Sample records for existing research infrastructure

  1. Airborne biological hazards and urban transport infrastructure: current challenges and future directions.

    PubMed

    Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian

    2016-08-01

    Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure.

  2. Population as a proxy for infrastructure in the determination of event response and recovery resource allocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.

    Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types,more » so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. Furthermore, the correlations identified provide a useful basis for ongoing research into the larger resource utilization problem.« less

  3. Population as a proxy for infrastructure in the determination of event response and recovery resource allocations

    DOE PAGES

    Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.; ...

    2016-04-01

    Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types,more » so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. Furthermore, the correlations identified provide a useful basis for ongoing research into the larger resource utilization problem.« less

  4. The Information Technology Infrastructure for the Translational Genomics Core and the Partners Biobank at Partners Personalized Medicine

    PubMed Central

    Boutin, Natalie; Holzbach, Ana; Mahanta, Lisa; Aldama, Jackie; Cerretani, Xander; Embree, Kevin; Leon, Irene; Rathi, Neeta; Vickers, Matilde

    2016-01-01

    The Biobank and Translational Genomics core at Partners Personalized Medicine requires robust software and hardware. This Information Technology (IT) infrastructure enables the storage and transfer of large amounts of data, drives efficiencies in the laboratory, maintains data integrity from the time of consent to the time that genomic data is distributed for research, and enables the management of complex genetic data. Here, we describe the functional components of the research IT infrastructure at Partners Personalized Medicine and how they integrate with existing clinical and research systems, review some of the ways in which this IT infrastructure maintains data integrity and security, and discuss some of the challenges inherent to building and maintaining such infrastructure. PMID:26805892

  5. "Dancing on the edge of research" - What is needed to build and sustain research capacity within the massage therapy profession? A formative evaluation.

    PubMed

    Kania-Richmond, Ania; Menard, Martha B; Barberree, Beth; Mohring, Marvin

    2017-04-01

    Conducting research on massage therapy (MT) continues to be a significant challenge. To explore and identify the structures, processes, and resources required to enable viable, sustainable and high quality MT research activities in the Canadian context. Academically-based researchers and MT professionals involved in research. Formative evaluation and a descriptive qualitative approach were applied. Five main themes regarding the requirements of a productive and sustainable MT research infrastructure in Canada were identified: 1) core components, 2) variable components, 3) varying perspectives of stakeholder groups, 4) barriers to creating research infrastructure, and 5) negative metaphors. In addition, participants offered a number of recommendations on how to develop such an infrastructure. While barriers exist that require attention, participants' insights suggest there are various pathways through which a productive and sustainable MT research infrastructure can be achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Impact of Airport Performance towards Construction and Infrastructure Expansion in Indonesia

    NASA Astrophysics Data System (ADS)

    Laksono, T. D.; Kurniasih, N.; Hasyim, C.; Setiawan, M. I.; Ahmar, A. S.

    2018-01-01

    Development that is generated from airport areas includes construction and infrastructure development. This research reviews about how the implementation of material management in certain construction project and the relationship between development especially construction and infrastructure development with Airport Performance. The method that is used in this research is mixed method. The population in this research is 297 airports that are existed in Indonesia. From those 297 airports then it is chosen airports that have the most completed data about construction project and it is obtained 148 airports. Based on the coefficient correlation (R) test it is known that construction and infrastructure development has relatively strong relation with airport performance variable, but there are still other factors that influence construction and infrastructure development become bigger effect.

  7. Assessing the uptake of persistent identifiers by research infrastructure users

    PubMed Central

    Maull, Keith E.

    2017-01-01

    Significant progress has been made in the past few years in the development of recommendations, policies, and procedures for creating and promoting citations to data sets, software, and other research infrastructures like computing facilities. Open questions remain, however, about the extent to which referencing practices of authors of scholarly publications are changing in ways desired by these initiatives. This paper uses four focused case studies to evaluate whether research infrastructures are being increasingly identified and referenced in the research literature via persistent citable identifiers. The findings of the case studies show that references to such resources are increasing, but that the patterns of these increases are variable. In addition, the study suggests that citation practices for data sets may change more slowly than citation practices for software and research facilities, due to the inertia of existing practices for referencing the use of data. Similarly, existing practices for acknowledging computing support may slow the adoption of formal citations for computing resources. PMID:28394907

  8. A Cloud-based Infrastructure and Architecture for Environmental System Research

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.

    2016-12-01

    The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.

  9. Collaborative Development of e-Infrastructures and Data Management Practices for Global Change Research

    NASA Astrophysics Data System (ADS)

    Samors, R. J.; Allison, M. L.

    2016-12-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is being organized under the auspices of the Belmont Forum consortium of national science funding agencies to accelerate the pace of science to address 21st century global change research challenges. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. The five action themes adopted by the Belmont Forum: 1. Adopt and make enforceable Data Principles that establish a global, interoperable e-infrastructure. 2. Foster communication, collaboration and coordination between the wider research community and Belmont Forum and its projects through an e-Infrastructure Coordination, Communication, & Collaboration Office. 3. Promote effective data planning and stewardship in all Belmont Forum agency-funded research with a goal to make it enforceable. 4. Determine international and community best practice to inform Belmont Forum research e-infrastructure policy through identification and analysis of cross-disciplinary research case studies. 5. Support the development of a cross-disciplinary training curriculum to expand human capacity in technology and data-intensive analysis methods. The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. In 2016, members of the 23-nation Belmont Forum began a collaborative implementation phase. Four multi-national teams are undertaking Action Themes based on the recommendations above. Tasks include mapping the landscape, identifying and documenting existing data management plans, and scheduling a series of workshops that analyse trans-disciplinary applications of existing Belmont Forum projects to identify best practices and critical gaps that may be uniquely or best addressed by the Belmont Forum funding model. Concurrent work will define challenges in conducting international and interdisciplinary data management implementation plans and identify sources of relevant expertise and knowledge.

  10. Integration of bicycling and walking facilities into the infrastructure of urban communities : [research brief].

    DOT National Transportation Integrated Search

    2012-02-01

    Many manuals, handbooks and web resources exist that provide guidance on planning for and designing bicycle and pedestrian facilities. However few of these resources emphasize program and infrastructure characteristics most desired by current (and po...

  11. Leading by Success: Impact of a Clinical & Translational Research Infrastructure Program to Address Health Inequities

    PubMed Central

    Shiramizu, Bruce; Shambaugh, Vicki; Petrovich, Helen; Seto, Todd B.; Ho, Tammy; Mokuau, Noreen; Hedges, Jerris R.

    2016-01-01

    Building research infrastructure capacity to address clinical and translational gaps has been a focus of funding agencies and foundations. Clinical and Translational Sciences Awards, Research Centers in Minority Institutions Infrastructure for Clinical and Translational Research (RCTR) and the Institutional Development Award Infrastructure for Clinical and Translational Research funded by United States (US) government to fund clinical translational research programs have existed for over a decade to address racial and ethnic health disparities across the US. While the impact on the nation’s health can’t be made in a short period, assessment of a program’s impact could be a litmus test to gauge its effectiveness at the institution and communities. We report the success of a Pilot Project Program in the University of Hawaii RCTR Award in advancing careers of emerging investigators and community collaborators. Our findings demonstrated that the investment has a far-reaching impact on engagement with community-based research collaborators, career advancement of health disparities investigators, and favorable impacts on health policy. PMID:27797013

  12. Environmental engineering of navigation infrastructure: a survey of existing practices, challenges, and potential opportunities.

    PubMed

    Fredette, Thomas J; Foran, Christy M; Brasfield, Sandra M; Suedel, Burton C

    2012-01-01

    Navigation infrastructure such as channels, jetties, river training structures, and lock-and-dam facilities are primary components of a safe and efficient water transportation system. Planning for such infrastructure has until recently involved efforts to minimize impacts on the environment through a standardized environmental assessment process. More recently, consistent with environmental sustainability concepts, planners have begun to consider how such projects can also be constructed with environmental enhancements. This study examined the existing institutional conditions within the US Army Corps of Engineers and cooperating federal agencies relative to incorporating environmental enhancements into navigation infrastructure projects. The study sought to (1) investigate institutional attitudes towards the environmental enhancement of navigation infrastructure (EENI) concept, (2) identify potential impediments to implementation and solutions to such impediments, (3) identify existing navigation projects designed with the express intent of enhancing environmental benefit in addition to the primary project purpose, (4) identify innovative ideas for increasing environmental benefits for navigation projects, (5) identify needs for additional technical information or research, and (6) identify laws, regulations, and policies that both support and hinder such design features. The principal investigation tool was an Internet-based survey with 53 questions. The survey captured a wide range of perspectives on the EENI concept including ideas, concerns, research needs, and relevant laws and policies. Study recommendations included further promotion of the concept of EENI to planners and designers, documentation of existing projects, initiation of pilot studies on some of the innovative ideas provided through the survey, and development of national goals and interagency agreements to facilitate implementation. Copyright © 2011 SETAC.

  13. Designing a concept for an IT-infrastructure for an integrated research and treatment center.

    PubMed

    Stäubert, Sebastian; Winter, Alfred; Speer, Ronald; Löffler, Markus

    2010-01-01

    Healthcare and medical research in Germany are heading to more interconnected systems. New initiatives are funded by the German government to encourage the development of Integrated Research and Treatment Centers (IFB). Within an IFB new organizational structures and infrastructures for interdisciplinary, translational and trans-sectoral working relationship between existing rigid separated sectors are intended and needed. This paper describes how an IT-infrastructure of an IFB could look like, what major challenges have to be solved and what methods can be used to plan such a complex IT-infrastructure in the field of healthcare. By means of project management, system analyses, process models, 3LGM2-models and resource plans an appropriate concept with different views is created. This concept supports the information management in its enterprise architecture planning activities and implies a first step of implementing a connected healthcare and medical research platform.

  14. SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments.

    PubMed

    Burdick, David B; Cavnor, Chris C; Handcock, Jeremy; Killcoyne, Sarah; Lin, Jake; Marzolf, Bruz; Ramsey, Stephen A; Rovira, Hector; Bressler, Ryan; Shmulevich, Ilya; Boyle, John

    2010-07-14

    High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.

  15. SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments

    PubMed Central

    2010-01-01

    Background High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Results Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. Conclusion The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services. PMID:20630057

  16. Barriers to Research and Capacity Building at Hispanic-Serving Institutions: The Case of HIV/AIDS Research at the University of Puerto Rico

    PubMed Central

    Ortiz-Torres, Blanca

    2009-01-01

    Substantive barriers to research, such as cultural, language, and methodological variables, exist in Hispanic-serving institutions. Historical and contextual variables account for the differences between academic settings with research-intensive centers and those with limited infrastructure for competitive research. We provide a case example to serve as a model for developing and strengthening the research infrastructure in Hispanic-serving institutions and for providing the mentorship Latino investigators may need to compete with other investigators in research-intensive centers. We present recommendations to reduce these barriers. PMID:19246676

  17. Romanian contribution to research infrastructure database for EPOS

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Craiu, Andreea; Tataru, Dragos; Balan, Stefan; Muntean, Alexandra; Nastase, Eduard; Oaie, Gheorghe; Asimopolos, Laurentiu; Panaiotu, Cristian

    2014-05-01

    European Plate Observation System - EPOS is a long-term plan to facilitate integrated use of data, models and facilities from mainly distributed existing, but also new, research infrastructures for solid Earth Science. In EPOS Preparatory Phase were integrated the national Research Infrastructures at pan European level in order to create the EPOS distributed research infrastructures, structure in which, at the present time, Romania participates by means of the earth science research infrastructures of the national interest declared on the National Roadmap. The mission of EPOS is to build an efficient and comprehensive multidisciplinary research platform for solid Earth Sciences in Europe and to allow the scientific community to study the same phenomena from different points of view, in different time periods and spatial scales (laboratory and field experiments). At national scale, research and monitoring infrastructures have gathered a vast amount of geological and geophysical data, which have been used by research networks to underpin our understanding of the Earth. EPOS promotes the creation of comprehensive national and regional consortia, as well as the organization of collective actions. To serve the EPOS goals, in Romania a group of National Research Institutes, together with their infrastructures, gathered in an EPOS National Consortium, as follows: 1. National Institute for Earth Physics - Seismic, strong motion, GPS and Geomagnetic network and Experimental Laboratory; 2. National Institute of Marine Geology and Geoecology - Marine Research infrastructure and Euxinus integrated regional Black Sea observation and early-warning system; 3. Geological Institute of Romania - Surlari National Geomagnetic Observatory and National lithoteque (the latter as part of the National Museum of Geology) 4. University of Bucharest - Paleomagnetic Laboratory After national dissemination of EPOS initiative other Research Institutes and companies from the potential stakeholders group also show their interest to participate in the EPOS National Consortium.

  18. Centre for Research Infrastructure of Polish GNSS Data - response and possible contribution to EPOS

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Rohm, Witold; Bosy, Jaroslaw; Szolucha, Marcin; Kaplon, Jan; Kroszczynski, Krzysztof

    2017-04-01

    In the frame of the first call under Action 4.2: Development of modern research infrastructure of the science sector in the Smart Growth Operational Programme 2014-2020 in the late of 2016 the "EPOS-PL" project has launched. Following institutes are responsible for the implementation of this project: Institute of Geophysics, Polish Academy of Sciences - Project Leader, Academic Computer Centre Cyfronet AGH University of Science and Technology, Central Mining Institute, the Institute of Geodesy and Cartography, Wrocław University of Environmental and Life Sciences, Military University of Technology. In addition, resources constituting entrepreneur's own contribution will come from the Polish Mining Group. Research Infrastructure EPOS-PL will integrate both existing and newly built National Research Infrastructures (Theme Centre for Research Infrastructures), which, under the premise of the program EPOS, are financed exclusively by the national founds. In addition, the e-science platform will be developed. The Centre for Research Infrastructure of GNSS Data (CIBDG - Task 5) will be built based on the experience and facilities of two institutions: Military University of Technology and Wrocław University of Environmental and Life Sciences. The project includes the construction of the National GNNS Repository with data QC procedures and adaptation of two Regional GNNS Analysis Centres for rapid and long-term geodynamical monitoring.

  19. Proposed Requirements-driven User-scenario Development Protocol for the Belmont Forum E-Infrastructure and Data Management Cooperative Research Agreement

    NASA Astrophysics Data System (ADS)

    Wee, B.; Car, N.; Percivall, G.; Allen, D.; Fitch, P. G.; Baumann, P.; Waldmann, H. C.

    2014-12-01

    The Belmont Forum E-Infrastructure and Data Management Cooperative Research Agreement (CRA) is designed to foster a global community to collaborate on e-infrastructure challenges. One of the deliverables is an implementation plan to address global data infrastructure interoperability challenges and align existing domestic and international capabilities. Work package three (WP3) of the CRA focuses on the harmonization of global data infrastructure for sharing environmental data. One of the subtasks under WP3 is the development of user scenarios that guide the development of applicable deliverables. This paper describes the proposed protocol for user scenario development. It enables the solicitation of user scenarios from a broad constituency, and exposes the mechanisms by which those solicitations are evaluated against requirements that map to the Belmont Challenge. The underlying principle of traceability forms the basis for a structured, requirements-driven approach resulting in work products amenable to trade-off analyses and objective prioritization. The protocol adopts the ISO Reference Model for Open Distributed Processing (RM-ODP) as a top level framework. User scenarios are developed within RM-ODP's "Enterprise Viewpoint". To harmonize with existing frameworks, the protocol utilizes the conceptual constructs of "scenarios", "use cases", "use case categories", and use case templates as adopted by recent GEOSS Architecture Implementation Project (AIP) deliverables and CSIRO's eReefs project. These constructs are encapsulated under the larger construct of "user scenarios". Once user scenarios are ranked by goodness-of-fit to the Belmont Challenge, secondary scoring metrics may be generated, like goodness-of-fit to FutureEarth science themes. The protocol also facilitates an assessment of the ease of implementing given user scenario using existing GEOSS AIP deliverables. In summary, the protocol results in a traceability graph that can be extended to coordinate across research programmes. If implemented using appropriate technologies and harmonized with existing ontologies, this approach enables queries, sensitivity analyses, and visualization of complex relationships.

  20. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  1. Increasing the resilience and security of the United States' power infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less

  2. Clinical Trials Infrastructure as a Quality Improvement Intervention in Low- and Middle-Income Countries.

    PubMed

    Denburg, Avram; Rodriguez-Galindo, Carlos; Joffe, Steven

    2016-06-01

    Mounting evidence suggests that participation in clinical trials confers neither advantage nor disadvantage on those enrolled. Narrow focus on the question of a "trial effect," however, distracts from a broader mechanism by which patients may benefit from ongoing clinical research. We hypothesize that the existence of clinical trials infrastructure-the organizational culture, systems, and expertise that develop as a product of sustained participation in cooperative clinical trials research-may function as a quality improvement lever, improving the quality of care and outcomes of all patients within an institution or region independent of their individual participation in trials. We further contend that this "infrastructure effect" can yield particular benefits for patients in low- and middle-income countries (LMICs). The hypothesis of an infrastructure effect as a quality improvement intervention, if correct, justifies enhanced research capacity in LMIC as a pillar of health system development.

  3. COOPEUS - connecting research infrastructures in environmental sciences

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil; Waldmann, Christoph; Huber, Robert

    2015-04-01

    The COOPEUS project was initiated in 2012 bringing together 10 research infrastructures (RIs) in environmental sciences from the EU and US in order to improve the discovery, access, and use of environmental information and data across scientific disciplines and across geographical borders. The COOPEUS mission is to facilitate readily accessible research infrastructure data to advance our understanding of Earth systems through an international community-driven effort, by: Bringing together both user communities and top-down directives to address evolving societal and scientific needs; Removing technical, scientific, cultural and geopolitical barriers for data use; and Coordinating the flow, integrity and preservation of information. A survey of data availability was conducted among the COOPEUS research infrastructures for the purpose of discovering impediments for open international and cross-disciplinary sharing of environmental data. The survey showed that the majority of data offered by the COOPEUS research infrastructures is available via the internet (>90%), but the accessibility to these data differ significantly among research infrastructures; only 45% offer open access on their data, whereas the remaining infrastructures offer restricted access e.g. do not release raw data or sensible data, demand user registration or require permission prior to release of data. These rules and regulations are often installed as a form of standard practice, whereas formal data policies are lacking in 40% of the infrastructures, primarily in the EU. In order to improve this situation COOPEUS has installed a common data-sharing policy, which is agreed upon by all the COOPEUS research infrastructures. To investigate the existing opportunities for improving interoperability among environmental research infrastructures, COOPEUS explored the opportunities with the GEOSS common infrastructure (GCI) by holding a hands-on workshop. Through exercises directly registering resources, the first steps were taken to implement the GCI as a platform for documenting the capabilities of the COOPEUS research infrastructures. COOPEUS recognizes the potential for the GCI to become an important platform promoting cross-disciplinary approaches in the studies of multifaceted environmental challenges. Recommendations from the workshop participants also revealed that in order to attract research infrastructures to use the GCI, the registration process must be simplified and accelerated. However, also the data policies of the individual research infrastructure, or lack thereof, can prevent the use of the GCI or other portals, due to unclarities regarding data management authority and data ownership. COOPEUS shall continue to promote cross-disciplinary data exchange in the environmental field and will in the future expand to also include other geographical areas.

  4. International Symposium on Grids and Clouds (ISGC) 2016

    NASA Astrophysics Data System (ADS)

    The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.

