality: The Need for New Measures
ERIC Educational Resources Information Center
Hood, Nina; Littlejohn, Allison
2016-01-01
MOOCs are re-operationalising traditional concepts in education. While they draw on elements of existing educational and learning models, they represent a new approach to instruction and learning. The challenges MOOCs present to traditional education models have important implications for approaching and assessing quality. This paper foregrounds…
Powathil, Gibin G; Swat, Maciej; Chaplain, Mark A J
2015-02-01
The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing and building new mathematical models of cancer, modellers can play important role in preventing the use of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy and chemotherapy in the patient survival probability and implement the model using two different cell based modelling techniques. We show that the insights provided by such multiscale modelling approaches can ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase patients quality of life. Copyright © 2014 Elsevier Ltd. All rights reserved.
Review: Modelling chemical kinetics and convective heating in giant planet entries
NASA Astrophysics Data System (ADS)
Reynier, Philippe; D'Ammando, Giuliano; Bruno, Domenico
2018-01-01
A review of the existing chemical kinetics models for H2 / He mixtures and related transport and thermodynamic properties is presented as a pre-requisite towards the development of innovative models based on the state-to-state approach. A survey of the available results obtained during the mission preparation and post-flight analyses of the Galileo mission has been undertaken and a computational matrix has been derived. Different chemical kinetics schemes for hydrogen/helium mixtures have been applied to numerical simulations of the selected points along the entry trajectory. First, a reacting scheme, based on literature data, has been set up for computing the flow-field around the probe at high altitude and comparisons with existing numerical predictions are performed. Then, a macroscopic model derived from a state-to-state model has been constructed and incorporated into a CFD code. Comparisons with existing numerical results from the literature have been performed as well as cross-check comparisons between the predictions provided by the different models in order to evaluate the potential of innovative chemical kinetics models based on the state-to-state approach.
A systems biology approach to investigate the antimicrobial activity of oleuropein.
Li, Xianhua; Liu, Yanhong; Jia, Qian; LaMacchia, Virginia; O'Donoghue, Kathryn; Huang, Zuyi
2016-12-01
Oleuropein and its hydrolysis products are olive phenolic compounds that have antimicrobial effects on a variety of pathogens, with the potential to be utilized in food and pharmaceutical products. While the existing research is mainly focused on individual genes or enzymes that are regulated by oleuropein for antimicrobial activities, little work has been done to integrate intracellular genes, enzymes and metabolic reactions for a systematic investigation of antimicrobial mechanism of oleuropein. In this study, the first genome-scale modeling method was developed to predict the system-level changes of intracellular metabolism triggered by oleuropein in Staphylococcus aureus, a common food-borne pathogen. To simulate the antimicrobial effect, an existing S. aureus genome-scale metabolic model was extended by adding the missing nitric oxide reactions, and exchange rates of potassium, phosphate and glutamate were adjusted in the model as suggested by previous research to mimic the stress imposed by oleuropein on S. aureus. The developed modeling approach was able to match S. aureus growth rates with experimental data for five oleuropein concentrations. The reactions with large flux change were identified and the enzymes of fifteen of these reactions were validated by existing research for their important roles in oleuropein metabolism. When compared with experimental data, the up/down gene regulations of 80% of these enzymes were correctly predicted by our modeling approach. This study indicates that the genome-scale modeling approach provides a promising avenue for revealing the intracellular metabolism of oleuropein antimicrobial properties.
Challenges and opportunities for integrating lake ecosystem modelling approaches
Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.
2010-01-01
A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.
Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework
NASA Astrophysics Data System (ADS)
Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.
2014-10-01
Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.
Modelling the monetary value of a QALY: a new approach based on UK data.
Mason, Helen; Jones-Lee, Michael; Donaldson, Cam
2009-08-01
Debate about the monetary value of a quality-adjusted life year (QALY) has existed in the health economics literature for some time. More recently, concern about such a value has arisen in UK health policy. This paper reports on an attempt to 'model' a willingness-to-pay-based value of a QALY from the existing value of preventing a statistical fatality (VPF) currently used in UK public sector decision making. Two methods of deriving the value of a QALY from the existing UK VPF are outlined: one conventional and one new. The advantages and disadvantages of each of the approaches are discussed as well as the implications of the results for policy and health economic evaluation methodology.
Determining the Supply of Material Resources for High-Rise Construction: Scenario Approach
NASA Astrophysics Data System (ADS)
Minnullina, Anna; Vasiliev, Vladimir
2018-03-01
This article presents a multi-criteria approach to determining the supply of material resources for high-rise construction under certain and uncertain conditions, which enables integrating a number of existing models into a fairly compact generalised economic and mathematical model developed for two extreme scenarios.
The Mathematics Textbook as a Story: A Novel Approach to the Interrogation of Mathematics Curriculum
ERIC Educational Resources Information Center
Dietiker, Leslie C.
2012-01-01
Both the purpose and overarching goal of this dissertation can be summarized with this quote by Buckminster Fuller: "You never change things by fighting the existing reality. To change something, build a new model that makes the existing model obsolete." That is, to enable substantive positive change in mathematics education, this…
Reserves in load capacity assessment of existing bridges
NASA Astrophysics Data System (ADS)
Žitný, Jan; Ryjáček, Pavel
2017-09-01
High percentage of all railway bridges in the Czech Republic is made of structural steel. Majority of these bridges is designed according to historical codes and according to the deterioration, they have to be assessed if they satisfy the needs of modern railway traffic. The load capacity assessment of existing bridges according to Eurocodes is however often too conservative and especially, braking and acceleration forces cause huge problems to structural elements of the bridge superstructure. The aim of this paper is to review the different approaches for the determination of braking and acceleration forces. Both, current and historical theoretical models and in-situ measurements are considered. The research of several local European state norms superior to Eurocode for assessment of existing railway bridges shows the big diversity of used local approaches and the conservativeness of Eurocode. This paper should also work as an overview for designers dealing with load capacity assessment, revealing the reserves for existing bridges. Based on these different approaches, theoretical models and data obtained from the measurements, the method for determination of braking and acceleration forces on the basis of real traffic data should be proposed.
Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey
2017-01-01
One of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called freedom flutter. The existing tools often assume relatively weak coupling, and are therefore unable to accurately model body freedom flutter. Because the existing tools were developed from traditional flutter analysis models, inconsistencies in the final models are not compatible with control system design tools. To resolve these issues, a number of small, but significant changes have been made to the existing approaches. A frequency domain transformation is used with the unsteady aerodynamics to ensure a more physically consistent stability axis rational function approximation of the unsteady aerodynamic model. The aerodynamic model is augmented with additional terms to account for limitations of the baseline unsteady aerodynamic model and to account for the gravity forces. An assumed modes method is used for the structural model to ensure a consistent definition of the aircraft states across the flight envelope. The X-56A stiff wing flight-test data were used to validate the current modeling approach. The flight-test data does not show body-freedom flutter, but does show coupling between the flight dynamics and the aeroelastic dynamics and the effects of the fuel weight.
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna
2015-01-01
Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717
A new enhanced index tracking model in portfolio optimization with sum weighted approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng
2017-04-01
Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.
Probabilistic segmentation and intensity estimation for microarray images.
Gottardo, Raphael; Besag, Julian; Stephens, Matthew; Murua, Alejandro
2006-01-01
We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.
Sparse Group Penalized Integrative Analysis of Multiple Cancer Prognosis Datasets
Liu, Jin; Huang, Jian; Xie, Yang; Ma, Shuangge
2014-01-01
SUMMARY In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers associated with prognosis. Because of the “large d, small n” characteristic, results generated from the analysis of a single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously analyzes multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most of existing integrative analysis, the homogeneity model has been assumed, which postulates that different datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time) model to describe survival. This model may have the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a sparse group MCP (minimax concave penalty) approach. This approach has an intuitive formulation and can be computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates the merit of heterogeneity model and proposed approach. PMID:23938111
Curran, Michael; de Souza, Danielle Maia; Antón, Assumpció; Teixeira, Ricardo F M; Michelsen, Ottar; Vidal-Legaz, Beatriz; Sala, Serenella; Milà i Canals, Llorenç
2016-03-15
The modeling of land use impacts on biodiversity is considered a priority in life cycle assessment (LCA). Many diverging approaches have been proposed in an expanding literature on the topic. The UNEP/SETAC Life Cycle Initiative is engaged in building consensus on a shared modeling framework to highlight best-practice and guide model application by practitioners. In this paper, we evaluated the performance of 31 models from both the LCA and the ecology/conservation literature (20 from LCA, 11 from non-LCA fields) according to a set of criteria reflecting (i) model completeness, (ii) biodiversity representation, (iii) impact pathway coverage, (iv) scientific quality, and (v) stakeholder acceptance. We show that LCA models tend to perform worse than those from ecology and conservation (although not significantly), implying room for improvement. We identify seven best-practice recommendations that can be implemented immediately to improve LCA models based on existing approaches in the literature. We further propose building a "consensus model" through weighted averaging of existing information, to complement future development. While our research focuses on conceptual model design, further quantitative comparison of promising models in shared case studies is an essential prerequisite for future informed model choice.
Efficient Translation of LTL Formulae into Buchi Automata
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Lerda, Flavio
2001-01-01
Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.
NASA Astrophysics Data System (ADS)
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-09-01
Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level
Savalei, Victoria; Rhemtulla, Mijke
2017-01-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data—that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study. PMID:29276371
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.
Savalei, Victoria; Rhemtulla, Mijke
2017-08-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.
BinQuasi: a peak detection method for ChIP-sequencing data with biological replicates.
Goren, Emily; Liu, Peng; Wang, Chao; Wang, Chong
2018-04-19
ChIP-seq experiments that are aimed at detecting DNA-protein interactions require biological replication to draw inferential conclusions, however there is no current consensus on how to analyze ChIP-seq data with biological replicates. Very few methodologies exist for the joint analysis of replicated ChIP-seq data, with approaches ranging from combining the results of analyzing replicates individually to joint modeling of all replicates. Combining the results of individual replicates analyzed separately can lead to reduced peak classification performance compared to joint modeling. Currently available methods for joint analysis may fail to control the false discovery rate at the nominal level. We propose BinQuasi, a peak caller for replicated ChIP-seq data, that jointly models biological replicates using a generalized linear model framework and employs a one-sided quasi-likelihood ratio test to detect peaks. When applied to simulated data and real datasets, BinQuasi performs favorably compared to existing methods, including better control of false discovery rate than existing joint modeling approaches. BinQuasi offers a flexible approach to joint modeling of replicated ChIP-seq data which is preferable to combining the results of replicates analyzed individually. Source code is freely available for download at https://cran.r-project.org/package=BinQuasi, implemented in R. pliu@iastate.edu or egoren@iastate.edu. Supplementary material is available at Bioinformatics online.
Clinical modeling--a critical analysis.
Blobel, Bernd; Goossen, William; Brochhausen, Mathias
2014-01-01
Modeling clinical processes (and their informational representation) is a prerequisite for optimally enabling and supporting high quality and safe care through information and communication technology and meaningful use of gathered information. The paper investigates existing approaches to clinical modeling, thereby systematically analyzing the underlying principles, the consistency with and the integration opportunity to other existing or emerging projects, as well as the correctness of representing the reality of health and health services. The analysis is performed using an architectural framework for modeling real-world systems. In addition, fundamental work on the representation of facts, relations, and processes in the clinical domain by ontologies is applied, thereby including the integration of advanced methodologies such as translational and system medicine. The paper demonstrates fundamental weaknesses and different maturity as well as evolutionary potential in the approaches considered. It offers a development process starting with the business domain and its ontologies, continuing with the Reference Model-Open Distributed Processing (RM-ODP) related conceptual models in the ICT ontology space, the information and the computational view, and concluding with the implementation details represented as engineering and technology view, respectively. The existing approaches reflect at different levels the clinical domain, put the main focus on different phases of the development process instead of first establishing the real business process representation and therefore enable quite differently and partially limitedly the domain experts' involvement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Signell, Richard; Camossi, E.
2016-01-01
Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.
NASA Astrophysics Data System (ADS)
Signell, Richard P.; Camossi, Elena
2016-05-01
Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.
Forestry sector analysis for developing countries: issues and methods.
R.W. Haynes
1993-01-01
A satellite meeting of the 10th Forestry World Congress focused on the methods used for forest sector analysis and their applications in both developed and developing countries. The results of that meeting are summarized, and a general approach for forest sector modeling is proposed. The approach includes models derived from the existing...
Weighted Least Squares Fitting Using Ordinary Least Squares Algorithms.
ERIC Educational Resources Information Center
Kiers, Henk A. L.
1997-01-01
A general approach for fitting a model to a data matrix by weighted least squares (WLS) is studied. The approach consists of iteratively performing steps of existing algorithms for ordinary least squares fitting of the same model and is based on maximizing a function that majorizes WLS loss function. (Author/SLD)
ERIC Educational Resources Information Center
Rust, Joseph Henry
Rend Lake College (RLC), in Ina, Illinois, has taken an integrated approach to internationalizing its college community by utilizing existing structures and funding to create six programs designed to foster global awareness and understanding. The first program offers student study abroad opportunities allowing students with 15 credit hours of…
Institutional Transformation Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
Reducing the energy consumption of large institutions with dozens to hundreds of existing buildings while maintaining and improving existing infrastructure is a critical economic and environmental challenge. SNL's Institutional Transformation (IX) work integrates facilities and infrastructure sustainability technology capabilities and collaborative decision support modeling approaches to help facilities managers at Sandia National Laboratories (SNL) simulate different future energy reduction strategies and meet long term energy conservation goals.
Models and theories of prescribing decisions: A review and suggested a new model
Mohaidin, Zurina
2017-01-01
To date, research on the prescribing decisions of physician lacks sound theoretical foundations. In fact, drug prescribing by doctors is a complex phenomenon influenced by various factors. Most of the existing studies in the area of drug prescription explain the process of decision-making by physicians via the exploratory approach rather than theoretical. Therefore, this review is an attempt to suggest a value conceptual model that explains the theoretical linkages existing between marketing efforts, patient and pharmacist and physician decision to prescribe the drugs. The paper follows an inclusive review approach and applies the previous theoretical models of prescribing behaviour to identify the relational factors. More specifically, the report identifies and uses several valuable perspectives such as the ‘persuasion theory - elaboration likelihood model’, the stimuli–response marketing model’, the ‘agency theory’, the theory of planned behaviour,’ and ‘social power theory,’ in developing an innovative conceptual paradigm. Based on the combination of existing methods and previous models, this paper suggests a new conceptual model of the physician decision-making process. This unique model has the potential for use in further research. PMID:28690701
Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O
2009-04-01
This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.
Promoter Sequences Prediction Using Relational Association Rule Mining
Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely
2012-01-01
In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233
An objective Bayesian analysis of a crossover design via model selection and model averaging.
Li, Dandan; Sivaganesan, Siva
2016-11-10
Inference about the treatment effect in a crossover design has received much attention over time owing to the uncertainty in the existence of the carryover effect and its impact on the estimation of the treatment effect. Adding to this uncertainty is that the existence of the carryover effect and its size may depend on the presence of the treatment effect and its size. We consider estimation and testing hypothesis about the treatment effect in a two-period crossover design, assuming normally distributed response variable, and use an objective Bayesian approach to test the hypothesis about the treatment effect and to estimate its size when it exists while accounting for the uncertainty about the presence of the carryover effect as well as the treatment and period effects. We evaluate and compare the performance of the proposed approach with a standard frequentist approach using simulated data, and real data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The Data Fusion Modeling (DFM) approach has been used to develop a groundwater flow and transport model of the Old Burial Grounds (OBG) at the US Department of Energy`s Savannah River Site (SRS). The resulting DFM model was compared to an existing model that was calibrated via the typical trial-and-error method. The OBG was chosen because a substantial amount of hydrogeologic information is available, a FACT (derivative of VAM3DCG) flow and transport model of the site exists, and the calibration and numerics were challenging with standard approaches. The DFM flow model developed here is similar to the flow model bymore » Flach et al. This allows comparison of the two flow models and validates the utility of DFM. The contaminant of interest for this study is tritium, because it is a geochemically conservative tracer that has been monitored along the seepline near the F-Area effluent and Fourmile Branch for several years.« less
Courses of action for effects based operations using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Haider, Sajjad; Levis, Alexander H.
2006-05-01
This paper presents an Evolutionary Algorithms (EAs) based approach to identify effective courses of action (COAs) in Effects Based Operations. The approach uses Timed Influence Nets (TINs) as the underlying mathematical model to capture a dynamic uncertain situation. TINs provide a concise graph-theoretic probabilistic approach to specify the cause and effect relationships that exist among the variables of interest (actions, desired effects, and other uncertain events) in a problem domain. The purpose of building these TIN models is to identify and analyze several alternative courses of action. The current practice is to use trial and error based techniques which are not only labor intensive but also produce sub-optimal results and are not capable of modeling constraints among actionable events. The EA based approach presented in this paper is aimed to overcome these limitations. The approach generates multiple COAs that are close enough in terms of achieving the desired effect. The purpose of generating multiple COAs is to give several alternatives to a decision maker. Moreover, the alternate COAs could be generalized based on the relationships that exist among the actions and their execution timings. The approach also allows a system analyst to capture certain types of constraints among actionable events.
Modeling reinforced concrete durability.
DOT National Transportation Integrated Search
2014-06-01
This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...
A CONCEPTUAL MODEL FOR ECOSYSTEM - HUMAN HEALTH INTERCONNECTIONS
Much environmental policy fails to consider the relationships that exist among component parts of the natural and social world. The linkages that exist between natural and social systems are intricate and varied and call for new and creative approaches to environmental policy and...
A neural network based reputation bootstrapping approach for service selection
NASA Astrophysics Data System (ADS)
Wu, Quanwang; Zhu, Qingsheng; Li, Peng
2015-10-01
With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.
Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons
Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...
Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data
NASA Astrophysics Data System (ADS)
Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai
2017-11-01
Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.
NASA Astrophysics Data System (ADS)
Sela, S.; Woodbury, P. B.; van Es, H. M.
2018-05-01
The US Midwest is the largest and most intensive corn (Zea mays, L.) production region in the world. However, N losses from corn systems cause serious environmental impacts including dead zones in coastal waters, groundwater pollution, particulate air pollution, and global warming. New approaches to reducing N losses are urgently needed. N surplus is gaining attention as such an approach for multiple cropping systems. We combined experimental data from 127 on-farm field trials conducted in seven US states during the 2011–2016 growing seasons with biochemical simulations using the PNM model to quantify the benefits of a dynamic location-adapted management approach to reduce N surplus. We found that this approach allowed large reductions in N rate (32%) and N surplus (36%) compared to existing static approaches, without reducing yield and substantially reducing yield-scaled N losses (11%). Across all sites, yield-scaled N losses increased linearly with N surplus values above ~48 kg ha‑1. Using the dynamic model-based N management approach enabled growers to get much closer to this target than using existing static methods, while maintaining yield. Therefore, this approach can substantially reduce N surplus and N pollution potential compared to static N management.
Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer
2017-04-01
Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
Preliminary design specifications of a calcium model
NASA Technical Reports Server (NTRS)
1978-01-01
A list of objectives, requirements, and guidelines are given for a calcium model. Existing models are reviewed and evaluated in relation to the stated objectives and requirements. The reviewed models were either too abstract or apparently invalidated. A technical approach to the design of a desirable model is identified.
Managing & Re-Using Didactical Expertise: The Didactical Object Model
ERIC Educational Resources Information Center
Pawlowski, Jan M.; Bick, Markus
2006-01-01
The DIN Didactical Object Model extends the approaches of existing Educational Modeling Languages introducing specifications for contexts and experiences. In this paper, we show how the Didactical Object Model can be used for sharing didactical expertise. Educational Modeling Languages change the design paradigm from content orientation towards…
Populations, Natural Selection, and Applied Organizational Science.
ERIC Educational Resources Information Center
McKelvey, Bill; Aldrich, Howard
1983-01-01
Deficiencies in existing models in organizational science may be remedied by applying the population approach, with its concepts of taxonomy, classification, evolution, and population ecology; and natural selection theory, with its principles of variation, natural selection, heredity, and struggle for existence, to the idea of organizational forms…
Estimating Environmental Compliance Costs for Industry (1981)
The paper discusses the pros and cons of existing approaches to compliance cost estimation such as ex post survey estimation and ex ante estimation techniques (input cost accounting methods, engineering process models and, econometric models).
DOT National Transportation Integrated Search
2007-09-01
Two competing approaches to travel demand modeling exist today. The more traditional 4-step travel demand models rely on aggregate demographic data at a traffic analysis zone (TAZ) level. Activity-based microsimulation methods employ more robus...
NASA Astrophysics Data System (ADS)
Härer, Stefan; Bernhardt, Matthias; Gutmann, Ethan; Bauer, Hans-Stefan; Schulz, Karsten
2017-04-01
Until recently, a large gap existed in the atmospheric downscaling strategies. On the one hand, computationally efficient statistical approaches are widely used, on the other hand, dynamic but CPU-intensive numeric atmospheric models like the weather research and forecast (WRF) model exist. The intermediate complex atmospheric research (ICAR) model developed at NCAR (Boulder, Colorado, USA) addresses this gap by combining the strengths of both approaches: the process-based structure of a dynamic model and its applicability in a changing climate as well as the speed of a parsimonious modelling approach which facilitates the modelling of ensembles and a straightforward way to test new parametrization schemes as well as various input data sources. However, the ICAR model has not been tested in Europe and on slightly undulated terrain yet. This study now evaluates for the first time the ICAR model to WRF model runs in Central Europe comparing a complete year of model results in the mesoscale Attert catchment (Luxembourg). In addition to these modelling results, we also describe the first implementation of ICAR on an Intel Phi architecture and consequently perform speed tests between the Vienna cluster, a standard workstation and the use of an Intel Phi coprocessor. Finally, the study gives an outlook on sensitivity studies using slightly different input data sources.
Christensen, Jette; El Allaki, Farouk; Vallières, André
2014-05-01
Scenario tree models with temporal discounting have been applied in four continents to support claims of freedom from animal disease. Recently, a second (new) model was developed for the same population and disease. This is a natural development because surveillance is a dynamic process that needs to adapt to changing circumstances - the difficulty is the justification for, documentation of, presentation of and the acceptance of the changes. Our objective was to propose a systematic approach to present changes to an existing scenario tree model for freedom from disease. We used the example of how we adapted the deterministic Canadian Notifiable Avian Influenza scenario tree model published in 2011 to a stochastic scenario tree model where the definition of sub-populations and the estimation of probability of introduction of the pathogen were modified. We found that the standardized approach by Vanderstichel et al. (2013) with modifications provided a systematic approach to make and present changes to an existing scenario tree model. We believe that the new 2013 CanNAISS scenario tree model is a better model than the 2011 model because the 2013 model included more surveillance data. In particular, the new data on Notifiable Avian Influenza in Canada from the last 5 years were used to improve input parameters and model structure. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Dynamics simulation and controller interfacing for legged robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichler, J.A.; Delcomyn, F.
2000-01-01
Dynamics simulation can play a critical role in the engineering of robotic control code, and there exist a variety of strategies both for building physical models and for interacting with these models. This paper presents an approach to dynamics simulation and controller interfacing for legged robots, and contrasts it to existing approaches. The authors describe dynamics algorithms and contact-resolution strategies for multibody articulated mobile robots based on the decoupled tree-structure approach, and present a novel scripting language that provides a unified framework for control-code interfacing, user-interface design, and data analysis. Special emphasis is placed on facilitating the rapid integration ofmore » control algorithms written in a standard object-oriented language (C++), the production of modular, distributed, reusable controllers, and the use of parameterized signal-transmission properties such as delay, sampling rate, and noise.« less
Women's Self-definition in Adulthood: From a Different Model?
ERIC Educational Resources Information Center
Peck, Teresa A.
1986-01-01
Examines criticisms of existing models of adult development from both feminist and developmental psychologists. A model of women's adult self-definition is presented, based upon current research on women's adult experience. The model combines a dialectical approach, which considers the effects of social/historical factors, with a feminist…
Refining mass formulas for astrophysical applications: A Bayesian neural network approach
NASA Astrophysics Data System (ADS)
Utama, R.; Piekarewicz, J.
2017-10-01
Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.
Gleason, Robert A.; Tangen, Brian A.; Laubhan, Murray K.; Kermes, Kevin E.; Euliss, Ned H.
2007-01-01
Executive Summary Concern over flooding along rivers in the Prairie Pothole Region has stimulated interest in developing spatially distributed hydrologic models to simulate the effects of wetland water storage on peak river flows. Such models require spatial data on the storage volume and interception area of existing and restorable wetlands in the watershed of interest. In most cases, information on these model inputs is lacking because resolution of existing topographic maps is inadequate to estimate volume and areas of existing and restorable wetlands. Consequently, most studies have relied on wetland area to volume or interception area relationships to estimate wetland basin storage characteristics by using available surface area data obtained as a product from remotely sensed data (e.g., National Wetlands Inventory). Though application of areal input data to estimate volume and interception areas is widely used, a drawback is that there is little information available to provide guidance regarding the application, limitations, and biases associated with such approaches. Another limitation of previous modeling efforts is that water stored by wetlands within a watershed is treated as a simple lump storage component that is filled prior to routing overflow to a pour point or gaging station. This approach does not account for dynamic wetland processes that influence water stored in prairie wetlands. Further, most models have not considered the influence of human-induced hydrologic changes, such as land use, that greatly influence quantity of surface water inputs and, ultimately, the rate that a wetland basin fills and spills. The goals of this study were to (1) develop and improve methodologies for estimating and spatially depicting wetland storage volumes and interceptions areas and (2) develop models and approaches for estimating/simulating the water storage capacity of potentially restorable and existing wetlands under various restoration, land use, and climatic scenarios. To address these goals, we developed models and approaches to spatially represent storage volumes and interception areas of existing and potentially restorable wetlands in the upper Mustinka subbasin within Grant County, Minn. We then developed and applied a model to simulate wetland water storage increases that would result from restoring 25 and 50 percent of the farmed and drained wetlands in the upper Mustinka subbasin. The model simulations were performed during the growing season (May-October) for relatively wet (1993; 0.79 m of precipitation) and dry (1987; 0.40 m of precipitation) years. Results from the simulations indicated that the 25 percent restoration scenario would increase water storage by 21-24 percent and that a 50 percent scenario would increase storage by 34-38 percent. Additionally, we estimated that wetlands in the subbasin have potential to store 11.57-20.98 percent of the total precipitation that fell over the entire subbasin area (52,758 ha). Our simulation results indicated that there is considerable potential to enhance water storage in the subbasin; however, evaluation and calibration of the model is necessary before simulation results can be applied to management and planning decisions. In this report we present guidance for the development and application of models (e.g., surface area-volume predictive models, hydrology simulation model) to simulate wetland water storage to provide a basis from which to understand and predict the effects of natural or human-induced hydrologic alterations. In developing these approaches, we tried to use simple and widely available input data to simulate wetland hydrology and predict wetland water storage for a specific precipitation event or a series of events. Further, the hydrology simulation model accounted for land use and soil type, which influence surface water inputs to wetlands. Although information presented in this report is specific to the Mustinka subbasin, the approaches
Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O
2016-06-01
Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.
Improving Listening Comprehension through a Whole-Schema Approach.
ERIC Educational Resources Information Center
Ellermeyer, Deborah
1993-01-01
Examines the development of the schema, or cognitive structure, theory of reading comprehension. Advances a model for improving listening comprehension within the classroom through a teacher-facilitated approach which leads students to selecting and utilizing existing schema within a whole-language environment. (MDM)
Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach
NASA Astrophysics Data System (ADS)
Hugo, Bruce Robert
Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.
A semi-analytical refrigeration cycle modelling approach for a heat pump hot water heater
NASA Astrophysics Data System (ADS)
Panaras, G.; Mathioulakis, E.; Belessiotis, V.
2018-04-01
The use of heat pump systems in applications like the production of hot water or space heating makes important the modelling of the processes for the evaluation of the performance of existing systems, as well as for design purposes. The proposed semi-analytical model offers the opportunity to estimate the performance of a heat pump system producing hot water, without using detailed geometrical or any performance data. This is important, as for many commercial systems the type and characteristics of the involved subcomponents can hardly be detected, thus not allowing the implementation of more analytical approaches or the exploitation of the manufacturers' catalogue performance data. The analysis copes with the issues related with the development of the models of the subcomponents involved in the studied system. Issues not discussed thoroughly in the existing literature, as the refrigerant mass inventory in the case an accumulator is present, are examined effectively.
Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa
NASA Astrophysics Data System (ADS)
Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen
2016-09-01
Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.
Modeling irrigation behavior in groundwater systems
NASA Astrophysics Data System (ADS)
Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.
2014-08-01
Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.
Abdominal surgery process modeling framework for simulation using spreadsheets.
Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja
2015-08-01
We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Extending the enterprise evolution contextualisation model
NASA Astrophysics Data System (ADS)
de Vries, Marné; van der Merwe, Alta; Gerber, Aurona
2017-07-01
Enterprise engineering (EE) emerged as a new discipline to encourage comprehensive and consistent enterprise design. Since EE is multidisciplinary, various researchers study enterprises from different perspectives, which resulted in a plethora of applicable literature and terminology, but without shared meaning. Previous research specifically focused on the fragmentation of knowledge for designing and aligning the information and communication technology (ICT) subsystem of the enterprise in order to support the business organisation subsystem of the enterprise. As a solution for this fragmented landscape, a business-IT alignment model (BIAM) was developed inductively from existing business-IT alignment approaches. Since most of the existing alignment frameworks addressed the alignment between the ICT subsystem and the business organisation subsystem, BIAM also focused on the alignment between these two subsystems. Yet, the emerging EE discipline intends to address a broader scope of design, evident in the existing approaches that incorporate a broader scope of design/alignment/governance. A need was identified to address the knowledge fragmentation of the EE knowledge base by adapting BIAM to an enterprise evolution contextualisation model (EECM), to contextualise a broader set of approaches, as identified by Lapalme. The main contribution of this article is the incremental development and evaluation of EECM. We also present guiding indicators/prerequisites for applying EECM as a contextualisation tool.