  5. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture

    PubMed Central

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative ‘apps’ to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. PMID:24821734

  6. Data discovery and data processing for environmental research infrastructures

    NASA Astrophysics Data System (ADS)

    Los, Wouter; Beranzoli, Laura; Corriero, Giuseppe; Cossu, Roberto; Fiore, Nicola; Hardisty, Alex; Legré, Yannick; Pagano, Pasquale; Puglisi, Giuseppe; Sorvari, Sanna; Turunen, Esa

    2013-04-01

    The European ENVRI project (Common operations of Environmental Research Infrastructures) is addressing common ICT solutions for the research infrastructures as selected in the ESFRI Roadmap. More specifically, the project is looking for solutions that will assist interdisciplinary users who want to benefit from the data and other services of more than a single research infrastructure. However, the infrastructure architectures, the data, data formats, scales and granularity are very different. Indeed, they deal with diverse scientific disciplines, from plate tectonics, the deep sea, sea and land surface up to atmosphere and troposphere, from the dead to the living environment, and with a variety of instruments producing increasingly larger amounts of data. One of the approaches in the ENVRI project is to design a common Reference Model that will serve to promote infrastructure interoperability at the data, technical and service levels. The analysis of the characteristics of the environmental research infrastructures assisted in developing the Reference Model, and which is also an example for comparable infrastructures worldwide. Still, it is for users already now important to have the facilities available for multi-disciplinary data discovery and data processing. The rise of systems research, addressing Earth as a single complex and coupled system is requiring such capabilities. So, another approach in the project is to adapt existing ICT solutions to short term applications. This is being tested for a few study cases. One of these is looking for possible coupled processes following a volcano eruption in the vertical column from deep sea to troposphere. Another one deals with volcano either human impacts on atmospheric and sea CO2 pressure and the implications for sea acidification and marine biodiversity and their ecosystems. And a third one deals with the variety of sensor and satellites data sensing the area around a volcano cone. Preliminary results on these studies will be reported. The common results will assist in shaping more generic solutions to be adopted by the appropriate research infrastructures.

  7. A data protection scheme for medical research networks. Review after five years of operation.

    PubMed

    Helbing, K; Demiroglu, S Y; Rakebrandt, F; Pommerening, K; Rienhoff, O; Sax, U

    2010-01-01

    The data protection requirements matured in parallel to new clinical tests generating more personal data since the 1960s. About ten years ago it was recognized that a generic data protection scheme for medical research networks is required, which reinforces patient rights but also allows economically feasible medical research compared to "hand-carved" individual solutions. To give recommendations for more efficient IT infrastructures for medical research networks in compliance with data protection requirements. The IT infrastructures of three medical research networks were reviewed with respect to the relevant data management modules. Recommendations are derived to increase cost efficiency in research networks assessing the consequences of a service provider approach without lowering the data protection level. The existing data protection schemes are very complex. Smaller research networks cannot afford the implementation of such schemes. Larger networks struggle to keep them sustainable. Due to a modular redesign in the medical research network community, a new approach offers opportunities for an efficient sustainable IT infrastructure involving a service provider concept. For standard components 70-80% of the costs could be cut down, for open source components about 37% over a three-year period. Future research networks should switch to a service-oriented approach to achieve a sustainable, cost-efficient IT infrastructure.

  8. EPOS-GNSS - Improving the infrastructure for GNSS data and products in Europe

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Bos, Machiel; Bruyninx, Carine; Crocker, Paul; Dousa, Jan; Socquet, Anne; Walpersdorf, Andrea; Avallone, Antonio; Ganas, Athanassios; Gunnar, Benedikt; Ionescu, Constantin; Kenyeres, Ambrus; Ozener, Haluk; Vergnolle, Mathilde; Lidberg, Martin; Liwosz, Tomek; Soehne, Wolfgang

    2017-04-01

    EPOS-IP WP10 - "GNSS Data & Products" is the Working Package 10 of the European Plate Observing System - Implementation Phase project in charge of implementing services for the geo-sciences community to access existing Pan-European Geodetic Infrastructures. WP10 is currently formed by representatives of participating European institutions but in the operational phase contributions will be solicited from the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP but will be key players in the future services to be provided by EPOS. Additionally, several partners are also key partners at EUREF, which is also actively collaborating with EPOS. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate the continuous GNSS data from existing Research Infrastructures. Present efforts are on developing geodetic tools to support Solid Earth research by optimizing the existing resources. However, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit in the future from the optimization of the geodetic resources in Europe. We present and discuss the status of the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We explain the tools and web-services being developed towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using a transparent and standardized processes. We also detail the different DDSS (Data, Data-Products, Services, Software) that will be made available for the Operational Phase of EPOS, which will start to be tested and made available during 2017 and 2018.

  9. Public key infrastructure for DOE security research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R.; Foster, I.; Johnston, W.E.

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-keymore » infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.« less

  10. Mentoring the Next Researcher Generation: Reflections on Three Years of Building VET Research Capacity and Infrastructure

    ERIC Educational Resources Information Center

    Barratt-Pugh, Llandis Gareth

    2012-01-01

    During 2008-2011, the National Centre for Vocational Education Research (NCVER) funded a programme to build Australian VET research capacity and rejuvenate what has been seen as the existing "greying" researcher pool. This paper is a reflective narrative about experiences of constructing the programme with a specific focus on the…

  11. How can we improve clinical research in pneumonia?

    PubMed

    Ramirez, Julio A

    2018-05-01

    The primary challenges in the field of clinical research include a lack of support within existing infrastructure, insufficient number of clinical research training programs and a paucity of qualified mentors. Most medical centers offer infrastructure support for investigators working with industry sponsors or government-funded clinical trials, yet there are a significant amount of clinical studies performed in the field of pneumonia which are observational studies. For this type of research, which is frequently unfunded, support is usually lacking. In an attempt to optimize clinical research in pneumonia, at the University of Louisville, we developed a clinical research coordinating center (CRCC). The center manages clinical studies in the field of respiratory infections, with the primary focus being pneumonia. Other activities of the CRCC include the organization of an annual clinical research training course for physicians and other healthcare workers, and the facilitation of international research mentoring by a process of connecting new pneumonia investigators with established clinical investigators. To improve clinical research in pneumonia, institutions need to have the appropriate infrastructure in place to support investigators in all aspects of the clinical research process.

  12. Ocean Data Interoperability Platform (ODIP): using regional data systems for global ocean research

    NASA Astrophysics Data System (ADS)

    Schaap, D.; Thijsse, P.; Glaves, H.

    2017-12-01

    Ocean acidification, loss of coral reefs, sustainable exploitation of the marine environment are just a few of the challenges researchers around the world are currently attempting to understand and address. However, studies of these ecosystem level challenges are impossible unless researchers can discover and re-use the large volumes of interoperable multidisciplinary data that are currently only accessible through regional and global data systems that serve discreet, and often discipline specific, user communities. The plethora of marine data systems currently in existence are also using different standards, technologies and best practices making re-use of the data problematic for those engaged in interdisciplinary marine research. The Ocean Data Interoperability Platform (ODIP) is responding to this growing demand for discoverable, accessible and reusable data by establishing the foundations for a common global framework for marine data management. But creation of such an infrastructure is a major undertaking, and one that needs to be achieved in part by establishing different levels of interoperability across existing regional and global marine e-infrastructures. Workshops organised by ODIP II facilitate dialogue between selected regional and global marine data systems in an effort to identify potential solutions that integrate these marine e-infrastructures. The outcomes of these discussions have formed the basis for a number of prototype development tasks that aim to demonstrate effective sharing of data across multiple data systems, and allow users to access data from more than one system through a single access point. The ODIP II project is currently developing four prototype solutions that are establishing interoperability between selected regional marine data management infrastructures in Europe, the USA, Canada and Australia, and with the global POGO, IODE Ocean Data Portal (ODP) and GEOSS systems. The potential impact of implementing these solutions for the individual marine data infrastructures is also being evaluated to determine both the technical and financial implications of their integration within existing systems. These impact assessments form part of the strategy to encourage wider adoption of the ODIP solutions and approach beyond the current scope of the project.

  13. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture.

    PubMed

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative 'apps' to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Integrating smart container technology into existing shipping and law enforcement infrastructure

    NASA Astrophysics Data System (ADS)

    Ferriere, Dale; Pysareva, Khrystyna; Rucinski, Andrzej

    2006-05-01

    While there has been important research and development in the area of smart container technologies, no system design methodologies have yet emerged for integrating this technology into the existing shipping and law enforcement infrastructure. A successful deployment of smart containers requires a precise understanding of how to integrate this new technology into the existing shipping and law enforcement infrastructure, how to establish communication interoperability, and how to establish procedures and protocols related to the operation of smart containers. In addition, this integration needs to be seamless, unobtrusive to commerce, and cost-effective. In order to address these issues, we need to answer the following series of questions: 1) Who will own and operate the smart container technology; 2) Who will be responsible for monitoring the smart container data and notifying first responders; 3) What communication technologies currently used by first responders might be adopted for smart container data transmission; and 4) How will existing cargo manifest data be integrated into smart container data. In short, we need to identify the best practices for smart container ownership and operation. In order to help provide answers to these questions, we have surveyed a sample group of representatives from law enforcement, first responder, regulatory, and private sector organizations. This paper presents smart container infrastructure best practices recommendations obtained from the results of the survey.

  15. The Icelandic volcanological data node and data service

    NASA Astrophysics Data System (ADS)

    Vogfjord, Kristin; Sigmundsson, Freysteinn; Futurevolc Team

    2013-04-01

    Through funding from the European FP7 programme, the International Civil Aviation Authority (ICAO), as well as the local Icelandic government and RANNÍS research fund, the establishment of the Icelandic volcano observatory (VO) as a cross-disciplinary, international volcanological data node and data service is starting to materialize. At the core of this entity is the close collaboration between the Icelandic Meteorological Office (IMO), a natural hazard monitoring and research institution, and researchers at the Earth Science Institute of the University of Iceland, ensuring long-term sustainable access to research quality data and products. Existing Icelandic Earth science monitoring and research infrastructures are being prepared for integration with the European EPOS infrastructure. Because the VO is located at a Met Office, this infrastructure also includes meteorological infrastructures relevant to volcanology. Furthermore, the FP7 supersite project, FUTUREVOLC cuts across disciplines to bring together European researchers from Earth science, atmospheric science, remote sensing and space science focussed on combined processing of the different data sources and results to generate a multiparametric volcano monitoring and early warning system. Integration with atmospheric and space science is to meet the need for better estimates of the volcanic eruption source term and dispersion, which depend not only on the magma flow rate and composition, but also on atmosphere-plume interaction and dispersion. This should lead to better estimates of distribution of ash in the atmosphere. FUTUREVOLC will significantly expand the existing Icelandic EPOS infrastructure to an even more multidisciplinary volcanological infrastructure. A central and sustainable part of the project is the establishment of a research-quality data centre at the VO. This data centre will be able to serve as a volcanological data node within EPOS, making multidisciplinary data accessible to scientists and stakeholders, and enabling the generation of products and services useful for civil protection, societal infrastructure and international aviation. The 2010 Eyjafjallajökull eruption demonstrated that eruption and dispersion of volcanic ash in the atmosphere can have far-reaching detrimental effects on aviation. The aviation community is therefore an important stakeholder in volcano monitoring, but interaction between the two communities is not well established. Traditionally Met Offices provide services vital to aviation safety and therefore have strong ties to the aviation community, with internationally established protocols for interaction. The co-habitation of a Met Office with a VO establishes a firm connection between these communities and allows adaptation of already established protocols to facilitate access to information and development of services for aviation, as well as sources of support for the VO.

  16. Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus

    NASA Astrophysics Data System (ADS)

    Baun, Christian; Kunze, Marcel

    Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.

  17. How to improve the comfort of Kesawan Heritage Corridor, Medan City

    NASA Astrophysics Data System (ADS)

    Tegar; Ginting, Nurlisa; Suwantoro, H.

    2018-03-01

    Comfort is indispensable to make a friendly neighborhood or city. Especially the comfort of the infrastructure in the corridor. People must be able to feel comfortable to act rationally in their physical environment. Existing infrastructure must able to support Kesawan as a historic district. Kesawan is an area that is filled with so many unique buildings. Without comfort, how good the existing buildings’ architecture cannot be enjoyed. It will also affect the identity of a region or city. The aim of this research is to re-design the public facilities from Kesawan corridor’s comfort aspect: orientation, traffic calming, vegetation, signage, public facilities (toilet, seating place, bus station, bins), information center, parking and pedestrian path. It will translate the design concept in the form of design criteria. This research uses qualitative methods. Some facilities in this corridor are unsuitable even some of them are not available. So, we need some improvements and additions to the existing facilities. It is expected that by upgrading the existing facilities, visitors who come to Kesawan will be able to enjoy more and able to make Medan city more friendly.

  18. RAPPORT: running scientific high-performance computing applications on the cloud.

    PubMed

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  19. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013).

    PubMed

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F

    2014-06-15

    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  20. Meeting report: Ocean ‘omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013)

    PubMed Central

    Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.

    2014-01-01

    The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495

  1. Ocean Data Interoperability Platform (ODIP): developing a common framework for global marine data management

    NASA Astrophysics Data System (ADS)

    Glaves, H. M.

    2015-12-01

    In recent years marine research has become increasingly multidisciplinary in its approach with a corresponding rise in the demand for large quantities of high quality interoperable data as a result. This requirement for easily discoverable and readily available marine data is currently being addressed by a number of regional initiatives with projects such as SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and the Integrated Marine Observing System (IMOS) in Australia, having implemented local infrastructures to facilitate the exchange of standardised marine datasets. However, each of these systems has been developed to address local requirements and created in isolation from those in other regions.Multidisciplinary marine research on a global scale necessitates a common framework for marine data management which is based on existing data systems. The Ocean Data Interoperability Platform project is seeking to address this requirement by bringing together selected regional marine e-infrastructures for the purposes of developing interoperability across them. By identifying the areas of commonality and incompatibility between these data infrastructures, and leveraging the development activities and expertise of these individual systems, three prototype interoperability solutions are being created which demonstrate the effective sharing of marine data and associated metadata across the participating regional data infrastructures as well as with other target international systems such as GEO, COPERNICUS etc.These interoperability solutions combined with agreed best practice and approved standards, form the basis of a common global approach to marine data management which can be adopted by the wider marine research community. To encourage implementation of these interoperability solutions by other regional marine data infrastructures an impact assessment is being conducted to determine both the technical and financial implications of deploying them alongside existing services. The associated best practice and common standards are also being disseminated to the user community through relevant accreditation processes and related initiatives such as the Research Data Alliance and the Belmont Forum.

  2. Outlet diffusers to increase culvert capacity.

    DOT National Transportation Integrated Search

    2016-06-01

    Aging infrastructure and changing weather patterns present the need to increase the capacity of existing highway culverts. This research approaches this challenge through the use of diffuser outlet systems to increase pipe capacity and reduce outlet ...

  3. Electrofuels: More Efficient Than Photosynthesis

    ScienceCinema

    Toone, Eric; Eggert, Chas; Lynch, Mike; Roberts, B

    2018-06-06

    The Advanced Research Projects Agency -- Energy (ARPA-E) has funded successful programs with OPXBIO, NC State and others to create hyper efficient processes for manufacturing biofuels and electrofuels, which can be used in the existing transportation infrastructure.

  4. Electrofuels: More Efficient Than Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toone, Eric; Eggert, Chas; Lynch, Mike

    2011-01-01

    The Advanced Research Projects Agency -- Energy (ARPA-E) has funded successful programs with OPXBIO, NC State and others to create hyper efficient processes for manufacturing biofuels and electrofuels, which can be used in the existing transportation infrastructure.

  5. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Otto, Neil M.

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The project's integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  6. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Otto, Neil

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The projects integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  7. Italian Polar Metadata System

    NASA Astrophysics Data System (ADS)

    Longo, S.; Nativi, S.; Leone, C.; Migliorini, S.; Mazari Villanova, L.

    2012-04-01

    Italian Polar Metadata System C.Leone, S.Longo, S.Migliorini, L.Mazari Villanova, S. Nativi The Italian Antarctic Research Programme (PNRA) is a government initiative funding and coordinating scientific research activities in polar regions. PNRA manages two scientific Stations in Antarctica - Concordia (Dome C), jointly operated with the French Polar Institute "Paul Emile Victor", and Mario Zucchelli (Terra Nova Bay, Southern Victoria Land). In addition National Research Council of Italy (CNR) manages one scientific Station in the Arctic Circle (Ny-Alesund-Svalbard Islands), named Dirigibile Italia. PNRA started in 1985 with the first Italian Expedition in Antarctica. Since then each research group has collected data regarding biology and medicine, geodetic observatory, geophysics, geology, glaciology, physics and atmospheric chemistry, earth-sun relationships and astrophysics, oceanography and marine environment, chemistry contamination, law and geographic science, technology, multi and inter disciplinary researches, autonomously with different formats. In 2010 the Italian Ministry of Research assigned the scientific coordination of the Programme to CNR, which is in charge of the management and sharing of the scientific results carried out in the framework of the PNRA. Therefore, CNR is establishing a new distributed cyber(e)-infrastructure to collect, manage, publish and share polar research results. This is a service-based infrastructure building on Web technologies to implement resources (i.e. data, services and documents) discovery, access and visualization; in addition, semantic-enabled functionalities will be provided. The architecture applies the "System of Systems" principles to build incrementally on the existing systems by supplementing but not supplanting their mandates and governance arrangements. This allows to keep the existing capacities as autonomous as possible. This cyber(e)-infrastructure implements multi-disciplinary interoperability following a Brokering approach and supporting the relevant international standards recognized by European and international standards, including: GEO/GEOSS, INSPIRE and SCAR. The Brokering approach is empowered by a technology developed by CNR, advanced by the FP7 EuroGEOSS project, and recently adopted by the GEOSS Common Infrastructure (GCI).

  8. EuCARD 2010: European coordination of accelerator research and development

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2010-09-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.

  9. S3DB core: a framework for RDF generation and management in bioinformatics infrastructures

    PubMed Central

    2010-01-01

    Background Biomedical research is set to greatly benefit from the use of semantic web technologies in the design of computational infrastructure. However, beyond well defined research initiatives, substantial issues of data heterogeneity, source distribution, and privacy currently stand in the way towards the personalization of Medicine. Results A computational framework for bioinformatic infrastructure was designed to deal with the heterogeneous data sources and the sensitive mixture of public and private data that characterizes the biomedical domain. This framework consists of a logical model build with semantic web tools, coupled with a Markov process that propagates user operator states. An accompanying open source prototype was developed to meet a series of applications that range from collaborative multi-institution data acquisition efforts to data analysis applications that need to quickly traverse complex data structures. This report describes the two abstractions underlying the S3DB-based infrastructure, logical and numerical, and discusses its generality beyond the immediate confines of existing implementations. Conclusions The emergence of the "web as a computer" requires a formal model for the different functionalities involved in reading and writing to it. The S3DB core model proposed was found to address the design criteria of biomedical computational infrastructure, such as those supporting large scale multi-investigator research, clinical trials, and molecular epidemiology. PMID:20646315

  10. Silicon Valley as an Early Adopter for On-Demand Civil VTOL Operations

    NASA Technical Reports Server (NTRS)

    Antcliff, Kevin R.; Moore, Mark D.; Goodrich, Kenneth H.

    2016-01-01

    With high incomes, long commutes, severe ground geographic constraints, severe highway congestion during peak commute times, high housing costs, and near perfect year-round weather, the Silicon Valley is positioned to be an excellent early adopter market for emerging aviation On-Demand Mobility transportation solutions. Prior efforts have attempted to use existing aviation platforms (helicopters or General Aviation aircraft) with existing infrastructure solutions, or only investigated new vehicle platforms without understanding how to incorporate new vehicle types into existing built-up communities. Research has been performed with the objective of minimizing door-to-door time for "Hyper Commuters" (frequent, long-distance commuters) in the Silicon Valley through the development of new helipad infrastructure for ultra-low noise Vertical Takeoff and Landing (VTOL) aircraft. Current travel times for chosen city-pairs across urban and suburban commutes are compared to future mobility concepts that provide significantly higher utilization and productivity to yield competitive operating costs compared to existing transportation choices. Helipads are introduced near current modes of transportation and infrastructure for ease-of-access, and maximizing proximity. Strategies for both private and public infrastructure development are presented that require no new land purchase while minimizing community noise exposure. New VTOL concepts are introduced with cruise speeds of 200 mph, which yield a greater than three times improvement in overall door-to-door time when compared to current automobiles, and in some cases, improvements of up to 6 times lower trip times.

  11. A National contribution to the GEO Science and Technology roadmap: GIIDA Project

    NASA Astrophysics Data System (ADS)

    Nativi, Stefano; Mazzetti, Paolo; Guzzetti, Fausto; Oggioni, Alessandro; Pirrone, Nicola; Santolieri, Rosalia; Viola, Angelo; Tartari, Gianni; Santoro, Mattia

    2010-05-01

    The GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali) project is an initiative of the Italian National Research Council (CNR) launched in 2008 as an inter-departmental project, aiming to design and develop a multidisciplinary e-infrastructure (cyber-infrastructure) for the management, processing, and evaluation of Earth and Environmental resources -i.e. data, services, models, sensors, best practices. GIIDA has been contributing to the implementation of the GEO (Group of Earth Observation) Science and Technology (S&T) roadmap by: (a) linking relevant S&T communities to GEOSS (GEO System of Systems); (b) ensuring that GEOSS is built based on state-of-the-art science and technology. GIIDA co-ordinates the CNR's digital infrastructure development for Earth Observation resources sharing and cooperates with other national agencies and existing projects pursuing the same objective. For the CNR, GIIDA provides an interface to European and international interoperability programmes (e.g. INSPIRE, and GMES). It builds a national network for dialogue and resolution of issues at varying scientific and technical levels. To achieve such goals, GIIDA introduced a set of guidance principles: • To shift from a "traditional" data centric approach to a more advanced service-based solution for Earth System Science and Environmental information. • To shift the focus from Data to Information Spatial Infrastructures in order to support decision-making. • To be interoperable with analogous National (e.g. SINAnet, and the INSPIRE National Infrastructure) and international initiatives (e.g. INSPIRE, GMES, SEIS, and GEOSS). • To reinforce the Italian presence in the European and international programmes concerning digital infrastructures, geospatial information, and the Mega-Science approach. • To apply the National and International Information Technology (IT) standards for achieving multi-disciplinary interoperability in the Earth and Space Sciences (e.g. ISO, OGC, CEN, CNIPA) In keeping with GEOSS, GIIDA infrastructure adopts a System of Systems architectural approach in order to federate the existing systems managed by a set of recognized Thematic Areas (i.e. Risks, Biodiversity, Climate Change, Air Quality, Land and Water Quality, Ocean and Marine resources, Joint Research and Public Administration infrastructures). GIIDA system of systems will contribute to develop multidisciplinary teams studying the global Earth systems in order to address the needs coming from the GEO Societal Benefit Areas (SBAs). GIIDA issued a Call For Pilots receiving more than 20 high-level projects which are contributing to the GIIDA system development. A national-wide research environmental infrastructure must be interconnected with analogous digital infrastructures operated by other important stakeholders, such as public users and private companies. In fact, the long-term sustainability of a "System of Systems" requires synergies between all the involved stakeholders' domains: Users, Governance, Capacity provision, and Research. Therefore, in order to increase the effectiveness of the GIIDA contribution process to a national environmental e-infrastructure, collaborations were activated with relevant actors of the other stakeholders' domains at the national level (e.g. ISPRA SINAnet).

  12. A service-based BLAST command tool supported by cloud infrastructures.

    PubMed

    Carrión, Abel; Blanquer, Ignacio; Hernández, Vicente

    2012-01-01

    Notwithstanding the benefits of distributed-computing infrastructures for empowering bioinformatics analysis tools with the needed computing and storage capability, the actual use of these infrastructures is still low. Learning curves and deployment difficulties have reduced the impact on the wide research community. This article presents a porting strategy of BLAST based on a multiplatform client and a service that provides the same interface as sequential BLAST, thus reducing learning curve and with minimal impact on their integration on existing workflows. The porting has been done using the execution and data access components from the EC project Venus-C and the Windows Azure infrastructure provided in this project. The results obtained demonstrate a low overhead on the global execution framework and reasonable speed-up and cost-efficiency with respect to a sequential version.

  13. Road Weather Management Program : connected vehicle-infrastructure research. Final Report

    DOT National Transportation Integrated Search

    2016-04-30

    This report provides insight into how existing vehicle sensor data (e.g., location, heading, road surface and atmospheric conditions) can be utilized by the CVI environment to support transportation safety through road-weather applications. Of specia...

  14. Community Engagement in Health-Related Research: A Case Study of a Community-Linked Research Infrastructure, Jefferson County, Arkansas, 2011–2013

    PubMed Central

    Felix, Holly C.; Olson, Mary; Cottoms, Naomi; Bachelder, Ashley; Smith, Johnny; Ford, Tanesha; Dawson, Leah C.; Greene, Paul G.

    2015-01-01

    Background Underrepresentation of racial minorities in research contributes to health inequities. Important factors contributing to low levels of research participation include limited access to health care and research opportunities, lack of perceived relevance, power differences, participant burden, and absence of trust. We describe an enhanced model of community engagement in which we developed a community-linked research infrastructure to involve minorities in research both as participants and as partners engaged in issue selection, study design, and implementation. Community Context We implemented this effort in Jefferson County, Arkansas, which has a predominantly black population, bears a disproportionate burden of chronic disease, and has death rates above state and national averages. Methods Building on existing community–academic partnerships, we engaged new partners and adapted a successful community health worker model to connect community residents to services and relevant research. We formed a community advisory board, a research collaborative, a health registry, and a resource directory. Outcome Newly formed community–academic partnerships resulted in many joint grant submissions and new projects. Community health workers contacted 2,665 black and 913 white community residents from December 2011 through April 2013. Eighty-five percent of blacks and 88% of whites were willing to be re-contacted about research of potential interest. Implementation challenges were addressed by balancing the needs of science with community needs and priorities. Interpretation Our experience indicates investments in community-linked research infrastructure can be fruitful and should be considered by academic health centers when assessing institutional research infrastructure needs. PMID:26203813

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL ismore » tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.« less

  16. Perspectives in understanding open access to research data - infrastructure and technology challenges

    NASA Astrophysics Data System (ADS)

    Bigagli, Lorenzo; Sondervan, Jeroen

    2014-05-01

    The Policy RECommendations for Open Access to Research Data in Europe (RECODE) project, started in February 2013 with a duration of two years, has the objective to identify a series of targeted and over-arching policy recommendations for Open Access to European research data, based on existing good practice and addressing such hindering factors as stakeholder fragmentation, technical and infrastructural issues, ethical and legal issues, and financial and institutional policies. In this work we focus on the technical and infrastructural aspect, where by "infrastructure" we mean the technological assets (hardware and software), the human resources, and all the policies, processes, procedures and training for managing and supporting its continuous operation and evolution. The context targeted by RECODE includes heterogeneous networks, initiatives, projects and communities that are fragmented by discipline, geography, stakeholder category (publishers, academics, repositories, etc.) as well as other boundaries. Many of these organizations are already addressing key technical and infrastructural barriers to Open Access to research data. Such barriers may include: lack of automatic mechanisms for policy enforcement, lack of metadata and data models supporting open access, obsolescence of infrastructures, scarce awareness about new technological solutions, lack of training and/or expertise on IT and semantics aspects. However, these organizations are often heterogeneous and fragmented by discipline, geography, stakeholder category (publishers, academics, repositories, etc.) as well as other boundaries, and often work in isolation, or with limited contact with one another. RECODE has addressed these challenges, and the possible solutions to mitigate them, engaging all the identified stakeholders in a number of ways, including an online questionnaire, case studies interviews, literature review, a workshop. The conclusions have been validated by the RECODE Advisory Board and will contribute to shape the RECODE policy guidelines for Open Access to Research Data. In the work, we report on the identified technological and infrastructural issues, classified according to the barriers of heterogeneity, sustainability, volume, quality, and security.

  17. e-Infrastructures for e-Sciences 2013 A CHAIN-REDS Workshop organised under the aegis of the European Commission

    NASA Astrophysics Data System (ADS)

    The CHAIN-REDS Project is organising a workshop on "e-Infrastructures for e-Sciences" focusing on Cloud Computing and Data Repositories under the aegis of the European Commission and in co-location with the International Conference on e-Science 2013 (IEEE2013) that will be held in Beijing, P.R. of China on October 17-22, 2013. The core objective of the CHAIN-REDS project is to promote, coordinate and support the effort of a critical mass of non-European e-Infrastructures for Research and Education to collaborate with Europe addressing interoperability and interoperation of Grids and other Distributed Computing Infrastructures (DCI). From this perspective, CHAIN-REDS will optimise the interoperation of European infrastructures with those present in 6 other regions of the world, both from a development and use point of view, and catering to different communities. Overall, CHAIN-REDS will provide input for future strategies and decision-making regarding collaboration with other regions on e-Infrastructure deployment and availability of related data; it will raise the visibility of e-Infrastructures towards intercontinental audiences, covering most of the world and will provide support to establish globally connected and interoperable infrastructures, in particular between the EU and the developing regions. Organised by IHEP, INFN and Sigma Orionis with the support of all project partners, this workshop will aim at: - Presenting the state of the art of Cloud computing in Europe and in China and discussing the opportunities offered by having interoperable and federated e-Infrastructures; - Exploring the existing initiatives of Data Infrastructures in Europe and China, and highlighting the Data Repositories of interest for the Virtual Research Communities in several domains such as Health, Agriculture, Climate, etc.

  18. The future of metabolomics in ELIXIR

    PubMed Central

    van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B.; Ebbels, Timothy M. D.; Giacomoni, Franck; Gonzalez-Beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-Garcia, Jose L.; Jimenez, Rafael C.; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I.; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, Pablo; Moschonas, Nicholas K.; Neumann, Steffen; O’Donovan, Claire; Reczko, Martin; Rocca-Serra, Philippe; Rosato, Antonio; Salek, Reza M.; Sansone, Susanna-Assunta; Satagopam, Venkata; Schober, Daniel; Shimmo, Ruth; Spicer, Rachel A.; Spjuth, Ola; Thévenot, Etienne A.; Viant, Mark R.; Weber, Ralf J. M.; Willighagen, Egon L.; Zanetti, Gianluigi; Steinbeck, Christoph

    2017-01-01

    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases. PMID:29043062

  19. The future of metabolomics in ELIXIR.

    PubMed

    van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B; Ebbels, Timothy M D; Giacomoni, Franck; Gonzalez-Beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-Garcia, Jose L; Jimenez, Rafael C; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, Pablo; Moschonas, Nicholas K; Neumann, Steffen; O'Donovan, Claire; Reczko, Martin; Rocca-Serra, Philippe; Rosato, Antonio; Salek, Reza M; Sansone, Susanna-Assunta; Satagopam, Venkata; Schober, Daniel; Shimmo, Ruth; Spicer, Rachel A; Spjuth, Ola; Thévenot, Etienne A; Viant, Mark R; Weber, Ralf J M; Willighagen, Egon L; Zanetti, Gianluigi; Steinbeck, Christoph

    2017-01-01

    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  20. Future internet architecture and cloud ecosystem: A survey

    NASA Astrophysics Data System (ADS)

    Wan, Man; Yin, Shiqun

    2018-04-01

    The Internet has gradually become a social infrastructure, the existing TCP/IP architecture faces many challenges. So future Internet architecture become hot research. This paper introduces two ways of idea about the future research of Internet structure system, probes into the future Internet architecture and the environment of cloud ecosystem. Finally, we focuses the related research, and discuss basic principles and problems of OpenStack.

  1. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    PubMed

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  2. Road Extraction from AVIRIS Using Spectral Mixture and Q-Tree Filter Techniques

    NASA Technical Reports Server (NTRS)

    Gardner, Margaret E.; Roberts, Dar A.; Funk, Chris; Noronha, Val

    2001-01-01

    Accurate road location and condition information are of primary importance in road infrastructure management. Additionally, spatially accurate and up-to-date road networks are essential in ambulance and rescue dispatch in emergency situations. However, accurate road infrastructure databases do not exist for vast areas, particularly in areas with rapid expansion. Currently, the US Department of Transportation (USDOT) extends great effort in field Global Positioning System (GPS) mapping and condition assessment to meet these informational needs. This methodology, though effective, is both time-consuming and costly, because every road within a DOT's jurisdiction must be field-visited to obtain accurate information. Therefore, the USDOT is interested in identifying new technologies that could help meet road infrastructure informational needs more effectively. Remote sensing provides one means by which large areas may be mapped with a high standard of accuracy and is a technology with great potential in infrastructure mapping. The goal of our research is to develop accurate road extraction techniques using high spatial resolution, fine spectral resolution imagery. Additionally, our research will explore the use of hyperspectral data in assessing road quality. Finally, this research aims to define the spatial and spectral requirements for remote sensing data to be used successfully for road feature extraction and road quality mapping. Our findings will facilitate the USDOT in assessing remote sensing as a new resource in infrastructure studies.

  3. The Contribution for Improving GNSS Data and Derived Products for Solid Earth Sciences Promoted by EPOS-IP

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Bos, M. S.; Bruyninx, C.; Crocker, P.; Dousa, J.; Walpersdorf, A.; Socquet, A.; Avallone, A.; Ganas, A.; Ionescu, C.; Kenyeres, A.; Ofeigsson, B.; Ozener, H.; Vergnolle, M.; Lidberg, M.; Liwosz, T.; Soehne, W.; Bezdeka, P.; Cardoso, R.; Cotte, N.; Couto, R.; D'Agostino, N.; Deprez, A.; Fabian, A.; Gonçalves, H.; Féres, L.; Legrand, J.; Menut, J. L.; Nastase, E.; Ngo, K. M.; Sigurðarson, F.; Vaclavovic, P.

    2017-12-01

    The GNSS working group part of the EPOS-IP (European Plate Observing System - Implementation Phase) project oversees the implementation of services focused on GNSS data and derived products for the use of the geo-sciences community. The objective is to serve essentially the Solid Earth community, but other scientific and technical communities will also be able the benefit of the efforts being carried out to access the data (and derived products) of the European Geodetic Infrastructures. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate continuous GNSS data (and derived solutions) from existing Research Infrastructures and new dedicated services. Present efforts are on developing an integrated software package, called GLASS, that will permit to disseminate quality controlled data (using special tools) in a seamless way from dozens of Geodetic Research Infrastructures in Europe. Conceptually, GLASS can be used in a single Research Infrastructure or in hundreds cooperative ones. We present and discuss the status of the implementation of these services, including also the generation of products - time-series, velocity fields and strain rate fields. In concrete, we will present the results of the current validation phase of these services and we will discuss in detail the technical and cooperative efforts being implemented. EPOS-IP is a project funded by the ESFRI European Union.

  4. The EPOS Architecture: Integrated Services for solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Consortium, Epos

    2013-04-01

    The European Plate Observing System (EPOS) represents a scientific vision and an IT approach in which innovative multidisciplinary research is made possible for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, unrest episodes and tsunamis as well as those driving tectonics and Earth surface dynamics. EPOS has a long-term plan to facilitate integrated use of data, models and facilities from existing (but also new) distributed research infrastructures, for solid Earth science. One primary purpose of EPOS is to take full advantage of the new e-science opportunities coming available. The aim is to obtain an efficient and comprehensive multidisciplinary research platform for the Earth sciences in Europe. The EPOS preparatory phase (EPOS PP), funded by the European Commission within the Capacities program, started on November 1st 2010 and it has completed its first two years of activity. EPOS is presently mid-way through its preparatory phase and to date it has achieved all the objectives, milestones and deliverables planned in its roadmap towards construction. The EPOS mission is to integrate the existing research infrastructures (RIs) in solid Earth science warranting increased accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations. This is expected to enhance worldwide interoperability in the Earth Sciences and establish a leading, integrated European infrastructure offering services to researchers and other stakeholders. The Preparatory Phase aims at leveraging the project to the level of maturity required to implement the EPOS construction phase, with a defined legal structure, detailed technical planning and financial plan. We will present the EPOS architecture, which relies on the integration of the main outcomes from legal, governance and financial work following the strategic EPOS roadmap and according to the technical work done during the first two years in order to establish an effective implementation plan guaranteeing long term sustainability for the infrastructure and the associated services. We plan to describe the RIs to be integrated in EPOS and to illustrate the initial suite of integrated and thematic core services to be offered to the users. We will present examples of combined data analyses and we will address the importance of opening our research infrastructures to users from different communities. We will describe the use-cases identified so far in order to allow stakeholders and potential future users to understand and interact with the EPOS infrastructure. In this framework, we also discuss the global perspectives for data infrastructures in order to verify the coherency of the EPOS plans and present the EPOS contributions. We also discuss the international cooperation initiatives in which EPOS is involved emphasizing the implications for solid Earth data infrastructures. In particular, EPOS and the satellite Earth Observation communities are collaborating in order to promote the integration of data from in-situ monitoring networks and satellite observing systems. Finally, we will also discuss the priorities for the third year of activity and the key actions planned to better involve users in EPOS. In particular, we will discuss the work done to finalize the design phase as well as the activities to start the validation and testing phase of the EPOS infrastructure.

  5. Brokering Capabilities for EarthCube - supporting Multi-disciplinary Earth Science Research

    NASA Astrophysics Data System (ADS)

    Jodha Khalsa, Siri; Pearlman, Jay; Nativi, Stefano; Browdy, Steve; Parsons, Mark; Duerr, Ruth; Pearlman, Francoise

    2013-04-01

    The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Brokering of data and improvements in discovery and access are a key to data exchange and promotion of collaboration across the geosciences. In this presentation we describe an evolutionary process of infrastructure and interoperability development focused on participation of existing science research infrastructures and augmenting them for improved access. All geosciences communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for levering these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. Brokers connect disparate systems with only minimal burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is a governance issue, but is facilitated by infrastructure capabilities that can impact the uptake of new interdisciplinary collaborations and exchange. Thus brokering must address both the cyberinfrastructure and computer technology requirements and also the social issues to allow improved cross-domain collaborations. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities targeted to specific communities. Brokering, as a critical capability for connecting systems, evolves over time through more connections and increased functionality. This adaptive process allows for continual evaluation as to how well science-driven use cases are being met. There is a near term, and possibly unique, opportunity through EarthCube and European e-Infrastructure projects to increase the impact and interconnectivity of projects. In the developments described in this presentation, brokering has been demonstrated to be an essential part of a robust, adaptive technical infrastructure and demonstration and user scenarios can address of both the governance and detailed implementation paths forward. The EarthCube Brokering roadmap proposes the expansion of brokering pilots into fully operational prototypes that work with the broader science and informatics communities to answer these questions, connect existing and emerging systems, and evolve the EarthCube infrastructure.

  6. SIOS: A regional cooperation of international research infrastructures as a building block for an Arctic observing system

    NASA Astrophysics Data System (ADS)

    Holmen, K. J.; Lønne, O. J.

    2016-12-01

    The Svalbard Integrated Earth Observing System (SIOS) is a regional response to the Earth System Science (ESS) challenges posed by the Amsterdam Declaration on Global Change. SIOS is intended to develop and implement methods for how observational networks in the Arctic are to be designed in order to address such issues in a regional scale. SIOS builds on the extensive observation capacity and research installations already in place by many international institutions and will provide upgraded and relevant Observing Systems and Research Facilities of world class in and around Svalbard. It is a distributed research infrastructure set up to provide a regional observational system for long term measurements under a joint framework. As one of the large scale research infrastructure initiatives on the ESFRI roadmap (European Strategy Forum on Research Infrastructures), SIOS is now being implemented. The new research infrastructure organization, the SIOS Knowledge Center (SIOS-KC), is instrumental in developing methods and solutions for setting up its regional contribution to a systematically constructed Arctic observational network useful for global change studies. We will discuss cross-disciplinary research experiences some case studies and lessons learned so far. SIOS aims to provide an effective, easily accessible data management system which makes use of existing data handling systems in the thematic fields covered by SIOS. SIOS will, implement a data policy which matches the ambitions that are set for the new European research infrastructures, but at the same time be flexible enough to consider `historical' legacies. Given the substantial international presence in the Svalbard archipelago and the pan-Arctic nature of the issue, there is an opportunity to build SIOS further into a wider regional network and pan-Arctic context, ideally under the umbrella of the Sustaining Arctic Observing Networks (SAON) initiative. It is necessary to anchor SIOS strongly in a European context and connect it to extra-EU initiatives, in order to establish a pan-Arctic perspective. SIOS must develop and secure a robust communication with other bodies carrying out and funding research activities in the Arctic (observational as well as modelling) and actively promote a sustained Arctic observing network.