Review of the "AS-BUILT BIM" Approaches
NASA Astrophysics Data System (ADS)
Hichri, N.; Stefani, C.; De Luca, L.; Veron, P.
2013-02-01
Today, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain.
Adaptive Modeling of the International Space Station Electrical Power System
NASA Technical Reports Server (NTRS)
Thomas, Justin Ray
2007-01-01
Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.
On extending parallelism to serial simulators
NASA Technical Reports Server (NTRS)
Nicol, David; Heidelberger, Philip
1994-01-01
This paper describes an approach to discrete event simulation modeling that appears to be effective for developing portable and efficient parallel execution of models of large distributed systems and communication networks. In this approach, the modeler develops submodels using an existing sequential simulation modeling tool, using the full expressive power of the tool. A set of modeling language extensions permit automatically synchronized communication between submodels; however, the automation requires that any such communication must take a nonzero amount off simulation time. Within this modeling paradigm, a variety of conservative synchronization protocols can transparently support conservative execution of submodels on potentially different processors. A specific implementation of this approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the Intel Paragon.
Streamlining the Design Tradespace for Earth Imaging Constellations
NASA Technical Reports Server (NTRS)
Nag, Sreeja; Hughes, Steven P.; Le Moigne, Jacqueline J.
2016-01-01
Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.
A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions
NASA Technical Reports Server (NTRS)
Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver L.
2016-01-01
Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.
Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions
NASA Astrophysics Data System (ADS)
Jung, J. Y.; Niemann, J. D.; Greimann, B. P.
2016-12-01
Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
A Theoretical Approach to the Long-Hazleton Process of Public Relations Model.
ERIC Educational Resources Information Center
Myers, Scott A.
One way to implement theory into existing public relations classes is to utilize the Process of Public Relations model developed by L. W. Long and V. Hazleton. The use of the model in the classroom is important because the model stresses the interdependence between the public relations practitioner and the organization. The model begins by…
NASA Astrophysics Data System (ADS)
Granade, Christopher; Wiebe, Nathan
2017-08-01
A major challenge facing existing sequential Monte Carlo methods for parameter estimation in physics stems from the inability of existing approaches to robustly deal with experiments that have different mechanisms that yield the results with equivalent probability. We address this problem here by proposing a form of particle filtering that clusters the particles that comprise the sequential Monte Carlo approximation to the posterior before applying a resampler. Through a new graphical approach to thinking about such models, we are able to devise an artificial-intelligence based strategy that automatically learns the shape and number of the clusters in the support of the posterior. We demonstrate the power of our approach by applying it to randomized gap estimation and a form of low circuit-depth phase estimation where existing methods from the physics literature either exhibit much worse performance or even fail completely.
Generalized Ordinary Differential Equation Models 1
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-01-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1978-01-01
The framework for a model of travel demand which will be useful in predicting the total market for air travel between two cities is discussed. Variables to be used in determining the need for air transportation where none currently exists and the effect of changes in system characteristics on attracting latent demand are identified. Existing models are examined in order to provide insight into their strong points and shortcomings. Much of the existing behavioral research in travel demand is incorporated to allow the inclusion of non-economic factors, such as convenience. The model developed is characterized as a market segmentation model. This is a consequence of the strengths of disaggregation and its natural evolution to a usable aggregate formulation. The need for this approach both pedagogically and mathematically is discussed.
An Exact Formula for Calculating Inverse Radial Lens Distortions
Drap, Pierre; Lefèvre, Julien
2016-01-01
This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jie; Kim, Donghun; Braun, James E.
It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances,more » and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.« less
Sancho, Leyla Gomes; Dain, Sulamis
2012-03-01
The study aims to infer the existence of a continuum between Health Assessment and Economic Assessment in Health, by highlighting points of intersection of these forms of appraisal. To achieve this, a review of the theoretical foundations, methods and approaches of both forms of assessment was conducted. It was based on the theoretical model of health evaluation as reported by Hartz et al and economic assessment in health approaches reported by Brouwer et al. It was seen that there is a continuum between the theoretical model of evaluative research and the extrawelfarist approach for economic assessment in health, and between the normative theoretical model for health assessment and the welfarist approaches for economic assessment in health. However, in practice the assessment is still conducted using the normative theoretical model and with a welfarist approach.
Reducing usage of the computational resources by event driven approach to model predictive control
NASA Astrophysics Data System (ADS)
Misik, Stefan; Bradac, Zdenek; Cela, Arben
2017-08-01
This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.
A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.
Hu, Shoubo; Chen, Zhitang; Chan, Laiwan
2018-05-01
Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.
Proceedings of the First Workshop on Service-Oriented Architectures and Software Product Lines
2008-05-01
Addison-Wesley, Har- low, 2000. [8] Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. Feature-Oriented Domain Analysis ( FODA ) Feasibility...Intensive Systems-Description, 2000. [17] K. Kang, S. Cohen, J. Hess, W. No- vak, and S. Peterson. Feature- Oriented Domain Analysis ( FODA ...product models. SPF modeling employs many approaches such as Feature- Oriented Domain Analysis and extensions to existing approaches such as UML
A dynamical systems approach to the tilted Bianchi models of solvable type
NASA Astrophysics Data System (ADS)
Coley, Alan; Hervik, Sigbjørn
2005-02-01
We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.
Le Moullec, Y; Potier, O; Gentric, C; Leclerc, J P
2011-05-01
This paper presents an experimental and numerical study of an activated sludge channel pilot plant. Concentration profiles of oxygen, COD, NO(3) and NH(4) have been measured for several operating conditions. These profiles have been compared to the simulated ones with three different modelling approaches, namely a systemic approach, CFD and compartmental modelling. For these three approaches, the kinetics model was the ASM-1 model (Henze et al., 2001). The three approaches allowed a reasonable simulation of all the concentration profiles except for ammonium for which the simulations results were far from the experimental ones. The analysis of the results showed that the role of the kinetics model is of primary importance for the prediction of activated sludge reactors performance. The fact that existing kinetics parameters in the literature have been determined by parametric optimisation using a systemic model limits the reliability of the prediction of local concentrations and of the local design of activated sludge reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Treatment of Sexual Disorders in the 1990s: An Integrated Approach.
ERIC Educational Resources Information Center
Rosen, Raymond C.; Leiblum, Sandra R.
1995-01-01
Reviews existing data regarding the etiology and treatment of male and female sexual dysfunctions. Discusses the use of multidimensional assessment models, especially in the evaluation of erectile dysfunction and sexual pain disorders. Despite the conceptual and technological sophistication of current approaches, treatment outcomes are…
An Instructional Design Framework for Fostering Student Engagement in Online Learning Environments
ERIC Educational Resources Information Center
Czerkawski, Betul C.; Lyman, Eugene W.
2016-01-01
Many approaches, models and frameworks exist when designing quality online learning environments. These approaches assist and guide instructional designers through the process of analysis, design, development, implementation and evaluation of instructional processes. Some of these frameworks are concerned with student participation, some with…
Curran, Patrick J.; Howard, Andrea L.; Bainter, Sierra; Lane, Stephanie T.; McGinley, James S.
2014-01-01
Objective Although recent statistical and computational developments allow for the empirical testing of psychological theories in ways not previously possible, one particularly vexing challenge remains: how to optimally model the prospective, reciprocal relations between two constructs as they developmentally unfold over time. Several analytic methods currently exist that attempt to model these types of relations, and each approach is successful to varying degrees. However, none provide the unambiguous separation of between-person and within-person components of stability and change over time, components that are often hypothesized to exist in the psychological sciences. The goal of our paper is to propose and demonstrate a novel extension of the multivariate latent curve model to allow for the disaggregation of these effects. Method We begin with a review of the standard latent curve models and describe how these primarily capture between-person differences in change. We then extend this model to allow for regression structures among the time-specific residuals to capture within-person differences in change. Results We demonstrate this model using an artificial data set generated to mimic the developmental relation between alcohol use and depressive symptomatology spanning five repeated measures. Conclusions We obtain a specificity of results from the proposed analytic strategy that are not available from other existing methodologies. We conclude with potential limitations of our approach and directions for future research. PMID:24364798
van der Klink, Jac J L; Bültmann, Ute; Burdorf, Alex; Schaufeli, Wilmar B; Zijlstra, Fred R H; Abma, Femke I; Brouwer, Sandra; van der Wilt, Gert Jan
2016-01-01
The aim of this paper is to propose a new model of sustainable employability based on the capability approach, encompassing the complexity of contemporary work, and placing particular emphasis on work-related values. Having evaluated existing conceptual models of work, health, and employability, we concluded that prevailing models lack an emphasis on important work-related values. Amartya Sen's capability approach (CA) provides a framework that incorporates a focus on values and reflects the complexity of sustainable employability. We developed a model of sustainable employability based on the CA. This model can be used as starting point for developing an assessment tool to investigate sustainable employability. A fundamental premise of the CA is that work should create value for the organization as well as for the worker. This approach challenges researchers, policy-makers, and practitioners to investigate what people find important and valuable--what they would like to achieve in a given (work) context--and moreover to ascertain whether people are able and enabled to do so. According to this approach, it is not only the individual who is responsible for achieving this; the work context is also important. Rather than merely describing relationships between variables, as existing descriptive models often do, the CA depicts a valuable goal: a set of capabilities that constitute valuable work. Moreover, the CA fits well with recent conceptions of health and modern insights into work, in which the individual works towards his or her own goals that s/he has to achieve within the broader goals of the organization.
Fournier, Véronique; Spranzi, Marta; Foureur, Nicolas; Brunet, Laurence
2015-01-01
Several approaches to clinical ethics consultation (CEC) exist in medical practice and are widely discussed in the clinical ethics literature; different models of CECs are classified according to their methods, goals, and consultant's attitude. Although the "facilitation" model has been endorsed by the American Society for Bioethics and Humanities (ASBH) and is described in an influential manual, alternative approaches, such as advocacy, moral expertise, mediation, and engagement are practiced and defended in the clinical ethics field. Our Clinical Ethics Center in Paris was founded in 2002 in the wake of the Patients' Rights Act, and to date it is the largest center that provides consultation services in France. In this article we shall describe and defend our own approach to clinical ethics consultation, which we call the "Commitment Model," in comparison with other existing models. Indeed commitment implies, among other meanings, continuity through time, a series of coherent actions, and the realization of important social goals. By drawing on a recent consultation case, we shall describe the main steps of our consultation procedure: interviews with major stakeholders, including patients and proxies; case conferences; and follow up. We shall show why we have chosen the term "commitment" to represent our approach at three different but interrelated levels: commitment towards patients, within the case conference group, and towards society as a whole. Copyright 2015 The Journal of Clinical Ethics. All rights reserved.
A precision medicine approach for psychiatric disease based on repeated symptom scores.
Fojo, Anthony T; Musliner, Katherine L; Zandi, Peter P; Zeger, Scott L
2017-12-01
For psychiatric diseases, rich information exists in the serial measurement of mental health symptom scores. We present a precision medicine framework for using the trajectories of multiple symptoms to make personalized predictions about future symptoms and related psychiatric events. Our approach fits a Bayesian hierarchical model that estimates a population-average trajectory for all symptoms and individual deviations from the average trajectory, then fits a second model that uses individual symptom trajectories to estimate the risk of experiencing an event. The fitted models are used to make clinically relevant predictions for new individuals. We demonstrate this approach on data from a study of antipsychotic therapy for schizophrenia, predicting future scores for positive, negative, and general symptoms, and the risk of treatment failure in 522 schizophrenic patients with observations over 8 weeks. While precision medicine has focused largely on genetic and molecular data, the complementary approach we present illustrates that innovative analytic methods for existing data can extend its reach more broadly. The systematic use of repeated measurements of psychiatric symptoms offers the promise of precision medicine in the field of mental health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Intergration of system identification and robust controller designs for flexible structures in space
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Lew, Jiann-Shiun
1990-01-01
An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.
Human Benchmarking of Expert Systems. Literature Review
1990-01-01
effetiveness of the development procedures used in order to predict whether the aplication of similar approaches will likely have effective and...they used in their learning and problem solving. We will describe these approaches later. Reasoning. Reasoning usually includes inference. Because to ... in the software engineering process. For example, existing approaches to software evaluation in the military are based on a model of conventional
An overview of modelling approaches and potential solution towards an endgame of tobacco
NASA Astrophysics Data System (ADS)
Halim, Tisya Farida Abdul; Sapiri, Hasimah; Abidin, Norhaslinda Zainal
2015-12-01
A high number of premature mortality due to tobacco use has increased worldwide. Despite control policies being implemented to reduce premature mortality, the rate of smoking prevalence is still high. Moreover, tobacco issues become increasingly difficult since many aspects need to be considered simultaneously. Thus, the purpose of this paper is to present an overview of existing modelling studies on tobacco control system. The background section describes the tobacco issues and its current trends. These models have been categorised according to their modelling approaches either individual or integrated approaches. Next, a framework of modelling approaches based on the integration of multi-criteria decision making, system dynamics and nonlinear programming is proposed, expected to reduce the smoking prevalence. This framework provides guideline for modelling the interaction between smoking behaviour and its impacts, tobacco control policies and the effectiveness of each strategy in healthcare.
Automated Analysis of Stateflow Models
NASA Technical Reports Server (NTRS)
Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier
2017-01-01
Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.
Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.
Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J
2016-01-01
Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions. © 2015, National Ground Water Association.
Promoting Teacher Growth through Lesson Study: A Culturally Embedded Approach
ERIC Educational Resources Information Center
Ebaeguin, Marlon
2015-01-01
Lesson Study has captured the attention of many international educators with its promise of improved student learning and sustained teacher growth. Lesson Study, however, has cultural underpinnings that a simple transference model overlooks. A culturally embedded approach attends to the existing cultural orientations and values of host schools.…
Management Training in Business and Industry: A Multimodal Approach to Supervision.
ERIC Educational Resources Information Center
O'Keefe, Edward J.
Historically, a close working relationship has existed between psychology and management. The holistic approach emerging in psychology from Lazarus' multimodal model will have a major impact on management practices, ultimately leading to the development of multidmodal management. The scientific psychology most managers are familiar with was based…
Boolean network inference from time series data incorporating prior biological knowledge.
Haider, Saad; Pal, Ranadip
2012-01-01
Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
ERIC Educational Resources Information Center
Westera, Wim
2018-01-01
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…
ERIC Educational Resources Information Center
Mikton, Christopher; Mehra, Radhika; Butchart, Alexander; Addiss, David; Almuneef, Maha; Cardia, Nancy; Cheah, Irene; Chen, JingQi; Makoae, Mokhantso; Raleva, Marija
2011-01-01
The study's aim was to develop a multidimensional model for the assessment of child maltreatment prevention readiness in low- and middle-income countries. The model was developed based on a conceptual review of relevant existing models and approaches, an international expert consultation, and focus groups in six countries. The final model…
Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM
ERIC Educational Resources Information Center
Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman
2012-01-01
This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…
Influence Function Learning in Information Diffusion Networks.
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2014-06-01
Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data.
Testing framework for embedded languages
NASA Astrophysics Data System (ADS)
Leskó, Dániel; Tejfel, Máté
2012-09-01
Embedding a new programming language into an existing one is a widely used technique, because it fastens the development process and gives a part of a language infrastructure for free (e.g. lexical, syntactical analyzers). In this paper we are presenting a new advantage of this development approach regarding to adding testing support for these new languages. Tool support for testing is a crucial point for a newly designed programming language. It could be done in the hard way by creating a testing tool from scratch, or we could try to reuse existing testing tools by extending them with an interface to our new language. The second approach requires less work, and also it fits very well for the embedded approach. The problem is that the creation of such interfaces is not straightforward at all, because the existing testing tools were mostly not designed to be extendable and to be able to deal with new languages. This paper presents an extendable and modular model of a testing framework, in which the most basic design decision was to keep the - previously mentioned - interface creation simple and straightforward. Other important aspects of our model are the test data generation, the oracle problem and the customizability of the whole testing phase.
Integrated Workforce Modeling System
NASA Technical Reports Server (NTRS)
Moynihan, Gary P.
2000-01-01
There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.
Supporting Children in Mastering Temporal Relations of Stories: The TERENCE Learning Approach
ERIC Educational Resources Information Center
Di Mascio, Tania; Gennari, Rosella; Melonio, Alessandra; Tarantino, Laura
2016-01-01
Though temporal reasoning is a key factor for text comprehension, existing proposals for visualizing temporal information and temporal connectives proves to be inadequate for children, not only for their levels of abstraction and detail, but also because they rely on pre-existing mental models of time and temporal connectives, while in the case of…
Understanding Achievement Differences between Schools in Ireland--Can Existing Data-Sets Help?
ERIC Educational Resources Information Center
Gilleece, Lorraine
2014-01-01
Recent years have seen an increased focus on school accountability in Ireland and calls for greater use to be made of student achievement data for monitoring student outcomes. In this paper, it is argued that existing data-sets in Ireland offer limited potential for the value-added modelling approaches used for accountability purposes in many…
Measuring cognition in teams: a cross-domain review.
Wildman, Jessica L; Salas, Eduardo; Scott, Charles P R
2014-08-01
The purpose of this article is twofold: to provide a critical cross-domain evaluation of team cognition measurement options and to provide novice researchers with practical guidance when selecting a measurement method. A vast selection of measurement approaches exist for measuring team cognition constructs including team mental models, transactive memory systems, team situation awareness, strategic consensus, and cognitive processes. Empirical studies and theoretical articles were reviewed to identify all of the existing approaches for measuring team cognition. These approaches were evaluated based on theoretical perspective assumed, constructs studied, resources required, level of obtrusiveness, internal consistency reliability, and predictive validity. The evaluations suggest that all existing methods are viable options from the point of view of reliability and validity, and that there are potential opportunities for cross-domain use. For example, methods traditionally used only to measure mental models may be useful for examining transactive memory and situation awareness. The selection of team cognition measures requires researchers to answer several key questions regarding the theoretical nature of team cognition and the practical feasibility of each method. We provide novice researchers with guidance regarding how to begin the search for a team cognition measure and suggest several new ideas regarding future measurement research. We provide (1) a broad overview and evaluation of existing team cognition measurement methods, (2) suggestions for new uses of those methods across research domains, and (3) critical guidance for novice researchers looking to measure team cognition.
A Bayesian model averaging method for improving SMT phrase table
NASA Astrophysics Data System (ADS)
Duan, Nan
2013-03-01
Previous methods on improving translation quality by employing multiple SMT models usually carry out as a second-pass decision procedure on hypotheses from multiple systems using extra features instead of using features in existing models in more depth. In this paper, we propose translation model generalization (TMG), an approach that updates probability feature values for the translation model being used based on the model itself and a set of auxiliary models, aiming to alleviate the over-estimation problem and enhance translation quality in the first-pass decoding phase. We validate our approach for translation models based on auxiliary models built by two different ways. We also introduce novel probability variance features into the log-linear models for further improvements. We conclude our approach can be developed independently and integrated into current SMT pipeline directly. We demonstrate BLEU improvements on the NIST Chinese-to-English MT tasks for single-system decodings.
Incorporating time-delays in S-System model for reverse engineering genetic networks.
Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan
2013-06-18
In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in Escherichia coli show a significant improvement compared with other state-of-the-art approaches for GRN modeling.
Cognitive Models: The Missing Link to Learning Fraction Multiplication and Division
ERIC Educational Resources Information Center
de Castro, Belinda V.
2008-01-01
This quasi-experimental study aims to streamline cognitive models on fraction multiplication and division that contain the most worthwhile features of other existing models. Its exploratory nature and its approach to proof elicitation can be used to help establish its effectiveness in building students' understanding of fractions as compared to…
An investigation of modelling and design for software service applications.
Anjum, Maria; Budgen, David
2017-01-01
Software services offer the opportunity to use a component-based approach for the design of applications. However, this needs a deeper understanding of how to develop service-based applications in a systematic manner, and of the set of properties that need to be included in the 'design model'. We have used a realistic application to explore systematically how service-based designs can be created and described. We first identified the key properties of an SOA (service oriented architecture) and then undertook a single-case case study to explore its use in the development of a design for a large-scale application in energy engineering, modelling this with existing notations wherever possible. We evaluated the resulting design model using two walkthroughs with both domain and application experts. We were able to successfully develop a design model around the ten properties identified, and to describe it by adapting existing design notations. A component-based approach to designing such systems does appear to be feasible. However, it needs the assistance of a more integrated set of notations for describing the resulting design model.
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei
2018-01-01
Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A
2013-11-01
Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.
A simplified approach to quasi-linear viscoelastic modeling
Nekouzadeh, Ali; Pryse, Kenneth M.; Elson, Elliot L.; Genin, Guy M.
2007-01-01
The fitting of quasi-linear viscoelastic (QLV) constitutive models to material data often involves somewhat cumbersome numerical convolution. A new approach to treating quasi-linearity in one dimension is described and applied to characterize the behavior of reconstituted collagen. This approach is based on a new principle for including nonlinearity and requires considerably less computation than other comparable models for both model calibration and response prediction, especially for smoothly applied stretching. Additionally, the approach allows relaxation to adapt with the strain history. The modeling approach is demonstrated through tests on pure reconstituted collagen. Sequences of “ramp-and-hold” stretching tests were applied to rectangular collagen specimens. The relaxation force data from the “hold” was used to calibrate a new “adaptive QLV model” and several models from literature, and the force data from the “ramp” was used to check the accuracy of model predictions. Additionally, the ability of the models to predict the force response on a reloading of the specimen was assessed. The “adaptive QLV model” based on this new approach predicts collagen behavior comparably to or better than existing models, with much less computation. PMID:17499254
Weight and the Future of Space Flight Hardware Cost Modeling
NASA Technical Reports Server (NTRS)
Prince, Frank A.
2003-01-01
Weight has been used as the primary input variable for cost estimating almost as long as there have been parametric cost models. While there are good reasons for using weight, serious limitations exist. These limitations have been addressed by multi-variable equations and trend analysis in models such as NAFCOM, PRICE, and SEER; however, these models have not be able to address the significant time lags that can occur between the development of similar space flight hardware systems. These time lags make the cost analyst's job difficult because insufficient data exists to perform trend analysis, and the current set of parametric models are not well suited to accommodating process improvements in space flight hardware design, development, build and test. As a result, people of good faith can have serious disagreement over the cost for new systems. To address these shortcomings, new cost modeling approaches are needed. The most promising approach is process based (sometimes called activity) costing. Developing process based models will require a detailed understanding of the functions required to produce space flight hardware combined with innovative approaches to estimating the necessary resources. Particularly challenging will be the lack of data at the process level. One method for developing a model is to combine notional algorithms with a discrete event simulation and model changes to the total cost as perturbations to the program are introduced. Despite these challenges, the potential benefits are such that efforts should be focused on developing process based cost models.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Query Language for Location-Based Services: A Model Checking Approach
NASA Astrophysics Data System (ADS)
Hoareau, Christian; Satoh, Ichiro
We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.
Continuity-based model interfacing for plant-wide simulation: a general approach.
Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A
2006-08-01
In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out.
AQMEII: A New International Initiative on Air Quality Model Evaluation
We provide a conceptual view of the process of evaluating regional-scale three-dimensional numerical photochemical air quality modeling system, based on an examination of existing approached to the evaluation of such systems as they are currently used in a variety of application....
No abstract was prepared or requested. This is a short presentation aiming to present a status of what in silico models and approaches exists in the prediction of skin sensitization potential and/or potency.
A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.
Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.
1997-03-01
There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Panu, U. S.; Ng, W.; Rasmussen, P. F.
2009-12-01
The modeling of weather states (i.e., precipitation occurrences) is critical when the historical data are not long enough for the desired analysis. Stochastic models (e.g., Markov Chain and Alternating Renewal Process (ARP)) of the precipitation occurrence processes generally assume the existence of short-term temporal-dependency between the neighboring states while implying the existence of long-term independency (randomness) of states in precipitation records. Existing temporal-dependent models for the generation of precipitation occurrences are restricted either by the fixed-length memory (e.g., the order of a Markov chain model), or by the reining states in segments (e.g., persistency of homogenous states within dry/wet-spell lengths of an ARP). The modeling of variable segment lengths and states could be an arduous task and a flexible modeling approach is required for the preservation of various segmented patterns of precipitation data series. An innovative Dictionary approach has been developed in the field of genome pattern recognition for the identification of frequently occurring genome segments in DNA sequences. The genome segments delineate the biologically meaningful ``words" (i.e., segments with a specific patterns in a series of discrete states) that can be jointly modeled with variable lengths and states. A meaningful “word”, in hydrology, can be referred to a segment of precipitation occurrence comprising of wet or dry states. Such flexibility would provide a unique advantage over the traditional stochastic models for the generation of precipitation occurrences. Three stochastic models, namely, the alternating renewal process using Geometric distribution, the second-order Markov chain model, and the Dictionary approach have been assessed to evaluate their efficacy for the generation of daily precipitation sequences. Comparisons involved three guiding principles namely (i) the ability of models to preserve the short-term temporal-dependency in data through the concepts of autocorrelation, average mutual information, and Hurst exponent, (ii) the ability of models to preserve the persistency within the homogenous dry/wet weather states through analysis of dry/wet-spell lengths between the observed and generated data, and (iii) the ability to assesses the goodness-of-fit of models through the likelihood estimates (i.e., AIC and BIC). Past 30 years of observed daily precipitation records from 10 Canadian meteorological stations were utilized for comparative analyses of the three models. In general, the Markov chain model performed well. The remainders of the models were found to be competitive from one another depending upon the scope and purpose of the comparison. Although the Markov chain model has a certain advantage in the generation of daily precipitation occurrences, the structural flexibility offered by the Dictionary approach in modeling the varied segment lengths of heterogeneous weather states provides a distinct and powerful advantage in the generation of precipitation sequences.
A Machine-Learning-Driven Sky Model.
Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt
2017-01-01
Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.
Estimation of indirect effect when the mediator is a censored variable.
Wang, Jian; Shete, Sanjay
2017-01-01
A mediation model explores the direct and indirect effects of an initial variable ( X) on an outcome variable ( Y) by including a mediator ( M). In many realistic scenarios, investigators observe censored data instead of the complete data. Current research in mediation analysis for censored data focuses mainly on censored outcomes, but not censored mediators. In this study, we proposed a strategy based on the accelerated failure time model and a multiple imputation approach. We adapted a measure of the indirect effect for the mediation model with a censored mediator, which can assess the indirect effect at both the group and individual levels. Based on simulation, we established the bias in the estimations of different paths (i.e. the effects of X on M [ a], of M on Y [ b] and of X on Y given mediator M [ c']) and indirect effects when analyzing the data using the existing approaches, including a naïve approach implemented in software such as Mplus, complete-case analysis, and the Tobit mediation model. We conducted simulation studies to investigate the performance of the proposed strategy compared to that of the existing approaches. The proposed strategy accurately estimates the coefficients of different paths, indirect effects and percentages of the total effects mediated. We applied these mediation approaches to the study of SNPs, age at menopause and fasting glucose levels. Our results indicate that there is no indirect effect of association between SNPs and fasting glucose level that is mediated through the age at menopause.
NASA Astrophysics Data System (ADS)
Signell, R. P.; Camossi, E.
2015-11-01
Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
NASA Astrophysics Data System (ADS)
Diaz-Torres, A.; Boselli, M.
2016-05-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
A new approach to estimate time-to-cure from cancer registries data.
Boussari, Olayidé; Romain, Gaëlle; Remontet, Laurent; Bossard, Nadine; Mounier, Morgane; Bouvier, Anne-Marie; Binquet, Christine; Colonna, Marc; Jooste, Valérie
2018-04-01
Cure models have been adapted to net survival context to provide important indicators from population-based cancer data, such as the cure fraction and the time-to-cure. However existing methods for computing time-to-cure suffer from some limitations. Cure models in net survival framework were briefly overviewed and a new definition of time-to-cure was introduced as the time TTC at which P(t), the estimated covariate-specific probability of being cured at a given time t after diagnosis, reaches 0.95. We applied flexible parametric cure models to data of four cancer sites provided by the French network of cancer registries (FRANCIM). Then estimates of the time-to-cure by TTC and by two existing methods were derived and compared. Cure fractions and probabilities P(t) were also computed. Depending on the age group, TTC ranged from to 8 to 10 years for colorectal and pancreatic cancer and was nearly 12 years for breast cancer. In thyroid cancer patients under 55 years at diagnosis, TTC was strikingly 0: the probability of being cured was >0.95 just after diagnosis. This is an interesting result regarding the health insurance premiums of these patients. The estimated values of time-to-cure from the three approaches were close for colorectal cancer only. We propose a new approach, based on estimated covariate-specific probability of being cured, to estimate time-to-cure. Compared to two existing methods, the new approach seems to be more intuitive and natural and less sensitive to the survival time distribution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Women’s Sexuality: Behaviors, Responses, and Individual Differences
Andersen, Barbara L.; Cyranowski, Jill M.
2009-01-01
Classic and contemporary approaches to the assessment of female sexuality are discussed. General approaches, assessment strategies, and models of female sexuality are organized within the conceptual domains of sexual behaviors, sexual responses (desire, excitement, orgasm, and resolution), and individual differences, including general and sex-specific personality models. Where applicable, important trends and relationships are highlighted in the literature with both existing reports and previously unpublished data. The present conceptual overview highlights areas in sexual assessment and model building that are in need of further research and theoretical clarification. PMID:8543712
Reflected stochastic differential equation models for constrained animal movement
Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.
2017-01-01
Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
Le management des projets scientifiques
NASA Astrophysics Data System (ADS)
Perrier, Françoise
2000-12-01
We describe in this paper a new approach for the management of scientific projects. This approach is the result of a long reflexion carried out within the MQDP (Methodology and Quality in the Project Development) group of INSU-CNRS, and continued with Guy Serra. Our reflexion was initiated with the study of the so-called `North-American Paradigm' which was, initially considered as the only relevant management model. Through our active participation in several astrophysical projects we realized that this model could not be applied to our laboratories without major modifications. Therefore, step-by-step, we have constructed our own methodology, using to the fullest human potential resources existing in our research field, their habits and skills. We have also participated in various working groups in industrial and scientific organisms for the benefits of CNRS. The management model presented here is based on a systemic and complex approach. This approach lets us describe the multiple aspects of a scientific project specially taking into account the human dimension. The project system model includes three major interconnected systems, immersed within an influencing and influenced environment: the `System to be Realized' which defines scientific and technical tasks leading to the scientific goals, the `Realizing System' which describes procedures, processes and organization, and the `Actors' System' which implements and boosts all the processes. Each one exists only through a series of successive models, elaborated at predefined dates of the project called `key-points'. These systems evolve with time and under often-unpredictable circumstances and the models have to take it into account. At these key-points, each model is compared to reality and the difference between the predicted and realized tasks is evaluated in order to define the data for the next model. This model can be applied to any kind of projects.
Sculpting bespoke mountains: Determining free energies with basis expansions
NASA Astrophysics Data System (ADS)
Whitmer, Jonathan K.; Fluitt, Aaron M.; Antony, Lucas; Qin, Jian; McGovern, Michael; de Pablo, Juan J.
2015-07-01
The intriguing behavior of a wide variety of physical systems, ranging from amorphous solids or glasses to proteins, is a direct manifestation of underlying free energy landscapes riddled with local minima separated by large barriers. Exploring such landscapes has arguably become one of statistical physics's great challenges. A new method is proposed here for uniform sampling of rugged free energy surfaces. The method, which relies on special Green's functions to approximate the Dirac delta function, improves significantly on existing simulation techniques by providing a boundary-agnostic approach that is capable of mapping complex features in multidimensional free energy surfaces. The usefulness of the proposed approach is established in the context of a simple model glass former and model proteins, demonstrating improved convergence and accuracy over existing methods.
NASA Technical Reports Server (NTRS)
Rubinstein, R. (Editor); Rumsey, C. L. (Editor); Salas, M. D. (Editor); Thomas, J. L. (Editor); Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Advances in turbulence modeling are needed in order to calculate high Reynolds number flows near the onset of separation and beyond. To this end, the participants in this workshop made the following recommendations. (1) A national/international database and standards for turbulence modeling assessment should be established. Existing experimental data sets should be reviewed and categorized. Advantage should be taken of other efforts already under-way, such as that of the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) consortium. Carefully selected "unit" experiments will be needed, as well as advances in instrumentation, to fill the gaps in existing datasets. A high priority should be given to document existing turbulence model capabilities in a standard form, including numerical implementation issues such as grid quality and resolution. (2) NASA should support long-term research on Algebraic Stress Models and Reynolds Stress Models. The emphasis should be placed on improving the length-scale equation, since it is the least understood and is a key component of two-equation and higher models. Second priority should be given to the development of improved near-wall models. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) would provide valuable guidance in developing and validating new Reynolds-averaged Navier-Stokes (RANS) models. Although not the focus of this workshop, DNS, LES, and hybrid methods currently represent viable approaches for analysis on a limited basis. Therefore, although computer limitations require the use of RANS methods for realistic configurations at high Reynolds number in the foreseeable future, a balanced effort in turbulence modeling development, validation, and implementation should include these approaches as well.
Assessment of credit risk based on fuzzy relations
NASA Astrophysics Data System (ADS)
Tsabadze, Teimuraz
2017-06-01
The purpose of this paper is to develop a new approach for an assessment of the credit risk to corporate borrowers. There are different models for borrowers' risk assessment. These models are divided into two groups: statistical and theoretical. When assessing the credit risk for corporate borrowers, statistical model is unacceptable due to the lack of sufficiently large history of defaults. At the same time, we cannot use some theoretical models due to the lack of stock exchange. In those cases, when studying a particular borrower given that statistical base does not exist, the decision-making process is always of expert nature. The paper describes a new approach that may be used in group decision-making. An example of the application of the proposed approach is given.
Cameron, Kenzie A
2009-03-01
To provide a brief overview of 15 selected persuasion theories and models, and to present examples of their use in health communication research. The theories are categorized as message effects models, attitude-behavior approaches, cognitive processing theories and models, consistency theories, inoculation theory, and functional approaches. As it is often the intent of a practitioner to shape, reinforce, or change a patient's behavior, familiarity with theories of persuasion may lead to the development of novel communication approaches with existing patients. This article serves as an introductory primer to theories of persuasion with applications to health communication research. Understanding key constructs and general formulations of persuasive theories may allow practitioners to employ useful theoretical frameworks when interacting with patients.
Learning Layouts for Single-Page Graphic Designs.
O'Donovan, Peter; Agarwala, Aseem; Hertzmann, Aaron
2014-08-01
This paper presents an approach for automatically creating graphic design layouts using a new energy-based model derived from design principles. The model includes several new algorithms for analyzing graphic designs, including the prediction of perceived importance, alignment detection, and hierarchical segmentation. Given the model, we use optimization to synthesize new layouts for a variety of single-page graphic designs. Model parameters are learned with Nonlinear Inverse Optimization (NIO) from a small number of example layouts. To demonstrate our approach, we show results for applications including generating design layouts in various styles, retargeting designs to new sizes, and improving existing designs. We also compare our automatic results with designs created using crowdsourcing and show that our approach performs slightly better than novice designers.
MCore: A High-Order Finite-Volume Dynamical Core for Atmospheric General Circulation Models
NASA Astrophysics Data System (ADS)
Ullrich, P.; Jablonowski, C.
2011-12-01
The desire for increasingly accurate predictions of the atmosphere has driven numerical models to smaller and smaller resolutions, while simultaneously exponentially driving up the cost of existing numerical models. Even with the modern rapid advancement of computational performance, it is estimated that it will take more than twenty years before existing models approach the scales needed to resolve atmospheric convection. However, smarter numerical methods may allow us to glimpse the types of results we would expect from these fine-scale simulations while only requiring a fraction of the computational cost. The next generation of atmospheric models will likely need to rely on both high-order accuracy and adaptive mesh refinement in order to properly capture features of interest. We present our ongoing research on developing a set of ``smart'' numerical methods for simulating the global non-hydrostatic fluid equations which govern atmospheric motions. We have harnessed a high-order finite-volume based approach in developing an atmospheric dynamical core on the cubed-sphere. This type of method is desirable for applications involving adaptive grids, since it has been shown that spuriously reflected wave modes are intrinsically damped out under this approach. The model further makes use of an implicit-explicit Runge-Kutta-Rosenbrock (IMEX-RKR) time integrator for accurate and efficient coupling of the horizontal and vertical model components. We survey the algorithmic development of the model and present results from idealized dynamical core test cases, as well as give a glimpse at future work with our model.
A Semi-Parametric Bayesian Mixture Modeling Approach for the Analysis of Judge Mediated Data
ERIC Educational Resources Information Center
Muckle, Timothy Joseph
2010-01-01
Existing methods for the analysis of ordinal-level data arising from judge ratings, such as the Multi-Facet Rasch model (MFRM, or the so-called Facets model) have been widely used in assessment in order to render fair examinee ability estimates in situations where the judges vary in their behavior or severity. However, this model makes certain…
Mental Models for Mechanical Comprehension. A Review of Literature.
1986-06-01
the mental models that people use to understand and solve problems involving mechanics and motion. Method The existing psychological literature on...have been used to investigate mental models. The constructionist school is concerned with how mental models are formed. The information-processing...school uses the experimental methods of modern cognitive psychology to investigate mental structures. The componential approach attempts to meld the
Multi-Level Alignment Model: Transforming Face-to-Face into E-Instructional Programs
ERIC Educational Resources Information Center
Byers, Celina
2005-01-01
Purpose--To suggest to others in the field an approach equally valid for transforming existing courses into online courses and for creating new online courses. Design/methodology/approach--Using the literature for substantiation, this article discusses the current rapid change within organizations, the role of technology in that change, and the…
ERIC Educational Resources Information Center
Baker, Marshall A.; Robinson, J. Shane
2016-01-01
Experiential learning is an important pedagogical approach used in secondary agricultural education. Though anecdotal evidence supports the use of experiential learning, a paucity of empirical research exists supporting the effects of this approach when compared to a more conventional teaching method, such as direct instruction. Therefore, the…
Research Outcomes of Auditory-Verbal Intervention: Is the Approach Justified?
ERIC Educational Resources Information Center
Rhoades, Ellen A.
2006-01-01
This paper examines the construct of evidence-based practice, how existing data on the effectiveness of the Auditory-Verbal (A-V) approach for children with hearing loss are evaluated within this construct, and whether implementation of an A-V intervention model is therefore justified. It concludes with a recurrent call for action towards…
Lessons Learned from the Whole Child and Coordinated School Health Approaches
ERIC Educational Resources Information Center
Rasberry, Catherine N.; Slade, Sean; Lohrmann, David K.; Valois, Robert F.
2015-01-01
Background: The new Whole School, Whole Community, Whole Child (WSCC) model, designed to depict links between health and learning, is founded on concepts of coordinated school health (CSH) and a whole child approach to education. Methods: The existing literature, including scientific articles and key publications from national agencies and…
Performance model-directed data sieving for high-performance I/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong; Lu, Yin; Amritkar, Prathamesh
2014-09-10
Many scientific computing applications and engineering simulations exhibit noncontiguous I/O access patterns. Data sieving is an important technique to improve the performance of noncontiguous I/O accesses by combining small and noncontiguous requests into a large and contiguous request. It has been proven effective even though more data are potentially accessed than demanded. In this study, we propose a new data sieving approach namely performance model-directed data sieving, or PMD data sieving in short. It improves the existing data sieving approach from two aspects: (1) dynamically determines when it is beneficial to perform data sieving; and (2) dynamically determines how tomore » perform data sieving if beneficial. It improves the performance of the existing data sieving approach considerably and reduces the memory consumption as verified by both theoretical analysis and experimental results. Given the importance of supporting noncontiguous accesses effectively and reducing the memory pressure in a large-scale system, the proposed PMD data sieving approach in this research holds a great promise and will have an impact on high-performance I/O systems.« less
Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.
2011-01-01
Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.
2010-05-23
The increasing asymmetric nature of threats to the security, health and sustainable growth of our society requires that anticipatory reasoning become an everyday activity. Currently, the use of anticipatory reasoning is hindered by the lack of systematic methods for combining knowledge- and evidence-based models, integrating modeling algorithms, and assessing model validity, accuracy and utility. The workshop addresses these gaps with the intent of fostering the creation of a community of interest on model integration and evaluation that may serve as an aggregation point for existing efforts and a launch pad for new approaches.
Delamination detection using methods of computational intelligence
NASA Astrophysics Data System (ADS)
Ihesiulor, Obinna K.; Shankar, Krishna; Zhang, Zhifang; Ray, Tapabrata
2012-11-01
Abstract Reliable delamination prediction scheme is indispensable in order to prevent potential risks of catastrophic failures in composite structures. The existence of delaminations changes the vibration characteristics of composite laminates and hence such indicators can be used to quantify the health characteristics of laminates. An approach for online health monitoring of in-service composite laminates is presented in this paper that relies on methods based on computational intelligence. Typical changes in the observed vibration characteristics (i.e. change in natural frequencies) are considered as inputs to identify the existence, location and magnitude of delaminations. The performance of the proposed approach is demonstrated using numerical models of composite laminates. Since this identification problem essentially involves the solution of an optimization problem, the use of finite element (FE) methods as the underlying tool for analysis turns out to be computationally expensive. A surrogate assisted optimization approach is hence introduced to contain the computational time within affordable limits. An artificial neural network (ANN) model with Bayesian regularization is used as the underlying approximation scheme while an improved rate of convergence is achieved using a memetic algorithm. However, building of ANN surrogate models usually requires large training datasets. K-means clustering is effectively employed to reduce the size of datasets. ANN is also used via inverse modeling to determine the position, size and location of delaminations using changes in measured natural frequencies. The results clearly highlight the efficiency and the robustness of the approach.
Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine.
Riccardi, Annalisa; Fernández-Navarro, Francisco; Carloni, Sante
2014-10-01
In this paper, the well known stagewise additive modeling using a multiclass exponential (SAMME) boosting algorithm is extended to address problems where there exists a natural order in the targets using a cost-sensitive approach. The proposed ensemble model uses an extreme learning machine (ELM) model as a base classifier (with the Gaussian kernel and the additional regularization parameter). The closed form of the derived weighted least squares problem is provided, and it is employed to estimate analytically the parameters connecting the hidden layer to the output layer at each iteration of the boosting algorithm. Compared to the state-of-the-art boosting algorithms, in particular those using ELM as base classifier, the suggested technique does not require the generation of a new training dataset at each iteration. The adoption of the weighted least squares formulation of the problem has been presented as an unbiased and alternative approach to the already existing ELM boosting techniques. Moreover, the addition of a cost model for weighting the patterns, according to the order of the targets, enables the classifier to tackle ordinal regression problems further. The proposed method has been validated by an experimental study by comparing it with already existing ensemble methods and ELM techniques for ordinal regression, showing competitive results.
Current State of the Art Historic Building Information Modelling
NASA Astrophysics Data System (ADS)
Dore, C.; Murphy, M.
2017-08-01
In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.
Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N; Mantalaris, Athanasios
2012-01-01
The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.
Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios
2013-01-01
The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals. PMID:24688682
A TRAINING MODEL FOR THE JOBLESS ADULT.
ERIC Educational Resources Information Center
ULRICH, BERNARD
THE TRAINING SYSTEMS DESIGN, AN INTERDISCIPLINARY APPROACH UTILIZING KNOWLEDGE OF BEHAVIORAL SCIENCES, NEW INSTRUCTIONAL TECHNOLOGY, AND SYSTEMS DESIGN, HAS BEEN APPLIED TO DEVELOP A MODEL FOR RE-EDUCATING AND TRAINING THE AGING UNEMPLOYED. RESEARCH INTO EXISTING MDTA DEMONSTRATION PROGRAMS BY THE COOPERATIVE EFFORTS OF MCGRAW-HILL AND THE…
Cogeneration computer model assessment: Advanced cogeneration research study
NASA Technical Reports Server (NTRS)
Rosenberg, L.
1983-01-01
Cogeneration computer simulation models to recommend the most desirable models or their components for use by the Southern California Edison Company (SCE) in evaluating potential cogeneration projects was assessed. Existing cogeneration modeling capabilities are described, preferred models are identified, and an approach to the development of a code which will best satisfy SCE requirements is recommended. Five models (CELCAP, COGEN 2, CPA, DEUS, and OASIS) are recommended for further consideration.
Causal Models for Mediation Analysis: An Introduction to Structural Mean Models.
Zheng, Cheng; Atkins, David C; Zhou, Xiao-Hua; Rhew, Isaac C
2015-01-01
Mediation analyses are critical to understanding why behavioral interventions work. To yield a causal interpretation, common mediation approaches must make an assumption of "sequential ignorability." The current article describes an alternative approach to causal mediation called structural mean models (SMMs). A specific SMM called a rank-preserving model (RPM) is introduced in the context of an applied example. Particular attention is given to the assumptions of both approaches to mediation. Applying both mediation approaches to the college student drinking data yield notable differences in the magnitude of effects. Simulated examples reveal instances in which the traditional approach can yield strongly biased results, whereas the RPM approach remains unbiased in these cases. At the same time, the RPM approach has its own assumptions that must be met for correct inference, such as the existence of a covariate that strongly moderates the effect of the intervention on the mediator and no unmeasured confounders that also serve as a moderator of the effect of the intervention or the mediator on the outcome. The RPM approach to mediation offers an alternative way to perform mediation analysis when there may be unmeasured confounders.
Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.
Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H
2015-01-01
Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.
Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases
Neal, Maxwell L.; Carlson, Brian E.; Thompson, Christopher T.; James, Ryan C.; Kim, Karam G.; Tran, Kenneth; Crampin, Edmund J.; Cook, Daniel L.; Gennari, John H.
2015-01-01
Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen’s semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the “Pandit-Hinch-Niederer” (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach. PMID:26716837
Bartsch, Sarah M.; Mui, Yeeli; Haidari, Leila A.; Spiker, Marie L.; Gittelsohn, Joel
2017-01-01
Obesity has become a truly global epidemic, affecting all age groups, all populations, and countries of all income levels. To date, existing policies and interventions have not reversed these trends, suggesting that innovative approaches are needed to transform obesity prevention and control. There are a number of indications that the obesity epidemic is a systems problem, as opposed to a simple problem with a linear cause-and-effect relationship. What may be needed to successfully address obesity is an approach that considers the entire system when making any important decision, observation, or change. A systems approach to obesity prevention and control has many benefits, including the potential to further understand indirect effects or to test policies virtually before implementing them in the real world. Discussed here are 5 key efforts to implement a systems approach for obesity prevention: 1) utilize more global approaches; 2) bring new experts from disciplines that do not traditionally work with obesity to share experiences and ideas with obesity experts; 3) utilize systems methods, such as systems mapping and modeling; 4) modify and combine traditional approaches to achieve a stronger systems orientation; and 5) bridge existing gaps between research, education, policy, and action. This article also provides an example of how a systems approach has been used to convene a multidisciplinary team and conduct systems mapping and modeling as part of an obesity prevention program in Baltimore, Maryland. PMID:28049754
NASA Technical Reports Server (NTRS)
Balas, M. J.; Kaufman, H.; Wen, J.
1985-01-01
A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.
A New Theory-to-Practice Model for Student Affairs: Integrating Scholarship, Context, and Reflection
ERIC Educational Resources Information Center
Reason, Robert D.; Kimball, Ezekiel W.
2012-01-01
In this article, we synthesize existing theory-to-practice approaches within the student affairs literature to arrive at a new model that incorporates formal and informal theory, institutional context, and reflective practice. The new model arrives at a balance between the rigor necessary for scholarly theory development and the adaptability…
The Key to Employability Developing a Practical Model of Graduate Employability
ERIC Educational Resources Information Center
Pool, Lorraine Dacre; Sewell, Peter
2007-01-01
Purpose: The purpose of this paper is to introduce a straightforward, practical model of employability that will allow the concept to be explained easily and that can be used as a framework for working with students to develop their employability. Design/methodology/approach: The model was developed from existing research into employability issues…
An investigation of modelling and design for software service applications
2017-01-01
Software services offer the opportunity to use a component-based approach for the design of applications. However, this needs a deeper understanding of how to develop service-based applications in a systematic manner, and of the set of properties that need to be included in the ‘design model’. We have used a realistic application to explore systematically how service-based designs can be created and described. We first identified the key properties of an SOA (service oriented architecture) and then undertook a single-case case study to explore its use in the development of a design for a large-scale application in energy engineering, modelling this with existing notations wherever possible. We evaluated the resulting design model using two walkthroughs with both domain and application experts. We were able to successfully develop a design model around the ten properties identified, and to describe it by adapting existing design notations. A component-based approach to designing such systems does appear to be feasible. However, it needs the assistance of a more integrated set of notations for describing the resulting design model. PMID:28489905
Integration and segregation in auditory streaming
NASA Astrophysics Data System (ADS)
Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty
2005-12-01
We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.
Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui; ...
2017-05-02
Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui
Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less
Distance measurement based on light field geometry and ray tracing.
Chen, Yanqin; Jin, Xin; Dai, Qionghai
2017-01-09
In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.
Matthew P. Thompson; Julie W. Gilbertson-Day; Joe H. Scott
2015-01-01
We develop a novel risk assessment approach that integrates complementary, yet distinct, spatial modeling approaches currently used in wildfire risk assessment. Motivation for this work stems largely from limitations of existing stochastic wildfire simulation systems, which can generate pixel-based outputs of fire behavior as well as polygon-based outputs of simulated...
ERIC Educational Resources Information Center
Pohl, Steffi; Gräfe, Linda; Rose, Norman
2014-01-01
Data from competence tests usually show a number of missing responses on test items due to both omitted and not-reached items. Different approaches for dealing with missing responses exist, and there are no clear guidelines on which of those to use. While classical approaches rely on an ignorable missing data mechanism, the most recently developed…
A posteriori operation detection in evolving software models
Langer, Philip; Wimmer, Manuel; Brosch, Petra; Herrmannsdörfer, Markus; Seidl, Martina; Wieland, Konrad; Kappel, Gerti
2013-01-01
As every software artifact, also software models are subject to continuous evolution. The operations applied between two successive versions of a model are crucial for understanding its evolution. Generic approaches for detecting operations a posteriori identify atomic operations, but neglect composite operations, such as refactorings, which leads to cluttered difference reports. To tackle this limitation, we present an orthogonal extension of existing atomic operation detection approaches for detecting also composite operations. Our approach searches for occurrences of composite operations within a set of detected atomic operations in a post-processing manner. One major benefit is the reuse of specifications available for executing composite operations also for detecting applications of them. We evaluate the accuracy of the approach in a real-world case study and investigate the scalability of our implementation in an experiment. PMID:23471366
NASA Technical Reports Server (NTRS)
Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui; Yenne, Britt; Vansickle, Larry; Ballantyne, Michael
1992-01-01
Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Simplified and advanced modelling of traction control systems of heavy-haul locomotives
NASA Astrophysics Data System (ADS)
Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin
2015-05-01
Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.
Quantization of the damped harmonic oscillator revisited
NASA Astrophysics Data System (ADS)
Baldiotti, M. C.; Fresneda, R.; Gitman, D. M.
2011-04-01
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches.
Looking Both Ways through Time: The Janus Model of Lateralized Cognition
ERIC Educational Resources Information Center
Dien, Joseph
2008-01-01
Existing models of laterality, while often successful at describing circumscribed domains, have not been successful as explanations of the overall patterns of hemispheric asymmetries. It is therefore suggested that a new approach is needed based on shared contributions to adaptive hemispheric roles rather than functional and structural…
Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects
ERIC Educational Resources Information Center
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria
2010-01-01
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
E-Learning Quality Assurance: A Process-Oriented Lifecycle Model
ERIC Educational Resources Information Center
Abdous, M'hammed
2009-01-01
Purpose: The purpose of this paper is to propose a process-oriented lifecycle model for ensuring quality in e-learning development and delivery. As a dynamic and iterative process, quality assurance (QA) is intertwined with the e-learning development process. Design/methodology/approach: After reviewing the existing literature, particularly…
Information-System Structure by Communication-Technology Concepts: A Cybernetic Model Approach.
ERIC Educational Resources Information Center
Reisig, Gerhard H. R.
1978-01-01
Presents the "Evidence-of-Existence" information system in which the structure is developed, with application of cybernetic concepts, as an isomorphic model in analogy to the system structure of communication technology. Three criteria of structuring are postulated: (1) source-channel-sink, with input-output characteristics, (2) filter-type…
ERIC Educational Resources Information Center
Zaman, Muhammad
2011-01-01
In this paper the author presents the case of the exchange marriage system to delineate a model of methodological gravitism. Such a model is not a deviation from or alteration to the existing qualitative research approaches. I have adopted culturally specific methodology to investigate spouse selection in line with the Grounded Theory Method. This…
The Advantages of Hierarchical Linear Modeling. ERIC/AE Digest.
ERIC Educational Resources Information Center
Osborne, Jason W.
This digest introduces hierarchical data structure, describes how hierarchical models work, and presents three approaches to analyzing hierarchical data. Hierarchical, or nested data, present several problems for analysis. People or creatures that exist within hierarchies tend to be more similar to each other than people randomly sampled from the…
Indigenous Models of Therapy in Traditional Asian Societies.
ERIC Educational Resources Information Center
Das, Ajit K.
1987-01-01
Presents an overview of some indigenous ways of understanding and dealing with psychological disorders in the traditional societies of Asia. Indigenous approaches to healing and psychotherapy existing in India, China, and Japan are included. Models of healing in these three societies are classified as folk traditions, mystical traditions, and…
A meta-model for computer executable dynamic clinical safety checklists.
Nan, Shan; Van Gorp, Pieter; Lu, Xudong; Kaymak, Uzay; Korsten, Hendrikus; Vdovjak, Richard; Duan, Huilong
2017-12-12
Safety checklist is a type of cognitive tool enforcing short term memory of medical workers with the purpose of reducing medical errors caused by overlook and ignorance. To facilitate the daily use of safety checklists, computerized systems embedded in the clinical workflow and adapted to patient-context are increasingly developed. However, the current hard-coded approach of implementing checklists in these systems increase the cognitive efforts of clinical experts and coding efforts for informaticists. This is due to the lack of a formal representation format that is both understandable by clinical experts and executable by computer programs. We developed a dynamic checklist meta-model with a three-step approach. Dynamic checklist modeling requirements were extracted by performing a domain analysis. Then, existing modeling approaches and tools were investigated with the purpose of reusing these languages. Finally, the meta-model was developed by eliciting domain concepts and their hierarchies. The feasibility of using the meta-model was validated by two case studies. The meta-model was mapped to specific modeling languages according to the requirements of hospitals. Using the proposed meta-model, a comprehensive coronary artery bypass graft peri-operative checklist set and a percutaneous coronary intervention peri-operative checklist set have been developed in a Dutch hospital and a Chinese hospital, respectively. The result shows that it is feasible to use the meta-model to facilitate the modeling and execution of dynamic checklists. We proposed a novel meta-model for the dynamic checklist with the purpose of facilitating creating dynamic checklists. The meta-model is a framework of reusing existing modeling languages and tools to model dynamic checklists. The feasibility of using the meta-model is validated by implementing a use case in the system.
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
An approach to multiscale modelling with graph grammars
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-01-01
Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929
Testing Strategies for Model-Based Development
NASA Technical Reports Server (NTRS)
Heimdahl, Mats P. E.; Whalen, Mike; Rajan, Ajitha; Miller, Steven P.
2006-01-01
This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model.
NASA Technical Reports Server (NTRS)
Sebok, Angelia; Wickens, Christopher; Sargent, Robert
2015-01-01
One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
Equation-oriented specification of neural models for simulations
Stimberg, Marcel; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain
2013-01-01
Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modeling software is to build network models based on a library of pre-defined components and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions. The presented approach has been implemented in the Brian2 simulator. PMID:24550820
Kellie Vache; Lutz Breuer; Julia Jones; Phil Sollins
2015-01-01
We present a systems modeling approach to the development of a place-based ecohydrological model. The conceptual model is calibrated to a variety of existing observations, taken in watershed 10 (WS10) at the HJ Andrews Experimental Forest (HJA) in Oregon, USA, a long term ecological research (LTER) site with a long history of catchment-...
Air freight demand models: An overview
NASA Technical Reports Server (NTRS)
Dajani, J. S.; Bernstein, G. W.
1978-01-01
A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.
NASA Astrophysics Data System (ADS)
Castagnetti, C.; Dubbini, M.; Ricci, P. C.; Rivola, R.; Giannini, M.; Capra, A.
2017-05-01
The new era of designing in architecture and civil engineering applications lies in the Building Information Modeling (BIM) approach, based on a 3D geometric model including a 3D database. This is easier for new constructions whereas, when dealing with existing buildings, the creation of the BIM is based on the accurate knowledge of the as-built construction. Such a condition is allowed by a 3D survey, often carried out with laser scanning technology or modern photogrammetry, which are able to guarantee an adequate points cloud in terms of resolution and completeness by balancing both time consuming and costs with respect to the request of final accuracy. The BIM approach for existing buildings and even more for historical buildings is not yet a well known and deeply discussed process. There are still several choices to be addressed in the process from the survey to the model and critical issues to be discussed in the modeling step, particularly when dealing with unconventional elements such as deformed geometries or historical elements. The paper describes a comprehensive workflow that goes through the survey and the modeling, allowing to focus on critical issues and key points to obtain a reliable BIM of an existing monument. The case study employed to illustrate the workflow is the Basilica of St. Stefano in Bologna (Italy), a large monumental complex with great religious, historical and architectural assets.
Influence Function Learning in Information Diffusion Networks
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2015-01-01
Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data. PMID:25973445
An improved Multimodel Approach for Global Sea Surface Temperature Forecasts
NASA Astrophysics Data System (ADS)
Khan, M. Z. K.; Mehrotra, R.; Sharma, A.
2014-12-01
The concept of ensemble combinations for formulating improved climate forecasts has gained popularity in recent years. However, many climate models share similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Recent approaches for combining forecasts that take into consideration differences in model accuracy over space and time have either ignored the similarity of forecast among the models or followed a pairwise dynamic combination approach. Here we present a basis for combining model predictions, illustrating the improvements that can be achieved if procedures for factoring in inter-model dependence are utilised. The utility of the approach is demonstrated by combining sea surface temperature (SST) forecasts from five climate models over a period of 1960-2005. The variable of interest, the monthly global sea surface temperature anomalies (SSTA) at a 50´50 latitude-longitude grid, is predicted three months in advance to demonstrate the utility of the proposed algorithm. Results indicate that the proposed approach offers consistent and significant improvements for majority of grid points compared to the case where the dependence among the models is ignored. Therefore, the proposed approach of combining multiple models by taking into account the existing interdependence, provides an attractive alternative to obtain improved climate forecast. In addition, an approach to combine seasonal forecasts from multiple climate models with varying periods of availability is also demonstrated.