  7. Development and Implementation of Collaborative e-Infrastructures and Data Management for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Davis, Rowena

    2016-04-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations that were adopted in fall, 2015 by the Belmont Forum collaboration of national science funding agencies and international bodies on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: • adoption of data principles that promote a global, interoperable e-infrastructure, that can be enforced • establishment of information and data officers for coordination of global data management and e-infrastructure efforts • promotion of effective data planning and stewardship • determination of international and community best practices for adoption • development of a cross-disciplinary training curriculum on data management and curation The implementation plan is being executed under four internationally-coordinated Action Themes towards a globally organized, internationally relevant e-infrastructure and data management capability drawn from existing components, protocols, and standards. The Belmont Forum anticipates opportunities to fund additional projects to fill key gaps and to integrate best practices into an e-infrastructure to support their programs but that can also be scaled up and deployed more widely. Background The Belmont Forum is a global consortium established in 2009 to build on the work of the International Group of Funding Agencies for Global Change Research toward furthering collaborative efforts to deliver knowledge needed for action to avoid and adapt to detrimental environmental change, including extreme hazardous events.

  8. National roadmap for research infrastructure

    NASA Astrophysics Data System (ADS)

    Bonev, Tanyu

    In 2010 the Council of Ministers of Republic of Bulgaria passed a National roadmap for research infrastructure (Decision Num. 692 from 21.09.2010). Part of the roadmap is the project called Regional Astronomical Center for Research and Education (RACIO). Distinctive feature of this project is the integration of the existing in the country research and educational organizations in the field of astronomy. The project is a substantial part of the strategy for the development of astronomy in Bulgaria over the next decade. What is the content of this strategis project? How it was possible to include RACIO in the roadmap? Does the national roadmap charmonize with the strategic plans for the development of astronomy in Europe, elaborated by Astronet (http://www.astronet-eu.org/)? These are some of the questions which I try to give answers in this paper.

  9. Dynamic VM Provisioning for TORQUE in a Cloud Environment

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.

    2014-06-01

    Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.

  10. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  11. EUDAT: A New Cross-Disciplinary Data Infrastructure For Science

    NASA Astrophysics Data System (ADS)

    Lecarpentier, Damien; Michelini, Alberto; Wittenburg, Peter

    2013-04-01

    In recent years significant investments have been made by the European Commission and European member states to create a pan-European e-Infrastructure supporting multiple research communities. As a result, a European e-Infrastructure ecosystem is currently taking shape, with communication networks, distributed grids and HPC facilities providing European researchers from all fields with state-of-the-art instruments and services that support the deployment of new research facilities on a pan-European level. However, the accelerated proliferation of data - newly available from powerful new scientific instruments, simulations and the digitization of existing resources - has created a new impetus for increasing efforts and investments in order to tackle the specific challenges of data management, and to ensure a coherent approach to research data access and preservation. EUDAT is a pan-European initiative that started in October 2011 and which aims to help overcome these challenges by laying out the foundations of a Collaborative Data Infrastructure (CDI) in which centres offering community-specific support services to their users could rely on a set of common data services shared between different research communities. Although research communities from different disciplines have different ambitions and approaches - particularly with respect to data organization and content - they also share many basic service requirements. This commonality makes it possible for EUDAT to establish common data services, designed to support multiple research communities, as part of this CDI. During the first year, EUDAT has been reviewing the approaches and requirements of a first subset of communities from linguistics (CLARIN), solid earth sciences (EPOS), climate sciences (ENES), environmental sciences (LIFEWATCH), and biological and medical sciences (VPH), and shortlisted four generic services to be deployed as shared services on the EUDAT infrastructure. These services are data replication from site to site, data staging to compute facilities, metadata, and easy storage. A number of enabling services such as distributed authentication and authorization, persistent identifiers, hosting of services, workspaces and centre registry were also discussed. The services being designed in EUDAT will thus be of interest to a broad range of communities that lack their own robust data infrastructures, or that are simply looking for additional storage and/or computing capacities to better access, use, re-use, and preserve their data. The first pilots were completed in 2012 and a pre-production ready operational infrastructure, comprised of five sites (RZG, CINECA, SARA, CSC, FZJ), offering 480TB of online storage and 4PB of near-line (tape) storage, initially serving four user communities (ENES, EPOS, CLARIN, VPH) was established. These services shall be available to all communities in a production environment by 2014. Although EUDAT has initially focused on a subset of research communities, it aims to engage with other communities interested in adapting their solutions or contributing to the design of the infrastructure. Discussions with other research communities - belonging to the fields of environmental sciences, biomedical science, physics, social sciences and humanities - have already begun and are following a pattern similar to the one we adopted with the initial communities. The next step will consist of integrating representatives from these communities into the existing pilots and task forces so as to include them in the process of designing the services and, ultimately, shaping the future CDI.

  12. Regional climate response collaboratives: Multi-institutional support for climate resilience

    USDA-ARS?s Scientific Manuscript database

    Federal investments by U.S. agencies to enhance climate resilience at regional scales have grown dramatically over the last five years. This leads to questions about how best to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. This article discusses...

  13. Academic Productivity and Technology.

    ERIC Educational Resources Information Center

    Green, Kenneth C.; Gilbert, Steven W.

    1995-01-01

    This article suggests that, although advances in information technology have been interpreted as leading directly to increased college faculty research productivity, the real benefits will be found in the areas of improved content, curriculum, and pedagogy. The existing academic infrastructure and perceived role of faculty are seen as major…

  14. Environmental Enhancements and Navigation Infrastructure: A Study of Existing Practices, Innovative Ideas, Impediments, and Research Needs

    DTIC Science & Technology

    2011-07-01

    velocity/substrate Excavate back channels in river systems Piers & Wharves Design hard structures to facilitate better seaweed recruitment...allows vegetative colonization of areas beneath the structures P Design hard structures to facilitate better seaweed recruitment I Provide

  15. Cooperative Drought Adaptation: Integrating Infrastructure Development, Conservation, and Water Transfers into Adaptive Policy Pathways

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.; Reed, P. M.; Herman, J. D.

    2015-12-01

    Water supply policies that integrate portfolios of short-term management decisions with long-term infrastructure development enable utilities to adapt to a range of future scenarios. An effective mix of short-term management actions can augment existing infrastructure, potentially forestalling new development. Likewise, coordinated expansion of infrastructure such as regional interconnections and shared treatment capacity can increase the effectiveness of some management actions like water transfers. Highly adaptable decision pathways that mix long-term infrastructure options and short-term management actions require decision triggers capable of incorporating the impact of these time-evolving decisions on growing water supply needs. Here, we adapt risk-based triggers to sequence a set of potential infrastructure options in combination with utility-specific conservation actions and inter-utility water transfers. Individual infrastructure pathways can be augmented with conservation or water transfers to reduce the cost of meeting utility objectives, but they can also include cooperatively developed, shared infrastructure that expands regional capacity to transfer water. This analysis explores the role of cooperation among four water utilities in the 'Research Triangle' region of North Carolina by formulating three distinct categories of adaptive policy pathways: independent action (utility-specific conservation and supply infrastructure only), weak cooperation (utility-specific conservation and infrastructure development with regional transfers), and strong cooperation (utility specific conservation and jointly developed of regional infrastructure that supports transfers). Results suggest that strong cooperation aids the utilities in meeting their individual objections at substantially lower costs and with fewer irreversible infrastructure options.

  16. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  17. Cross-sectoral optimization and visualization of transformation processes in urban water infrastructures in rural areas.

    PubMed

    Baron, S; Kaufmann Alves, I; Schmitt, T G; Schöffel, S; Schwank, J

    2015-01-01

    Predicted demographic, climatic and socio-economic changes will require adaptations of existing water supply and wastewater disposal systems. Especially in rural areas, these new challenges will affect the functionality of the present systems. This paper presents a joint interdisciplinary research project with the objective of developing an innovative software-based optimization and decision support system for the implementation of long-term transformations of existing infrastructures of water supply, wastewater and energy. The concept of the decision support and optimization tool is described and visualization methods for the presentation of results are illustrated. The model is tested in a rural case study region in the Southwest of Germany. A transformation strategy for a decentralized wastewater treatment concept and its visualization are presented for a model village.

  18. International Convergence on Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.

    2012-04-01

    There is growing international consensus on addressing the challenges to cyber(e)-infrastructure for the geosciences. These challenges include: Creating common standards and protocols; Engaging the vast number of distributed data resources; Establishing practices for recognition of and respect for intellectual property; Developing simple data and resource discovery and access systems; Building mechanisms to encourage development of web service tools and workflows for data analysis; Brokering the diverse disciplinary service buses; Creating sustainable business models for maintenance and evolution of information resources; Integrating the data management life-cycle into the practice of science. Efforts around the world are converging towards de facto creation of an integrated global digital data network for the geosciences based on common standards and protocols for data discovery and access, and a shared vision of distributed, web-based, open source interoperable data access and integration. Commonalities include use of Open Geospatial Consortium (OGC) and ISO specifications and standardized data interchange mechanisms. For multidisciplinarity, mediation, adaptation, and profiling services have been successfully introduced to leverage the geosciences standards which are commonly used by the different geoscience communities -introducing a brokering approach which extends the basic SOA archetype. Principal challenges are less technical than cultural, social, and organizational. Before we can make data interoperable, we must make people interoperable. These challenges are being met by increased coordination of development activities (technical, organizational, social) among leaders and practitioners in national and international efforts across the geosciences to foster commonalities across disparate networks. In doing so, we will 1) leverage and share resources, and developments, 2) facilitate and enhance emerging technical and structural advances, 3) promote interoperability across scientific domains, 4) support the promulgation and institutionalization of agreed-upon standards, protocols, and practice, and 5) enhance knowledge transfer not only across the community, but into the domain sciences, 6) lower existing entry barriers for users and data producers, 7) build on the existing disciplinary infrastructures leveraging their service buses. . All of these objectives are required for establishing a permanent and sustainable cyber(e)-infrastructure for the geosciences. The rationale for this approach is well articulated in the AuScope mission statement: "Many of these problems can only be solved on a national, if not global scale. No single researcher, research institution, discipline or jurisdiction can provide the solutions. We increasingly need to embrace e-Research techniques and use the internet not only to access nationally distributed datasets, instruments and compute infrastructure, but also to build online, 'virtual' communities of globally dispersed researchers." Multidisciplinary interoperability can be successfully pursued by adopting a "system of systems" or a "Network of Networks" philosophy. This approach aims to: (a) supplement but not supplant systems mandates and governance arrangements; (b) keep the existing capacities as autonomous as possible; (c) lower entry barriers; (d) Build incrementally on existing infrastructures (information systems); (e) incorporate heterogeneous resources by introducing distribution and mediation functionalities. This approach has been adopted by the European INSPIRE (Infrastructure for Spatial Information in the European Community) initiative and by the international GEOSS (Global Earth Observation System of Systems) programme.

  19. The Core Services of the European Plate Observing System (EPOS)

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Euteneuer, F. H.; Lauterjung, J.

    2013-12-01

    The ESFRI project European Plate Observing System (EPOS) was launched in November 2010 and has now completed its year 3 of the four-year preparatory phase. EPOS will create a single sustainable, permanent observation infrastructure, integrating existing geophysical monitoring networks, local observatories and experimental laboratories in Europe and adjacent regions. EPOS' technical Work Package 6 has developed a three layer architectural model for the construction of the EPOS Core Services (CS) during the subsequent implementation phase. The Poster will present and detail on these three layers, consisting of the EPOS Integrated Core Services (ICS), the Thematic Core Services (TCS) and the existing National Research Infrastructures & Data Centers. The basic layer of the architecture is established by the National Research Infrastructures (RIs) & Data Centers, which generate data and information and are responsible for the operation of the instrumentation. National RIs will provide their data to the Thematic Cores Services. The Thematic Core Services constitute the community layer of EPOS architecture and they will: 1) consist of existing (e.g. ORFEUS, EMSC), developing (e.g. EUREF/GNSS) or still to be developed Service Providers for specific thematic communities, as represented within EPOS through the technical EPOS Working Groups (e.g., seismology, volcanology, geodesy, geology, analytic labs for rock physics, geomagnetism, geo-resources ... and many others), 2) provide data services to specific communities, 3) link the National Research Infrastructures to the EPOS Integrated Services, 4) include Service Providers (e.g. OneGeology+, Intermagnet) that may be merely linked or partially integrated and 5) consist of Integrated Laboratories and RIs spanning multiple EPOS disciplines and taking advantage of other existing Thematic Services. The EPOS Integrated Services constitute the ICT layer of the EPOS portal and they will: 1) provide access to multidisciplinary data from different EPOS Thematic Core Services and from the National RIs & Data Centers, 2) provide access to data products, synthetic data from simulations, data processing and data visualization tools, 3) serve science, industry, education, government, legal and other stakeholders in an integrated fashion through the EPOS User Interface, and 4) provide a variety of ICT technological services including (but not being limited) to discovery functions, data mining, access to modeling tools and high performance computing, and training & tutorials.

  20. Institutional shared resources and translational cancer research.

    PubMed

    De Paoli, Paolo

    2009-06-29

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology.In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers.

  1. Institutional shared resources and translational cancer research

    PubMed Central

    De Paoli, Paolo

    2009-01-01

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers. PMID:19563639

  2. GEMSS: grid-infrastructure for medical service provision.

    PubMed

    Benkner, S; Berti, G; Engelbrecht, G; Fingberg, J; Kohring, G; Middleton, S E; Schmidt, R

    2005-01-01

    The European GEMSS Project is concerned with the creation of medical Grid service prototypes and their evaluation in a secure service-oriented infrastructure for distributed on demand/supercomputing. Key aspects of the GEMSS Grid middleware include negotiable QoS support for time-critical service provision, flexible support for business models, and security at all levels in order to ensure privacy of patient data as well as compliance to EU law. The GEMSS Grid infrastructure is based on a service-oriented architecture and is being built on top of existing standard Grid and Web technologies. The GEMSS infrastructure offers a generic Grid service provision framework that hides the complexity of transforming existing applications into Grid services. For the development of client-side applications or portals, a pluggable component framework has been developed, providing developers with full control over business processes, service discovery, QoS negotiation, and workflow, while keeping their underlying implementation hidden from view. A first version of the GEMSS Grid infrastructure is operational and has been used for the set-up of a Grid test-bed deploying six medical Grid service prototypes including maxillo-facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simulation, cardiovascular simulation and advanced image reconstruction. The GEMSS Grid infrastructure is based on standard Web Services technology with an anticipated future transition path towards the OGSA standard proposed by the Global Grid Forum. GEMSS demonstrates that the Grid can be used to provide medical practitioners and researchers with access to advanced simulation and image processing services for improved preoperative planning and near real-time surgical support.

  3. 44 CFR 201.7 - Tribal Mitigation Plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of existing and future buildings, infrastructure, and critical facilities located in the identified... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. (iii...

  4. Landscape of the EU-US Research Infrastructures and actors: Moving towards international interoperability of earth system data

    NASA Astrophysics Data System (ADS)

    Asmi, Ari; Powers, Lindsay

    2015-04-01

    Research Infrastructures (RIs) are major long-term investments supporting innovative, bottom-up research activities. In the environmental research, they range from high atmosphere radars, to field observation networks and coordinated laboratory facilities. The Earth system is highly interactive and each part of the system interconnected across the spatial and disciplinary borders. However, due practical and historical reasons, the RIs are built from disciplinary points-of-view and separately in different parts of the world, with differing standards, policies, methods and research cultures. This heterogeneity provides necessary diversity to study the complex Earth system, but makes cross-disciplinary and/or global interoperability a challenge. Global actions towards better interoperability are surfacing, especially with EU and US. For example, recent mandates within the US government prioritize open data for federal agencies and federally funded science, and encourage collaboration among agencies to reduce duplication of efforts and increase efficient use of resources. There are several existing initiatives working toward these goals (e.g., COOPEUS, EarthCube, RDA, ICSU-WDS, DataOne, ESIP, USGEO, GEO). However, there is no cohesive framework to coordinate efforts among these, and other, entities. COOPEUS and EarthCube have now begun to map the landscape of interoperability efforts across earth science domains. The COOPEUS mapping effort describes the EU and US landscape of environmental research infrastructures to accomplish the following: identify gaps in services (data provision) necessary to address societal priorities; provide guidance for development of future research infrastructures; and identify opportunities for Research Infrastructures (RIs) to collaborate on issues of common interest. EarthCube mapping effort identifies opportunities to engage a broader community by identifying scientific domain organizations and entities. We present the current situation of the landscape analysis to create a sustainable effort towards removing barriers to interoperability on a global scale.

  5. Aging Water Infrastructure and Nutrient Control at WWTPs: U.S. Environmental Protection Agency Research Program

    EPA Science Inventory

    What are… the effects of major influencing factors (climate change, population dynamics, etc.) on future system demands? the innovative technologies that can cost-effectively improve performance and extend the life of existing systems? the new designs and management approaches...

  6. CALS Infrastructure Analysis. Draft. Volume 21

    DOT National Transportation Integrated Search

    1990-03-01

    This executive overview to the DoD CALS Infrastructure Analysis Report summarizes the Components' current effort to modernize the DoD technical data infrastructure. This infrastructure includes all existing and planned capabilities to acquire, manage...

  7. Telemammography Using Satellite Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Telemammography, the electronic transmission of digitized mammograms, can connect patients with timely, critical medical expertise; howev er, an adequate terrestrial communications infrastructure does not exist in these areas. NASA Lewis Research Center's Advanced Space Commu nications Laboratory is now working with leading breast cancer resear ch hospitals, including the Cleveland Clinic and the University of Virginia, to perform the critical research necessary to allow new satell ite networks to support telemammography.

  8. Financing Terror: Analysis and Simulation to Affect Terrorist Organizations’ Financial Infrastructures

    DTIC Science & Technology

    2004-09-15

    research on terrorism existed; David Rapoport, professor emeritus of political science at University of California-Los Angeles, lamented on that relative...contains all books published since 1979. 10 research interests-historical, cultural, religious, political , economic, psychological and organizational factors...perspective, tracing the development of non-state political violence in general and how terrorism has become a primary component of modem political

  9. Barriers to the conduct of randomised clinical trials within all disease areas.

    PubMed

    Djurisic, Snezana; Rath, Ana; Gaber, Sabrina; Garattini, Silvio; Bertele, Vittorio; Ngwabyt, Sandra-Nadia; Hivert, Virginie; Neugebauer, Edmund A M; Laville, Martine; Hiesmayr, Michael; Demotes-Mainard, Jacques; Kubiak, Christine; Jakobsen, Janus C; Gluud, Christian

    2017-08-01

    Randomised clinical trials are key to advancing medical knowledge and to enhancing patient care, but major barriers to their conduct exist. The present paper presents some of these barriers. We performed systematic literature searches and internal European Clinical Research Infrastructure Network (ECRIN) communications during face-to-face meetings and telephone conferences from 2013 to 2017 within the context of the ECRIN Integrating Activity (ECRIN-IA) project. The following barriers to randomised clinical trials were identified: inadequate knowledge of clinical research and trial methodology; lack of funding; excessive monitoring; restrictive privacy law and lack of transparency; complex regulatory requirements; and inadequate infrastructures. There is a need for more pragmatic randomised clinical trials conducted with low risks of systematic and random errors, and multinational cooperation is essential. The present paper presents major barriers to randomised clinical trials. It also underlines the value of using a pan-European-distributed infrastructure to help investigators overcome barriers for multi-country trials in any disease area.

  10. The use of GIS tools for road infrastructure safety management

    NASA Astrophysics Data System (ADS)

    Budzyński, Marcin; Kustra, Wojciech; Okraszewska, Romanika; Jamroz, Kazimierz; Pyrchla, Jerzy

    2018-01-01

    There are many factors that influence accidents and their severity. They can be grouped within the system of man, vehicle and environment. The article focuses on how GIS tools can be used to manage road infrastructure safety. To ensure a better understanding and identification of road factors, GIS tools help with the acquisition of road parameter data. Their other role is helping with a clear and effective presentation of risk ranking. GIS is key to identifying high-risk sections and supports the effective communication of safety levels. This makes it a vital element of safety management. The article describes the use of GIS for the collection and visualisation of road parameter data which are not available in any of the existing databases, i.e. horizontal curve parameters. As we know from research and statistics, they are important factors that determine the safety of road infrastructure. Finally, new research is proposed as well as the possibilities for applying GIS tools for the purposes of road safety inspection.

  11. A Comprehensive Approach of E-learning Design for Effective Learning Transfer

    ERIC Educational Resources Information Center

    Lim, Doo Hun

    2012-01-01

    Literature indicates that there is limited research on the national and organizational level decision processes to develop and deliver e-learning programs. In this paper, existing e-learning literature is analyzed in terms of national level factors (national culture, readiness for new technology, and infrastructure), organizational level factors…

  12. Connected Vehicle Infrastructure : Deployment and Funding Overview

    DOT National Transportation Integrated Search

    2018-01-01

    This report reviews existing and proposed legislation relevant to connected vehicle infrastructure (CVI) implementation, identifies existing funding mechanisms for CVI implementation, reviews CVI pilot programs and case studies, and provides an overv...

  13. Connectivity, interoperability and manageability challenges in internet of things

    NASA Astrophysics Data System (ADS)

    Haseeb, Shariq; Hashim, Aisha Hassan A.; Khalifa, Othman O.; Ismail, Ahmad Faris

    2017-09-01

    The vision of Internet of Things (IoT) is about interconnectivity between sensors, actuators, people and processes. IoT exploits connectivity between physical objects like fridges, cars, utilities, buildings and cities for enhancing the lives of people through automation and data analytics. However, this sudden increase in connected heterogeneous IoT devices takes a huge toll on the existing Internet infrastructure and introduces new challenges for researchers to embark upon. This paper highlights the effects of heterogeneity challenges on connectivity, interoperability, management in greater details. It also surveys some of the existing solutions adopted in the core network to solve the challenges of massive IoT deployment. The paper finally concludes that IoT architecture and network infrastructure needs to be reengineered ground-up, so that IoT solutions can be safely and efficiently deployed.

  14. Advanced e-Infrastructures for Civil Protection applications: the CYCLOPS Project

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.; Verlato, M.; Ayral, P. A.; Fiorucci, P.; Pina, A.; Oliveira, J.; Sorani, R.

    2009-04-01

    During the full cycle of the emergency management, Civil Protection operative procedures involve many actors belonging to several institutions (civil protection agencies, public administrations, research centers, etc.) playing different roles (decision-makers, data and service providers, emergency squads, etc.). In this context the sharing of information is a vital requirement to make correct and effective decisions. Therefore a European-wide technological infrastructure providing a distributed and coordinated access to different kinds of resources (data, information, services, expertise, etc.) could enhance existing Civil Protection applications and even enable new ones. Such European Civil Protection e-Infrastructure should be designed taking into account the specific requirements of Civil Protection applications and the state-of-the-art in the scientific and technological disciplines which could make the emergency management more effective. In the recent years Grid technologies have reached a mature state providing a platform for secure and coordinated resource sharing between the participants collected in the so-called Virtual Organizations. Moreover the Earth and Space Sciences Informatics provide the conceptual tools for modeling the geospatial information shared in Civil Protection applications during its entire lifecycle. Therefore a European Civil Protection e-infrastructure might be based on a Grid platform enhanced with Earth Sciences services. In the context of the 6th Framework Programme the EU co-funded Project CYCLOPS (CYber-infrastructure for CiviL protection Operative ProcedureS), ended in December 2008, has addressed the problem of defining the requirements and identifying the research strategies and innovation guidelines towards an advanced e-Infrastructure for Civil Protection. Starting from the requirement analysis CYCLOPS has proposed an architectural framework for a European Civil Protection e-Infrastructure. This architectural framework has been evaluated through the development of prototypes of two operative applications used by the Italian Civil Protection for Wild Fires Risk Assessment (RISICO) and by the French Civil Protection for Flash Flood Risk Management (SPC-GD). The results of these studies and proof-of-concepts have been used as the basis for the definition of research and innovation strategies aiming to the detailed design and implementation of the infrastructure. In particular the main research themes and topics to be addressed have been identified and detailed. Finally the obstacles to the innovation required for the adoption of this infrastructure and possible strategies to overcome them have been discussed.

  15. Beacons for supporting lunar landing navigation

    NASA Astrophysics Data System (ADS)

    Theil, Stephan; Bora, Leonardo

    2017-03-01

    Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.

  16. Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure.

    PubMed

    Demuzere, M; Orru, K; Heidrich, O; Olazabal, E; Geneletti, D; Orru, H; Bhave, A G; Mittal, N; Feliu, E; Faehnle, M

    2014-12-15

    In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by implementing these concepts.

  18. Practical Use of the GEOSS Common Infrastructure by Environmental Research Infrastructures - Lessons from a COOPEUS-GEOSS Workshop

    NASA Astrophysics Data System (ADS)

    Waldmann, H. C.; Koop-Jakobsen, K.

    2014-12-01

    The GEOSS Common Infrastructure (GCI) enables earth observations data providers to make their resources available in a global context and allow users of earth observations data to search, access and use data, tools and services available through the Global Earth Observation System of Systems. COOPEUS views the GCI as an important platform promoting cross-disciplinary approaches in the studies of multifaceted environmental challenges, and the research infrastructures (RIs) in COOPEUS are currently in the process of registering resources and services within the GCI. To promote this work, COOPEUS and GEOSS held a joint workshop in July 2014, where the main scope was to get data managers of the COOPEUS RIs involved and establish the GCI as part of the COOPEUS interoperability framework. The workshop revealed that data policies of the individual RIs can often be the first impediment for their use of the GCI. As many RIs are administering data from many sources, permission to distribute the data must be in place before registration in the GCI. Through hands-on exercises registering resources from the COOPEUS RIs, the first steps were taken to implement the GCI as a platform for documenting the capabilities of the COOPEUS RIs. These exercises gave important feedback for the practical implementation of the GCI as well as the challenges lying ahead. For the COOPEUS RIs providing data the benefits includes improved discovery and access to data and information, increased visibility of available data, information and services, which will promote the structuring of the existing environmental research infrastructure landscape and improve the interoperability. However, in order to attract research infrastructures to use the GCI, the registration process must be simplified and accelerated like for instance allowing for bulk data registration; the resource registration and feedback by COOPEUS partners can play an important role in these efforts.

  19. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    PubMed

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  20. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Aaron T; Movva, Sunil; Karthik, Rajasekar

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which ismore » an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.« less

  1. Developing a data infrastructure for a learning health system: the PORTAL network

    PubMed Central

    McGlynn, Elizabeth A; Lieu, Tracy A; Durham, Mary L; Bauck, Alan; Laws, Reesa; Go, Alan S; Chen, Jersey; Feigelson, Heather Spencer; Corley, Douglas A; Young, Deborah Rohm; Nelson, Andrew F; Davidson, Arthur J; Morales, Leo S; Kahn, Michael G

    2014-01-01

    The Kaiser Permanente & Strategic Partners Patient Outcomes Research To Advance Learning (PORTAL) network engages four healthcare delivery systems (Kaiser Permanente, Group Health Cooperative, HealthPartners, and Denver Health) and their affiliated research centers to create a new national network infrastructure that builds on existing relationships among these institutions. PORTAL is enhancing its current capabilities by expanding the scope of the common data model, paying particular attention to incorporating patient-reported data more systematically, implementing new multi-site data governance procedures, and integrating the PCORnet PopMedNet platform across our research centers. PORTAL is partnering with clinical research and patient experts to create cohorts of patients with a common diagnosis (colorectal cancer), a rare diagnosis (adolescents and adults with severe congenital heart disease), and adults who are overweight or obese, including those with pre-diabetes or diabetes, to conduct large-scale observational comparative effectiveness research and pragmatic clinical trials across diverse clinical care settings. PMID:24821738

  2. Report: Suitability of Leak Detection Technology for Use In Ethanol-Blended Fuel Service

    EPA Science Inventory

    As the use of biofuels has increased in the last decade, there has been a level of concern over the effect that ethanol blends have on the material compatibility and operability of existing infrastructure. The focus of this research is to determine whether leak detection (LD) te...

  3. Unifying theory for terrestrial research infrastructures

    NASA Astrophysics Data System (ADS)

    Mirtl, Michael

    2016-04-01

    The presentation will elaborate on basic steps needed for building a common theoretical base between Research Infrastructures focusing on terrestrial ecosystems. This theoretical base is needed for developing a better cooperation and integrating in the near future. An overview of different theories will be given and ways to a unifying approach explored. In the second step more practical implications of a theory-guided integration will be developed alongside the following guiding questions: • How do the existing and planned European environmental RIs map on a possible unifying theory on terrestrial ecosystems (covered structures and functions, scale; overlaps and gaps) • Can a unifying theory improve the consistent definition of RÍs scientific scope and focal science questions? • How could a division of tasks between RIs be organized in order to minimize parallel efforts? • Where concretely do existing and planned European environmental RIs need to interact to respond to overarching questions (top down component)? • What practical fora and mechanisms (across RIs) would be needed to bridge the gap between PI driven (bottom up) efforts and the centralistic RI design and operations?

  4. Big data analytics as a service infrastructure: challenges, desired properties and solutions

    NASA Astrophysics Data System (ADS)

    Martín-Márquez, Manuel

    2015-12-01

    CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions.

  5. EUFAR the key portal and network for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2017-04-01

    Created in 2000 and supported by the EU Framework Programmes since then as an Integrating Activities' project, EUFAR (European Facility of Airborne Research in environmental and Geo-sciences) was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to aircraft and instrumentation most suited to the needs of researchers across Europe, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geosciences, and enables the sharing of expertise and harmonisation of research practices. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 19 instrumented aircraft and 5 remote-sensing instruments through the 14 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and joint research activities focused on providing an enabling environment for and to promote airborne research. Examples of some of these recent activities will be shown EUFAR is currently seeking to establish itself as an AISBL (international non-profit association) to ensure its existence and operations beyond January 2018 when our present EC funding comes to an end. The objectives of the EUFAR AISBL will include continuing to develop the integration of the research aircraft community in Europe and also its links with other environmental research infrastructures, such as the community of research infrastructures under the umbrella of ENVRIplus. Another objective will be to continue to broaden access to research facilities beyond that supported solely by national funding streams so that EUFAR better approaches the status of a European open research infrastructure. Together with the implementation of an Open Access scheme by means of resource-sharing envisaged in late 2017, such a sustainable structure will contribute substantially toward broadening the user base of existing airborne research facilities in Europe and mobilising additional resources to this end. EUFAR AISBL will be the most appropriate organisation for the (i) coordination of joint activities among the European institutions involved in airborne research, and also (ii) coordination of projects funded by the European Commission or other bodies for supporting activities beyond the self-financing perimeter of the AISBL (transnational access projects, education and training events, joint research activities, etc.). This will confirm EUFAR's position as the key portal for airborne research in Europe. This central position opens the way for further collaboration with other communities (UAS, etc.) and environmental research infrastructures (IAGOS, ACTRIS, ENVRIplus, EUROFLEETS, etc.) to ensure the mutual benefit of joint efforts in addressing future science challenges in a multi-disciplinary approach to the study of the Earth system.

  6. The data access infrastructure of the Wadden Sea Long Term Ecosystem Research (WaLTER) project

    NASA Astrophysics Data System (ADS)

    De Bruin, T.

    2011-12-01

    The Wadden Sea, North of The Netherlands, Germany and Danmark, is one of the most important tidal areas in the world. In 2009, the Wadden Sea was listed on the UNESCO World Heritage list. The area is noted for its ecological diversity and value, being a stopover for large numbers of migrating birds. The Wadden Sea is also used intensively for economic activities by inhabitants of the surrounding coasts and islands, as well as by the many tourists visiting the area every year. A whole series of monitoring programmes is carried out by a range of governmental bodies and institutes to study the natural processes occuring in the Wadden Sea ecosystems as well as the influence of human activities on those ecosystems. Yet, the monitoring programmes are scattered and it is difficult to get an overview of those monitoring activities or to get access to the data resulting from those monitoring programmes. The Wadden Sea Long Term Ecosystem Research (WaLTER) project aims to: 1. To provide a base set of consistent, standardized, long-term data on changes in the Wadden Sea ecological and socio-economic system in order to model and understand interrelationships with human use, climate variation and possible other drivers. 2. To provide a research infrastructure, open access to commonly shared databases, educational facilities and one or more field sites in which experimental, innovative and process-driven research can be carried out. This presentation will introduce the WaLTER-project and explain the rationale for this project. The presentation will focus on the data access infrastructure which will be used for WaLTER. This infrastructure is part of the existing and operational infrastructure of the National Oceanographic Data Committee (NODC) in the Netherlands. The NODC forms the Dutch node in the European SeaDataNet consortium, which has built an European, distributed data access infrastructure. WaLTER, NODC and SeaDataNet all use the same technology, developed within the SeaDataNet-project, resulting in a high level of standardization across Europe. Benefits and pitfalls of using this infrastructure will be addressed.

  7. Review of the Italian current legislation on research biobanking activities on the eve of the participation of national biobanks’ network in the legal consortium BBMRI-ERIC.

    PubMed

    Calzolari, Alessia; Napolitano, Mariarosaria; Bravo, Elena

    2013-04-01

    The ethical-legal framework of research biobanking activities is still scarcely defined in Italy, and this constitutes a major obstacle to exploit the potential benefits of existing bioresource patrimony at the national and international levels. Biobanking and Biomolecular Resources Research Infrastructure (BBMRI), which aims to become a major interface between biological samples and data and top-level biological and medical research, is undertaking the crucial transformation to the ERIC (European Research Infrastructure Consortium) legal entity. In this scenario, there is a need to address the national legal and ethical concerns that are strictly correlated with the use of human biosources in research across European countries participating (and not) in BBMRI. In this perspective, this article aims to review the legal framework applying to research biobanking in Italy, including both "soft" nonbinding instruments and binding regulations. Since ethical and societal aspects impact biobanking research activities, the article discusses both the critical ethical and legal open issues that need to be implemented at the national level.

  8. Consolidation and development roadmap of the EMI middleware

    NASA Astrophysics Data System (ADS)

    Kónya, B.; Aiftimiei, C.; Cecchi, M.; Field, L.; Fuhrmann, P.; Nilsen, J. K.; White, J.

    2012-12-01

    Scientific research communities have benefited recently from the increasing availability of computing and data infrastructures with unprecedented capabilities for large scale distributed initiatives. These infrastructures are largely defined and enabled by the middleware they deploy. One of the major issues in the current usage of research infrastructures is the need to use similar but often incompatible middleware solutions. The European Middleware Initiative (EMI) is a collaboration of the major European middleware providers ARC, dCache, gLite and UNICORE. EMI aims to: deliver a consolidated set of middleware components for deployment in EGI, PRACE and other Distributed Computing Infrastructures; extend the interoperability between grids and other computing infrastructures; strengthen the reliability of the services; establish a sustainable model to maintain and evolve the middleware; fulfil the requirements of the user communities. This paper presents the consolidation and development objectives of the EMI software stack covering the last two years. The EMI development roadmap is introduced along the four technical areas of compute, data, security and infrastructure. The compute area plan focuses on consolidation of standards and agreements through a unified interface for job submission and management, a common format for accounting, the wide adoption of GLUE schema version 2.0 and the provision of a common framework for the execution of parallel jobs. The security area is working towards a unified security model and lowering the barriers to Grid usage by allowing users to gain access with their own credentials. The data area is focusing on implementing standards to ensure interoperability with other grids and industry components and to reuse already existing clients in operating systems and open source distributions. One of the highlights of the infrastructure area is the consolidation of the information system services via the creation of a common information backbone.

  9. Analysis of Pervasive Mobile Ad Hoc Routing Protocols

    NASA Astrophysics Data System (ADS)

    Qadri, Nadia N.; Liotta, Antonio

    Mobile ad hoc networks (MANETs) are a fundamental element of pervasive networks and therefore, of pervasive systems that truly support pervasive computing, where user can communicate anywhere, anytime and on-the-fly. In fact, future advances in pervasive computing rely on advancements in mobile communication, which includes both infrastructure-based wireless networks and non-infrastructure-based MANETs. MANETs introduce a new communication paradigm, which does not require a fixed infrastructure - they rely on wireless terminals for routing and transport services. Due to highly dynamic topology, absence of established infrastructure for centralized administration, bandwidth constrained wireless links, and limited resources in MANETs, it is challenging to design an efficient and reliable routing protocol. This chapter reviews the key studies carried out so far on the performance of mobile ad hoc routing protocols. We discuss performance issues and metrics required for the evaluation of ad hoc routing protocols. This leads to a survey of existing work, which captures the performance of ad hoc routing algorithms and their behaviour from different perspectives and highlights avenues for future research.

  10. ENFIN--A European network for integrative systems biology.

    PubMed

    Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan

    2009-11-01

    Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.

  11. GéoSAS: A modular and interoperable Open Source Spatial Data Infrastructure for research

    NASA Astrophysics Data System (ADS)

    Bera, R.; Squividant, H.; Le Henaff, G.; Pichelin, P.; Ruiz, L.; Launay, J.; Vanhouteghem, J.; Aurousseau, P.; Cudennec, C.

    2015-05-01

    To-date, the commonest way to deal with geographical information and processes still appears to consume local resources, i.e. locally stored data processed on a local desktop or server. The maturity and subsequent growing use of OGC standards to exchange data on the World Wide Web, enhanced in Europe by the INSPIRE Directive, is bound to change the way people (and among them research scientists, especially in environmental sciences) make use of, and manage, spatial data. A clever use of OGC standards can help scientists to better store, share and use data, in particular for modelling. We propose a framework for online processing by making an intensive use of OGC standards. We illustrate it using the Spatial Data Infrastructure (SDI) GéoSAS which is the SDI set up for researchers' needs in our department. It is based on the existing open source, modular and interoperable Spatial Data Architecture geOrchestra.

  12. Civil infrastructure monitoring for IVHS using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    de Vries, Marten J.; Arya, Vivek; Grinder, C. R.; Murphy, Kent A.; Claus, Richard O.

    1995-01-01

    8Early deployment of Intelligent Vehicle Highway Systems would necessitate the internal instrumentation of infrastructure for emergency preparedness. Existing quantitative analysis and visual analysis techniques are time consuming, cost prohibitive, and are often unreliable. Fiber optic sensors are rapidly replacing conventional instrumentation because of their small size, light weight, immunity to electromagnetic interference, and extremely high information carrying capability. In this paper research on novel optical fiber sensing techniques for health monitoring of civil infrastructure such as highways and bridges is reported. Design, fabrication, and implementation of fiber optic sensor configurations used for measurements of strain are discussed. Results from field tests conducted to demonstrate the effectiveness of fiber sensors at determining quantitative strain vector components near crack locations in bridges are presented. Emerging applications of fiber sensors for vehicle flow, vehicle speed, and weigh-in-motion measurements are also discussed.

  13. Pittsburgh 2013 Energy Baseline: Consumption, Trends & Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarka, Thomas J.; James III, Robert E.; Withum, Jeffrey A.