Structural identifiability of cyclic graphical models of biological networks with latent variables.
Wang, Yulin; Lu, Na; Miao, Hongyu
2016-06-13
Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.
Applying Rasch Model and Generalizability Theory to Study Modified-Angoff Cut Scores
ERIC Educational Resources Information Center
Arce, Alvaro J.; Wang, Ze
2012-01-01
The traditional approach to scale modified-Angoff cut scores transfers the raw cuts to an existing raw-to-scale score conversion table. Under the traditional approach, cut scores and conversion table raw scores are not only seen as interchangeable but also as originating from a common scaling process. In this article, we propose an alternative…
Evolution of a Model for Socio-Scientific Issue Teaching and Learning
ERIC Educational Resources Information Center
Sadler, Troy D.; Foulk, Jaimie A.; Friedrichsen, Patricia J.
2017-01-01
Socio-scientific teaching and learning (SSI-TL) has been suggested as an effective approach for supporting meaningful learning in school contexts; however, limited tools exist to support the work of designing and implementing this approach. In this paper, we draw from a series of four design based research projects that have produced SSI…
1983-06-01
Commuents Regarding the Antagonistic Mechanisms Approach .0...... .................................... 67 C. Cognitive Applications...similarities between stimuli, and differentiation* a separation process. An analogous dichotomy in cognitive theory has been extensively studied by Tversky...tasks including perception. cognition , and action. Not all neurons are identical, there exist several anatomically defined categories of these cells
Comprehensive Aspectual UML approach to support AspectJ.
Magableh, Aws; Shukur, Zarina; Ali, Noorazean Mohd
2014-01-01
Unified Modeling Language is the most popular and widely used Object-Oriented modelling language in the IT industry. This study focuses on investigating the ability to expand UML to some extent to model crosscutting concerns (Aspects) to support AspectJ. Through a comprehensive literature review, we identify and extensively examine all the available Aspect-Oriented UML modelling approaches and find that the existing Aspect-Oriented Design Modelling approaches using UML cannot be considered to provide a framework for a comprehensive Aspectual UML modelling approach and also that there is a lack of adequate Aspect-Oriented tool support. This study also proposes a set of Aspectual UML semantic rules and attempts to generate AspectJ pseudocode from UML diagrams. The proposed Aspectual UML modelling approach is formally evaluated using a focus group to test six hypotheses regarding performance; a "good design" criteria-based evaluation to assess the quality of the design; and an AspectJ-based evaluation as a reference measurement-based evaluation. The results of the focus group evaluation confirm all the hypotheses put forward regarding the proposed approach. The proposed approach provides a comprehensive set of Aspectual UML structural and behavioral diagrams, which are designed and implemented based on a comprehensive and detailed set of AspectJ programming constructs.
Comprehensive Aspectual UML Approach to Support AspectJ
Magableh, Aws; Shukur, Zarina; Mohd. Ali, Noorazean
2014-01-01
Unified Modeling Language is the most popular and widely used Object-Oriented modelling language in the IT industry. This study focuses on investigating the ability to expand UML to some extent to model crosscutting concerns (Aspects) to support AspectJ. Through a comprehensive literature review, we identify and extensively examine all the available Aspect-Oriented UML modelling approaches and find that the existing Aspect-Oriented Design Modelling approaches using UML cannot be considered to provide a framework for a comprehensive Aspectual UML modelling approach and also that there is a lack of adequate Aspect-Oriented tool support. This study also proposes a set of Aspectual UML semantic rules and attempts to generate AspectJ pseudocode from UML diagrams. The proposed Aspectual UML modelling approach is formally evaluated using a focus group to test six hypotheses regarding performance; a “good design” criteria-based evaluation to assess the quality of the design; and an AspectJ-based evaluation as a reference measurement-based evaluation. The results of the focus group evaluation confirm all the hypotheses put forward regarding the proposed approach. The proposed approach provides a comprehensive set of Aspectual UML structural and behavioral diagrams, which are designed and implemented based on a comprehensive and detailed set of AspectJ programming constructs. PMID:25136656
Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions
NASA Astrophysics Data System (ADS)
Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif
2018-02-01
Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.
Ji, Xiaonan; Yen, Po-Yin
2015-08-31
Systematic reviews and their implementation in practice provide high quality evidence for clinical practice but are both time and labor intensive due to the large number of articles. Automatic text classification has proven to be instrumental in identifying relevant articles for systematic reviews. Existing approaches use machine learning model training to generate classification algorithms for the article screening process but have limitations. We applied a network approach to assist in the article screening process for systematic reviews using predetermined article relationships (similarity). The article similarity metric is calculated using the MEDLINE elements title (TI), abstract (AB), medical subject heading (MH), author (AU), and publication type (PT). We used an article network to illustrate the concept of article relationships. Using the concept, each article can be modeled as a node in the network and the relationship between 2 articles is modeled as an edge connecting them. The purpose of our study was to use the article relationship to facilitate an interactive article recommendation process. We used 15 completed systematic reviews produced by the Drug Effectiveness Review Project and demonstrated the use of article networks to assist article recommendation. We evaluated the predictive performance of MEDLINE elements and compared our approach with existing machine learning model training approaches. The performance was measured by work saved over sampling at 95% recall (WSS95) and the F-measure (F1). We also used repeated analysis over variance and Hommel's multiple comparison adjustment to demonstrate statistical evidence. We found that although there is no significant difference across elements (except AU), TI and AB have better predictive capability in general. Collaborative elements bring performance improvement in both F1 and WSS95. With our approach, a simple combination of TI+AB+PT could achieve a WSS95 performance of 37%, which is competitive to traditional machine learning model training approaches (23%-41% WSS95). We demonstrated a new approach to assist in labor intensive systematic reviews. Predictive ability of different elements (both single and composited) was explored. Without using model training approaches, we established a generalizable method that can achieve a competitive performance.
NASA Astrophysics Data System (ADS)
Walling, D. E.; Schuller, P.; Zhang, Y.; Iroumé, A.
2009-02-01
The need for spatially distributed information on soil mobilization, transfer, and deposition within the landscape by erosion has focused attention on the potential for using fallout radionuclides (i.e., 137Cs, excess 210Pb, and 7Be) to document soil redistribution rates. Whereas 137Cs and excess 210Pb are used to estimate medium- and longer-term erosion rates (i.e., approximately 45 years and 100 years, respectively), 7Be, by virtue of its short half-life (53 days), provides potential for estimating short-term soil redistribution on bare soils. However, the approach commonly used with this radionuclide means that it can only be applied to individual events or short periods of heavy rain. In addition, it is also frequently difficult to ensure that the requirement for spatially uniform 7Be inventories across the study area immediately prior to the study period is met. If the existing approach is applied to longer periods with several rainfall events (e.g., several weeks or more) soil redistribution is likely to be substantially underestimated. These problems limit the potential for using the 7Be approach, particularly in investigations where there is a need to assemble representative information on soil redistribution occurring during the entire wet season. This paper reports the development of a new or refined model for converting radionuclide measurements to estimates of soil redistribution (conversion model) for use with 7Be measurements, which permits much longer periods to be studied. This refined model aims to retain much of the simplicity of the existing approach, but takes account of the temporal distribution of both 7Be fallout and erosion during the study period and of the evolution of the 7Be depth distribution during this period. The approach was successfully tested using 7Be measurements from a study of short-term soil redistribution undertaken within an area of recently harvested forest located near Valdivia in Southern Chile. The study period extended over about 3 months and included the main part of the winter wet season of 2006. The estimates of soil redistribution obtained using the new conversion model were consistent with those obtained from erosion pins deployed within the same study area and were two to three times greater than those obtained using the approach and conversion model employed in existing studies.
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
A Review of Flood Loss Models as Basis for Harmonization and Benchmarking
Kreibich, Heidi; Franco, Guillermo; Marechal, David
2016-01-01
Risk-based approaches have been increasingly accepted and operationalized in flood risk management during recent decades. For instance, commercial flood risk models are used by the insurance industry to assess potential losses, establish the pricing of policies and determine reinsurance needs. Despite considerable progress in the development of loss estimation tools since the 1980s, loss estimates still reflect high uncertainties and disparities that often lead to questioning their quality. This requires an assessment of the validity and robustness of loss models as it affects prioritization and investment decision in flood risk management as well as regulatory requirements and business decisions in the insurance industry. Hence, more effort is needed to quantify uncertainties and undertake validations. Due to a lack of detailed and reliable flood loss data, first order validations are difficult to accomplish, so that model comparisons in terms of benchmarking are essential. It is checked if the models are informed by existing data and knowledge and if the assumptions made in the models are aligned with the existing knowledge. When this alignment is confirmed through validation or benchmarking exercises, the user gains confidence in the models. Before these benchmarking exercises are feasible, however, a cohesive survey of existing knowledge needs to be undertaken. With that aim, this work presents a review of flood loss–or flood vulnerability–relationships collected from the public domain and some professional sources. Our survey analyses 61 sources consisting of publications or software packages, of which 47 are reviewed in detail. This exercise results in probably the most complete review of flood loss models to date containing nearly a thousand vulnerability functions. These functions are highly heterogeneous and only about half of the loss models are found to be accompanied by explicit validation at the time of their proposal. This paper exemplarily presents an approach for a quantitative comparison of disparate models via the reduction to the joint input variables of all models. Harmonization of models for benchmarking and comparison requires profound insight into the model structures, mechanisms and underlying assumptions. Possibilities and challenges are discussed that exist in model harmonization and the application of the inventory in a benchmarking framework. PMID:27454604
A Review of Flood Loss Models as Basis for Harmonization and Benchmarking.
Gerl, Tina; Kreibich, Heidi; Franco, Guillermo; Marechal, David; Schröter, Kai
2016-01-01
Risk-based approaches have been increasingly accepted and operationalized in flood risk management during recent decades. For instance, commercial flood risk models are used by the insurance industry to assess potential losses, establish the pricing of policies and determine reinsurance needs. Despite considerable progress in the development of loss estimation tools since the 1980s, loss estimates still reflect high uncertainties and disparities that often lead to questioning their quality. This requires an assessment of the validity and robustness of loss models as it affects prioritization and investment decision in flood risk management as well as regulatory requirements and business decisions in the insurance industry. Hence, more effort is needed to quantify uncertainties and undertake validations. Due to a lack of detailed and reliable flood loss data, first order validations are difficult to accomplish, so that model comparisons in terms of benchmarking are essential. It is checked if the models are informed by existing data and knowledge and if the assumptions made in the models are aligned with the existing knowledge. When this alignment is confirmed through validation or benchmarking exercises, the user gains confidence in the models. Before these benchmarking exercises are feasible, however, a cohesive survey of existing knowledge needs to be undertaken. With that aim, this work presents a review of flood loss-or flood vulnerability-relationships collected from the public domain and some professional sources. Our survey analyses 61 sources consisting of publications or software packages, of which 47 are reviewed in detail. This exercise results in probably the most complete review of flood loss models to date containing nearly a thousand vulnerability functions. These functions are highly heterogeneous and only about half of the loss models are found to be accompanied by explicit validation at the time of their proposal. This paper exemplarily presents an approach for a quantitative comparison of disparate models via the reduction to the joint input variables of all models. Harmonization of models for benchmarking and comparison requires profound insight into the model structures, mechanisms and underlying assumptions. Possibilities and challenges are discussed that exist in model harmonization and the application of the inventory in a benchmarking framework.
Kerl, Paul Y; Zhang, Wenxian; Moreno-Cruz, Juan B; Nenes, Athanasios; Realff, Matthew J; Russell, Armistead G; Sokol, Joel; Thomas, Valerie M
2015-09-01
Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004-2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies.
Kerl, Paul Y.; Zhang, Wenxian; Moreno-Cruz, Juan B.; Nenes, Athanasios; Realff, Matthew J.; Russell, Armistead G.; Sokol, Joel; Thomas, Valerie M.
2015-01-01
Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004–2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies. PMID:26283358
Zhang, Xiangping; Strømman, Anders H; Solli, Christian; Hertwich, Edgar G
2008-07-01
Industrial symbiosis promises environmental and economic gains through a utilization of the waste of some processes as a resource for other processes. Because of the costs and difficulties of transporting some wastes, the largest theoretical potential for industrial symbiosis is given when facilities are colocated in an eco-industrial park (EIP). This study proposes a model-centered approach with an eight-step procedure for the early planning and design of an eco-industrial park considering technical and environmental factors. Chemical process simulation software was used to model the energy and material flows among the prospective members and to quantify the benefits of integration among different firms in terms of energy and resources saved as compared to a reference situation. Process simulation was based on a combination of physical models of industrial processes and empirical models. The modeling allows for the development and evaluation of different collaboration opportunities and configurations. It also enables testing chosen configurations under hypothetical situations or external conditions. We present a case study around an existing oil and gas refinery in Mongstad, Norway. We used the approach to propose the colocation of a number of industrial facilities around the refinery, focused on integrating energy use among the facilities. An EIP with six main members was designed and simulated, matching new hypothetical members in size to the existing operations, modeling material and energy flows in the EIP, and assessing these in terms of carbon and hydrogen flows.
Papež, Václav; Mouček, Roman
2017-01-01
The purpose of this study is to investigate the feasibility of applying openEHR (an archetype-based approach for electronic health records representation) to modeling data stored in EEGBase, a portal for experimental electroencephalography/event-related potential (EEG/ERP) data management. The study evaluates re-usage of existing openEHR archetypes and proposes a set of new archetypes together with the openEHR templates covering the domain. The main goals of the study are to (i) link existing EEGBase data/metadata and openEHR archetype structures and (ii) propose a new openEHR archetype set describing the EEG/ERP domain since this set of archetypes currently does not exist in public repositories. The main methodology is based on the determination of the concepts obtained from EEGBase experimental data and metadata that are expressible structurally by the openEHR reference model and semantically by openEHR archetypes. In addition, templates as the third openEHR resource allow us to define constraints over archetypes. Clinical Knowledge Manager (CKM), a public openEHR archetype repository, was searched for the archetypes matching the determined concepts. According to the search results, the archetypes already existing in CKM were applied and the archetypes not existing in the CKM were newly developed. openEHR archetypes support linkage to external terminologies. To increase semantic interoperability of the new archetypes, binding with the existing odML electrophysiological terminology was assured. Further, to increase structural interoperability, also other current solutions besides EEGBase were considered during the development phase. Finally, a set of templates using the selected archetypes was created to meet EEGBase requirements. A set of eleven archetypes that encompassed the domain of experimental EEG/ERP measurements were identified. Of these, six were reused without changes, one was extended, and four were newly created. All archetypes were arranged in the templates reflecting the EEGBase metadata structure. A mechanism of odML terminology referencing was proposed to assure semantic interoperability of the archetypes. The openEHR approach was found to be useful not only for clinical purposes but also for experimental data modeling.
Rethinking developmental toxicity testing: Evolution or revolution?
Scialli, Anthony R; Daston, George; Chen, Connie; Coder, Prägati S; Euling, Susan Y; Foreman, Jennifer; Hoberman, Alan M; Hui, Julia; Knudsen, Thomas; Makris, Susan L; Morford, LaRonda; Piersma, Aldert H; Stanislaus, Dinesh; Thompson, Kary E
2018-06-01
Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach. © 2018 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.
Structural Health Monitoring of Large Structures
NASA Technical Reports Server (NTRS)
Kim, Hyoung M.; Bartkowicz, Theodore J.; Smith, Suzanne Weaver; Zimmerman, David C.
1994-01-01
This paper describes a damage detection and health monitoring method that was developed for large space structures using on-orbit modal identification. After evaluating several existing model refinement and model reduction/expansion techniques, a new approach was developed to identify the location and extent of structural damage with a limited number of measurements. A general area of structural damage is first identified and, subsequently, a specific damaged structural component is located. This approach takes advantage of two different model refinement methods (optimal-update and design sensitivity) and two different model size matching methods (model reduction and eigenvector expansion). Performance of the proposed damage detection approach was demonstrated with test data from two different laboratory truss structures. This space technology can also be applied to structural inspection of aircraft, offshore platforms, oil tankers, ridges, and buildings. In addition, its applications to model refinement will improve the design of structural systems such as automobiles and electronic packaging.
NASA Astrophysics Data System (ADS)
Khorasani, Sasan Torabzadeh; Almasifard, Maryam
2017-11-01
This paper presents a dual-objective facility programming model for a green supply chain network. The main objectives of the presented model are minimizing overall expenditure and negative environmental impacts of the supply chain. This study contributes to the existing literature by incorporating uncertainty in customer demand, suppliers, production, and casting capacity. An industrial case study is also analyzed to reveal the feasibility of the proposed model and its application. A fuzzy approach which is known as TH is used to solve the suggested dual-objective model. TH approach is integration of a max-min method (LH) and modified version of Werners' approach (MW). The outcome of this study reveals that the presented model can support green supply chain network in different levels of uncertainty. In presented model, cost and negative environmental impacts derived from the supply chain network will increase of higher levels of uncertainty.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.
Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit
2018-06-01
In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.
Seaman, Shaun R; White, Ian R; Carpenter, James R
2015-01-01
Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with using multiple imputation. Imputation of partially observed covariates is complicated if the substantive model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or interaction terms, and standard software implementations of multiple imputation may impute covariates from models that are incompatible with such substantive models. We show how imputation by fully conditional specification, a popular approach for performing multiple imputation, can be modified so that covariates are imputed from models which are compatible with the substantive model. We investigate through simulation the performance of this proposal, and compare it with existing approaches. Simulation results suggest our proposal gives consistent estimates for a range of common substantive models, including models which contain non-linear covariate effects or interactions, provided data are missing at random and the assumed imputation models are correctly specified and mutually compatible. Stata software implementing the approach is freely available. PMID:24525487
Semiparametric modeling: Correcting low-dimensional model error in parametric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Tyrus, E-mail: thb11@psu.edu; Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013
2016-03-01
In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consistsmore » of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.« less
Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.
2013-01-01
RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432
A critical survey of methods to detect plasma membrane rafts
Klotzsch, Enrico; Schütz, Gerhard J.
2013-01-01
The plasma membrane is still one of the enigmatic cellular structures. Although the microscopic structure is getting clearer, not much is known about the organization at the nanometre level. Experimental difficulties have precluded unambiguous approaches, making the current picture rather fuzzy. In consequence, a variety of different membrane models has been proposed over the years, on the basis of different experimental strategies. Recent data obtained via high-resolution single-molecule microscopy shed new light on the existing hypotheses. We thus think it is a good time for reviewing the consistency of the existing models with the new data. In this paper, we summarize the available models in ten propositions, each of which is discussed critically with respect to the applied technologies and the strengths and weaknesses of the approaches. Our aim is to provide the reader with a sound basis for his own assessment. We close this chapter by exposing our picture of the membrane organization at the nanoscale. PMID:23267184
Hulvershorn, Leslie A; Quinn, Patrick D; Scott, Eric L
2015-01-01
The past several decades have seen dramatic growth in empirically supported treatments for adolescent substance use disorders (SUDs), yet even the most well-established approaches struggle to produce large or long-lasting improvements. These difficulties may stem, in part, from the high rates of comorbidity between SUDs and other psychiatric disorders. We critically reviewed the treatment outcome literature for adolescents with co-occurring SUDs and internalizing disorders. Our review identified components of existing treatments that might be included in an integrated, evidence-based approach to the treatment of SUDs and internalizing disorders. An effective program may involve careful assessment, inclusion of parents or guardians, and tailoring of interventions via a modular strategy. The existing literature guides the development of a conceptual evidence-based, modular treatment model targeting adolescents with co-occurring internalizing and SUDs. With empirical study, such a model may better address treatment outcomes for both disorder types in adolescents.
Hulvershorn, Leslie A.; Quinn, Patrick D.; Scott, Eric L.
2016-01-01
Background The past several decades have seen dramatic growth in empirically supported treatments for adolescent substance use disorders (SUDs), yet even the most well-established approaches struggle to produce large or long-lasting improvements. These difficulties may stem, in part, from the high rates of comorbidity between SUDs and other psychiatric disorders. Method We critically reviewed the treatment outcome literature for adolescents with co-occurring SUDs and internalizing disorders. Results Our review identified components of existing treatments that might be included in an integrated, evidence-based approach to the treatment of SUDs and internalizing disorders. An effective program may involve careful assessment, inclusion of parents or guardians, and tailoring of interventions via a modular strategy. Conclusions The existing literature guides the development of a conceptual evidence-based, modular treatment model targeting adolescents with co-occurring internalizing and SUDs. With empirical study, such a model may better address treatment outcomes for both disorder types in adolescents. PMID:25973718
Architecture for networked electronic patient record systems.
Takeda, H; Matsumura, Y; Kuwata, S; Nakano, H; Sakamoto, N; Yamamoto, R
2000-11-01
There have been two major approaches to the development of networked electronic patient record (EPR) architecture. One uses object-oriented methodologies for constructing the model, which include the GEHR project, Synapses, HL7 RIM and so on. The second approach uses document-oriented methodologies, as applied in examples of HL7 PRA. It is practically beneficial to take the advantages of both approaches and to add solution technologies for network security such as PKI. In recognition of the similarity with electronic commerce, a certificate authority as a trusted third party will be organised for establishing networked EPR system. This paper describes a Japanese functional model that has been developed, and proposes a document-object-oriented architecture, which is-compared with other existing models.
Tucker, George; Loh, Po-Ru; Berger, Bonnie
2013-10-04
Comprehensive protein-protein interaction (PPI) maps are a powerful resource for uncovering the molecular basis of genetic interactions and providing mechanistic insights. Over the past decade, high-throughput experimental techniques have been developed to generate PPI maps at proteome scale, first using yeast two-hybrid approaches and more recently via affinity purification combined with mass spectrometry (AP-MS). Unfortunately, data from both protocols are prone to both high false positive and false negative rates. To address these issues, many methods have been developed to post-process raw PPI data. However, with few exceptions, these methods only analyze binary experimental data (in which each potential interaction tested is deemed either observed or unobserved), neglecting quantitative information available from AP-MS such as spectral counts. We propose a novel method for incorporating quantitative information from AP-MS data into existing PPI inference methods that analyze binary interaction data. Our approach introduces a probabilistic framework that models the statistical noise inherent in observations of co-purifications. Using a sampling-based approach, we model the uncertainty of interactions with low spectral counts by generating an ensemble of possible alternative experimental outcomes. We then apply the existing method of choice to each alternative outcome and aggregate results over the ensemble. We validate our approach on three recent AP-MS data sets and demonstrate performance comparable to or better than state-of-the-art methods. Additionally, we provide an in-depth discussion comparing the theoretical bases of existing approaches and identify common aspects that may be key to their performance. Our sampling framework extends the existing body of work on PPI analysis using binary interaction data to apply to the richer quantitative data now commonly available through AP-MS assays. This framework is quite general, and many enhancements are likely possible. Fruitful future directions may include investigating more sophisticated schemes for converting spectral counts to probabilities and applying the framework to direct protein complex prediction methods.
A spatial error model with continuous random effects and an application to growth convergence
NASA Astrophysics Data System (ADS)
Laurini, Márcio Poletti
2017-10-01
We propose a spatial error model with continuous random effects based on Matérn covariance functions and apply this model for the analysis of income convergence processes (β -convergence). The use of a model with continuous random effects permits a clearer visualization and interpretation of the spatial dependency patterns, avoids the problems of defining neighborhoods in spatial econometrics models, and allows projecting the spatial effects for every possible location in the continuous space, circumventing the existing aggregations in discrete lattice representations. We apply this model approach to analyze the economic growth of Brazilian municipalities between 1991 and 2010 using unconditional and conditional formulations and a spatiotemporal model of convergence. The results indicate that the estimated spatial random effects are consistent with the existence of income convergence clubs for Brazilian municipalities in this period.
An Integrated Model for Effective Knowledge Management in Chinese Organizations
ERIC Educational Resources Information Center
An, Xiaomi; Deng, Hepu; Wang, Yiwen; Chao, Lemen
2013-01-01
Purpose: The purpose of this paper is to provide organizations in the Chinese cultural context with a conceptual model for an integrated adoption of existing knowledge management (KM) methods and to improve the effectiveness of their KM activities. Design/methodology/approaches: A comparative analysis is conducted between China and the western…
Modeling Rich Interactions for Web Search Intent Inference, Ranking and Evaluation
ERIC Educational Resources Information Center
Guo, Qi
2012-01-01
Billions of people interact with Web search engines daily and their interactions provide valuable clues about their interests and preferences. While modeling search behavior, such as queries and clicks on results, has been found to be effective for various Web search applications, the effectiveness of the existing approaches are limited by…
Classifying Correlation Matrices into Relatively Homogeneous Subgroups: A Cluster Analytic Approach
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Chan, Wai
2005-01-01
Researchers are becoming interested in combining meta-analytic techniques and structural equation modeling to test theoretical models from a pool of studies. Most existing procedures are based on the assumption that all correlation matrices are homogeneous. Few studies have addressed what the next step should be when studies being analyzed are…
Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits
ERIC Educational Resources Information Center
Hirvonen, P. E.
2007-01-01
This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…
More than Words: Towards a Development-Based Approach to Language Revitalization
ERIC Educational Resources Information Center
Henderson, Brent; Rohloff, Peter; Henderson, Robert
2014-01-01
Existing models for language revitalization focus almost exclusively on language learning and use. While recognizing the value of these models, we argue that their effective application is largely limited to situations in which languages have low numbers of speakers. For languages that are rapidly undergoing language shift, but which still…
ERIC Educational Resources Information Center
Hunt, Pete; Barrios, Lisa; Telljohann, Susan K.; Mazyck, Donna
2015-01-01
Background: The Whole School, Whole Community, Whole Child (WSCC) model shows the interrelationship between health and learning and the potential for improving educational outcomes by improving health outcomes. However, current descriptions do not explain how to implement the model. Methods: The existing literature, including scientific articles,…
An empirical perspective for understanding climate change impacts in Switzerland
Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy
2018-01-01
Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.
3D Surface Reconstruction and Automatic Camera Calibration
NASA Technical Reports Server (NTRS)
Jalobeanu, Andre
2004-01-01
Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.
Performance Model of Intercity Ground Passenger Transportation Systems
DOT National Transportation Integrated Search
1975-08-01
A preliminary examination of the problems associated with mixed-traffic operations - conventional freight and high speed passenger trains - is presented. Approaches based upon a modest upgrading of existing signal systems are described. Potential cos...
Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.
NASA Astrophysics Data System (ADS)
Guenther, A. B.
2017-12-01
Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.
Multiple imputation of missing covariates for the Cox proportional hazards cure model
Beesley, Lauren J; Bartlett, Jonathan W; Wolf, Gregory T; Taylor, Jeremy M G
2016-01-01
We explore several approaches for imputing partially observed covariates when the outcome of interest is a censored event time and when there is an underlying subset of the population that will never experience the event of interest. We call these subjects “cured,” and we consider the case where the data are modeled using a Cox proportional hazards (CPH) mixture cure model. We study covariate imputation approaches using fully conditional specification (FCS). We derive the exact conditional distribution and suggest a sampling scheme for imputing partially observed covariates in the CPH cure model setting. We also propose several approximations to the exact distribution that are simpler and more convenient to use for imputation. A simulation study demonstrates that the proposed imputation approaches outperform existing imputation approaches for survival data without a cure fraction in terms of bias in estimating CPH cure model parameters. We apply our multiple imputation techniques to a study of patients with head and neck cancer. PMID:27439726
NASA Astrophysics Data System (ADS)
Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.
2011-04-01
Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.
Household water use and conservation models using Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.
2013-10-01
The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.
Household water use and conservation models using Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.
2013-04-01
The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.
Mutual Comparative Filtering for Change Detection in Videos with Unstable Illumination Conditions
NASA Astrophysics Data System (ADS)
Sidyakin, Sergey V.; Vishnyakov, Boris V.; Vizilter, Yuri V.; Roslov, Nikolay I.
2016-06-01
In this paper we propose a new approach for change detection and moving objects detection in videos with unstable, abrupt illumination changes. This approach is based on mutual comparative filters and background normalization. We give the definitions of mutual comparative filters and outline their strong advantage for change detection purposes. Presented approach allows us to deal with changing illumination conditions in a simple and efficient way and does not have drawbacks, which exist in models that assume different color transformation laws. The proposed procedure can be used to improve a number of background modelling methods, which are not specifically designed to work under illumination changes.
Some general remarks on hyperplasticity modelling and its extension to partially saturated soils
NASA Astrophysics Data System (ADS)
Lei, Xiaoqin; Wong, Henry; Fabbri, Antonin; Bui, Tuan Anh; Limam, Ali
2016-06-01
The essential ideas and equations of classic plasticity and hyperplasticity are successively recalled and compared, in order to highlight their differences and complementarities. The former is based on the mathematical framework proposed by Hill (The mathematical theory of plasticity. Oxford University Press, Oxford, 1950), whereas the latter is founded on the orthogonality hypothesis of Ziegler (An introduction to thermomechanics. Elsevier, North-Holland, 1983). The main drawback of classic plasticity is the possibility of violating the second principle of thermodynamics, while the relative ease to conjecture the yield function in order to approach experimental results is its main advantage. By opposition, the a priori satisfaction of thermodynamic principles constitutes the chief advantage of hyperplasticity theory. Noteworthy is also the fact that this latter approach allows a finer energy partition; in particular, the existence of frozen energy emerges as a natural consequence from its theoretical formulation. On the other hand, the relative difficulty to conjecture an efficient dissipation function to produce accurate predictions is its main drawback. The two theories are thus better viewed as two complementary approaches. Following this comparative study, a methodology to extend the hyperplasticity approach initially developed for dry or saturated materials to the case of partially saturated materials, accounting for interface energies and suction effects, is developed. A particular example based on the yield function of modified Cam-Clay model is then presented. It is shown that the approach developed leads to a model consistent with other existing works.