    2017-03-01

    The United States (U.S.) Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) are working in conjunction with the City of Pittsburgh (City) to transform how energy is produced, transported, and consumed in the City. This transformation will rely on 21st Century Energy Infrastructure designs, which leverage advanced technology and design techniques to modernize energy infrastructure, create new business models and markets, and expand technology research and development opportunities. Achieving this vision will require developing solutions that are unique to the City: its climate, topography, energy needs, resources, and existing infrastructure.a In this way, the City will demonstratemore » what the American “City of the Future” looks like, with all its attendant environmental, economic, and job-creation benefits. It will also serve as a template for other cities seeking to reinvent their energy systems.« less

  14. X-ray-induced acoustic computed tomography of concrete infrastructure

    NASA Astrophysics Data System (ADS)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  15. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  16. Multidisciplinary acute care research organization (MACRO): if you build it, they will come.

    PubMed

    Early, Barbara J; Huang, David T; Callaway, Clifton W; Zenati, Mazen; Angus, Derek C; Gunn, Scott R; Yealy, Donald M; Unikel, Daniel; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L

    2013-07-01

    Clinical research will increasingly play a core role in the evolution and growth of acute care surgery program development across the country. What constitutes an efficient and effective clinical research infrastructure in the current fiscal and academic environment remains obscure. We sought to characterize the effects of implementation of a multidisciplinary acute care research organization (MACRO) at a busy tertiary referral university setting. In 2008, to minimize redundancy and cost as well as to maximize existing resources promoting acute care research, MACRO was created, unifying clinical research infrastructure among the Departments of Critical Care Medicine, Emergency Medicine, and Surgery. During the periods 2008 to 2012, we performed a retrospective analysis and determined volume of clinical studies, patient enrollment for both observational and interventional trials, and staff growth since MACRO's origination and characterized changes over time. From 2008 to 2011, the volume of patients enrolled in clinical studies, which MACRO facilitates has significantly increased more than 300%. The percentage of interventional/observational trials has remained stable during the same period (50-60%). Staff has increased from 6 coordinators to 10, with an additional 15 research associates allowing 24/7 service. With this significant growth, MACRO has become financially self-sufficient, and additional outside departments now seek MACRO's services. Appropriate organization of acute care clinical research infrastructure minimizes redundancy and can promote sustainable, efficient growth in the current academic environment. Further studies are required to determine if similar models can be successful at other acute care surgery programs.

  17. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  18. ForM@Ter: a French Solid Earth Research Infrastructure Project

    NASA Astrophysics Data System (ADS)

    Mandea, M.; Diament, M.; Jamet, O.; Deschamps-Ostanciaux, E.

    2017-12-01

    Recently, some noteworthy initiatives to develop efficient research e-infrastructures for the study of the Earth's system have been set up. However, some gaps between the data availability and their scientific use still exists, either because technical reasons (big data issues) or because of the lack of a dedicated support in terms of expert knowledge of the data, software availability, or data cost. The need for thematic cooperative platforms has been underlined over the last years, as well as the need to create thematic centres designed to federate the scientific community of Earth's observation. Four thematic data centres have been developed in France, covering the domains of ocean, atmosphere, land, and solid Earth sciences. For the Solid Earth science community, a research infrastructure project named ForM@Ter was launched by the French Space Agency (CNES) and the National Centre for Scientific Research (CNRS), with the active participation of the National institute for geographical and forestry information (IGN). Currently, it relies on the contributions of scientists from more than 20 French Earth science laboratories.Preliminary analysis have showed that a focus on the determination of the shape and movements of the Earth surface (ForM@Ter: Formes et Mouvements de la Terre) can federate a wide variety of scientific areas (earthquake cycle, tectonics, morphogenesis, volcanism, erosion dynamics, mantle rheology, geodesy) and offers many interfaces with other geoscience domains, such as glaciology or snow evolution. This choice motivates the design of an ambitious data distribution scheme, including a wide variety of sources - optical imagery, SAR, GNSS, gravity, satellite altimetry data, in situ observations (inclinometers, seismometers, etc.) - as well as a wide variety of processing techniques. In the evolving context of the current and forthcoming national and international e-infrastructures, the challenge of the project is to design a non-redundant service based on interoperations with existing services, and to cope with highly complex data flows due to the granularity of the data and its associated knowledge. Here, a presentation of the project status and of the first available operational functionalities is foreseen.

  19. Building sustainable neuroscience capacity in Africa: the role of non-profit organisations.

    PubMed

    Karikari, Thomas K; Cobham, Ansa E; Ndams, Iliya S

    2016-02-01

    While advances in neuroscience are helping to improve many aspects of human life, inequalities exist in this field between Africa and more scientifically-advanced continents. Many African countries lack the infrastructure and appropriately-trained scientists for neuroscience education and research. Addressing these challenges would require the development of innovative approaches to help improve scientific competence for neuroscience across the continent. In recent years, science-based non-profit organisations (NPOs) have been supporting the African neuroscience community to build state-of-the-art scientific capacity for sustainable education and research. Some of these contributions have included: the establishment of training courses and workshops to introduce African scientists to powerful-yet-cost-effective experimental model systems; research infrastructural support and assistance to establish research institutes. Other contributions have come in the form of the promotion of scientific networking, public engagement and advocacy for improved neuroscience funding. Here, we discuss the contributions of NPOs to the development of neuroscience in Africa.

  20. Building Cyberinfrastructures for Earth and Space Sciences so that they will come: lessons learnt from Australia

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Woodcock, R.

    2013-12-01

    One of the greatest drivers for change in the way scientific research is undertaken in Australia was the development of the Australian eResearch Infrastructure which was coordinated by the then Australian Government Department of Innovation, Industry, Science and Research. There were two main tranches of funding: the 2007-2013 National Collaborative Research Infrastructure Strategy (NCRIS) and the 2009 Education and Investment Framework (EIF) Super Science Initiative. Investments were in two areas: the Australian e-Research Infrastructure and domain specific capabilities: combined investment in both is 1,452M with at least 456M being invested in eResearch infrastructure. NCRIS was specifically designed as a community-guided process to provide researchers, both academic and government, with major research facilities, supporting infrastructures and networks necessary for world-class research. Extensive community engagement was sought to inform decisions on where Australia could best make strategic infrastructure investments to further develop its research capacity and improve research outcomes over the next 5 to 10years. The current (2007-2014) Australian e-Research Infrastructure has 2 components: 1. The National eResearch physical infrastructure which includes two petascale HPC facilities (one in Canberra and one in Perth), a 10 Gbps national network (National Research Network), a national data storage infrastructure comprising 8 multi petabyte data stores and shared access methods (Australian Access Federation). 2. A second component is focused on research integration infrastructures and includes the Australian National Data Service, which is concerned with better management, description and access to distributed research data in Australia and the National eResearch Collaboration Tools and Resources (NeCTAR) project. NeCTAR is centred on developing problem oriented digital laboratories which provide better and coordinated access to research tools, data environments and workflows. The eResearch Infrastructure Stack is designed to support 12 individual domain-specific capabilities. Four are relevant to the Earth and Space Sciences: (1) AuScope (a national Earth Science Infrastructure Program), (2) the Integrated Marine Observing System (IMOS), (3) the Terrestrial Ecosystems Research Network (TERN) and (4) the Australian Urban Research Infrastructure Network (AURIN). The two main research integration infrastructures, ANDS and NeCTAR, are seen as pivotal to the success of the Australian eResearch Infrastructure. Without them, there was a risk that that the investments in new computers and data storage would provide physical infrastructure, but few would come to use it as the skills barriers to entry were too high. ANDS focused on transforming Australia's research data environment. Its flagship is Research Data Australia, an Internet-based discovery service designed to provide rich connections between data, projects, researchers and institutions, and promote visibility of Australian research data collections in search engines. NeCTAR focused on building eResearch infrastructure in four areas: virtual laboratories, tools, a federated research cloud and a hosting service. Combined, ANDS and NeCTAR are ensuring that people ARE coming and ARE using the physical infrastructures that were built.

  1. Fuzzy architecture assessment for critical infrastructure resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less

  2. Inventory on the dietary assessment tools available and needed in africa: a prerequisite for setting up a common methodological research infrastructure for nutritional surveillance, research, and prevention of diet-related non-communicable diseases.

    PubMed

    Pisa, Pedro T; Landais, Edwige; Margetts, Barrie; Vorster, Hester H; Friedenreich, Christine M; Huybrechts, Inge; Martin-Prevel, Yves; Branca, Francesco; Lee, Warren T K; Leclercq, Catherine; Jerling, Johann; Zotor, Francis; Amuna, Paul; Al Jawaldeh, Ayoub; Aderibigbe, Olaide Ruth; Amoussa, Waliou Hounkpatin; Anderson, Cheryl A M; Aounallah-Skhiri, Hajer; Atek, Madjid; Benhura, Chakare; Chifamba, Jephat; Covic, Namukolo; Dary, Omar; Delisle, Hélène; El Ati, Jalila; El Hamdouchi, Asmaa; El Rhazi, Karima; Faber, Mieke; Kalimbira, Alexander; Korkalo, Liisa; Kruger, Annamarie; Ledo, James; Machiweni, Tatenda; Mahachi, Carol; Mathe, Nonsikelelo; Mokori, Alex; Mouquet-Rivier, Claire; Mutie, Catherine; Nashandi, Hilde Liisa; Norris, Shane A; Onabanjo, Oluseye Olusegun; Rambeloson, Zo; Saha, Foudjo Brice U; Ubaoji, Kingsley Ikechukwu; Zaghloul, Sahar; Slimani, Nadia

    2018-01-02

    To carry out an inventory on the availability, challenges, and needs of dietary assessment (DA) methods in Africa as a pre-requisite to provide evidence, and set directions (strategies) for implementing common dietary methods and support web-research infrastructure across countries. The inventory was performed within the framework of the "Africa's Study on Physical Activity and Dietary Assessment Methods" (AS-PADAM) project. It involves international institutional and African networks. An inventory questionnaire was developed and disseminated through the networks. Eighteen countries responded to the dietary inventory questionnaire. Various DA tools were reported in Africa; 24-Hour Dietary Recall and Food Frequency Questionnaire were the most commonly used tools. Few tools were validated and tested for reliability. Face-to-face interview was the common method of administration. No computerized software or other new (web) technologies were reported. No tools were standardized across countries. The lack of comparable DA methods across represented countries is a major obstacle to implement comprehensive and joint nutrition-related programmes for surveillance, programme evaluation, research, and prevention. There is a need to develop new or adapt existing DA methods across countries by employing related research infrastructure that has been validated and standardized in other settings, with the view to standardizing methods for wider use.

  3. Prerequisites for Setting Up Management System in Municipal Retail Trade

    ERIC Educational Resources Information Center

    Suraeva, Maria O.; Grigoryants, Igor A.; Karpova, Galina A.; Khoreva, Lyubov V.; Schreyer, Alexander V.; Sirotkin, Victor A.

    2016-01-01

    The relevance of the research problem Urban district, management, trade, sales network is determined by the number of complex problems that exist in present Samara municipal retail trade system, which is manifested in the lack of regulation, a glut of sales area, and poorly developed infrastructure. The purpose of this article is to form a…

  4. Natural Assurance Scheme: A level playing field framework for Green-Grey infrastructure development.

    PubMed

    Denjean, Benjamin; Altamirano, Mónica A; Graveline, Nina; Giordano, Raffaele; van der Keur, Peter; Moncoulon, David; Weinberg, Josh; Máñez Costa, María; Kozinc, Zdravko; Mulligan, Mark; Pengal, Polona; Matthews, John; van Cauwenbergh, Nora; López Gunn, Elena; Bresch, David N

    2017-11-01

    This paper proposes a conceptual framework to systematize the use of Nature-based solutions (NBS) by integrating their resilience potential into Natural Assurance Scheme (NAS), focusing on insurance value as corner stone for both awareness-raising and valuation. As such one of its core goal is to align research and pilot projects with infrastructure development constraints and priorities. Under NAS, the integrated contribution of natural infrastructure to Disaster Risk Reduction is valued in the context of an identified growing need for climate robust infrastructure. The potential of NAS benefits and trade-off are explored by through the alternative lens of Disaster Resilience Enhancement (DRE). Such a system requires a joint effort of specific knowledge transfer from research groups and stakeholders to potential future NAS developers and investors. We therefore match the knowledge gaps with operational stages of the development of NAS from a project designer perspective. We start by highlighting the key role of the insurance industry in incentivizing and assessing disaster and slow onset resilience enhancement strategies. In parallel we place the public sector as potential kick-starters in DRE initiatives through the existing initiatives and constraints of infrastructure procurement. Under this perspective the paper explores the required alignment of Integrated Water resources planning and Public investment systems. Ultimately this will provide the possibility for both planners and investors to design no regret NBS and mixed Grey-Green infrastructures systems. As resources and constraints are widely different between infrastructure development contexts, the framework does not provide explicit methodological choices but presents current limits of knowledge and know-how. In conclusion the paper underlines the potential of NAS to ease the infrastructure gap in water globally by stressing the advantages of investment in the protection, enhancement and restoration of natural capital as an effective climate change adaptation investment. Copyright © 2017. Published by Elsevier Inc.

  5. A study of the feasibility of pneumatic transport of municipal solid waste and recyclables in Manhattan using existing transportation infrastructure.

    DOT National Transportation Integrated Search

    2013-07-01

    This study explored possibilities for using existing transportation infrastructure for the cost-effective : installation of pneumatic waste-collection technology in Manhattan. If shown to be economically and : operationally feasible, reducing the num...

  6. Time evolving multi-city dependencies and robustness tradeoffs for risk-based portfolios of conservation, transfers, and cooperative water supply infrastructure development pathways

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.

    2016-12-01

    Water scarcity in historically water-rich regions such as the southeastern United States is becoming a more prevalent concern. It has been shown that cooperative short-term planning that relies on conservation and transfers of existing supplies amongst communities can be used by water utilities to mitigate the effects of water scarcity in the near future. However, in the longer term, infrastructure expansion is likely to be necessary to address imbalances between growing water demands and the available supply capacity. This study seeks to better diagnose and avoid candidate modes for system failure. Although it is becoming more common for water utilities to evaluate the robustness of their water supply, defined as the insensitivity of their systems to errors in deeply uncertain projections or assumptions, defining robustness is particularly challenging in multi-stakeholder regional contexts for decisions that encompass short management actions and long-term infrastructure planning. Planning and management decisions are highly interdependent and strongly shape how a region's infrastructure itself evolves. This research advances the concept of system robustness by making it evolve over time rather than static, so that it is applicable to an adaptive system and therefore more suited for use for combined short and long-term planning efforts. The test case for this research is the Research Triangle area of North Carolina, where the cities of Raleigh, Durham, Cary and Chapel Hill are experiencing rapid population growth and increasing concerns over drought. This study is facilitating their engagement in cooperative and robust regional water portfolio planning. The insights from this work have general merit for regions where adjacent municipalities can benefit from improving cooperative infrastructure investments and more efficient resource management strategies.

  7. Signal and image processing algorithm performance in a virtual and elastic computing environment

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  8. Galaxy CloudMan: delivering cloud compute clusters.

    PubMed

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  9. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    NASA Astrophysics Data System (ADS)

    Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.

    2012-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  10. Galaxy CloudMan: delivering cloud compute clusters

    PubMed Central

    2010-01-01

    Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983

  11. A National Virtual Specimen Database for Early Cancer Detection

    NASA Technical Reports Server (NTRS)

    Crichton, Daniel; Kincaid, Heather; Kelly, Sean; Thornquist, Mark; Johnsey, Donald; Winget, Marcy

    2003-01-01

    Access to biospecimens is essential for enabling cancer biomarker discovery. The National Cancer Institute's (NCI) Early Detection Research Network (EDRN) comprises and integrates a large number of laboratories into a network in order to establish a collaborative scientific environment to discover and validate disease markers. The diversity of both the institutions and the collaborative focus has created the need for establishing cross-disciplinary teams focused on integrating expertise in biomedical research, computational and biostatistics, and computer science. Given the collaborative design of the network, the EDRN needed an informatics infrastructure. The Fred Hutchinson Cancer Research Center, the National Cancer Institute,and NASA's Jet Propulsion Laboratory (JPL) teamed up to build an informatics infrastructure creating a collaborative, science-driven research environment despite the geographic and morphology differences of the information systems that existed within the diverse network. EDRN investigators identified the need to share biospecimen data captured across the country managed in disparate databases. As a result, the informatics team initiated an effort to create a virtual tissue database whereby scientists could search and locate details about specimens located at collaborating laboratories. Each database, however, was locally implemented and integrated into collection processes and methods unique to each institution. This meant that efforts to integrate databases needed to be done in a manner that did not require redesign or re-implementation of existing system

  12. StaR Child Health: developing evidence-based guidance for the design, conduct and reporting of paediatric trials.

    PubMed

    Van't Hoff, William; Offringa, Martin

    2015-02-01

    There has been a huge upsurge in clinical research in children in the last decade, stimulated in England by dedicated research infrastructure and support through the National Institute for Health Research. This infrastructure offering research design, expert review, trial management, research nurse, data support and dedicated facilities enables paediatricians to conduct more and better research. The challenge is how to design and conduct trials that will make a real difference to children's health. Standards for Research (StaR) in Child Health was founded in 2009 to address the paucity and shortcomings of paediatric clinical trials. This global initiative involves methodologists, clinicians, patient advocacy groups and policy makers dedicated to developing practical, evidence-based standards for enhancing the reliability and relevance of paediatric clinical research. In this overview, we highlight the contribution of StaR to this agenda, describe the international context, and suggest how StaR's future plans could be integrated with new and existing support for research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. LifeWatch - a Large-scale eScience Infrastructure to Assist in Understanding and Managing our Planet's Biodiversity

    NASA Astrophysics Data System (ADS)

    Hernández Ernst, Vera; Poigné, Axel; Los, Walter

    2010-05-01

    Understanding and managing the complexity of the biodiversity system in relation to global changes concerning land use and climate change with their social and economic implications is crucial to mitigate species loss and biodiversity changes in general. The sustainable development and exploitation of existing biodiversity resources require flexible and powerful infrastructures offering, on the one hand, the access to large-scale databases of observations and measures, to advanced analytical and modelling software, and to high performance computing environments and, on the other hand, the interlinkage of European scientific communities among each others and with national policies. The European Strategy Forum on Research Infrastructures (ESFRI) selected the "LifeWatch e-science and technology infrastructure for biodiversity research" as a promising development to construct facilities to contribute to meet those challenges. LifeWatch collaborates with other selected initiatives (e.g. ICOS, ANAEE, NOHA, and LTER-Europa) to achieve the integration of the infrastructures at landscape and regional scales. This should result in a cooperating cluster of such infrastructures supporting an integrated approach for data capture and transmission, data management and harmonisation. Besides, facilities for exploration, forecasting, and presentation using heterogeneous and distributed data and tools should allow the interdisciplinary scientific research at any spatial and temporal scale. LifeWatch is an example of a new generation of interoperable research infrastructures based on standards and a service-oriented architecture that allow for linkage with external resources and associated infrastructures. External data sources will be established data aggregators as the Global Biodiversity Information Facility (GBIF) for species occurrences and other EU Networks of Excellence like the Long-Term Ecological Research Network (LTER), GMES, and GEOSS for terrestrial monitoring, the MARBEF network for marine data, and the Consortium for European Taxonomic Facilities (CETAF) and its European Distributed Institute for Taxonomy (EDIT) for taxonomic data. But also "smaller" networks and "volunteer scientists" may send data (e.g. GPS supported species observations) to a LifeWatch repository. Autonomous operating wireless environmental sensors and other smart hand-held devices will contribute to increase data capture activities. In this way LifeWatch will directly underpin the development of GEOBON, the biodiversity component if GEOSS, the Global Earth observation System. To overcome all major technical difficulties imposed by the variety of currently and future technologies, protocols, data formats, etc., LifeWatch will define and use common open interfaces. For this purpose, the LifeWatch Reference Model was developed during the preparatory phase specifying the service-oriented architecture underlying the ICT-infrastructure. The Reference Model identifies key requirements and key architectural concepts to support workflows for scientific in-silico experiments, tracking of provenance, and semantic enhancement, besides meeting the functional requirements mentioned before. It provides guidelines for the specification and implementation of services and information models, defining as well a number of generic services and models. Another key issue addressed by the Reference Model is that the cooperation of many developer teams residing in many European countries has to be organized to obtain compatible results in that conformance with the specifications and policies of the Reference Model will be required. The LifeWatch Reference Model is based on the ORCHESTRA Reference Model for geospatial-oriented architectures and services networks that provides a generic framework and has been endorsed as best practice by the Open Geospatial Consortium (OGC). The LifeWatch Infrastructure will allow (interdisciplinary) scientific researchers to collaborate by creating e-Laboratories or by composing e-Services which can be shared and jointly developed. For it a long-term vision for the LifeWatch Biodiversity Workbench Portal has been developed as a one-stop application for the LifeWatch infrastructure based on existing and emerging technologies. There the user can find all available resources such as data, workflows, tools, etc. and access LifeWatch applications that integrate different resource and provides key capabilities like resource discovery and visualisation, creation of workflows, creation and management of provenance, and the support of collaborative activities. While LifeWatch developers will construct components for solving generic LifeWatch tasks, users may add their own facilities to fulfil individual needs. Examples for application of the LifeWatch Reference Model and the LifeWatch Biodiversity Workbench Portal will be given.

  14. Ocean Data Interoperability Platform (ODIP): developing a common framework for marine data management on a global scale

    NASA Astrophysics Data System (ADS)

    Glaves, Helen; Schaap, Dick

    2016-04-01

    The increasingly ocean basin level approach to marine research has led to a corresponding rise in the demand for large quantities of high quality interoperable data. This requirement for easily discoverable and readily available marine data is currently being addressed by initiatives such as SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and the Australian Ocean Data Network (AODN) with each having implemented an e-infrastructure to facilitate the discovery and re-use of standardised multidisciplinary marine datasets available from a network of distributed repositories, data centres etc. within their own region. However, these regional data systems have been developed in response to the specific requirements of their users and in line with the priorities of the funding agency. They have also been created independently of the marine data infrastructures in other regions often using different standards, data formats, technologies etc. that make integration of marine data from these regional systems for the purposes of basin level research difficult. Marine research at the ocean basin level requires a common global framework for marine data management which is based on existing regional marine data systems but provides an integrated solution for delivering interoperable marine data to the user. The Ocean Data Interoperability Platform (ODIP/ODIP II) project brings together those responsible for the management of the selected marine data systems and other relevant technical experts with the objective of developing interoperability across the regional e-infrastructures. The commonalities and incompatibilities between the individual data infrastructures are identified and then used as the foundation for the specification of prototype interoperability solutions which demonstrate the feasibility of sharing marine data across the regional systems and also with relevant larger global data services such as GEO, COPERNICUS, IODE, POGO etc. The potential impact for the individual regional data infrastructures of implementing these prototype interoperability solutions is also being evaluated to determine both the technical and financial implications of their integration within existing systems. These impact assessments form part of the strategy to encourage wider adoption of the ODIP solutions and approach beyond the current scope of the project which is focussed on regional marine data systems in Europe, Australia, the USA and, more recently, Canada.

  15. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Caldeira, K.; Matthews, D.

    2010-12-01

    If current greenhouse gas (GHG) concentrations remain constant, the world would be committed to several centuries of increasing global mean temperatures and sea level rise. By contrast, near elimination of anthropogenic CO2 emissions would be required to produce diminishing GHG concentrations consistent with stabilization of mean temperatures. Yet long-lived energy and transportation infrastructure now operating can be expected to contribute substantial CO2 emissions over the next 50 years. Barring widespread retrofitting of existing power plants with carbon capture and storage (CCS) technologies or the early decommissioning of serviceable infrastructure, these “committed emissions” represent infrastructural inertia which may be the primary contributor to total future warming commitment. With respect to GHG emissions, infrastructural inertia may be thought of as having two important and overlapping components: (i) infrastructure that directly releases GHGs to the atmosphere, and (ii) infrastructure that contributes to the continued production of devices that emit GHGs to the atmosphere. For example, the interstate highway and refueling infrastructure in the United States facilitates continued production of gasoline-powered automobiles. Here, we focus only on the warming commitment from infrastructure that directly releases CO2 to the atmosphere. Essentially, we answer the question: What if no additional CO2-emitting devices (e.g., power plants, motor vehicles) were built, but all the existing CO2-emitting devices were allowed to live out their normal lifetimes? What CO2 levels and global mean temperatures would we attain? Of course, the actual lifetime of devices may be strongly influenced by economic and policy constraints. For instance, a ban on new CO2-emitting devices would create tremendous incentive to prolong the lifetime of existing devices. Thus, our scenarios are not realistic, but offer a means of gauging the threat of climate change from existing devices relative to those devices that have yet to be built. We developed scenarios of global CO2 emissions from the energy sector using datasets of power plants and motor vehicles worldwide, as well as estimates of fossil fuel emissions produced directly by industry, households, businesses, and other forms of transport. We estimated lifetimes and annual emissions of infrastructure from historical data. We projected changes in CO2 and temperature in response to our calculated emissions using an intermediate-complexity coupled climate-carbon model (UVic ESCM). We calculate cumulative future emissions of 496 (282 to 701) gigatonnes of CO2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1 to 1.4°C) above the preindustrial era and atmospheric concentrations of CO2 less than 430 parts per million (ppm). Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO2-emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives.

  16. Map of Water Infrastructure and Homes Without Access to Safe Drinking Water and Basic Sanitation on the Navajo Nation - October 2010

    EPA Pesticide Factsheets

    This document presents the results of completed work using existing geographic information system (GIS) data to map existing water and sewer infrastructure and homes without access to safe drinking water and basic sanitation on the Navajo Nation.

  17. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  18. Developing a data infrastructure for a learning health system: the PORTAL network.

    PubMed

    McGlynn, Elizabeth A; Lieu, Tracy A; Durham, Mary L; Bauck, Alan; Laws, Reesa; Go, Alan S; Chen, Jersey; Feigelson, Heather Spencer; Corley, Douglas A; Young, Deborah Rohm; Nelson, Andrew F; Davidson, Arthur J; Morales, Leo S; Kahn, Michael G

    2014-01-01

    The Kaiser Permanente & Strategic Partners Patient Outcomes Research To Advance Learning (PORTAL) network engages four healthcare delivery systems (Kaiser Permanente, Group Health Cooperative, HealthPartners, and Denver Health) and their affiliated research centers to create a new national network infrastructure that builds on existing relationships among these institutions. PORTAL is enhancing its current capabilities by expanding the scope of the common data model, paying particular attention to incorporating patient-reported data more systematically, implementing new multi-site data governance procedures, and integrating the PCORnet PopMedNet platform across our research centers. PORTAL is partnering with clinical research and patient experts to create cohorts of patients with a common diagnosis (colorectal cancer), a rare diagnosis (adolescents and adults with severe congenital heart disease), and adults who are overweight or obese, including those with pre-diabetes or diabetes, to conduct large-scale observational comparative effectiveness research and pragmatic clinical trials across diverse clinical care settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Image BOSS: a biomedical object storage system

    NASA Astrophysics Data System (ADS)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  20. Clinical research in the United States at a crossroads: proposal for a novel public-private partnership to establish a national clinical research enterprise.

    PubMed

    Crowley, William F; Sherwood, Louis; Salber, Patricia; Scheinberg, David; Slavkin, Hal; Tilson, Hugh; Reece, E Albert; Catanese, Veronica; Johnson, Stephen B; Dobs, Adrian; Genel, Myron; Korn, Allan; Reame, Nancy; Bonow, Robert; Grebb, Jack; Rimoin, David

    2004-03-03

    The clinical research infrastructure of the United States is currently at a critical crossroads. To leverage the enormous biomedical research gains made in the past century efficiently, a drastic need exists to reengineer this system into a coordinated, safe, and more efficient and effective enterprise. To accomplish this task, clinical research must be transformed from its current state as a cottage industry to an enterprise-wide health care pipeline whose function is to bring the novel research from both government and private entities to the US public. We propose the establishment of a unique public-private partnership termed the National Clinical Research Enterprise (NCRE). Its agenda should consist of informed public participation, supportive information technologies, a skilled workforce, and adequate funding in clinical research. Devoting only 0.25% of the budgets from all health care stakeholders to support the NCRE would permit adequate funding to build the infrastructure required to address these problems in an enterprise fashion. All participants in the US health care delivery system must come together to focus on system-wide improvements that will benefit the public.

  1. Study of rainfall-induced landslide: a review

    NASA Astrophysics Data System (ADS)

    Tohari, A.

    2018-02-01

    Rainfall-induced landslides pose a substantial risk to people and infrastructure. For this reason, there have been numerous studies to understand the landslide mechanism. Most of them were performed on the numerical analysis and laboratory experiment. This paper presents a review of existing research on field hydrological condition of soil slopes leading to the initiation of rainfall-induced landslide. Existing methods to study field hydrological response of slopes are first reviewed, emphasizing their limitations and suitability of application. The typical hydrological response profiles in the slope are then discussed. Subsequently, some significant findings on hydrological condition leading to rainfall-induced landslides are summarized and discussed. Finally, several research topics are recommended for future study.

  2. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating. The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2] Mutsaers, E.-J., van der Zee, H., and Giertz, H. (1998): The evolution of information technology. Information Management & Computer Security, Volume 6 - Issue 3.

  3. Semantic Support for Complex Ecosystem Research Environments

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; McGuinness, D. L.; Pinheiro, P.; Santos, H. O.; Chastain, K.

    2015-12-01

    As ecosystems come under increasing stresses from diverse sources, there is growing interest in research efforts aimed at monitoring, modeling, and improving understanding of ecosystems and protection options. We aimed to provide a semantic infrastructure capable of representing data initially related to one large aquatic ecosystem research effort - the Jefferson project at Lake George. This effort includes significant historical observational data, extensive sensor-based monitoring data, experimental data, as well as model and simulation data covering topics including lake circulation, watershed runoff, lake biome food webs, etc. The initial measurement representation has been centered on monitoring data and related provenance. We developed a human-aware sensor network ontology (HASNetO) that leverages existing ontologies (PROV-O, OBOE, VSTO*) in support of measurement annotations. We explicitly support the human-aware aspects of human sensor deployment and collection activity to help capture key provenance that often is lacking. Our foundational ontology has since been generalized into a family of ontologies and used to create our human-aware data collection infrastructure that now supports the integration of measurement data along with simulation data. Interestingly, we have also utilized the same infrastructure to work with partners who have some more specific needs for specifying the environmental conditions where measurements occur, for example, knowing that an air temperature is not an external air temperature, but of the air temperature when windows are shut and curtains are open. We have also leveraged the same infrastructure to work with partners more interested in modeling smart cities with data feeds more related to people, mobility, environment, and living. We will introduce our human-aware data collection infrastructure, and demonstrate how it uses HASNetO and its supporting SOLR-based search platform to support data integration and semantic browsing. Further we will present learnings from its use in three relatively diverse large ecosystem research efforts and highlight some benefits and challenges related to our semantically-enhanced foundation.

  4. Common solutions for power, communication and robustness in operations of large measurement networks within Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Beranzoli, Laura; Fiebig, Markus; Gilbert, Olivier; Laj, Paolo; Mazzola, Mauro; Paris, Jean-Daniel; Pedersen, Helle; Stocker, Markus; Vitale, Vito; Waldmann, Christoph

    2017-04-01

    European Environmental Research Infrastructures (RI) frequently comprise in situ observatories from large-scale networks of platforms or sites to local networks of various sensors. Network operation is usually a cumbersome aspect of these RIs facing specific technological problems related to operations in remote areas, maintenance of the network, transmission of observation values, etc.. Robust inter-connection within and across these networks is still at infancy level and the burden increases with remoteness of the station, harshness of environmental conditions, and unavailability of classic communication systems, which is a common feature here. Despite existing RIs having developed ad-hoc solutions to overcome specific problems and innovative technologies becoming available, no common approach yet exists. Within the European project ENVRIplus, a dedicated work package aims to stimulate common network operation technologies and approaches in terms of power supply and storage, robustness, and data transmission. Major objectives of this task are to review existing technologies and RI requirements, propose innovative solutions and evaluate the standardization potential prior to wider deployment across networks. Focus areas within these efforts are: improving energy production and storage units, testing robustness of RI equipment towards extreme conditions as well as methodologies for robust data transmission. We will introduce current project activities which are coordinated at various levels including the engineering as well as the data management perspective, and explain how environmental RIs can benefit from the developments.

  5. Eco-logical : an ecosystem approach to developing transportation infrastructure projects in a changing environment

    DOT National Transportation Integrated Search

    2009-09-13

    The development of infrastructure facilities can negatively impact critical habitat and essential ecosystems. There are a variety of techniques available to avoid, minimize, and mitigate negative impacts of existing infrastructure as well as future i...

  6. 77 FR 72673 - Critical Infrastructure Protection and Resilience Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    .... Cyber incidents can have devastating consequences on both physical and virtual infrastructure, which is... work within existing authorities to fortify our country against cyber risks, comprehensive legislation remains essential to improving infrastructure security, enhancing cyber information sharing between...

  7. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  8. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  9. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  10. Leveraging Epidemiology and Clinical Studies of Cancer Outcomes: Recommendations and Opportunities for Translational Research

    PubMed Central

    2013-01-01

    As the number of cancer survivors continues to grow, research investigating the factors that affect cancer outcomes, such as disease recurrence, risk of second malignant neoplasms, and the late effects of cancer treatments, becomes ever more important. Numerous epidemiologic studies have investigated factors that affect cancer risk, but far fewer have addressed the extent to which demographic, lifestyle, genomic, clinical, and psychosocial factors influence cancer outcomes. To identify research priorities as well as resources and infrastructure needed to advance the field of cancer outcomes and survivorship research, the National Cancer Institute sponsored a workshop titled “Utilizing Data from Cancer Survivor Cohorts: Understanding the Current State of Knowledge and Developing Future Research Priorities” on November 3, 2011, in Washington, DC. This commentary highlights recent findings presented at the workshop, opportunities to leverage existing data, and recommendations for future research, data, and infrastructure needed to address high priority clinical and research questions. Multidisciplinary teams that include epidemiologists, clinicians, biostatisticians, and bioinformaticists will be essential to facilitate future cancer outcome studies focused on improving clinical care of cancer patients, identifying those at high risk of poor outcomes, and implementing effective interventions to ultimately improve the quality and duration of survival. PMID:23197494

  11. Engineering properties of douglas-fir lumber reclaimed from deconstructed buildings

    Treesearch

    Robert Falk; Derek Maul; Steven Cramer; James Evans; Victoria Herian

    2008-01-01

    A vast wood resource exists in our Nation's wood-framed building infrastructure. As the buildings in this infrastructure age and are remodeled or removed for redevelopment, the wood framing residing in these buildings has the potential to be recovered for reuse. However, little technical information exists on the residual engineering properties of reclaimed...

  12. European grid services for global earth science

    NASA Astrophysics Data System (ADS)

    Brewer, S.; Sipos, G.

    2012-04-01

    This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task Force is already providing a cloud infrastructure through a few committed NGIs. This is being made available to research communities participating in the Task Force and the long-term aim is to integrate these national clouds into a pan-European infrastructure for scientific communities. • The MPI group provides support for application developers to port and scale up parallel applications to the global European Grid Infrastructure. • A lively portal developer and provider community that is able to setup and operate custom, application and/or community specific portals for members of the Earth Science community to interact with EGI. • A project to assess the possibilities for federated identity management in EGI and the readiness of EGI member states for federated authentication and authorisation mechanisms. • Operating resources and user support services to process data with new types of services and infrastructures, such as desktop grids, map-reduce frameworks, GPU clusters.

  13. Hyperspectral range imaging for transportation systems evaluation

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.

    2016-04-01

    Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.

  14. DNAseq Workflow in a Diagnostic Context and an Example of a User Friendly Implementation.

    PubMed

    Wolf, Beat; Kuonen, Pierre; Dandekar, Thomas; Atlan, David

    2015-01-01

    Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.

  15. 76 FR 18743 - Commission Information Collection Activities (FERC-603); Comment Request; Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... FERC-603 ``Critical Energy Infrastructure Information'' (OMB No. 1902-0197) is used by the Commission to implement procedures for gaining access to critical energy infrastructure information (CEII) that... information about ``existing or proposed critical infrastructure that (i) relates to the production...

  16. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various atmospheric phenomena using current and future planned frequencies of cellular network infrastructure will be introduced.

  17. GIIDA and SINAnet Partnership: the Italian System of Systems to connect research and environmental monitoring activities

    NASA Astrophysics Data System (ADS)

    Bonora, N.; Mazzetti, P.; Munafò, M.; Nativi, S.

    2011-12-01

    The partnership between ISPRA - SINAnet (National Environmental Information System Network) and CNR - GIIDA (Gestione Integrata ed Interoperativa dei Dati Ambientali) builds upon the results of a re-engineering process applied to existing Italian national and local infrastructures in order to contribute to the realization of a National System of Systems (SoS) and connect environmental monitoring and scientific researches. This partnership aims to contribute to the environmental knowledge providing a single access point for the national environmental information. Some pilot projects are ongoing to demonstrate how Public Administrations can support scientific researches by providing their monitoring information through a catalog of federated resources and related access services. These research results provided by the use of monitoring data will be, in turn, made available through the national SoS, advantaging scientists and researchers by increasing information re-use and benefiting the Public Administration with the research outcomes. The exchange of information provided by a single system offers many research and educational advantages over a fragmented/redundant systems, which places high barriers to find, access and re-use data. On the contrary, a SoS provides access to a broader set of data than the one accessible through local systems, thereby providing a greater baseline of factual information for the research community. The benefits arising from a SoS infrastructure may reinforce open scientific inquiry, encouraging different analysis, promoting new researches, allowing the verification of previous results, making possible the testing of new or alternative hypotheses and methods of analysis. The target infrastructure is also conceived as an effective and sustainable contribution to the national implementation of INSPIRE and GEO/GEOSS.

  18. Impact modeling and prediction of attacks on cyber targets

    NASA Astrophysics Data System (ADS)

    Khalili, Aram; Michalk, Brian; Alford, Lee; Henney, Chris; Gilbert, Logan

    2010-04-01

    In most organizations, IT (information technology) infrastructure exists to support the organization's mission. The threat of cyber attacks poses risks to this mission. Current network security research focuses on the threat of cyber attacks to the organization's IT infrastructure; however, the risks to the overall mission are rarely analyzed or formalized. This connection of IT infrastructure to the organization's mission is often neglected or carried out ad-hoc. Our work bridges this gap and introduces analyses and formalisms to help organizations understand the mission risks they face from cyber attacks. Modeling an organization's mission vulnerability to cyber attacks requires a description of the IT infrastructure (network model), the organization mission (business model), and how the mission relies on IT resources (correlation model). With this information, proper analysis can show which cyber resources are of tactical importance in a cyber attack, i.e., controlling them enables a large range of cyber attacks. Such analysis also reveals which IT resources contribute most to the organization's mission, i.e., lack of control over them gravely affects the mission. These results can then be used to formulate IT security strategies and explore their trade-offs, which leads to better incident response. This paper presents our methodology for encoding IT infrastructure, organization mission and correlations, our analysis framework, as well as initial experimental results and conclusions.

  19. Creating an Infrastructure for Comparative Effectiveness Research in Emergency Medical Services

    PubMed Central

    Seymour, Christopher W.; Kahn, Jeremy M.; Martin-Gill, Christian; Callaway, Clifton W.; Angus, Derek C.; Yealy, Donald M.