Integrating O/S models during conceptual design, part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
A Robust Sound Source Localization Approach for Microphone Array with Model Errors
NASA Astrophysics Data System (ADS)
Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong
In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.
On the problem of modeling for parameter identification in distributed structures
NASA Technical Reports Server (NTRS)
Norris, Mark A.; Meirovitch, Leonard
1988-01-01
Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.
ERIC Educational Resources Information Center
Yavuzcan, H. Güçlü; Sahin, Damla
2017-01-01
In industrial design (ID) education, mechanics-based courses are mainly based on a traditional lecture approach and they are highly abstract for ID students to comprehend. The existing studies highlight the requirement of a new approach for mechanics-based courses in ID departments. This study presents a combined teaching model for mechanisms…
ERIC Educational Resources Information Center
Golbeck, Susan L.
As teachers, researchers, and policy makers strive to ensure that all children enter school "ready to learn," no question is more pressing than: "What is the best approach for teaching young children?" This digest discusses the existing knowledge base on the differential effects of various approaches to early education. The…
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Catarina Simões Vieira, Diana; Keizer, Jan Jacob
2017-04-01
Fires impact soil hydrological properties, enhancing soil water repellency and therefore increasing the potential for surface runoff generation and soil erosion. In consequence, the successful application of hydrological models to post-fire conditions requires the appropriate simulation of the effects of soil water repellency on soil hydrology. This work compared three approaches to model soil water repellency impacts on soil hydrology in burnt eucalypt and pine forest slopes in central Portugal: 1) Daily approach, simulating repellency as a function of soil moisture, and influencing the maximum soil available water holding capacity. It is based on the Thornthwaite-Mather soil water modelling approach, and is parameterized with the soil's wilting point and field capacity, and a parameter relating soil water repellency with water holding capacity. It was tested with soil moisture data from burnt and unburnt hillslopes. This approach was able to simulate post-fire soil moisture patterns, which the model without repellency was unable to do. However, model parameters were different between the burnt and unburnt slopes, indicating that more research is needed to derive standardized parameters from commonly measured soil and vegetation properties. 2) Seasonal approach, pre-determining repellency at the seasonal scale (3 months) in four classes (from none to extreme). It is based on the Morgan-Morgan-Finney (MMF) runoff and erosion model, applied at the seasonal scale and is parameterized with a parameter relating repellency class with field capacity. It was tested with runoff and erosion data from several experimental plots, and led to important improvements on runoff prediction over an approach with constant field capacity for all seasons (calibrated for repellency effects), but only slight improvements in erosion predictions. In contrast with the daily approach, the parameters could be reproduced between different sites 3) Constant approach, specifying values for soil water repellency for the three years after the fire, and keeping them constant throughout the year. It is based on a daily Curve Number (CN) approach, and was incorporated directly in the Soil and Water Assessment Tool (SWAT) model and tested with erosion data from a burnt hillslope. This approach was able to successfully reproduce soil erosion. The results indicate that simplified approaches can be used to adapt existing models for post-fire simulation, taking repellency into account. Taking into account the seasonality of repellency seems more important to simulate surface runoff than erosion, possibly since simulating the larger runoff rates correctly is sufficient for erosion simulation. The constant approach can be applied directly in the parameterization of existing runoff and erosion models for soil loss and sediment yield prediction, while the seasonal approach can readily be developed as a next step, with further work being needed to assess if the approach and associated parameters can be applied in multiple post-fire environments.
Quality metrics in high-dimensional data visualization: an overview and systematization.
Bertini, Enrico; Tatu, Andrada; Keim, Daniel
2011-12-01
In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research. © 2010 IEEE
Technical Manual for the SAM Physical Trough Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, M. J.; Gilman, P.
2011-06-01
NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less
A Lung Segmental Model of Chronic Pseudomonas Infection in Sheep
Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry
2013-01-01
Background Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Methodology/Principal Findings Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>104 cfu/g). Conclusions/Significance The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches. PMID:23874438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie
The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with othermore » experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.« less
Paliwal, Nikhil; Damiano, Robert J; Varble, Nicole A; Tutino, Vincent M; Dou, Zhongwang; Siddiqui, Adnan H; Meng, Hui
2017-12-01
Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver's modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the "true" accuracy of a CFD solver.
NASA Integrated Network Monitor and Control Software Architecture
NASA Technical Reports Server (NTRS)
Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick
2012-01-01
The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.
Inferring the unobserved chemical state of the atmosphere: idealized data assimilation experiments
NASA Astrophysics Data System (ADS)
Knote, C. J.; Barré, J.; Eckl, M.; Hornbrook, R. S.; Wiedinmyer, C.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.; Arellano, A. F.
2015-12-01
Chemical data assimilation in numerical models of the atmosphere is a venture into uncharted territory, into a world populated by a vast zoo of chemical compounds with strongly non-linear interactions. Commonly assimilated observations exist for only a selected few of those key gas phase compounds (CO, O3, NO2), and assimilating those in models assuming linearity begs the question of: To what extent we can infer the remainder to create a new state of the atmosphere that is chemically sound and optimal? In our work we present the first systematic investigation of sensitivities that exist between chemical compounds under varying ambient conditions in order to inform scientists on the potential pitfalls when assimilating single/few chemical compounds into complex 3D chemistry transport models. In order to do this, we developed a box-modeling tool (BOXMOX) based on the Kinetic PreProcessor (KPP, http://people.cs.vt.edu/~asandu/Software/Kpp/) in which we can conduct simulations with a suite of 'mechanisms', sets of differential equations describing atmospheric photochemistry. The box modeling approach allows us to sample a large variety of atmospheric conditions (urban, rural, biogenically dominated, biomass burning plumes) to capture the range of chemical conditions that typically exist in the atmosphere. Included in our suite are 'lumped' mechanisms typically used in regional and global chemistry transport models (MOZART, RACM, RADM2, SAPRC99, CB05, CBMZ) as well as the Master Chemical Mechanism (MCM, U. Leeds). We will use an Observing System Simulation Experiment approach with the MCM prediction as 'nature' or 'true' state, assimilating idealized synthetic observations (from MCM) into the different ‚lumped' mechanisms under various environments. Two approaches to estimate the sensitivity of the chemical system will be compared: 1) adjoint: using Jacobians computed by KPP and 2) ensemble: by perturbing emissions, temperature, photolysis rates, entrainment, etc., in order to create gain matrices to infer the unobserved part of the photochemical system.
An Event-driven, Value-based, Pull Systems Engineering Scheduling Approach
2012-03-01
engineering in rapid response environments has been difficult, particularly those where large, complex brownfield systems or systems of systems exist and...where large, complex brownfield systems or systems of systems exist and are constantly being updated with both short and long term software enhancements...2004. [13] B. Boehm, “Applying the Incremental Commitment Model to Brownfield System Development,” Proceedings, CSER, 2009. [14] A. Borshchev and A
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
Data-driven non-Markovian closure models
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael
2015-03-01
This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter space and the existence of multiple attractor basins with fractal boundaries. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up.
Imbedded-Fracture Formulation of THMC Processes in Fractured Media
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.; Sung, R.
2016-12-01
Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.
Using fuzzy rule-based knowledge model for optimum plating conditions search
NASA Astrophysics Data System (ADS)
Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.
2018-03-01
The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.
NASA Technical Reports Server (NTRS)
Devries, P. L.; George, T. F.
1982-01-01
A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.
NASA Astrophysics Data System (ADS)
Valente, Marco; Milani, Gabriele
2017-07-01
Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.
A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado
Runkel, Robert L.; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L.
2007-01-01
Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model application to the premining problem for Red Mountain Creek is based on limited field reconnaissance and chemical analyses; additional field work and analyses may be needed to develop definitive, quantitative estimates of premining water quality.
Closed inflationary universe in patch cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campo, Sergio del; Herrera, Ramon; Saavedra, Joel
2009-09-15
In this paper, we study closed inflationary universe models using the Gauss-Bonnet Brane. We determine and characterize the existence of a universe with {omega}>1, with an appropriate period of inflation. We have found that this model is less restrictive in comparison with the standard approach where a scalar field is considered. We use recent astronomical observations to constrain the parameters appearing in the model.
Measuring, Understanding, and Responding to Covert Social Networks: Passive and Active Tomography
2017-11-11
practical algorithms for sociologically principled detection of small sub- networks. To detect “foreground” networks, we need two competing models...understanding of how to model “background” network clutter, leading to principled approaches to “foreground” sub-network detection. Before the MURI...no frameworks existed for network detection theory or goodness-of-fit, nor were models and algorithms coupled to sound sociological principles
ERIC Educational Resources Information Center
Young, I. Phillip; Fawcett, Paul
2013-01-01
Several teacher models exist for using high-stakes testing outcomes to make continuous employment decisions for principals. These models are reviewed, and specific flaws are noted if these models are retrofitted for principals. To address these flaws, a different methodology is proposed on the basis of actual field data. Specially addressed are…
The balanced scorecard: an incremental approach model to health care management.
Pineno, Charles J
2002-01-01
The balanced scorecard represents a technique used in strategic management to translate an organization's mission and strategy into a comprehensive set of performance measures that provide the framework for implementation of strategic management. This article develops an incremental approach for decision making by formulating a specific balanced scorecard model with an index of nonfinancial as well as financial measures. The incremental approach to costs, including profit contribution analysis and probabilities, allows decisionmakers to assess, for example, how their desire to meet different health care needs will cause changes in service design. This incremental approach to the balanced scorecard may prove to be useful in evaluating the existence of causality relationships between different objective and subjective measures to be included within the balanced scorecard.
NASA Astrophysics Data System (ADS)
S, Chidambara Raja; P, Karthikeyan; Kumaraswamidhas, L. A.; M, Ramu
2018-05-01
Most of the thermal design systems involve two phase materials and analysis of such systems requires detailed understanding of the thermal characteristics of the two phase material. This article aimed to develop geometry dependent unit cell approach model by considering the effects of all primary parameters (conductivity ratio and concentration) and secondary parameters (geometry, contact resistance, natural convection, Knudsen and radiation) for the estimation of effective thermal conductivity of two-phase materials. The analytical equations have been formulated based on isotherm approach for 2-D and 3-D spatially periodic medium. The developed models are validated with standard models and suited for all kind of operating conditions. The results have shown substantial improvement compared to the existing models and are in good agreement with the experimental data.
The virtual enhancements - solar proton event radiation (VESPER) model
NASA Astrophysics Data System (ADS)
Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers
2018-02-01
A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.
A method to assess the allocation suitability of recreational activities: An economic approach
NASA Astrophysics Data System (ADS)
Wang, Hsiao-Lin
1996-03-01
Most existing methods of planning focus on development of a recreational area; less consideration is placed on the allocation of recreational activities within a recreational area. Most existing research emphasizes the economic benefits of developing a recreational area; few authors assessed the allocation suitability of recreational activities from an economic point of view. The purpose of this work was to develop a model to assess the allocation suitability of recreational activities according to the application of a concept of analysis of cost and benefit under a premise of ecological concern. The model was verified with a case study of Taiwan. We suggest that the proposed model should form a critical part of recreational planning.
Software risk management through independent verification and validation
NASA Technical Reports Server (NTRS)
Callahan, John R.; Zhou, Tong C.; Wood, Ralph
1995-01-01
Software project managers need tools to estimate and track project goals in a continuous fashion before, during, and after development of a system. In addition, they need an ability to compare the current project status with past project profiles to validate management intuition, identify problems, and then direct appropriate resources to the sources of problems. This paper describes a measurement-based approach to calculating the risk inherent in meeting project goals that leverages past project metrics and existing estimation and tracking models. We introduce the IV&V Goal/Questions/Metrics model, explain its use in the software development life cycle, and describe our attempts to validate the model through the reverse engineering of existing projects.
The capacity to perform route-to-route extrapolation of toxicity data is becoming increasingly crucial to the Agency, with a number of strategies suggested and demonstrated. One strategy involves using a combination of existing data and modeling approaches. This strategy propos...
Mixed raster content (MRC) model for compound image compression
NASA Astrophysics Data System (ADS)
de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming
1998-12-01
This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.
Zulkifley, Mohd Asyraf; Moran, Bill; Rawlinson, David
2012-01-01
Foreground detection has been used extensively in many applications such as people counting, traffic monitoring and face recognition. However, most of the existing detectors can only work under limited conditions. This happens because of the inability of the detector to distinguish foreground and background pixels, especially in complex situations. Our aim is to improve the robustness of foreground detection under sudden and gradual illumination change, colour similarity issue, moving background and shadow noise. Since it is hard to achieve robustness using a single model, we have combined several methods into an integrated system. The masked grey world algorithm is introduced to handle sudden illumination change. Colour co-occurrence modelling is then fused with the probabilistic edge-based background modelling. Colour co-occurrence modelling is good in filtering moving background and robust to gradual illumination change, while an edge-based modelling is used for solving a colour similarity problem. Finally, an extended conditional random field approach is used to filter out shadow and afterimage noise. Simulation results show that our algorithm performs better compared to the existing methods, which makes it suitable for higher-level applications.
Finding the top influential bloggers based on productivity and popularity features
NASA Astrophysics Data System (ADS)
Khan, Hikmat Ullah; Daud, Ali
2017-07-01
A blog acts as a platform of virtual communication to share comments or views about products, events and social issues. Like other social web activities, blogging actions spread to a large number of people. Users influence others in many ways, such as buying a product, having a particular political or social opinion or initiating new activity. Finding the top influential bloggers is an active research domain as it helps us in various fields, such as online marketing, e-commerce, product search and e-advertisements. There exist various models to find the influential bloggers, but they consider limited features using non-modular approach. This paper proposes a new model, Popularity and Productivity Model (PPM), based on a modular approach to find the top influential bloggers. It consists of popularity and productivity modules which exploit various features. We discuss the role of each proposed and existing features and evaluate the proposed model against the standard baseline models using datasets from the real-world blogs. The analysis using standard performance evaluation measures verifies that both productivity and popularity modules play a vital role to find influential bloggers in blogging community in an effective manner.
QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.
Qin, Li-Tang; Chen, Yu-Han; Zhang, Xin; Mo, Ling-Yun; Zeng, Hong-Hu; Liang, Yan-Peng
2018-05-01
Antibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures. In this study, we developed a quantitative structure-activity relationship (QSAR) model for the toxicities (half effect concentration, EC 50 ) of 45 binary and multi-component mixtures composed of two antibiotics and four pesticides. The acute toxicities of single compound and mixtures toward Aliivibrio fischeri were tested. A genetic algorithm was used to obtain the optimized model with three theoretical descriptors. Various internal and external validation techniques indicated that the coefficient of determination of 0.9366 and root mean square error of 0.1345 for the QSAR model predicted that 45 mixture toxicities presented additive, synergistic, and antagonistic effects. Compared with the traditional concentration additive and independent action models, the QSAR model exhibited an advantage in predicting mixture toxicity. Thus, the presented approach may be able to fill the gaps in predicting non-additive toxicities of binary and multi-component mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Heteroscedastic Latent Trait Models for Dichotomous Data.
Molenaar, Dylan
2015-09-01
Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.
Tracking trade transactions in water resource systems: A node-arc optimization formulation
NASA Astrophysics Data System (ADS)
Erfani, Tohid; Huskova, Ivana; Harou, Julien J.
2013-05-01
We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
Distribution system model calibration with big data from AMI and PV inverters
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...
2016-03-03
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Distribution system model calibration with big data from AMI and PV inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Rate and time dependent behavior of structural adhesives. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Renieri, M. P.; Herakovich, C. T.; Brinson, H. F.
1976-01-01
Studies on two adhesives (Metlbond 1113 and 1113-2) identified as having applications in the bonding of composite materials are presented. Constitutive equations capable of describing changes in material behavior with strain rate are derived from various theoretical approaches. It is shown that certain unique relationships exist between these approaches. It is also shown that the constitutive equation derived from mechanical models can be used for creep and relaxation loading. A creep to failure phenomenon is shown to exist and is correlated with a delayed yield equation proposed by Crochet. Loading-unloading results are presented and are shown to correlate well with the proposed form of the loading-unloading equations for the modified Bingham model. Experimental results obtained for relaxation tests above and below the glass transition temperature are presented. It is shown that the adhesives obey the time-temperature superposition principle.
Object-oriented Approach to High-level Network Monitoring and Management
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
2000-01-01
An absolute prerequisite for the management of large investigating methods to build high-level monitoring computer networks is the ability to measure their systems that are built on top of existing monitoring performance. Unless we monitor a system, we cannot tools. Due to the heterogeneous nature of the hope to manage and control its performance. In this underlying systems at NASA Langley Research Center, paper, we describe a network monitoring system that we use an object-oriented approach for the design, we are currently designing and implementing. Keeping, first, we use UML (Unified Modeling Language) to in mind the complexity of the task and the required model users' requirements. Second, we identify the flexibility for future changes, we use an object-oriented existing capabilities of the underlying monitoring design methodology. The system is built using the system. Third, we try to map the former with the latter. APIs offered by the HP OpenView system.
Ridgeway, Jennifer L; Wang, Zhen; Finney Rutten, Lila J; van Ryn, Michelle; Griffin, Joan M; Murad, M Hassan; Asiedu, Gladys B; Egginton, Jason S; Beebe, Timothy J
2017-08-04
There exists a paucity of work in the development and testing of theoretical models specific to childhood health disparities even though they have been linked to the prevalence of adult health disparities including high rates of chronic disease. We conducted a systematic review and thematic analysis of existing models of health disparities specific to children to inform development of a unified conceptual framework. We systematically reviewed articles reporting theoretical or explanatory models of disparities on a range of outcomes related to child health. We searched Ovid Medline In-Process & Other Non-Indexed Citations, Ovid MEDLINE, Ovid Embase, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus (database inception to 9 July 2015). A metanarrative approach guided the analysis process. A total of 48 studies presenting 48 models were included. This systematic review found multiple models but no consensus on one approach. However, we did discover a fair amount of overlap, such that the 48 models reviewed converged into the unified conceptual framework. The majority of models included factors in three domains: individual characteristics and behaviours (88%), healthcare providers and systems (63%), and environment/community (56%), . Only 38% of models included factors in the health and public policies domain. A disease-agnostic unified conceptual framework may inform integration of existing knowledge of child health disparities and guide future research. This multilevel framework can focus attention among clinical, basic and social science research on the relationships between policy, social factors, health systems and the physical environment that impact children's health outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu
2009-01-01
Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.
NASA Astrophysics Data System (ADS)
Sidi, Fatimah; Daud, Maslina; Ahmad, Sabariah; Zainuddin, Naqliyah; Anneisa Abdullah, Syafiqa; Jabar, Marzanah A.; Suriani Affendey, Lilly; Ishak, Iskandar; Sharef, Nurfadhlina Mohd; Zolkepli, Maslina; Nur Majdina Nordin, Fatin; Amat Sejani, Hashimah; Ramadzan Hairani, Saiful
2017-09-01
Information security has been identified by organizations as part of internal operations that need to be well implemented and protected. This is because each day the organizations face a high probability of increase of threats to their networks and services that will lead to information security issues. Thus, effective information security management is required in order to protect their information assets. Threat profiling is a method that can be used by an organization to address the security challenges. Threat profiling allows analysts to understand and organize intelligent information related to threat groups. This paper presents a comparative analysis that was conducted to study the existing threat profiling models. It was found that existing threat models were constructed based on specific objectives, thus each model is limited to only certain components or factors such as assets, threat sources, countermeasures, threat agents, threat outcomes and threat actors. It is suggested that threat profiling can be improved by the combination of components found in each existing threat profiling model/framework. The proposed model can be used by an organization in executing a proactive approach to incident management.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.
Pohjola, Mikko V; Pohjola, Pasi; Tainio, Marko; Tuomisto, Jouni T
2013-06-26
The calls for knowledge-based policy and policy-relevant research invoke a need to evaluate and manage environment and health assessments and models according to their societal outcomes. This review explores how well the existing approaches to assessment and model performance serve this need. The perspectives to assessment and model performance in the scientific literature can be called: (1) quality assurance/control, (2) uncertainty analysis, (3) technical assessment of models, (4) effectiveness and (5) other perspectives, according to what is primarily seen to constitute the goodness of assessments and models. The categorization is not strict and methods, tools and frameworks in different perspectives may overlap. However, altogether it seems that most approaches to assessment and model performance are relatively narrow in their scope. The focus in most approaches is on the outputs and making of assessments and models. Practical application of the outputs and the consequential outcomes are often left unaddressed. It appears that more comprehensive approaches that combine the essential characteristics of different perspectives are needed. This necessitates a better account of the mechanisms of collective knowledge creation and the relations between knowledge and practical action. Some new approaches to assessment, modeling and their evaluation and management span the chain from knowledge creation to societal outcomes, but the complexity of evaluating societal outcomes remains a challenge.
Icing detection from geostationary satellite data using machine learning approaches
NASA Astrophysics Data System (ADS)
Lee, J.; Ha, S.; Sim, S.; Im, J.
2015-12-01
Icing can cause a significant structural damage to aircraft during flight, resulting in various aviation accidents. Icing studies have been typically performed using two approaches: one is a numerical model-based approach and the other is a remote sensing-based approach. The model based approach diagnoses aircraft icing using numerical atmospheric parameters such as temperature, relative humidity, and vertical thermodynamic structure. This approach tends to over-estimate icing according to the literature. The remote sensing-based approach typically uses meteorological satellite/ground sensor data such as Geostationary Operational Environmental Satellite (GOES) and Dual-Polarization radar data. This approach detects icing areas by applying thresholds to parameters such as liquid water path and cloud optical thickness derived from remote sensing data. In this study, we propose an aircraft icing detection approach which optimizes thresholds for L1B bands and/or Cloud Optical Thickness (COT) from Communication, Ocean and Meteorological Satellite-Meteorological Imager (COMS MI) and newly launched Himawari-8 Advanced Himawari Imager (AHI) over East Asia. The proposed approach uses machine learning algorithms including decision trees (DT) and random forest (RF) for optimizing thresholds of L1B data and/or COT. Pilot Reports (PIREPs) from South Korea and Japan were used as icing reference data. Results show that RF produced a lower false alarm rate (1.5%) and a higher overall accuracy (98.8%) than DT (8.5% and 75.3%), respectively. The RF-based approach was also compared with the existing COMS MI and GOES-R icing mask algorithms. The agreements of the proposed approach with the existing two algorithms were 89.2% and 45.5%, respectively. The lower agreement with the GOES-R algorithm was possibly due to the high uncertainty of the cloud phase product from COMS MI.
Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
Tropsha, Alexander; Golbraikh, Alexander
2007-01-01
Quantitative Structure Activity Relationship (QSAR) modeling has been traditionally applied as an evaluative approach, i.e., with the focus on developing retrospective and explanatory models of existing data. Model extrapolation was considered if only in hypothetical sense in terms of potential modifications of known biologically active chemicals that could improve compounds' activity. This critical review re-examines the strategy and the output of the modern QSAR modeling approaches. We provide examples and arguments suggesting that current methodologies may afford robust and validated models capable of accurate prediction of compound properties for molecules not included in the training sets. We discuss a data-analytical modeling workflow developed in our laboratory that incorporates modules for combinatorial QSAR model development (i.e., using all possible binary combinations of available descriptor sets and statistical data modeling techniques), rigorous model validation, and virtual screening of available chemical databases to identify novel biologically active compounds. Our approach places particular emphasis on model validation as well as the need to define model applicability domains in the chemistry space. We present examples of studies where the application of rigorously validated QSAR models to virtual screening identified computational hits that were confirmed by subsequent experimental investigations. The emerging focus of QSAR modeling on target property forecasting brings it forward as predictive, as opposed to evaluative, modeling approach.
NASA Astrophysics Data System (ADS)
Jöckel, P.; Sander, R.; Kerkweg, A.; Tost, H.; Lelieveld, J.
2005-02-01
The development of a comprehensive Earth System Model (ESM) to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, ...). One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy). It comprises (1) a modular interface structure to connect to a , (2) an extendable set of such for miscellaneous processes, and (3) a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling). Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.
Demand modelling of passenger air travel: An analysis and extension, volume 2
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1978-01-01
Previous intercity travel demand models in terms of their ability to predict air travel in a useful way and the need for disaggregation in the approach to demand modelling are evaluated. The viability of incorporating non-conventional factors (i.e. non-econometric, such as time and cost) in travel demand forecasting models are determined. The investigation of existing models is carried out in order to provide insight into their strong points and shortcomings. The model is characterized as a market segmentation model. This is a consequence of the strengths of disaggregation and its natural evolution to a usable aggregate formulation. The need for this approach both pedagogically and mathematically is discussed. In addition this volume contains two appendices which should prove useful to the non-specialist in the area.
Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques
Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.
2011-01-01
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering. PMID:21949695
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.
Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T
2011-01-01
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.
Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten
2018-01-01
Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.
Macroscopic modelling of multiperiodic composites
NASA Astrophysics Data System (ADS)
Woźniak, Czesław
By a multiperiodic composite we mean a composite solid in which all constituents are periodically distributed in a matrix but a representative element (unit cell) may not exist. The aim of this Note is to propose a nonasymptotic approach to the formation of averaged (macroscopic) models of multiperiodic composites. The approach is based on the concept of tolerance averaging, which in [2] was applied to the modelling of periodic composites. The derived model, in contrast to homogenization, describes the effect of microstructure size on the overall solid behaviour and yields necessary conditions for the physical correctness of solutions to special problems. To cite this article: C. Woźniak, C. R. Mecanique 330 (2002) 267-272.
A generalized model via random walks for information filtering
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-08-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.
Tripodi, Marina; Siano, Maria Anna; Mandato, Claudia; De Anseris, Anna Giulia Elena; Quitadamo, Paolo; Guercio Nuzio, Salvatore; Viggiano, Claudia; Fasolino, Francesco; Bellopede, Annalisa; Annunziata, Maria; Massa, Grazia; Pepe, Francesco Maria; De Chiara, Maria; Siani, Paolo; Vajro, Pietro
2017-08-30
The term "humanization" indicates the process by which people try to make something more human and civilized, more in line with what is believed to be the human nature. The humanization of care is an important and not yet a well-defined issue which includes a wide range of aspects related to the approach to the patient and care modalities. In pediatrics, the humanization concept is even vaguer due to the dual involvement of both the child and his/her family and by the existence of multiple proposed models. The present study aims to analyze the main existing humanization models regarding pediatric care, and the tools for assessing its grade. The main Humanization care programs have been elaborated and developed both in America (Brazil, USA) and Europe. The North American and European models specifically concern pediatric care, while the model developed in Brazil is part of a broader program aimed at all age groups. The first emphasis is on the importance of the family in child care, the second emphasis is on the child's right to be a leader, to be heard and to be able to express its opinion on the program's own care. Several tools have been created and used to evaluate humanization of care programs and related aspects. None, however, had been mutually compared. The major models of humanization care and the related assessment tools here reviewed highlight the urgent need for a more unifying approach, which may help in realizing health care programs closer to the young patient's and his/her family needs.
Evaluating and minimizing noise impact due to aircraft flyover
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Cook, G.
1979-01-01
Existing techniques were used to assess the noise impact on a community due to aircraft operation and to optimize the flight paths of an approaching aircraft with respect to the annoyance produced. Major achievements are: (1) the development of a population model suitable for determining the noise impact, (2) generation of a numerical computer code which uses this population model along with the steepest descent algorithm to optimize approach/landing trajectories, (3) implementation of this optimization code in several fictitious cases as well as for the community surrounding Patrick Henry International Airport, Virginia.
Toward a descriptive model of galactic cosmic rays in the heliosphere
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.; Cummings, A. C.; Adams, James H., Jr.; Evenson, Paul; Fillius, W.; Jokipii, J. R.; Mckibben, R. B.; Robinson, Paul A., Jr.
1988-01-01
Researchers review the elements that enter into phenomenological models of the composition, energy spectra, and the spatial and temporal variations of galactic cosmic rays, including the so-called anomalous cosmic ray component. Starting from an existing model, designed to describe the behavior of cosmic rays in the near-Earth environment, researchers suggest possible updates and improvements to this model, and then propose a quantitative approach for extending such a model into other regions of the heliosphere.
Damage Mechanics Approach to Penetration of Water-filled Surface Crevasses
NASA Astrophysics Data System (ADS)
Duddu, R.; Jimenez, S. K.; Bassis, J. N.
2017-12-01
Iceberg calving is a natural process that occurs when crevasses penetrate the entire thickness of an ice shelf or a glacier leading to the detachment (birth) of icebergs. Calving from marine-terminating glaciers and floating ice shelves accounts for nearly 50% of the mass lost from both the Greenland and Antarctic ice sheets, which can directly or indirectly contribute to sealevel rise. A widely-accepted hypothesis is that crevasses in ice form due to brittle mode I fracture under the action of tensile stresses. Existing theoretical approaches for modeling crevasse propagation based on the above hypothesis include the Nye zero stress and fracture mechanics approaches. These theoretical approaches assume idealized geometry and boundary conditions, and ignore the effects of viscous creep deformations in ice over longer time scales; however, they still produced interesting results that matched well with sparse field observations available. An alternative is to use the continuum damage mechanics approach for modeling crevasse propagation, which is more easily incorporated into numerical ice sheet models that consider realistic geometries, boundary conditions and viscous creep effects. In this presentation, we describe the damage mechanics approach to penetration of dry and water-filled surface crevasses using the principles of poromechanics and compare our results with those from existing theoretical approaches. We investigate the upper limits on crevasse penetration depth in relation to ice thickness, water depth in the surface crevasse, seawater depth at the ice terminus and ice rheology (i.e., elastic vs. viscous). Our studies on idealized glaciers show that the damage mechanics approach is consistent with the fracture mechanics approach when the seawater depth at the ice terminus is low, but is inconsistent with the theoretical approaches when the seawater depth at the ice terminus is high (i.e., near floatation). Our studies also indicate that the upper limit on surface crevasse penetration depth is minimally sensitive to ice rheology when glacier geometry changes are ignored. However, viscous flow can cause geometry changes and induce stresses (e.g., due to bending) leading to deeper crevasse penetration in numerical ice sheet models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, J. Y.; Riley, W. J.
We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less
Kuether, E. L.; Schroeder, J. A.; Fahs, S. A.; Cooley, B. C.; Chen, Y.; Montgomery, R. R.; Wilcox, D. A.; Shi, Q.
2012-01-01
Summary Background The development of inhibitory antibodies, referred to as inhibitors, against exogenous FVIII in a significant subset of patients with hemophilia A remains a persistent challenge to the efficacy of protein replacement therapy. Our previous studies using the transgenic approach provided proof-of-principle that platelet-specific expression could be successful for treating hemophilia A in the presence of inhibitory antibodies. Objective To investigate a clinically translatable approach for platelet gene therapy of hemophilia A with pre-existing inhibitors. Methods Platelet-FVIII expression in pre-immunized FVIIInull mice was introduced by transplantation of lentivirus-transduced bone marrow or enriched hematopoietic stem cells. FVIII expression was determined by a chromogenic assay. The transgene copy number per cell was quantitated by real time PCR. Inhibitor titer was measured by Bethesda assay. Phenotypic correction was assessed by the tail clipping assay and an electrolytic-induced venous injury model. Integration sites were analyzed by LAM-PCR. Results Therapeutic levels of platelet-FVIII expression were sustained long-term without evoking an anti-FVIII memory response in the transduced pre-immunized recipients. The tail clip survival test and the electrolytic injury model confirmed that hemostasis was improved in the treated animals. Sequential bone marrow transplants showed sustained platelet-FVIII expression resulting in phenotypic correction in pre-immunized secondary and tertiary recipients. Conclusions Lentivirus-mediated platelet-specific gene transfer improves hemostasis in hemophilic A mice with pre-existing inhibitors, indicating that this approach may be a promising strategy for gene therapy of hemophilia A even in the high-risk setting of pre-existing inhibitory antibodies. PMID:22632092
NASA Astrophysics Data System (ADS)
Carton, Andrew; Driver, Cormac; Jackson, Andrew; Clarke, Siobhán
Theme/UML is an existing approach to aspect-oriented modelling that supports the modularisation and composition of concerns, including crosscutting ones, in design. To date, its lack of integration with model-driven engineering (MDE) techniques has limited its benefits across the development lifecycle. Here, we describe our work on facilitating the use of Theme/UML as part of an MDE process. We have developed a transformation tool that adopts model-driven architecture (MDA) standards. It defines a concern composition mechanism, implemented as a model transformation, to support the enhanced modularisation features of Theme/UML. We evaluate our approach by applying it to the development of mobile, context-aware applications-an application area characterised by many non-functional requirements that manifest themselves as crosscutting concerns.
CaveCAD: a tool for architectural design in immersive virtual environments
NASA Astrophysics Data System (ADS)
Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo
2014-02-01
Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.
Sun, Jimeng; Hu, Jianying; Luo, Dijun; Markatou, Marianthi; Wang, Fei; Edabollahi, Shahram; Steinhubl, Steven E.; Daar, Zahra; Stewart, Walter F.
2012-01-01
Background: The ability to identify the risk factors related to an adverse condition, e.g., heart failures (HF) diagnosis, is very important for improving care quality and reducing cost. Existing approaches for risk factor identification are either knowledge driven (from guidelines or literatures) or data driven (from observational data). No existing method provides a model to effectively combine expert knowledge with data driven insight for risk factor identification. Methods: We present a systematic approach to enhance known knowledge-based risk factors with additional potential risk factors derived from data. The core of our approach is a sparse regression model with regularization terms that correspond to both knowledge and data driven risk factors. Results: The approach is validated using a large dataset containing 4,644 heart failure cases and 45,981 controls. The outpatient electronic health records (EHRs) for these patients include diagnosis, medication, lab results from 2003–2010. We demonstrate that the proposed method can identify complementary risk factors that are not in the existing known factors and can better predict the onset of HF. We quantitatively compare different sets of risk factors in the context of predicting onset of HF using the performance metric, the Area Under the ROC Curve (AUC). The combined risk factors between knowledge and data significantly outperform knowledge-based risk factors alone. Furthermore, those additional risk factors are confirmed to be clinically meaningful by a cardiologist. Conclusion: We present a systematic framework for combining knowledge and data driven insights for risk factor identification. We demonstrate the power of this framework in the context of predicting onset of HF, where our approach can successfully identify intuitive and predictive risk factors beyond a set of known HF risk factors. PMID:23304365
path integral approach to closed form pricing formulas in the Heston framework.
NASA Astrophysics Data System (ADS)
Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven
2008-03-01
We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).
ERIC Educational Resources Information Center
Larripa, Kamila R.; Mazzag, Borbala
2016-01-01
Our paper describes a solution we found to a still existing need to develop mathematical modeling courses for undergraduate biology majors. Some challenges of such courses are: (i) relatively limited exposure of biology students to higher-level mathematical and computational concepts; (ii) availability of texts that can give a flavor of how…
Models, Their Application, and Scientific Anticipation: Ludwig Boltzmann's Work as Tacit Knowing
ERIC Educational Resources Information Center
Schmitt, Richard Henry
2011-01-01
Ludwig Boltzmann's work in theoretical physics exhibits an approach to the construction of theory that he transmitted to the succeeding generation by example. It involved the construction of clear models, allowed more than one, and was not based solely on the existing facts, with the intent of examining and criticizing the assumptions that made…
A Wellness Approach to Career Counseling on the College Campus.
ERIC Educational Resources Information Center
Floerchinger, Debra S.; Young, Kelvin E.
"Wellness" is a widely used term to describe a participative process through which the individual becomes aware of and makes choices toward a more successful or healthy existence. Many colleges and universities have utilized wellness philosophies or models in a variety of areas. The wellness model serves as an outline for decision making in which…
Assessment of the acute toxic potential of a substance is necessary to determine the adverse effects that might occur following accidental or deliberate short-term exposure. There are no accepted in vitro approaches available and few in silico models. Until recently, there had be...
A Latent Transition Analysis of Academic Intrinsic Motivation from Childhood through Adolescence
ERIC Educational Resources Information Center
Marcoulides, George A.; Gottfried, Adele Eskeles; Gottfried, Allen W.; Oliver, Pamella H.
2008-01-01
A longitudinal modeling approach was utilized to determine the existence of latent classes with regard to academic intrinsic motivation and the points of stability and transition of individuals between and within classes. A special type of latent Markov Chain model using "Mplus" was fit to data from the Fullerton Longitudinal Study, with…
ERIC Educational Resources Information Center
American Univ., Washington, DC. Adult Learning Potential Inst.
This document is the second of a series of four reports developed to provide a comprehensive overview of parent involvement, encompassing the family, parenting needs, and existing resources, in addition to current parent education approaches and practices. This "Family Academy Model" provides one interpretation of how the family functions as…
Critical Thinking as Integral to Social Work Practice
ERIC Educational Resources Information Center
Gibbons, Jill; Gray, Mel
2004-01-01
The paper examines the role of critical thinking in an experience-based model of social work education. Within this model, the development of a critical approach to our own understanding of, as well as to existing knowledge about, the world is fundamental for students and educators alike. Critical thinking is defined as more than a rational,…
Spiraling down the river continuum: stream ecology and the U-shaped curve
Jackson R. Webster
2007-01-01
The spiraling concept provides an explicit approach to modeling the longitudinal linkages within a river continuum. I developed a spiraling-based model for particulate organic C dynamics in the Little Tennessee River to synthesize existing data and to illustrate our current understanding of ecosystem processes in river ecosystems. The Little Tennessee River is a medium...
Item Response Theory Models for Wording Effects in Mixed-Format Scales
ERIC Educational Resources Information Center
Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu
2015-01-01
Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…
William L. Thompson; Danny C. Lee
2000-01-01
Knowledge of environmental factors impacting anadromous salmonids in their freshwater habitats, particularly at large spatial scales, may be important for restoring them to previously recorded levels in the northwestern United States. Consequently, we used existing data sets and an information-theoretic approach to model landscape-level attributes and snorkel count...
Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation.
Das, Rahul Deb; Winter, Stephan
2016-11-23
Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers' smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation.
Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation
Das, Rahul Deb; Winter, Stephan
2016-01-01
Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers’ smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation. PMID:27886053
What is a "good enough" termination?
Gabbard, Glen O
2009-06-01
In Freud's technique papers, he failed to develop a systematic approach to termination. Much of the existing literature is based on psychoanalytic mythologies about the way patients are expected to end analysis. The models described in the literature are often starkly at odds with what one sees in clinical practice. A wish for idealized versions of termination underlies much of what has been written, and we need to shift to a conceptual model involving "good enough" termination. A number of different endings to psychoanalysis may, in the long run, lead to productive outcomes; these models are examined, as are various approaches to the dilemmas presented at the time of termination.
Validation of Risk Assessment Models of Venous Thromboembolism in Hospitalized Medical Patients.
Greene, M Todd; Spyropoulos, Alex C; Chopra, Vineet; Grant, Paul J; Kaatz, Scott; Bernstein, Steven J; Flanders, Scott A
2016-09-01
Patients hospitalized for acute medical illness are at increased risk for venous thromboembolism. Although risk assessment is recommended and several at-admission risk assessment models have been developed, these have not been adequately derived or externally validated. Therefore, an optimal approach to evaluate venous thromboembolism risk in medical patients is not known. We conducted an external validation study of existing venous thromboembolism risk assessment models using data collected on 63,548 hospitalized medical patients as part of the Michigan Hospital Medicine Safety (HMS) Consortium. For each patient, cumulative venous thromboembolism risk scores and risk categories were calculated. Cox regression models were used to quantify the association between venous thromboembolism events and assigned risk categories. Model discrimination was assessed using Harrell's C-index. Venous thromboembolism incidence in hospitalized medical patients is low (1%). Although existing risk assessment models demonstrate good calibration (hazard ratios for "at-risk" range 2.97-3.59), model discrimination is generally poor for all risk assessment models (C-index range 0.58-0.64). The performance of several existing risk assessment models for predicting venous thromboembolism among acutely ill, hospitalized medical patients at admission is limited. Given the low venous thromboembolism incidence in this nonsurgical patient population, careful consideration of how best to utilize existing venous thromboembolism risk assessment models is necessary, and further development and validation of novel venous thromboembolism risk assessment models for this patient population may be warranted. Published by Elsevier Inc.
Data-driven confounder selection via Markov and Bayesian networks.
Häggström, Jenny
2018-06-01
To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.
Ahn, Kwang Woo; Kosoy, Michael; Chan, Kung-Sik
2014-06-01
We developed a two-strain susceptible-infected-recovered (SIR) model that provides a framework for inferring the cross-immunity between two strains of a bacterial species in the host population with discretely sampled co-infection time-series data. Moreover, the model accounts for seasonality in host reproduction. We illustrate an approach using a dataset describing co-infections by several strains of bacteria circulating within a population of cotton rats (Sigmodon hispidus). Bartonella strains were clustered into three genetically close groups, between which the divergence is correspondent to the accepted level of separate bacterial species. The proposed approach revealed no cross-immunity between genetic clusters while limited cross-immunity might exist between subgroups within the clusters. Copyright © 2014. Published by Elsevier B.V.
Vehicle track segmentation using higher order random fields
Quach, Tu -Thach
2017-01-09
Here, we present an approach to segment vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times. The approach uses multiscale higher order random field models to capture track statistics, such as curvatures and their parallel nature, that are not currently utilized in existing methods. These statistics are encoded as 3-by-3 patterns at different scales. The model can complete disconnected tracks often caused by sensor noise and various environmental effects. Coupling the model with a simple classifier, our approach is effective at segmenting salient tracks. We improve the F-measure onmore » a standard vehicle track data set to 0.963, up from 0.897 obtained by the current state-of-the-art method.« less
Vehicle track segmentation using higher order random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quach, Tu -Thach
Here, we present an approach to segment vehicle tracks in coherent change detection images, a product of combining two synthetic aperture radar images taken at different times. The approach uses multiscale higher order random field models to capture track statistics, such as curvatures and their parallel nature, that are not currently utilized in existing methods. These statistics are encoded as 3-by-3 patterns at different scales. The model can complete disconnected tracks often caused by sensor noise and various environmental effects. Coupling the model with a simple classifier, our approach is effective at segmenting salient tracks. We improve the F-measure onmore » a standard vehicle track data set to 0.963, up from 0.897 obtained by the current state-of-the-art method.« less
Geographically isolated wetlands (GIW), or wetlands embedded in uplands, exist along a spatial and temporal hydrologic connectivity continuum to downstream waters. Via these connections and disconnections, GIWs provide numerous hydrological, biogeochemical, and biological functio...
NASA Astrophysics Data System (ADS)
Li, Ying; Luo, Zhiling; Yin, Jianwei; Xu, Lida; Yin, Yuyu; Wu, Zhaohui
2017-01-01
Modern service company (MSC), the enterprise involving special domains, such as the financial industry, information service industry and technology development industry, depends heavily on information technology. Modelling of such enterprise has attracted much research attention because it promises to help enterprise managers to analyse basic business strategies (e.g. the pricing strategy) and even optimise the business process (BP) to gain benefits. While the existing models proposed by economists cover the economic elements, they fail to address the basic BP and its relationship with the economic characteristics. Those proposed in computer science regardless of achieving great success in BP modelling perform poorly in supporting the economic analysis. Therefore, the existing approaches fail to satisfy the requirement of enterprise modelling for MSC, which demands simultaneous consideration of both economic analysing and business processing. In this article, we provide a unified enterprise modelling approach named Enterprise Pattern (EP) which bridges the gap between the BP model and the enterprise economic model of MSC. Proposing a language named Enterprise Pattern Description Language (EPDL) covering all the basic language elements of EP, we formulate the language syntaxes and two basic extraction rules assisting economic analysis. Furthermore, we extend Business Process Model and Notation (BPMN) to support EPDL, named BPMN for Enterprise Pattern (BPMN4EP). The example of mobile application platform is studied in detail for a better understanding of EPDL.
Flamelet Model Application for Non-Premixed Turbulent Combustion
NASA Technical Reports Server (NTRS)
Secundov, A.; Bezgin, L.; Buriko, Yu.; Guskov, O.; Kopchenov, V.; Laskin, I.; Lomkov, K.; Tshepin, S.; Volkov, D.; Zaitsev, S.
1996-01-01
The current Final Report contains results of the study which was performed in Scientific Research Center 'ECOLEN' (Moscow, Russia). The study concerns the development and verification of non-expensive approach for modeling of supersonic turbulent diffusion flames based on flamelet consideration of the chemistry/turbulence interaction (FL approach). Research work included: development of the approach and CFD tests of the flamelet model for supersonic jet flames; development of the simplified procedure for solution of the flamelet equations based on partial equilibrium chemistry assumption; study of the flame ignition/extinction predictions provided by flamelet model. The performed investigation demonstrated that FL approach allowed to describe satisfactory main features of supersonic H 2/air jet flames. Model demonstrated also high capabilities for reduction of the computational expenses in CFD modeling of the supersonic flames taking into account detailed oxidation chemistry. However, some disadvantages and restrictions of the existing version of approach were found in this study. They were: (1) inaccuracy in predictions of the passive scalar statistics by our turbulence model for one of the considered test cases; and (2) applicability of the available version of the flamelet model to flames without large ignition delay distance only. Based on the results of the performed investigation, we formulated and submitted to the National Aeronautics and Space Administration our Project Proposal for the next step research directed toward further improvement of the FL approach.
Building America Energy Renovations. A Business Case for Home Performance Contracting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baechler, Michael C.; Antonopoulos, C. A.; Sevigny, M.
2012-10-01
This research report gives an overview of the needs and opportunities that exist in the U.S. home performance contracting industry. The report discusses industry trends, market drivers, different business models, and points of entry for existing and new businesses hoping to enter the home performance contracting industry. Case studies of eight companies who successfully entered the industry are provided, including business metrics, start-up costs, and marketing approaches.
P-8A Poseidon strategy for modeling & simulation verification validation & accreditation (VV&A)
NASA Astrophysics Data System (ADS)
Kropp, Derek L.
2009-05-01
One of the first challenges in addressing the need for Modeling & Simulation (M&S) Verification, Validation, & Accreditation (VV&A) is to develop an approach for applying structured and formalized VV&A processes. The P-8A Poseidon Multi-Mission Maritime Aircraft (MMA) Program Modeling and Simulation Accreditation Strategy documents the P-8A program's approach to VV&A. The P-8A strategy tailors a risk-based approach and leverages existing bodies of knowledge, such as the Defense Modeling and Simulation Office Recommended Practice Guide (DMSO RPG), to make the process practical and efficient. As the program progresses, the M&S team must continue to look for ways to streamline the process, add supplemental steps to enhance the process, and identify and overcome procedural, organizational, and cultural challenges. This paper includes some of the basics of the overall strategy, examples of specific approaches that have worked well, and examples of challenges that the M&S team has faced.
Madsen, Kristoffer H; Ewald, Lars; Siebner, Hartwig R; Thielscher, Axel
2015-01-01
Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector potential of the TMS coils. To develop an approach to reconstruct the magnetic vector potential based on automated measurements. We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel approach to determine the magnetic vector potential via volume integration of the measured field. The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well with that calculated using a model reconstructed from x-ray images. The setup can supply validated models for existing and newly appearing TMS coils. Copyright © 2015 Elsevier Inc. All rights reserved.
A Component-Based Extension Framework for Large-Scale Parallel Simulations in NEURON
King, James G.; Hines, Michael; Hill, Sean; Goodman, Philip H.; Markram, Henry; Schürmann, Felix
2008-01-01
As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator software represents only a part of a chain of tools ranging from setup, simulation, interaction with virtual environments to analysis and visualizations. Previously published approaches to abstracting simulator engines have not received wide-spread acceptance, which in part may be to the fact that they tried to address the challenge of solving the model specification problem. Here, we present an approach that uses a neurosimulator, in this case NEURON, to describe and instantiate the network model in the simulator's native model language but then replaces the main integration loop with its own. Existing parallel network models are easily adopted to run in the presented framework. The presented approach is thus an extension to NEURON but uses a component-based architecture to allow for replaceable spike exchange components and pluggable components for monitoring, analysis, or control that can run in this framework alongside with the simulation. PMID:19430597
Models and Frameworks: A Synergistic Association for Developing Component-Based Applications
Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A.; Álvarez, Bárbara
2014-01-01
The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development. PMID:25147858
Models and frameworks: a synergistic association for developing component-based applications.
Alonso, Diego; Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A; Álvarez, Bárbara
2014-01-01
The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development.
Oakes, J M; Feldman, H A
2001-02-01
Nonequivalent controlled pretest-posttest designs are central to evaluation science, yet no practical and unified approach for estimating power in the two most widely used analytic approaches to these designs exists. This article fills the gap by presenting and comparing useful, unified power formulas for ANCOVA and change-score analyses, indicating the implications of each on sample-size requirements. The authors close with practical recommendations for evaluators. Mathematical details and a simple spreadsheet approach are included in appendices.
Prediction of Patient-Controlled Analgesic Consumption: A Multimodel Regression Tree Approach.
Hu, Yuh-Jyh; Ku, Tien-Hsiung; Yang, Yu-Hung; Shen, Jia-Ying
2018-01-01
Several factors contribute to individual variability in postoperative pain, therefore, individuals consume postoperative analgesics at different rates. Although many statistical studies have analyzed postoperative pain and analgesic consumption, most have identified only the correlation and have not subjected the statistical model to further tests in order to evaluate its predictive accuracy. In this study involving 3052 patients, a multistrategy computational approach was developed for analgesic consumption prediction. This approach uses data on patient-controlled analgesia demand behavior over time and combines clustering, classification, and regression to mitigate the limitations of current statistical models. Cross-validation results indicated that the proposed approach significantly outperforms various existing regression methods. Moreover, a comparison between the predictions by anesthesiologists and medical specialists and those of the computational approach for an independent test data set of 60 patients further evidenced the superiority of the computational approach in predicting analgesic consumption because it produced markedly lower root mean squared errors.
Choice Rules and Accumulator Networks
2015-01-01
This article presents a preference accumulation model that can be used to implement a number of different multi-attribute heuristic choice rules, including the lexicographic rule, the majority of confirming dimensions (tallying) rule and the equal weights rule. The proposed model differs from existing accumulators in terms of attribute representation: Leakage and competition, typically applied only to preference accumulation, are also assumed to be involved in processing attribute values. This allows the model to perform a range of sophisticated attribute-wise comparisons, including comparisons that compute relative rank. The ability of a preference accumulation model composed of leaky competitive networks to mimic symbolic models of heuristic choice suggests that these 2 approaches are not incompatible, and that a unitary cognitive model of preferential choice, based on insights from both these approaches, may be feasible. PMID:28670592
Multistate modelling extended by behavioural rules: An application to migration.
Klabunde, Anna; Zinn, Sabine; Willekens, Frans; Leuchter, Matthias
2017-10-01
We propose to extend demographic multistate models by adding a behavioural element: behavioural rules explain intentions and thus transitions. Our framework is inspired by the Theory of Planned Behaviour. We exemplify our approach with a model of migration from Senegal to France. Model parameters are determined using empirical data where available. Parameters for which no empirical correspondence exists are determined by calibration. Age- and period-specific migration rates are used for model validation. Our approach adds to the toolkit of demographic projection by allowing for shocks and social influence, which alter behaviour in non-linear ways, while sticking to the general framework of multistate modelling. Our simulations yield that higher income growth in Senegal leads to higher emigration rates in the medium term, while a decrease in fertility yields lower emigration rates.
A hybrid modelling approach for predicting ground vibration from trains
NASA Astrophysics Data System (ADS)
Triepaischajonsak, N.; Thompson, D. J.
2015-01-01
The prediction of ground vibration from trains presents a number of difficulties. The ground is effectively an infinite medium, often with a layered structure and with properties that may vary greatly from one location to another. The vibration from a passing train forms a transient event, which limits the usefulness of steady-state frequency domain models. Moreover, there is often a need to consider vehicle/track interaction in more detail than is commonly used in frequency domain models, such as the 2.5D approach, while maintaining the computational efficiency of the latter. However, full time-domain approaches involve large computation times, particularly where three-dimensional ground models are required. Here, a hybrid modelling approach is introduced. The vehicle/track interaction is calculated in the time domain in order to be able t account directly for effects such as the discrete sleeper spacing. Forces acting on the ground are extracted from this first model and used in a second model to predict the ground response at arbitrary locations. In the present case the second model is a layered ground model operating in the frequency domain. Validation of the approach is provided by comparison with an existing frequency domain model. The hybrid model is then used to study the sleeper-passing effect, which is shown to be less significant than excitation due to track unevenness in all the cases considered.
An ontology-based semantic configuration approach to constructing Data as a Service for enterprises
NASA Astrophysics Data System (ADS)
Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi
2016-03-01
To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.
Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance
NASA Technical Reports Server (NTRS)
Eck, Thomas F.; Dye, Dennis G.
1991-01-01
A new satellite remote sensing method for estimating the amount of photosynthetically active radiation (PAR, 400-700 nm) incident at the earth's surface is described and tested. Potential incident PAR for clear sky conditions is computed from an existing spectral model. A major advantage of the UV approach over existing visible band approaches to estimating insolation is the improved ability to discriminate clouds from high-albedo background surfaces. UV spectral reflectance data from the Total Ozone Mapping Spectrometer (TOMS) were used to test the approach for three climatically distinct, midlatitude locations. Estimates of monthly total incident PAR from the satellite technique differed from values computed from ground-based pyranometer measurements by less than 6 percent. This UV remote sensing method can be applied to estimate PAR insolation over ocean and land surfaces which are free of ice and snow.
Prospects for rebuilding primary care using the patient-centered medical home.
Landon, Bruce E; Gill, James M; Antonelli, Richard C; Rich, Eugene C
2010-05-01
Existing research suggests that models of enhanced primary care lead to health care systems with better performance. What the research does not show is whether such an approach is feasible or likely to be effective within the U.S. health care system. Many commentators have adopted the model of the patient-centered medical home as policy shorthand to address the reinvention of primary care in the United States. We analyze potential barriers to implementing the medical home model for policy makers and practitioners. Among others, these include developing new payment models, as well as the need for up-front funding to assemble the personnel and infrastructure required by an enhanced non-visit-based primary care practice and methods to facilitate transformation of existing practices to functioning medical homes.
Carmack, Eddy; McLaughlin, Fiona; Whiteman, Gail; Homer-Dixon, Thomas
2012-02-01
It seems inevitable that the ongoing and rapid changes in the physical environment of the marine Arctic will push components of the region's existing social-ecological systems-small and large-beyond tipping points and into new regimes. Ongoing changes include warming, freshening, acidification, and alterations to food web structure. In anticipation we pose three distinct but interrelated challenges: (1) to explore existing connectivities within components of the marine system; (2) to seek indicators (if they exist) of approaching regime change through observation and modeling; and (3) to build functional resilience into existing systems through adaptation-oriented policy and to have in hand transformative options when tipping points are crossed and new development trajectories are required. Each of the above challenges is scale dependent, and each requires a much deeper understanding than we currently have of connectivity within existing systems and their response to external forcing. Here, we argue from a global perspective the need to understand the Arctic's role in an increasingly nonlinear world; then describe emerging evidence from new observations on the connectivity of processes and system components from the Canada Basin and subarctic seas surrounding northern North America; and finally posit an approach founded in "resilience thinking" to allow northern residents living in small coastal communities to participate in the observation, adaption and-if necessary-transformation of the social-ecological system with which they live.
Schwartz, Jonathan P; Lindley, Lori D
2009-01-01
Sexism in our society leads to multiple negative outcomes for women. Although traditional therapeutic approaches as well as preventive interventions address the specific negative outcomes of sexism, they rarely utilize a social justice approach. The deleterious effects of sexism occur complexly; sexist interpersonal events often occur within family systems that may endorse traditional gender roles, which exist within a societal and cultural context that contains sexist norms and formalized sexist policies. These multifaceted, ingrained circumstances delineate the need for preventive social justice to address sexism on multiple levels. A prevention/social justice model will be used to critique existing interventions and identify avenues for change in research and practice.
Numerical proof for chemostat chaos of Shilnikov's type.
Deng, Bo; Han, Maoan; Hsu, Sze-Bi
2017-03-01
A classical chemostat model is considered that models the cycling of one essential abiotic element or nutrient through a food chain of three trophic levels. The long-time behavior of the model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem to prove the existence of chaos analytically. In this paper, we aim to solve the problem numerically. In our approach, we introduce an artificial singular parameter to the model and construct singular homoclinic orbits of the saddle-focus type which is known for chaos generation. From the configuration of the nullclines of the equations that generates the singular homoclinic orbits, a shooting algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in turn imply the existence of chaotic dynamics for the original chemostat model.
Chen, Elizabeth S; Zhou, Li; Kashyap, Vipul; Schaeffer, Molly; Dykes, Patricia C; Goldberg, Howard S
2008-11-06
As Electronic Healthcare Records become more prevalent, there is an increasing need to ensure unambiguous data capture, interpretation, and exchange within and across heterogeneous applications. To address this need, a common, uniform, and comprehensive approach for representing clinical information is essential. At Partners HealthCare System, we are investigating the development and implementation of enterprise-wide information models to specify the representation of clinical information to support semantic interoperability. This paper summarizes our early experiences in: (1) defining a process for information model development, (2) reviewing and comparing existing healthcare information models, (3) identifying requirements for representation of laboratory and clinical observations, and (4) exploring linkages to existing terminology and data standards. These initial findings provide insight to the various challenges ahead and guidance on next steps for adoption of information models at our organization.
An experimental study of nonlinear dynamic system identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1990-01-01
A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Survey of Anomaly Detection Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, B
This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview ofmore » popular techniques and provide references to state-of-the-art applications.« less
NASA Astrophysics Data System (ADS)
Obulesu, O.; Rama Mohan Reddy, A., Dr; Mahendra, M.
2017-08-01
Detecting regular and efficient cyclic models is the demanding activity for data analysts due to unstructured, vigorous and enormous raw information produced from web. Many existing approaches generate large candidate patterns in the occurrence of huge and complex databases. In this work, two novel algorithms are proposed and a comparative examination is performed by considering scalability and performance parameters. The first algorithm is, EFPMA (Extended Regular Model Detection Algorithm) used to find frequent sequential patterns from the spatiotemporal dataset and the second one is, ETMA (Enhanced Tree-based Mining Algorithm) for detecting effective cyclic models with symbolic database representation. EFPMA is an algorithm grows models from both ends (prefixes and suffixes) of detected patterns, which results in faster pattern growth because of less levels of database projection compared to existing approaches such as Prefixspan and SPADE. ETMA uses distinct notions to store and manage transactions data horizontally such as segment, sequence and individual symbols. ETMA exploits a partition-and-conquer method to find maximal patterns by using symbolic notations. Using this algorithm, we can mine cyclic models in full-series sequential patterns including subsection series also. ETMA reduces the memory consumption and makes use of the efficient symbolic operation. Furthermore, ETMA only records time-series instances dynamically, in terms of character, series and section approaches respectively. The extent of the pattern and proving efficiency of the reducing and retrieval techniques from synthetic and actual datasets is a really open & challenging mining problem. These techniques are useful in data streams, traffic risk analysis, medical diagnosis, DNA sequence Mining, Earthquake prediction applications. Extensive investigational outcomes illustrates that the algorithms outperforms well towards efficiency and scalability than ECLAT, STNR and MAFIA approaches.
Cooperative inference: Features, objects, and collections.
Searcy, Sophia Ray; Shafto, Patrick
2016-10-01
Cooperation plays a central role in theories of development, learning, cultural evolution, and education. We argue that existing models of learning from cooperative informants have fundamental limitations that prevent them from explaining how cooperation benefits learning. First, existing models are shown to be computationally intractable, suggesting that they cannot apply to realistic learning problems. Second, existing models assume a priori agreement about which concepts are favored in learning, which leads to a conundrum: Learning fails without precise agreement on bias yet there is no single rational choice. We introduce cooperative inference, a novel framework for cooperation in concept learning, which resolves these limitations. Cooperative inference generalizes the notion of cooperation used in previous models from omission of labeled objects to the omission values of features, labels for objects, and labels for collections of objects. The result is an approach that is computationally tractable, does not require a priori agreement about biases, applies to both Boolean and first-order concepts, and begins to approximate the richness of real-world concept learning problems. We conclude by discussing relations to and implications for existing theories of cognition, cognitive development, and cultural evolution. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Tang, J. Y.; Riley, W. J.
2016-02-05
We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less
Towards a Framework for Modeling Space Systems Architectures
NASA Technical Reports Server (NTRS)
Shames, Peter; Skipper, Joseph
2006-01-01
Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.
A Mathematical Model for the Middle Ear Ventilation
NASA Astrophysics Data System (ADS)
Molnárka, G.; Miletics, E. M.; Fücsek, M.
2008-09-01
The otitis media is one of the mostly existing illness for the children, therefore investigation of the human middle ear ventilation is an actual problem. In earlier investigations both experimental and theoretical approach one can find in ([l]-[3]). Here we give a new mathematical and computer model to simulate this ventilation process. This model able to describe the diffusion and flow processes simultaneously, therefore it gives more precise results than earlier models did. The article contains the mathematical model and some results of the simulation.
Consumer preference models: fuzzy theory approach
NASA Astrophysics Data System (ADS)
Turksen, I. B.; Wilson, I. A.
1993-12-01
Consumer preference models are widely used in new product design, marketing management, pricing and market segmentation. The purpose of this article is to develop and test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation) and how much to make (market share prediction).
3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure
NASA Astrophysics Data System (ADS)
Hong, Ik-Seon; Yi, Yu; Yu, Jaehyung; Haruyama, Junichi
2015-06-01
When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.
A systems approach to obesity.
Lee, Bruce Y; Bartsch, Sarah M; Mui, Yeeli; Haidari, Leila A; Spiker, Marie L; Gittelsohn, Joel
2017-01-01
Obesity has become a truly global epidemic, affecting all age groups, all populations, and countries of all income levels. To date, existing policies and interventions have not reversed these trends, suggesting that innovative approaches are needed to transform obesity prevention and control. There are a number of indications that the obesity epidemic is a systems problem, as opposed to a simple problem with a linear cause-and-effect relationship. What may be needed to successfully address obesity is an approach that considers the entire system when making any important decision, observation, or change. A systems approach to obesity prevention and control has many benefits, including the potential to further understand indirect effects or to test policies virtually before implementing them in the real world. Discussed here are 5 key efforts to implement a systems approach for obesity prevention: 1) utilize more global approaches; 2) bring new experts from disciplines that do not traditionally work with obesity to share experiences and ideas with obesity experts; 3) utilize systems methods, such as systems mapping and modeling; 4) modify and combine traditional approaches to achieve a stronger systems orientation; and 5) bridge existing gaps between research, education, policy, and action. This article also provides an example of how a systems approach has been used to convene a multidisciplinary team and conduct systems mapping and modeling as part of an obesity prevention program in Baltimore, Maryland. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Towards a Generalizable Time Expression Model for Temporal Reasoning in Clinical Notes
Velupillai, Sumithra; Mowery, Danielle L.; Abdelrahman, Samir; Christensen, Lee; Chapman, Wendy W
2015-01-01
Accurate temporal identification and normalization is imperative for many biomedical and clinical tasks such as generating timelines and identifying phenotypes. A major natural language processing challenge is developing and evaluating a generalizable temporal modeling approach that performs well across corpora and institutions. Our long-term goal is to create such a model. We initiate our work on reaching this goal by focusing on temporal expression (TIMEX3) identification. We present a systematic approach to 1) generalize existing solutions for automated TIMEX3 span detection, and 2) assess similarities and differences by various instantiations of TIMEX3 models applied on separate clinical corpora. When evaluated on the 2012 i2b2 and the 2015 Clinical TempEval challenge corpora, our conclusion is that our approach is successful – we achieve competitive results for automated classification, and we identify similarities and differences in TIMEX3 modeling that will be informative in the development of a simplified, general temporal model. PMID:26958265
Beim Graben, Peter; Rodrigues, Serafim
2012-01-01
We present a biophysical approach for the coupling of neural network activity as resulting from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a neural population. This work aligns and satisfies the widespread dipole assumption that is motivated by the "open-field" configuration of the DFP around cortical pyramidal cells. Our reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire (LIF) models, which facilitates comparison with existing neural network and observation models. In particular, by means of numerical simulations we compare our approach with an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated approach yields substantial improvement.
Fast Appearance Modeling for Automatic Primary Video Object Segmentation.
Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong
2016-02-01
Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.
Bayesian Approach for Flexible Modeling of Semicompeting Risks Data
Han, Baoguang; Yu, Menggang; Dignam, James J.; Rathouz, Paul J.
2016-01-01
Summary Semicompeting risks data arise when two types of events, non-terminal and terminal, are observed. When the terminal event occurs first, it censors the non-terminal event, but not vice versa. To account for possible dependent censoring of the non-terminal event by the terminal event and to improve prediction of the terminal event using the non-terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well-known illness-death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non-terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. PMID:25274445
Cell-oriented modeling of angiogenesis.
Guidolin, Diego; Rebuffat, Piera; Albertin, Giovanna
2011-01-01
Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature) represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as "cell-centered" approach. This type of mathematical models work at a "mesoscopic scale," assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated "basic science understanding" about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting "applied biomedical research" for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.
A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons
beim Graben, Peter; Rodrigues, Serafim
2013-01-01
We present a biophysical approach for the coupling of neural network activity as resulting from proper dipole currents of cortical pyramidal neurons to the electric field in extracellular fluid. Starting from a reduced three-compartment model of a single pyramidal neuron, we derive an observation model for dendritic dipole currents in extracellular space and thereby for the dendritic field potential (DFP) that contributes to the local field potential (LFP) of a neural population. This work aligns and satisfies the widespread dipole assumption that is motivated by the “open-field” configuration of the DFP around cortical pyramidal cells. Our reduced three-compartment scheme allows to derive networks of leaky integrate-and-fire (LIF) models, which facilitates comparison with existing neural network and observation models. In particular, by means of numerical simulations we compare our approach with an ad hoc model by Mazzoni et al. (2008), and conclude that our biophysically motivated approach yields substantial improvement. PMID:23316157
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
Answer Sets in a Fuzzy Equilibrium Logic
NASA Astrophysics Data System (ADS)
Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine
Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.
Recent developments in broadly applicable structure-biodegradability relationships.
Jaworska, Joanna S; Boethling, Robert S; Howard, Philip H
2003-08-01
Biodegradation is one of the most important processes influencing concentration of a chemical substance after its release to the environment. It is the main process for removal of many chemicals from the environment and therefore is an important factor in risk assessments. This article reviews available methods and models for predicting biodegradability of organic chemicals from structure. The first section of the article briefly discusses current needs for biodegradability estimation methods related to new and existing chemicals and in the context of multimedia exposure models. Following sections include biodegradation test methods and endpoints used in modeling, with special attention given to the Japanese Ministry of International Trade and Industry test; a primer on modeling, describing the various approaches that have been used in the structure/biodegradability relationship work, and contrasting statistical and mechanistic approaches; and recent developments in structure/biodegradability relationships, divided into group contribution, chemometric, and artificial intelligence approaches.
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
Radiation Detection Computational Benchmark Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.
2013-09-24
Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing differentmore » techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.« less
Numerical study on turbulence modulation in gas-particle flows
NASA Astrophysics Data System (ADS)
Yan, F.; Lightstone, M. F.; Wood, P. E.
2007-01-01
A mathematical model is proposed based on the Eulerian/Lagrangian approach to account for both the particle crossing trajectory effect and the extra turbulence production due to particle wake effects. The resulting model, together with existing models from the literature, is applied to two different particle-laden flow configurations, namely a vertical pipe flow and axisymmetric downward jet flow. The results show that the proposed model is able to provide improved predictions of the experimental results.
Huang, Zhengxing; Dong, Wei; Duan, Huilong; Liu, Jiquan
2018-05-01
Acute coronary syndrome (ACS), as a common and severe cardiovascular disease, is a leading cause of death and the principal cause of serious long-term disability globally. Clinical risk prediction of ACS is important for early intervention and treatment. Existing ACS risk scoring models are based mainly on a small set of hand-picked risk factors and often dichotomize predictive variables to simplify the score calculation. This study develops a regularized stacked denoising autoencoder (SDAE) model to stratify clinical risks of ACS patients from a large volume of electronic health records (EHR). To capture characteristics of patients at similar risk levels, and preserve the discriminating information across different risk levels, two constraints are added on SDAE to make the reconstructed feature representations contain more risk information of patients, which contribute to a better clinical risk prediction result. We validate our approach on a real clinical dataset consisting of 3464 ACS patient samples. The performance of our approach for predicting ACS risk remains robust and reaches 0.868 and 0.73 in terms of both AUC and accuracy, respectively. The obtained results show that the proposed approach achieves a competitive performance compared to state-of-the-art models in dealing with the clinical risk prediction problem. In addition, our approach can extract informative risk factors of ACS via a reconstructive learning strategy. Some of these extracted risk factors are not only consistent with existing medical domain knowledge, but also contain suggestive hypotheses that could be validated by further investigations in the medical domain.
Ground robotic measurement of aeolian processes
USDA-ARS?s Scientific Manuscript database
Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...
Educational Diagnostic Assessment.
ERIC Educational Resources Information Center
Bejar, Isaac I.
1984-01-01
Approaches proposed for educational diagnostic assessment are reviewed and identified as deficit assessment and error analysis. The development of diagnostic instruments may require a reexamination of existing psychometric models and development of alternative ones. The psychometric and content demands of diagnostic assessment all but require test…
Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.
2013-08-01
Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.
Representing agriculture in Earth System Models: Approaches and priorities for development
NASA Astrophysics Data System (ADS)
McDermid, S. S.; Mearns, L. O.; Ruane, A. C.
2017-09-01
Earth System Model (ESM) advances now enable improved representations of spatially and temporally varying anthropogenic climate forcings. One critical forcing is global agriculture, which is now extensive in land-use and intensive in management, owing to 20th century development trends. Agriculture and food systems now contribute nearly 30% of global greenhouse gas emissions and require copious inputs and resources, such as fertilizer, water, and land. Much uncertainty remains in quantifying important agriculture-climate interactions, including surface moisture and energy balances and biogeochemical cycling. Despite these externalities and uncertainties, agriculture is increasingly being leveraged to function as a net sink of anthropogenic carbon, and there is much emphasis on future sustainable intensification. Given its significance as a major environmental and climate forcing, there now exist a variety of approaches to represent agriculture in ESMs. These approaches are reviewed herein, and range from idealized representations of agricultural extent to the development of coupled climate-crop models that capture dynamic feedbacks. We highlight the robust agriculture-climate interactions and responses identified by these modeling efforts, as well as existing uncertainties and model limitations. To this end, coordinated and benchmarking assessments of land-use-climate feedbacks can be leveraged for further improvements in ESM's agricultural representations. We suggest key areas for continued model development, including incorporating irrigation and biogeochemical cycling in particular. Last, we pose several critical research questions to guide future work. Our review focuses on ESM representations of climate-surface interactions over managed agricultural lands, rather than on ESMs as an estimation tool for crop yields and productivity.
NASA Astrophysics Data System (ADS)
Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.
2012-12-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
NASA Astrophysics Data System (ADS)
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte
2018-01-01
The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.
Forecasting need and demand for home health care: a selective review
Sharma, Rabinder K.
1980-01-01
Three models for forecasting home health care (HHC) needs are analyzed: HSA/SP model (Health Systems Agency of Southwestern Pennsylvania); Florida model (Florida State Department of Health and Rehabilitative Services); and Rhode Island model (Rhode Island Department of Community Affairs). A utilization approach to forecasting is also presented. In the HSA/SP and Florida models, need for HHC is based on a certain proportion of (a) hospital admissions and (b) patients entering HHC from other sources. The major advantage of these models is that they are relatively easy to use and explain; their major weaknesses are an imprecise definition of need and an incomplete model specification. The Rhode Island approach defines need for HHC in terms of the health status of the population as measured by chronic activity limitations. The major strengths of this approach are its explicit assumptions and its emphasis on consumer needs. The major drawback is that it requires considerable local area data. The utilization approach is based on extrapolation from observed utilization experience of the target population. Its main limitation is that it is based on current market imperfections; its major advantage is that it exposes existing deficiencies in HHC. The author concludes that each approach should be tested empirically in order to refine it, and that need and demand approaches be used jointly in the planning process. PMID:6893631
Population genetic testing for cancer susceptibility: founder mutations to genomes.
Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare
2016-01-01
The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.
Modeling spatial competition for light in plant populations with the porous medium equation.
Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal
2015-02-01
We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.
Bachmann, Till M
2015-08-18
Marginal analysis is the usual approach to environmental economic assessment, for instance, of health-related external costs due to energy-associated air pollutant emissions. However, nonlinearity exists in all steps of their assessment, i.e., atmospheric dispersion, impact assessment, and monetary valuation. Dedicated assessments thus appear necessary when evaluating large systems or their changes such as in green accounting or the implications of economy-wide energy transitions. Corresponding approaches are reviewed. Tools already exist that allow assessing a marginal change (e.g., one power plant's emissions) for different background emission scenarios that merely need to be defined and implemented. When assessing nonmarginal changes, the top-down approach is considered obsolete, and four variants of the bottom-up approach with different application domains were identified. Variants 1 and 2 use precalculated external cost factors with different levels of sophistication, suitable for energy systems modeling, optimizing for social (i.e., private and external) costs. Providing more reliable results due to more detailed modeling, emission sources are assessed individually or jointly in variants 3 and 4, respectively. Aiming at considering nonlinearity more fully and simultaneously following marginal analysis principles, I propose a variant 3-based approach, subdividing an aggregate (i.e., a nonmarginal change) into several smaller changes. Its strengths and drawbacks, notably the associated effort, are discussed.
The flow of power law fluids in elastic networks and porous media.
Sochi, Taha
2016-02-01
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.
Fatigue assessment of an existing steel bridge by finite element modelling and field measurements
NASA Astrophysics Data System (ADS)
Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.
2017-05-01
The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.
Combining Domain-driven Design and Mashups for Service Development
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.; Fernández-Villamor, José Ignacio; Del Pozo, David; Garulli, Luca; García, Boni
This chapter presents the Romulus project approach to Service Development using Java-based web technologies. Romulus aims at improving productivity of service development by providing a tool-supported model to conceive Java-based web applications. This model follows a Domain Driven Design approach, which states that the primary focus of software projects should be the core domain and domain logic. Romulus proposes a tool-supported model, Roma Metaframework, that provides an abstraction layer on top of existing web frameworks and automates the application generation from the domain model. This metaframework follows an object centric approach, and complements Domain Driven Design by identifying the most common cross-cutting concerns (security, service, view, ...) of web applications. The metaframework uses annotations for enriching the domain model with these cross-cutting concerns, so-called aspects. In addition, the chapter presents the usage of mashup technology in the metaframework for service composition, using the web mashup editor MyCocktail. This approach is applied to a scenario of the Mobile Phone Service Portability case study for the development of a new service.
Theoretical and material studies on thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.; Brennan, K. F.
1986-01-01
A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented is easily extended to many layer structures where it is more accurate than other existing transfer matrix or WKB models. The transmission resonances are compared to the bound state energies calculated for a finite square well under bias using either an asymmetric square well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound state energies. The calculations were then applied to a new superlattice structure, the variablly spaced superlattice energy filter, (VSSEP) which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.
Space shuttle flying qualities and criteria assessment
NASA Technical Reports Server (NTRS)
Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.
1987-01-01
Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.
Statistical estimation of femur micro-architecture using optimal shape and density predictors.
Lekadir, Karim; Hazrati-Marangalou, Javad; Hoogendoorn, Corné; Taylor, Zeike; van Rietbergen, Bert; Frangi, Alejandro F
2015-02-26
The personalization of trabecular micro-architecture has been recently shown to be important in patient-specific biomechanical models of the femur. However, high-resolution in vivo imaging of bone micro-architecture using existing modalities is still infeasible in practice due to the associated acquisition times, costs, and X-ray radiation exposure. In this study, we describe a statistical approach for the prediction of the femur micro-architecture based on the more easily extracted subject-specific bone shape and mineral density information. To this end, a training sample of ex vivo micro-CT images is used to learn the existing statistical relationships within the low and high resolution image data. More specifically, optimal bone shape and mineral density features are selected based on their predictive power and used within a partial least square regression model to estimate the unknown trabecular micro-architecture within the anatomical models of new subjects. The experimental results demonstrate the accuracy of the proposed approach, with average errors of 0.07 for both the degree of anisotropy and tensor norms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Probabilistic framework for product design optimization and risk management
NASA Astrophysics Data System (ADS)
Keski-Rahkonen, J. K.
2018-05-01
Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.
NASA Astrophysics Data System (ADS)
Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.
2017-05-01
Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.
An effective wind speed for models of fire spread
Ralph M. Nelson
2002-01-01
In previous descriptions of wind-slope interaction and the spread rate of wildland fires it is assumed that the separate effects of wind and slope are independent and additive and that corrections for these effects may be applied to spread rates computed from existing rate of spread models. A different approach is explored in the present paper in which the upslope...
A statistical approach to estimate O3 uptake of ponderosa pine in a mediterranean climate
N.E. Grulke; H.K. Preisler; C.C. Fan; W.A. Retzlaff
2002-01-01
In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of...
ERIC Educational Resources Information Center
Mittal, Surabhi; Mehar, Mamta
2016-01-01
Purpose: The paper analyzes factors that affect the likelihood of adoption of different agriculture-related information sources by farmers. Design/Methodology/Approach: The paper links the theoretical understanding of the existing multiple sources of information that farmers use, with the empirical model to analyze the factors that affect the…
An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior
W. J. Massman; J. M. Forthofer; M. A. Finney
2017-01-01
The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...
A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS
Jian Yang; Hong S. He; Eric J. Gustafson
2004-01-01
Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...
Critical Frequency in Nuclear Chiral Rotation
NASA Astrophysics Data System (ADS)
Olbratowski, P.; Dobaczewski, J.; Dudek, J.; Płóciennik, W.
2004-07-01
Self-consistent solutions for the so-called planar and chiral rotational bands in 132La are obtained for the first time within the Skyrme-Hartree-Fock cranking approach. It is suggested that the chiral rotation cannot exist below a certain critical frequency which under the approximations used is estimated as ℏωcrit≈0.5 0.6 MeV. However, the exact values of ℏωcrit may vary, to an extent, depending on the microscopic model used, in particular, through the pairing correlations and/or calculated equilibrium deformations. The existence of the critical frequency is explained in terms of a simple classical model of two gyroscopes coupled to a triaxial rigid body.
Quantum memories and Landauer's principle
NASA Astrophysics Data System (ADS)
Alicki, Robert
2011-10-01
Two types of arguments concerning (im)possibility of constructing a scalable, exponentially stable quantum memory equipped with Hamiltonian controls are discussed. The first type concerns ergodic properties of open Kitaev models which are considered as promising candidates for such memories. It is shown that, although the 4D Kitaev model provides stable qubit observables, the Hamiltonian control is not possible. The thermodynamical approach leads to the new proposal of the revised version of Landauer's principle and suggests that the existence of quantum memory implies the existence of the perpetuum mobile of the second kind. Finally, a discussion of the stability property of information and its implications is presented.
A review of physically based models for soil erosion by water
NASA Astrophysics Data System (ADS)
Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane
2010-05-01
Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.
Coupling population dynamics with earth system models: the POPEM model.
Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J
2017-09-16
Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.
Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.
Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja
2016-10-05
Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.
Williams, Claire; Lewsey, James D; Briggs, Andrew H; Mackay, Daniel F
2017-05-01
This tutorial provides a step-by-step guide to performing cost-effectiveness analysis using a multi-state modeling approach. Alongside the tutorial, we provide easy-to-use functions in the statistics package R. We argue that this multi-state modeling approach using a package such as R has advantages over approaches where models are built in a spreadsheet package. In particular, using a syntax-based approach means there is a written record of what was done and the calculations are transparent. Reproducing the analysis is straightforward as the syntax just needs to be run again. The approach can be thought of as an alternative way to build a Markov decision-analytic model, which also has the option to use a state-arrival extended approach. In the state-arrival extended multi-state model, a covariate that represents patients' history is included, allowing the Markov property to be tested. We illustrate the building of multi-state survival models, making predictions from the models and assessing fits. We then proceed to perform a cost-effectiveness analysis, including deterministic and probabilistic sensitivity analyses. Finally, we show how to create 2 common methods of visualizing the results-namely, cost-effectiveness planes and cost-effectiveness acceptability curves. The analysis is implemented entirely within R. It is based on adaptions to functions in the existing R package mstate to accommodate parametric multi-state modeling that facilitates extrapolation of survival curves.
Telehealth as gatekeeper: policy implications for geography and scope of services.
Kraetschmer, Nancy M; Deber, Raisa B; Dick, Paul; Jennett, Penny
2009-09-01
Why, despite enthusiasm, is telehealth still a relatively minor part of healthcare delivery in many health systems? We examined two less-considered policy issues: (1) the scope of services being offered by telehealth and how this matches existing arrangements for insured services; and (2) how the ability of telehealth services to minimize barriers associated with geography is dealt with in a system organized and financed on geographical boundaries. Fifty-three semistructured interviews with key stakeholders involved in the management of 43 Canadian telehealth programs were conducted. In addition, quantitative activity data were analyzed from 33 telehealth programs. Two telehealth approaches emerged: telephone-based (N = 3), and video-conferencing-based (N = 40). Most programs reflected, rather than superceded, existing geographical boundaries; with the technology being used, the videoconferencing models imposed significant barriers to unfettered access by outlying communities because they required sites to acquire expensive technology, be affiliated with an existing telehealth network, and schedule visits in advance. In consequence, much activity was administrative and educational, rather than clinical, and often extended beyond the set of mandatory insured services. Despite high hopes that telehealth would improve access to care for rural/remote areas, gatekeeping inherent in certain telehealth systems imposes barriers to unfettered use by rural/remote areas, although it does facilitate other valued activities. Policy approaches are needed to promote a closer match between the expectations for telehealth and the realities reflected by many existing models.
A Multiscale Survival Process for Modeling Human Activity Patterns.
Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang
2016-01-01
Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1992-01-01
A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.
Modelling of induced electric fields based on incompletely known magnetic fields
NASA Astrophysics Data System (ADS)
Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro
2017-08-01
Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.
Dorninger, Peter; Pfeifer, Norbert
2008-01-01
Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects. PMID:27873931
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narashimha S.
2013-01-01
Current approaches to satellite observation data storage and distribution implement separate visualization and data access methodologies which often leads to the need in time consuming data ordering and coding for applications requiring both visual representation as well as data handling and modeling capabilities. We describe an approach we implemented for a data-encoded web map service based on storing numerical data within server map tiles and subsequent client side data manipulation and map color rendering. The approach relies on storing data using the lossless compression Portable Network Graphics (PNG) image data format which is natively supported by web-browsers allowing on-the-fly browser rendering and modification of the map tiles. The method is easy to implement using existing software libraries and has the advantage of easy client side map color modifications, as well as spatial subsetting with physical parameter range filtering. This method is demonstrated for the ASTER-GDEM elevation model and selected MODIS data products and represents an alternative to the currently used storage and data access methods. One additional benefit includes providing multiple levels of averaging due to the need in generating map tiles at varying resolutions for various map magnification levels. We suggest that such merged data and mapping approach may be a viable alternative to existing static storage and data access methods for a wide array of combined simulation, data access and visualization purposes.
NASA Astrophysics Data System (ADS)
Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A.
2012-08-01
The primary purpose of this paper is to review currently existing cost estimation methods, models, tools and resources applicable to the space sector. While key space sector methods are outlined, a specific focus is placed on hardware cost estimation on a system level, particularly for early mission phases during which specifications and requirements are not yet crystallised, and information is limited. For the space industry, cost engineering within the systems engineering framework is an integral discipline. The cost of any space program now constitutes a stringent design criterion, which must be considered and carefully controlled during the entire program life cycle. A first step to any program budget is a representative cost estimate which usually hinges on a particular estimation approach, or methodology. Therefore appropriate selection of specific cost models, methods and tools is paramount, a difficult task given the highly variable nature, scope as well as scientific and technical requirements applicable to each program. Numerous methods, models and tools exist. However new ways are needed to address very early, pre-Phase 0 cost estimation during the initial program research and establishment phase when system specifications are limited, but the available research budget needs to be established and defined. Due to their specificity, for vehicles such as reusable launchers with a manned capability, a lack of historical data implies that using either the classic heuristic approach such as parametric cost estimation based on underlying CERs, or the analogy approach, is therefore, by definition, limited. This review identifies prominent cost estimation models applied to the space sector, and their underlying cost driving parameters and factors. Strengths, weaknesses, and suitability to specific mission types and classes are also highlighted. Current approaches which strategically amalgamate various cost estimation strategies both for formulation and validation of an estimate, and techniques and/or methods to attain representative and justifiable cost estimates are consequently discussed. Ultimately, the aim of the paper is to establish a baseline for development of a non-commercial, low cost, transparent cost estimation methodology to be applied during very early program research phases at a complete vehicle system level, for largely unprecedented manned launch vehicles in the future. This paper takes the first step to achieving this through the identification, analysis and understanding of established, existing techniques, models, tools and resources relevant within the space sector.
Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System
NASA Astrophysics Data System (ADS)
Demirdjian, L.; Zhou, Y.; Huffman, G. J.
2016-12-01
This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.
Spreadsheet WATERSHED modeling for nonpoint-source pollution management in a Wisconsin basin
Walker, J.F.; Pickard, S.A.; Sonzogni, W.C.
1989-01-01
Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.A straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.
Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad
2017-10-25
Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.
A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants
Broadaway, K. Alaine; Cutler, David J.; Duncan, Richard; Moore, Jacob L.; Ware, Erin B.; Jhun, Min A.; Bielak, Lawrence F.; Zhao, Wei; Smith, Jennifer A.; Peyser, Patricia A.; Kardia, Sharon L.R.; Ghosh, Debashis; Epstein, Michael P.
2016-01-01
Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy. PMID:26942286
ERIC Educational Resources Information Center
Hitt, William D.; Agostino, Norman R.
This study to develop an education and training (E&T) system for inmates in Federal correctional institutions described and evaluated existing E&T systems and needs at Milan, Michigan, and Terre Haute, Indiana; formulated an E&T model; and made specific recommendations for implementation of each point in the model. A systems analysis approach was…
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst
2017-11-01
Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.
Towards Accurate Node-Based Detection of P2P Botnets
2014-01-01
Botnets are a serious security threat to the current Internet infrastructure. In this paper, we propose a novel direction for P2P botnet detection called node-based detection. This approach focuses on the network characteristics of individual nodes. Based on our model, we examine node's flows and extract the useful features over a given time period. We have tested our approach on real-life data sets and achieved detection rates of 99-100% and low false positives rates of 0–2%. Comparison with other similar approaches on the same data sets shows that our approach outperforms the existing approaches. PMID:25089287
Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.
Camacho, Oscar; De la Cruz, Francisco
2004-04-01
An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations.
Capability maturity models for offshore organisational management.
Strutt, J E; Sharp, J V; Terry, E; Miles, R
2006-12-01
The goal setting regime imposed by the UK safety regulator has important implications for an organisation's ability to manage health and safety related risks. Existing approaches to safety assurance based on risk analysis and formal safety assessments are increasingly considered unlikely to create the step change improvement in safety to which the offshore industry aspires and alternative approaches are being considered. One approach, which addresses the important issue of organisational behaviour and which can be applied at a very early stage of design, is the capability maturity model (CMM). The paper describes the development of a design safety capability maturity model, outlining the key processes considered necessary to safety achievement, definition of maturity levels and scoring methods. The paper discusses how CMM is related to regulatory mechanisms and risk based decision making together with the potential of CMM to environmental risk management.
Boundary formulations for sensitivity analysis without matrix derivatives
NASA Technical Reports Server (NTRS)
Kane, J. H.; Guru Prasad, K.
1993-01-01
A new hybrid approach to continuum structural shape sensitivity analysis employing boundary element analysis (BEA) is presented. The approach uses iterative reanalysis to obviate the need to factor perturbed matrices in the determination of surface displacement and traction sensitivities via a univariate perturbation/finite difference (UPFD) step. The UPFD approach makes it possible to immediately reuse existing subroutines for computation of BEA matrix coefficients in the design sensitivity analysis process. The reanalysis technique computes economical response of univariately perturbed models without factoring perturbed matrices. The approach provides substantial computational economy without the burden of a large-scale reprogramming effort.
DOT National Transportation Integrated Search
2009-08-01
In the United States, about 27% of the bridges are classified as structurally deficient or functionally obsolete. Bridge owners are continually investigating methods to effectively retrofit existing bridges, or to economically replace them with new o...
DOT National Transportation Integrated Search
2009-08-01
In the United States, about 27% of the bridges are classified as structurally deficient or functionally obsolete. : Bridge owners are continually investigating methods to effectively retrofit existing bridges, or to economically replace : them with n...
An Approach for harmonizing European Water Portals
NASA Astrophysics Data System (ADS)
Pesquer, Lluís; Stasch, Christoph; Masó, Joan; Jirka, Simon; Domingo, Xavier; Guitart, Francesc; Turner, Thomas; Hinderk Jürrens, Eike
2017-04-01
A number of European funded research projects is developing novel solutions for water monitoring, modeling and management. To generate innovations in the water sector, third parties from industry and the public sector need to take up the solutions and bring them into the market. A variety of portals exists to support this move into the market. Examples on the European level are the EIP Water Online Marketplace(1), the WaterInnEU Marketplace(2), the WISE RTD Water knowledge portal(3), the WIDEST- ICT for Water Observatory(4) or the SWITCH-ON Virtual Product Market and Virtual Water-Science Laboratory(5). Further innovation portals and initiatives exist on the national or regional level, for example, the Denmark knows water platform6 or the Dutch water alliance(7). However, the different portals often cover the same projects, the same products and the same services. Since they are technically separated and have their own data models and databases, people need to duplicate information and maintain it at several endpoints. This requires additional efforts and hinders the interoperable exchange between these portals and tools using the underlying data. In this work, we provide an overview on the existing portals and present an approach for harmonizing and integrating common information that is provided across different portals. The approach aims to integrate the common in formation in a common database utilizing existing vocabularies, where possible. An Application Programming Interface allows access the information in a machine-readable way and utilizing the information in other applications beyond description and discovery purposes. (1) http://www.eip-water.eu/my-market-place (2) https://marketplace.waterinneu.org (3) http://www.wise-rtd.info/ (4) http://iwo.widest.eu (5) http://www.switch-on-vwsl.eu/ (6) http://www.rethinkwater.dk/ (7) http://wateralliance.nl/
Absorption of Solar Radiation by Clouds: An Overview
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)
2000-01-01
This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.
NASA Astrophysics Data System (ADS)
Palacz, A. P.; St. John, M. A.; Brewin, R. J. W.; Hirata, T.; Gregg, W. W.
2013-05-01
Modeling and monitoring plankton functional types (PFTs) is challenged by insufficient amount of field measurements to ground-truth both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically-sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs, and focus on resolving the question of diatom-coccolithophore co-existence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high latitude areas, and indicate seasonal co-existence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, was so far not captured by state-of-the-art dynamic models which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.
Frohlich, Jonah; Karp, Sam; Smith, Mark D; Sujansky, Walter
2007-01-01
Despite its closure in December 2006, the Santa Barbara County Care Data Exchange helped focus national attention on the value of health information exchange (HIE). This in turn led to the federal government's plan to establish regional health information organizations (RHIOs). During its existence, the project pioneered innovative approaches, including certification of health information technology vendors, a community-wide governance model, and deployment of a peer-to-peer technical model now in wider use. RHIO efforts will benefit from the project's lessons about the need for an incremental development approach, rigorous implementation processes, early attention to privacy and liability concerns, and planning for a sustainable business model.
Don't panic--prepare: towards crisis-aware models of emergency department operations.
Ceglowski, Red; Churilov, Leonid; Wasserheil, Jeff
2005-12-01
The existing models of Emergency Department (ED) operations that are based on the "flow-shop" management logic do not provide adequate decision support in dealing with the ED overcrowding crises. A conceptually different crisis-aware approach to ED modelling and operational decision support is introduced in this paper. It is based on Perrow's theory of "normal accidents" and calls for recognizing the inevitable nature of ED overcrowding crises within current health system setup. Managing the crisis before it happens--a standard approach in crisis management area--should become an integral part of ED operations management. The potential implications of adopting such a crisis-aware perspective for health services research and ED management are outlined.
Sharma, Nripen S.; Jindal, Rohit; Mitra, Bhaskar; Lee, Serom; Li, Lulu; Maguire, Tim J.; Schloss, Rene; Yarmush, Martin L.
2014-01-01
Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals. PMID:24741377
Integrating wetland connectivity into models for watershed ...
Geographically isolated wetlands (GIW), or wetlands embedded in uplands, exist along a spatial and temporal hydrologic connectivity continuum to downstream waters. Via these connections and disconnections, GIWs provide numerous hydrological, biogeochemical, and biological functions linked to human health and watershed-scale ecosystem services. Often, a clear demonstration of these functions and the individual and cumulative effects of GIWs on downstream waters is required for their protection or restoration. Measurements alone are typically too resource intensive to do this. In this presentation, we discuss the use of various modeling approaches to quantify the hydrologic connectivity of GIWs and their associated watershed-scale cumulative effects. Our goal is to improve the science behind understanding the functions and connectivity of GIWs via models that are complemented with various types of novel data. We synthesize what is meant by GIW connectivity and its broad significance to science and decision-making. We further discuss case studies that provide insights to diverse modeling approaches, with varying levels of complexity, for how to estimate GIW connectivity and associated watershed-scale impacts to hydrology. We finally provide insights to the key opportunities and priorities for integrating GIW connectivity into the next generation of models. Geographically isolated wetlands (GIW), or wetlands embedded in uplands, exist along a spatial and temporal h
Comparing mechanistic and empirical approaches to modeling the thermal niche of almond
NASA Astrophysics Data System (ADS)
Parker, Lauren E.; Abatzoglou, John T.
2017-09-01
Delineating locations that are thermally viable for cultivating high-value crops can help to guide land use planning, agronomics, and water management. Three modeling approaches were used to identify the potential distribution and key thermal constraints on on almond cultivation across the southwestern United States (US), including two empirical species distribution models (SDMs)—one using commonly used bioclimatic variables (traditional SDM) and the other using more physiologically relevant climate variables (nontraditional SDM)—and a mechanistic model (MM) developed using published thermal limitations from field studies. While models showed comparable results over the majority of the domain, including over existing croplands with high almond density, the MM suggested the greatest potential for the geographic expansion of almond cultivation, with frost susceptibility and insufficient heat accumulation being the primary thermal constraints in the southwestern US. The traditional SDM over-predicted almond suitability in locations shown by the MM to be limited by frost, whereas the nontraditional SDM showed greater agreement with the MM in these locations, indicating that incorporating physiologically relevant variables in SDMs can improve predictions. Finally, opportunities for geographic expansion of almond cultivation under current climatic conditions in the region may be limited, suggesting that increasing production may rely on agronomical advances and densifying current almond plantations in existing locations.
A Complex Network Perspective on Clinical Science
Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.
2016-01-01
Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457
Collaborative Care in Schools: Enhancing Integration and Impact in Youth Mental Health
Lyon, Aaron R.; Whitaker, Kelly; French, William P.; Richardson, Laura P.; Wasse, Jessica Knaster; McCauley, Elizabeth
2016-01-01
Collaborative Care is an innovative approach to integrated mental health service delivery that focuses on reducing access barriers, improving service quality, and lowering healthcare expenditures. A large body of evidence supports the effectiveness of Collaborative Care models with adults and, increasingly, for youth. Although existing studies examining these models for youth have focused exclusively on primary care, the education sector is also an appropriate analog for the accessibility that primary care offers to adults. Collaborative Care aligns closely with the practical realities of the education sector and may represent a strategy to achieve some of the objectives of increasingly popular multi-tiered systems of supports frameworks. Unfortunately, no resources exist to guide the application of Collaborative Care models in schools. Based on the existing evidence for Collaborative Care models, the current paper (1) provides a rationale for the adaptation of Collaborative Care models to improve mental health service accessibility and effectiveness in the education sector; (2) presents a preliminary Collaborative Care model for use in schools; and (3) describes avenues for research surrounding school-based Collaborative Care, including the currently funded Accessible, Collaborative Care for Effective School-based Services (ACCESS) project. PMID:28392832
NASA Astrophysics Data System (ADS)
McKean, John R.; Johnson, Donn; Taylor, R. Garth
2010-09-01
Choice of the appropriate model of economic behavior is important for the measurement of nonmarket demand and benefits. Several travel cost demand model specifications are currently in use. Uncertainty exists over the efficacy of these approaches, and more theoretical and empirical study is warranted. Thus travel cost models with differing assumptions about labor markets and consumer behavior were applied to estimate the demand for steelhead trout sportfishing on an unimpounded reach of the Snake River near Lewiston, Idaho. We introduce a modified two-step decision model that incorporates endogenous time value using a latent index variable approach. The focus is on the importance of distinguishing between short-run and long-run consumer decision variables in a consistent manner. A modified Barnett two-step decision model was found superior to other models tested.
Efficient statistical mapping of avian count data
Royle, J. Andrew; Wikle, C.K.
2005-01-01
We develop a spatial modeling framework for count data that is efficient to implement in high-dimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in over-dispersion relative to the Poisson assumption. This approach represents an improvement over existing approaches used for spatial modeling of BBS data which are either inefficient for continental scale modeling and prediction or fail to accommodate important distributional features of count data thus leading to inaccurate accounting of prediction uncertainty.
NASA Astrophysics Data System (ADS)
Hardyanto, W.; Purwinarko, A.; Adhi, M. A.
2018-03-01
The library which is the gate of the University should be supported by the existence of an adequate information system, to provide excellent service and optimal to every user. Library management system that has been in existence since 2009 needs to be re-evaluated so that the system can meet the needs of both operator and Unnes user in particular, and users from outside Unnes in general. This study aims to evaluate and improve the existing library management system to produce a system that is accountable and able to meet the needs of end users, as well as produce a library management system that is integrated Unnes. Research is directed to produce evaluation report with Technology Acceptance Model (TAM) approach and library management system integrated with the national standard.
General structure of democratic mass matrix of quark sector in E6 model
NASA Astrophysics Data System (ADS)
Ciftci, R.; ćiftci, A. K.
2016-03-01
An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks
NASA Astrophysics Data System (ADS)
Huh, Hyungjin; Ha, Seung-Yeal; Kim, Dohyun
2017-12-01
We present several sufficient frameworks leading to the emergent behaviors of the coupled Schrödinger-Lohe (S-L) model under the same one-body external potential on cooperative-competitive networks. The S-L model was first introduced as a possible phenomenological model exhibiting quantum synchronization and its emergent dynamics on all-to-all cooperative networks has been treated via two distinct approaches, Lyapunov functional approach and the finite-dimensional reduction based on pairwise correlations. In this paper, we further generalize the finite-dimensional dynamical systems approach for pairwise correlation functions on cooperative-competitive networks and provide several sufficient frameworks leading to the collective exponential synchronization. For small systems consisting of three and four quantum subsystem, we also show that the system for pairwise correlations can be reduced to the Lotka-Volterra model with cooperative and competitive interactions, in which lots of interesting dynamical patterns appear, e.g., existence of closed orbits and limit-cycles.
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Estimation of cardiac conductivities in ventricular tissue by a variational approach
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Veneziani, Alessandro
2015-11-01
The bidomain model is the current standard model to simulate cardiac potential propagation. The numerical solution of this system of partial differential equations strongly depends on the model parameters and in particular on the cardiac conductivities. Unfortunately, it is quite problematic to measure these parameters in vivo and even more so in clinical practice, resulting in no common agreement in the literature. In this paper we consider a variational data assimilation approach to estimating those parameters. We consider the parameters as control variables to minimize the mismatch between the computed and the measured potentials under the constraint of the bidomain system. The existence of a minimizer of the misfit function is proved with the phenomenological Rogers-McCulloch ionic model, that completes the bidomain system. We significantly improve the numerical approaches in the literature by resorting to a derivative-based optimization method with settlement of some challenges due to discontinuity. The improvement in computational efficiency is confirmed by a 2D test as a direct comparison with approaches in the literature. The core of our numerical results is in 3D, on both idealized and real geometries, with the minimal ionic model. We demonstrate the reliability and the stability of the conductivity estimation approach in the presence of noise and with an imperfect knowledge of other model parameters.
NASA Astrophysics Data System (ADS)
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Onyango, Esther Achieng; Sahin, Oz; Awiti, Alex; Chu, Cordia; Mackey, Brendan
2016-11-11
Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.
Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates
NASA Astrophysics Data System (ADS)
Wu, Yixiang; Zou, Xingfu
2018-04-01
In this paper, we investigate a diffusive host-pathogen model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts. We first prove that the solution of the model exists globally and the model system possesses a global attractor. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable; if R0 > 1, the solution of the model is uniformly persistent and there exists a positive (pathogen persistent) steady state. Finally, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Our result suggests that the infected hosts concentrate at certain points which can be characterized as the pathogen's most favoured sites when the mobility of the infected host is limited.
Generic Business Model Types for Enterprise Mashup Intermediaries
NASA Astrophysics Data System (ADS)
Hoyer, Volker; Stanoevska-Slabeva, Katarina
The huge demand for situational and ad-hoc applications desired by the mass of business end users led to a new kind of Web applications, well-known as Enterprise Mashups. Users with no or limited programming skills are empowered to leverage in a collaborative manner existing Mashup components by combining and reusing company internal and external resources within minutes to new value added applications. Thereby, Enterprise Mashup environments interact as intermediaries to match the supply of providers and demand of consumers. By following the design science approach, we propose an interaction phase model artefact based on market transaction phases to structure required intermediary features. By means of five case studies, we demonstrate the application of the designed model and identify three generic business model types for Enterprise Mashups intermediaries (directory, broker, and marketplace). So far, intermediaries following a real marketplace business model don’t exist in context of Enterprise Mashups and require further research for this emerging paradigm.
Backward Bifurcation in a Cholera Model: A Case Study of Outbreak in Zimbabwe and Haiti
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Kumari, Nitu
In this paper, a nonlinear deterministic model is proposed with a saturated treatment function. The expression of the basic reproduction number for the proposed model was obtained. The global dynamics of the proposed model was studied using the basic reproduction number and theory of dynamical systems. It is observed that proposed model exhibits backward bifurcation as multiple endemic equilibrium points exist when R0 < 1. The existence of backward bifurcation implies that making R0 < 1 is not enough for disease eradication. This, in turn, makes it difficult to control the spread of cholera in the community. We also obtain a unique endemic equilibria when R0 > 1. The global stability of unique endemic equilibria is performed using the geometric approach. An extensive numerical study is performed to support our analytical results. Finally, we investigate two major cholera outbreaks, Zimbabwe (2008-09) and Haiti (2010), with the help of the present study.
Learning, remembering, and predicting how to use tools: Distributed neurocognitive mechanisms
Buxbaum, Laurel J.
2016-01-01
The reasoning-based approach championed by Francois Osiurak and Arnaud Badets (Osiurak & Badets, 2016) denies the existence of sensory-motor memories of tool use except in limited circumstances, and suggests instead that most tool use is subserved solely by online technical reasoning about tool properties. In this commentary, I highlight the strengths and limitations of the reasoning-based approach and review a number of lines of evidence that manipulation knowledge is in fact used in tool action tasks. In addition, I present a “two route” neurocognitive model of tool use called the “Two Action Systems Plus (2AS+)” framework that posits a complementary role for online and stored information and specifies the neurocognitive substrates of task-relevant action selection. This framework, unlike the reasoning based approach, has the potential to integrate the existing psychological and functional neuroanatomic data in the tool use domain. PMID:28358565
Gamification - Environmental and Sustainable Development Organizations Could Do More
NASA Astrophysics Data System (ADS)
Ziegler, C. R.; Miller, C. A.; Kilaru, V.; French, R. A.; Costanza, R.; Brookes, A.
2013-12-01
The use of digital games to foster sustainable development and environmental goals has grown over the last 10 years. Innovative thinking and the origins of 'serious games,' 'games for change' and 'gamification' are partly rooted in movies and science fiction. Existing games illustrate a spectrum of approaches: for example, World Food Programme's FoodForce and University of Washington's Foldit. Environmental organizations globally (e.g. US EPA) have dabbled with game development and gamification, but have only touched the tip of the iceberg, particularly when compared to the success of the commercial gaming industry. We explore: 1) the intersection of environmental organization mission statements in the context of gamification efforts , 2) some examples of existing games, from simple to complex, 3) business model approaches (e.g. game development partnerships with academia, private industry, NGOs, etc.), 4) barriers, and 5) benefits of a more concerted and technologically-advanced approach to gamification for environmental organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Sisi; Li, Yun; Levitt, Karl N.
Consensus is a fundamental approach to implementing fault-tolerant services through replication where there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing systemmore » and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.« less
Arepeva, Maria; Kolbin, Alexey; Kurylev, Alexey; Balykina, Julia; Sidorenko, Sergey
2015-01-01
Acquired bacterial resistance is one of the causes of mortality and morbidity from infectious diseases. Mathematical modeling allows us to predict the spread of resistance and to some extent to control its dynamics. The purpose of this review was to examine existing mathematical models in order to understand the pros and cons of currently used approaches and to build our own model. During the analysis, seven articles on mathematical approaches to studying resistance that satisfied the inclusion/exclusion criteria were selected. All models were classified according to the approach used to study resistance in the presence of an antibiotic and were analyzed in terms of our research. Some models require modifications due to the specifics of the research. The plan for further work on model building is as follows: modify some models, according to our research, check all obtained models against our data, and select the optimal model or models with the best quality of prediction. After that we would be able to build a model for the development of resistance using the obtained results. PMID:25972847
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Pohjola, Mikko V.; Pohjola, Pasi; Tainio, Marko; Tuomisto, Jouni T.
2013-01-01
The calls for knowledge-based policy and policy-relevant research invoke a need to evaluate and manage environment and health assessments and models according to their societal outcomes. This review explores how well the existing approaches to assessment and model performance serve this need. The perspectives to assessment and model performance in the scientific literature can be called: (1) quality assurance/control, (2) uncertainty analysis, (3) technical assessment of models, (4) effectiveness and (5) other perspectives, according to what is primarily seen to constitute the goodness of assessments and models. The categorization is not strict and methods, tools and frameworks in different perspectives may overlap. However, altogether it seems that most approaches to assessment and model performance are relatively narrow in their scope. The focus in most approaches is on the outputs and making of assessments and models. Practical application of the outputs and the consequential outcomes are often left unaddressed. It appears that more comprehensive approaches that combine the essential characteristics of different perspectives are needed. This necessitates a better account of the mechanisms of collective knowledge creation and the relations between knowledge and practical action. Some new approaches to assessment, modeling and their evaluation and management span the chain from knowledge creation to societal outcomes, but the complexity of evaluating societal outcomes remains a challenge. PMID:23803642
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-07
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Hanbury, David B; Edens, Kyle D; Fontenot, M Babette; Greer, Tammy F; McCoy, John G; Watson, Sheree L
2013-01-01
Studies of handedness suggest a relationship between hemispheric specialisation and emotional processing. Recently measures of lateralised tympanic membrane temperature (TMT) have identified similar relationships (i.e., the left hemisphere is involved in approach behaviour and the right hemisphere avoidance behaviour). In the present study we examined lateralised changes in TMT in response to social interaction in 10 Garnett's bushbabies. Additionally, we examined whether handedness could be used as a predictor of approach-avoidance tendencies. We found a positive association between temperature change and both allogrooming and affiliative approach. Social behaviour did not differ between right- and left-handed bushbabies. These findings are discussed in terms of existing theories of asymmetric emotional processing. Overall, the data suggest that there is a left hemisphere specialisation for processing approach-related behaviours, which is consistent with existing models of lateralised emotional processing. Our data also indicate that TMT is a reliable, cost-effective measure of cerebral activation that is less invasive and more practical than alternative measures such as EEG, PET, and fMRI.
Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.
2010-05-30
Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models aremore » imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.« less
Using VCL as an Aspect-Oriented Approach to Requirements Modelling
NASA Astrophysics Data System (ADS)
Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian
Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.
Gleddie, Doug
2012-03-01
The health-promoting schools approach has gained momentum in the last decade with many jurisdictions providing guidelines and frameworks for general implementation. Although general agreement exists as to the broad strokes needed for effectiveness, less apparent are local implementation designs and models. The Battle River Project was designed to explore one such local implementation strategy for a provincial (Alberta, Canada) health promoting schools program. Located in the Battle River School Division, the project featured a partnership between Ever Active Schools, the school division and the local health authority. Case study was used to come to a greater understanding of how the health promoting schools approach worked in this particular school authority and model. Three themes emerged: participation, coordination and, integration.
Thermal/structural design verification strategies for large space structures
NASA Technical Reports Server (NTRS)
Benton, David
1988-01-01
Requirements for space structures of increasing size, complexity, and precision have engendered a search for thermal design verification methods that do not impose unreasonable costs, that fit within the capabilities of existing facilities, and that still adequately reduce technical risk. This requires a combination of analytical and testing methods. This requires two approaches. The first is to limit thermal testing to sub-elements of the total system only in a compact configuration (i.e., not fully deployed). The second approach is to use a simplified environment to correlate analytical models with test results. These models can then be used to predict flight performance. In practice, a combination of these approaches is needed to verify the thermal/structural design of future very large space systems.
The post-genomic era of biological network alignment.
Faisal, Fazle E; Meng, Lei; Crawford, Joseph; Milenković, Tijana
2015-12-01
Biological network alignment aims to find regions of topological and functional (dis)similarities between molecular networks of different species. Then, network alignment can guide the transfer of biological knowledge from well-studied model species to less well-studied species between conserved (aligned) network regions, thus complementing valuable insights that have already been provided by genomic sequence alignment. Here, we review computational challenges behind the network alignment problem, existing approaches for solving the problem, ways of evaluating their alignment quality, and the approaches' biomedical applications. We discuss recent innovative efforts of improving the existing view of network alignment. We conclude with open research questions in comparative biological network research that could further our understanding of principles of life, evolution, disease, and therapeutics.
Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring
NASA Astrophysics Data System (ADS)
Stocklöw, Carsten; Kamieth, Felix
In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.
Identification of green skills acquisition in Indonesian TVET curricula
NASA Astrophysics Data System (ADS)
Setiawan, Agus
2017-09-01
Recently, many countries have put the focus on green growth which specifically aims at achieving a resilient, low-carbon, and resource-efficient economy model that leads to higher quality of life. Environmental pollution and climate change are negatively affecting the sustainability of various economical activities across the world, with Indonesia being one of them. To mitigate the environmental problems, the existing economy should be shifted to a greener economy model which will create green jobs and greening the existing occupation in the industries. Green jobs require workers with green skills. Therefore, development of green skills in TVET institutions is urgently needed. By referencing the existing green skills frame work, green skills acquisition has not been clearly integrated into the existing Indonesian TVET curriculum. However, approach to integrate green skills into TVET curriculum can be carried out through the development of hard skills and soft skills in the domain of knowledge, abilities, and attitudes where green skills is an imparting of both hard skills and soft skills.
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach
NASA Technical Reports Server (NTRS)
Aguilo, Miguel A.; Warner, James E.
2017-01-01
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.
Approaches for scalable modeling and emulation of cyber systems : LDRD final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.
2009-09-01
The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminarymore » theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.« less
[Burning mouth syndrome - a joint biopsychosocial approach].
Arpone, Francesca; Combremont, Florian; Weber, Kerstin; Scolozzi, Paolo
2016-02-10
Burning mouth syndrome (BMS) is a medical condition that is often refractory to conventional diagnostic and therapeutic methods. Patients suffering from BMS can benefit from a biopsychosocial approach in a joint, medical-psychological consultation model. Such a consultation exists at Geneva University Hospitals, involving the collaboration of the maxillo-facial and oral surgery division and the division of liaison psychiatry and crisis intervention, in order to take into account the multiple factors involved in BMS onset and persistence. This article will describe BMS clinical presentation, and present an integrate approach to treat these patients.
On the interplay between mathematics and biology. Hallmarks toward a new systems biology
NASA Astrophysics Data System (ADS)
Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M.; Alghamdi, Mohammed Ali
2015-03-01
This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach.
Bringing a European perspective to the health human resources debate: A scoping study..
Kuhlmann, Ellen; Batenburg, Ronald; Groenewegen, Peter P; Larsen, Christa
2013-04-01
Healthcare systems across the world are increasingly challenged by workforce shortages and misdistribution of skills. Yet, no comprehensive European approach to health human resources (HHR) policy exists and action remains fragmented. This scoping study seeks to contribute to the debates by providing an overview of existing HHR research, and by exploring the challenges of a European approach with a focus on workforce planning. In terms of methods, we build on a scoping review comprising literature analysis and qualitative data gathered from policy experts. In our analysis we observe an overall lack of integrated HHR approaches as major obstacle of efficient HHR planning, and find that five dimensions of integration in HHR policy are needed: system, occupational, sector, gender, and socio-cultural integration. Increasing the analytical complexity of HHR planning models does not automatically bring about more reliable and efficient planning, as the added value of these models is highly context-dependent. Yet Europe is highly diverse and we therefore argue the need for a strategic HHR perspective that is capable of bridging many different HHR policies and planning systems, and combining national and European solutions efficiently. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
NASA Astrophysics Data System (ADS)
Zhao, Hong Sheng
2008-11-01
Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.
Using kaizen to improve employee well-being: Results from two organizational intervention studies.
von Thiele Schwarz, Ulrica; Nielsen, Karina M; Stenfors-Hayes, Terese; Hasson, Henna
2017-08-01
Participatory intervention approaches that are embedded in existing organizational structures may improve the efficiency and effectiveness of organizational interventions, but concrete tools are lacking. In the present article, we use a realist evaluation approach to explore the role of kaizen, a lean tool for participatory continuous improvement, in improving employee well-being in two cluster-randomized, controlled participatory intervention studies. Case 1 is from the Danish Postal Service, where kaizen boards were used to implement action plans. The results of multi-group structural equation modeling showed that kaizen served as a mechanism that increased the level of awareness of and capacity to manage psychosocial issues, which, in turn, predicted increased job satisfaction and mental health. Case 2 is from a regional hospital in Sweden that integrated occupational health processes with a pre-existing kaizen system. Multi-group structural equation modeling revealed that, in the intervention group, kaizen work predicted better integration of organizational and employee objectives after 12 months, which, in turn, predicted increased job satisfaction and decreased discomfort at 24 months. The findings suggest that participatory and structured problem-solving approaches that are familiar and visual to employees can facilitate organizational interventions.
NASA Astrophysics Data System (ADS)
Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.
2018-03-01
Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.
Using kaizen to improve employee well-being: Results from two organizational intervention studies
von Thiele Schwarz, Ulrica; Nielsen, Karina M; Stenfors-Hayes, Terese; Hasson, Henna
2016-01-01
Participatory intervention approaches that are embedded in existing organizational structures may improve the efficiency and effectiveness of organizational interventions, but concrete tools are lacking. In the present article, we use a realist evaluation approach to explore the role of kaizen, a lean tool for participatory continuous improvement, in improving employee well-being in two cluster-randomized, controlled participatory intervention studies. Case 1 is from the Danish Postal Service, where kaizen boards were used to implement action plans. The results of multi-group structural equation modeling showed that kaizen served as a mechanism that increased the level of awareness of and capacity to manage psychosocial issues, which, in turn, predicted increased job satisfaction and mental health. Case 2 is from a regional hospital in Sweden that integrated occupational health processes with a pre-existing kaizen system. Multi-group structural equation modeling revealed that, in the intervention group, kaizen work predicted better integration of organizational and employee objectives after 12 months, which, in turn, predicted increased job satisfaction and decreased discomfort at 24 months. The findings suggest that participatory and structured problem-solving approaches that are familiar and visual to employees can facilitate organizational interventions. PMID:28736455
ERIC Educational Resources Information Center
Haywood, Antwione Maurice
2012-01-01
The Academy was an assessment enhancement program created by the HLC to help institutions strengthen and improve the assessment of student learning. Using a multiple case study approach, this study applies Argyis and Schon's (1976) Theory of Action to explore the espoused values and existence of Model I and II behavior characteristics. Argyis…
Performance evaluation of recommendation algorithms on Internet of Things services
NASA Astrophysics Data System (ADS)
Mashal, Ibrahim; Alsaryrah, Osama; Chung, Tein-Yaw
2016-06-01
Internet of Things (IoT) is the next wave of industry revolution that will initiate many services, such as personal health care and green energy monitoring, which people may subscribe for their convenience. Recommending IoT services to the users based on objects they own will become very crucial for the success of IoT. In this work, we introduce the concept of service recommender systems in IoT by a formal model. As a first attempt in this direction, we have proposed a hyper-graph model for IoT recommender system in which each hyper-edge connects users, objects, and services. Next, we studied the usefulness of traditional recommendation schemes and their hybrid approaches on IoT service recommendation (IoTSRS) based on existing well known metrics. The preliminary results show that existing approaches perform reasonably well but further extension is required for IoTSRS. Several challenges were discussed to point out the direction of future development in IoTSR.
Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach
NASA Astrophysics Data System (ADS)
Yu, Bing; Shu, Wenjun
2017-03-01
The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.
Model-based Compositional Design of Networked Control Systems
2013-12-01
communication network. As described in Section 1.2, although there are several advantages in using NCS, there exist some drawbacks due to the presence of the... pendulum was used to demonstrate the approach, the results showed desirable performance in the presence of time delays. The passivity of the...certain level of performance under a wide range of failures, the designed controller is typically conservative. The drawback of this approach is that one