    2014-01-01

    Objectives Emergency medical services (EMS) providers deliver the initial care for millions of people in the United States each year. The Institute of Medicine noted a deficit in research necessary to improve prehospital care, created by the existence of data silos, absence of long-term outcomes, and limited stakeholder engagement in research. This article describes a regional effort to create a high-performing infrastructure in southwestern Pennsylvania addressing these fundamental barriers. Methods Regional EMS records from 33 agencies in January 2011 were linked to hospital-based electronic health records (EHRs) in a single nine-hospital system, with manual review of matches for accuracy. The use of community stakeholder engagement was included to guide scientific inquiry, as well as 2-year follow up for patient-centered outcomes. Results Local EMS medicine stakeholders emphasized the limits of single-agency EMS research, and suggested that studies focus on improving cross-cutting, long-term outcomes. Guided by this input, more than 95% of EMS records (2,675 out of 2,800) were linked to hospital-based EHRs. More than 80% of records were linked to 2-year mortality, with more deaths among EMS patients with prehospital hypotension (30.5%) or respiratory distress (19.5%) than chest pain (5.4%) or non-specific complaints (9.4%). Conclusions A prehospital comparative effectiveness research infrastructure composed of patient-level EMS data, EHRs at multiple hospitals, long-term outcomes, and community stakeholder perspectives is feasible and may be scalable to larger regions and networks. The lessons learned and barriers identified offer a roadmap to answering community and policy-relevant research questions in prehospital care. PMID:24842512

  20. An Overview of Seismic Observations Along the Pacific Margin of South America: Opportunities for the SZ4D Initiative

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Frassetto, A.; Meltzer, A.

    2017-12-01

    The recent SZ4D Initiative community vision document recognizes the potential to focus community resources on studying subduction processes along, for example, the Pacific margin of South America. Preexisting geophysical infrastructure can play a vital role in establishing such new observational capabilities. For example, an SZ4D backbone observing capability could be established in South America by leveraging existing stations in the region. Such relevant existing seismic and geodetic stations, operated as part of local or national networks in South America, have been identified as a result of recent international collaborations with IRIS and others. Here we discuss the concept and experience of leveraging existing infrastructure in major new observational programs, outline the state of geophysical networks in South America (emphasizing current seismic networks but also looking back on historical temporary deployments), and provide an overview of potential scientific targets in the Americas that encompass a sampling of recently produced research results and datasets. Additionally, we reflect on strategies for establishing meaningful collaborations across South America and elsewhere, an aspect that will be critical to the international partnerships, and associated capacity building, needed for an internationally inclusive and collaborative SZ4D activity.

  1. The Satellite Data Thematic Core Service within the EPOS Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Buonanno, Sabatino; Zeni, Giovanni; Wright, Tim; Hooper, Andy; Diament, Michel; Ostanciaux, Emilie; Mandea, Mioara; Walter, Thomas; Maccaferri, Francesco; Fernandez, Josè; Stramondo, Salvatore; Bignami, Christian; Bally, Philippe; Pinto, Salvatore; Marin, Alessandro; Cuomo, Antonio

    2017-04-01

    EPOS, the European Plate Observing System, is a long-term plan to facilitate the integrated use of data, data products, software and services, available from distributed Research Infrastructures (RI), for solid Earth science in Europe. Indeed, EPOS integrates a large number of existing European RIs belonging to several fields of the Earth science, from seismology to geodesy, near fault and volcanic observatories as well as anthropogenic hazards. The EPOS vision is that the integration of the existing national and trans-national research infrastructures will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. The establishment of EPOS will foster the interoperability of products and services in the Earth science field to a worldwide community of users. Accordingly, the EPOS aim is to integrate the diverse and advanced European Research Infrastructures for solid Earth science, and build on new e-science opportunities to monitor and understand the dynamic and complex solid-Earth System. One of the EPOS Thematic Core Services (TCS), referred to as Satellite Data, aims at developing, implementing and deploying advanced satellite data products and services, mainly based on Copernicus data (namely Sentinel acquisitions), for the Earth science community. This work intends to present the technological enhancements, fostered by EPOS, to deploy effective satellite services in a harmonized and integrated way. In particular, the Satellite Data TCS will deploy five services, EPOSAR, GDM, COMET, 3D-Def and MOD, which are mainly based on the exploitation of SAR data acquired by the Sentinel-1 constellation and designed to provide information on Earth surface displacements. In particular, the planned services will provide both advanced DInSAR products (deformation maps, velocity maps, deformation time series) and value-added measurements (source model, 3D displacement maps, seismic hazard maps). Moreover, the services will release both on-demand and systematic products. The latter will be generated and made available to the users on a continuous basis, by processing each Sentinel-1 data once acquired, over a defined number of areas of interest; while the former will allow users to select data, areas, and time period to carry out their own analyses via an on-line platform. The satellite components will be integrated within the EPOS infrastructure through a common and harmonized interface that will allow users to search, process and share remote sensing images and results. This gateway to the satellite services will be represented by the ESA- Geohazards Exploitation Platform (GEP), a new cloud-based platform for the satellite Earth Observations designed to support the scientific community in the understanding of high impact natural disasters. Satellite Data TCS will use GEP as the common interface toward the main EPOS portal to provide EPOS users not only with data products but also with relevant processing and visualisation software, thus allowing users to gather and process on a cloud-computing infrastructure large datasets without any need to download them locally.

  2. Ocean Data Interoperability Platform (ODIP): developing a common global framework for marine data management through international collaboration

    NASA Astrophysics Data System (ADS)

    Glaves, Helen

    2015-04-01

    Marine research is rapidly moving away from traditional discipline specific science to a wider ecosystem level approach. This more multidisciplinary approach to ocean science requires large amounts of good quality, interoperable data to be readily available for use in an increasing range of new and complex applications. Significant amounts of marine data and information are already available throughout the world as a result of e-infrastructures being established at a regional level to manage and deliver marine data to the end user. However, each of these initiatives has been developed to address specific regional requirements and independently of those in other regions. Establishing a common framework for marine data management on a global scale necessitates that there is interoperability across these existing data infrastructures and active collaboration between the organisations responsible for their management. The Ocean Data Interoperability Platform (ODIP) project is promoting co-ordination between a number of these existing regional e-infrastructures including SeaDataNet and Geo-Seas in Europe, the Integrated Marine Observing System (IMOS) in Australia, the Rolling Deck to Repository (R2R) in the USA and the international IODE initiative. To demonstrate this co-ordinated approach the ODIP project partners are currently working together to develop several prototypes to test and evaluate potential interoperability solutions for solving the incompatibilities between the individual regional marine data infrastructures. However, many of the issues being addressed by the Ocean Data Interoperability Platform are not specific to marine science. For this reason many of the outcomes of this international collaborative effort are equally relevant and transferable to other domains.

  3. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially increasing data volumes at NCI. Traditional HPC and data environments are still made available in a way that flexibly provides the tools, services and supporting software systems on these new petascale infrastructures. But to enable the research to take place at this scale, the data, metadata and software now need to evolve together - creating a new integrated high performance infrastructure. The new infrastructure at NCI currently supports a catalogue of integrated, reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. One of the challenges for NCI has been to support existing techniques and methods, while carefully preparing the underlying infrastructure for the transition needed for the next class of Data-intensive Science. In doing so, a flexible range of techniques and software can be made available for application across the corpus of data collections available, and to provide a new infrastructure for future interdisciplinary research.

  4. Application of large-scale computing infrastructure for diverse environmental research applications using GC3Pie

    NASA Astrophysics Data System (ADS)

    Maffioletti, Sergio; Dawes, Nicholas; Bavay, Mathias; Sarni, Sofiane; Lehning, Michael

    2013-04-01

    The Swiss Experiment platform (SwissEx: http://www.swiss-experiment.ch) provides a distributed storage and processing infrastructure for environmental research experiments. The aim of the second phase project (the Open Support Platform for Environmental Research, OSPER, 2012-2015) is to develop the existing infrastructure to provide scientists with an improved workflow. This improved workflow will include pre-defined, documented and connected processing routines. A large-scale computing and data facility is required to provide reliable and scalable access to data for analysis, and it is desirable that such an infrastructure should be free of traditional data handling methods. Such an infrastructure has been developed using the cloud-based part of the Swiss national infrastructure SMSCG (http://www.smscg.ch) and Academic Cloud. The infrastructure under construction supports two main usage models: 1) Ad-hoc data analysis scripts: These scripts are simple processing scripts, written by the environmental researchers themselves, which can be applied to large data sets via the high power infrastructure. Examples of this type of script are spatial statistical analysis scripts (R-based scripts), mostly computed on raw meteorological and/or soil moisture data. These provide processed output in the form of a grid, a plot, or a kml. 2) Complex models: A more intense data analysis pipeline centered (initially) around the physical process model, Alpine3D, and the MeteoIO plugin; depending on the data set, this may require a tightly coupled infrastructure. SMSCG already supports Alpine3D executions as both regular grid jobs and as virtual software appliances. A dedicated appliance with the Alpine3D specific libraries has been created and made available through the SMSCG infrastructure. The analysis pipelines are activated and supervised by simple control scripts that, depending on the data fetched from the meteorological stations, launch new instances of the Alpine3D appliance, execute location-based subroutines at each grid point and store the results back into the central repository for post-processing. An optional extension of this infrastructure will be to provide a 'ring buffer'-type database infrastructure, such that model results (e.g. test runs made to check parameter dependency or for development) can be visualised and downloaded after completion without submitting them to a permanent storage infrastructure. Data organization Data collected from sensors are archived and classified in distributed sites connected with an open-source software middleware, GSN. Publicly available data are available through common web services and via a cloud storage server (based on Swift). Collocation of the data and processing in the cloud would eventually eliminate data transfer requirements. Execution control logic Execution of the data analysis pipelines (for both the R-based analysis and the Alpine3D simulations) has been implemented using the GC3Pie framework developed by UZH. (https://code.google.com/p/gc3pie/). This allows large-scale, fault-tolerant execution of the pipelines to be described in terms of software appliances. GC3Pie also allows supervision of the execution of large campaigns of appliances as a single simulation. This poster will present the fundamental architectural components of the data analysis pipelines together with initial experimental results.

  5. Harnessing the Risk-Related Data Supply Chain: An Information Architecture Approach to Enriching Human System Research and Operations Knowledge

    NASA Technical Reports Server (NTRS)

    Buquo, Lynn E.; Johnson-Throop, Kathy A.

    2011-01-01

    An Information Architecture facilitates the understanding and, hence, harnessing of the human system risk-related data supply chain which enhances the ability to securely collect, integrate, and share data assets that improve human system research and operations. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as a data supply chain), the Human Research Program (HRP) and Space Life Science Directorate (SLSD) are building an information architecture plan to leverage their existing, and often shared, IT infrastructure.

  6. The Infrastructure of Academic Research.

    ERIC Educational Resources Information Center

    Davey, Ken

    1996-01-01

    Canadian university infrastructures have eroded as seen in aging equipment, deteriorating facilities, and fewer skilled personnel to maintain and operate research equipment. Research infrastructure includes administrative overhead, facilities and equipment, and research personnel including faculty, technicians, and students. The biggest erosion of…

  7. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, Meghan; Maclaurin, Galen

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  8. Institutional Transformation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    Reducing the energy consumption of large institutions with dozens to hundreds of existing buildings while maintaining and improving existing infrastructure is a critical economic and environmental challenge. SNL's Institutional Transformation (IX) work integrates facilities and infrastructure sustainability technology capabilities and collaborative decision support modeling approaches to help facilities managers at Sandia National Laboratories (SNL) simulate different future energy reduction strategies and meet long term energy conservation goals.

  9. Ocean Data Interoperability Platform: developing a common global framework for marine data management

    NASA Astrophysics Data System (ADS)

    Glaves, Helen; Schaap, Dick

    2017-04-01

    In recent years there has been a paradigm shift in marine research moving from the traditional discipline based methodology employed at the national level by one or more organizations, to a multidisciplinary, ecosystem level approach conducted on an international scale. This increasingly holistic approach to marine research is in part being driven by policy and legislation. For example, the European Commission's Blue Growth strategy promotes sustainable growth in the marine environment including the development of sea-basin strategies (European Commission 2014). As well as this policy driven shift to ecosystem level marine research there are also scientific and economic drivers for a basin level approach. Marine monitoring is essential for assessing the health of an ecosystem and determining the impacts of specific factors and activities on it. The availability of large volumes of good quality data is fundamental to this increasingly holistic approach to ocean research but there are significant barriers to its re-use. These are due to the heterogeneity of the data resulting from having been collected by many organizations around the globe using a variety of sensors mounted on a range of different platforms. The data is then delivered and archived in a range of formats, using various spatial coordinate systems and aligned with different standards. This heterogeneity coupled with organizational and national policies on data sharing make access and re-use of marine data problematic. In response to the need for greater sharing of marine data a number of e-infrastructures have been developed but these have different levels of granularity with the majority having been developed at the regional level to address specific requirements for data e.g. SeaDataNet in Europe, the Australian Ocean Data Network (AODN). These data infrastructures are also frequently aligned with the priorities of the local funding agencies and have been created in isolation from those developed elsewhere. To add a further layer of complexity there are also global initiatives providing marine data infrastructures e.g. IOC-IODE, POGO as well as those with a wider remit which includes environmental data e.g. GEOSS, COPERNICUS etc. Ecosystem level marine research requires a common framework for marine data management that supports the sharing of data across these regional and global data systems, and provides the user with access to the data available from these services via a single point of access. This framework must be based on existing data systems and established by developing interoperability between them. The Ocean Data and Interoperability Platform (ODIP/ODIP II) project brings together those organisations responsible for maintaining selected regional data infrastructures along with other relevant experts in order to identify the common standards and best practice necessary to underpin this framework, and to evaluate the differences and commonalties between the regional data infrastructures in order to establish interoperability between them for the purposes of data sharing. This coordinated approach is being demonstrated and validated through the development of a series of prototype interoperability solutions that demonstrate the mechanisms and standards necessary to facilitate the sharing of marine data across these existing data infrastructures.

  10. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  11. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  12. Executable research compendia in geoscience research infrastructures

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel

    2017-04-01

    From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with existing platforms for display and control These integrations are vital for capturing workflows in RIs and connect key stakeholders (scientists, publishers, librarians). They are demonstrated using developments by the DFG-funded project Opening Reproducible Research (http://o2r.info). Semi-automatic creation of ERCs based on research workflows is a core goal of the project. References [0] Tony Hey, Stewart Tansley, Kristin Tolle (eds), 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research. [1] P. Martin et al., Open Information Linking for Environmental Research Infrastructures, 2015 IEEE 11th International Conference on e-Science, Munich, 2015, pp. 513-520. doi: 10.1109/eScience.2015.66 [2] Y. Chen et al., Analysis of Common Requirements for Environmental Science Research Infrastructures, The International Symposium on Grids and Clouds (ISGC) 2013, Taipei, 2013, http://pos.sissa.it/archive/conferences/179/032/ISGC [3] Opening Reproducible Research, Geophysical Research Abstracts Vol. 18, EGU2016-7396, 2016, http://meetingorganizer.copernicus.org/EGU2016/EGU2016-7396.pdf

  13. Infrastructure for Training and Partnershipes: California Water and Coastal Ocean Resources

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; Dozier, Jeffrey; Gautier, Catherine; Davis, Frank; Dickey, Tommy; Dunne, Thomas; Frew, James; Keller, Arturo; MacIntyre, Sally; Melack, John

    2000-01-01

    The purpose of this project was to advance the existing ICESS/Bren School computing infrastructure to allow scientists, students, and research trainees the opportunity to interact with environmental data and simulations in near-real time. Improvements made with the funding from this project have helped to strengthen the research efforts within both units, fostered graduate research training, and helped fortify partnerships with government and industry. With this funding, we were able to expand our computational environment in which computer resources, software, and data sets are shared by ICESS/Bren School faculty researchers in all areas of Earth system science. All of the graduate and undergraduate students associated with the Donald Bren School of Environmental Science and Management and the Institute for Computational Earth System Science have benefited from the infrastructure upgrades accomplished by this project. Additionally, the upgrades fostered a significant number of research projects (attached is a list of the projects that benefited from the upgrades). As originally proposed, funding for this project provided the following infrastructure upgrades: 1) a modem file management system capable of interoperating UNIX and NT file systems that can scale to 6.7 TB, 2) a Qualstar 40-slot tape library with two AIT tape drives and Legato Networker backup/archive software, 3) previously unavailable import/export capability for data sets on Zip, Jaz, DAT, 8mm, CD, and DLT media in addition to a 622Mb/s Internet 2 connection, 4) network switches capable of 100 Mbps to 128 desktop workstations, 5) Portable Batch System (PBS) computational task scheduler, and vi) two Compaq/Digital Alpha XP1000 compute servers each with 1.5 GB of RAM along with an SGI Origin 2000 (purchased partially using funds from this project along with funding from various other sources) to be used for very large computations, as required for simulation of mesoscale meteorology or climate.

  14. Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project. ESLEA, March 26-28, 2007, Edinburgh

    NASA Astrophysics Data System (ADS)

    Clarke, Peter; Davenhall, Clive; Greenwood, Colin; Strong, Matthew

    ESLEA, an EPSRC-funded project, aims to demonstrate the potential benefits of circuit-switched optical networks (lightpaths) to the UK e-Science community. This is being achieved by running a number of "proof of benefit" pilot applications over UKLight, the UK's first national optical research network. UKLight provides a new way for researchers to obtain dedicated "lightpaths" between remote sites and to deploy and test novel networking methods and technologies. It facilitates collaboration on global projects by providing a point of access to the fast growing international optical R&D infrastructure. A diverse range of data-intensive fields of academic endeavour are participating in the ESLEA project; all these groups require the integration of high-bandwidth switched lightpath circuits into their experimental and analysis infrastructure for international transport of high-volume applications data. In addition, network protocol research and development of circuit reservation mechanisms has been carried out to help the pilot applications to exploit the UKLight infrastructure effectively. Further information about ESLEA can be viewed at www.eslea.uklight.ac.uk. ESLEA activities are now coming to an end and work will finish from February to July 2007, depending upon the terms of funding of each pilot application. The first quarter of 2007 is considered the optimum time to hold a closing conference for the project. The objectives of the conference are to: 1. Provide a forum for the dissemination of research findings and learning experiences from the ESLEA project. 2. Enable colleagues from the UK and international e-Science communities to present, discuss and learn about the latest developments in networking technology. 3. Raise awareness about the deployment of the UKLight infrastructure and its relationship to SuperJANET 5. 4. Identify potential uses of UKLight by existing or future research projects

  15. Developing a data life cycle for carbon and greenhouse gas measurements: challenges, experiences and visions

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.

    2015-12-01

    Environmental research infrastructures and big data integration networks require common data policies, standardized workflows and sophisticated e-infrastructure to optimise the data life cycle. This presentation summarizes the experiences in developing the data life cycle for the Integrated Carbon Observation System (ICOS), a European Research Infrastructure. It will also outline challenges that still exist and visions for future development. As many other environmental research infrastructures ICOS RI built on a large number of distributed observational or experimental sites. Data from these sites are transferred to Thematic Centres and quality checked, processed and integrated there. Dissemination will be managed by the ICOS Carbon Portal. This complex data life cycle has been defined in detail by developing protocols and assigning responsibilities. Since data will be shared under an open access policy there is a strong need for common data citation tracking systems that allow data providers to identify downstream usage of their data so as to prove their importance and show the impact to stakeholders and the public. More challenges arise from interoperating with other infrastructures or providing data for global integration projects as done e.g. in the framework of GEOSS or in global integration approaches such as fluxnet or SOCAt. Here, common metadata systems are the key solutions for data detection and harvesting. The metadata characterises data, services, users and ICT resources (including sensors and detectors). Risks may arise when data of high and low quality are mixed during this process or unexperienced data scientists without detailed knowledge on the data aquisition derive scientific theories through statistical analyses. The vision of fully open data availability is expressed in a recent GEO flagship initiative that will address important issues needed to build a connected and interoperable global network for carbon cycle and greenhouse gas observations and aims to meet the most urgent needs for integration between different information sources and methodologies, between different regional networks and from data providers to users.

  16. The potential water buffering capacity of urban green infrastructure in an arid environment

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Yang, J.

    2017-12-01

    Urban green infrastructure offers arid cities an attractive means of mitigation/adaptation to environmental challenges of elevated thermal stress, but imposes the requirement of outdoor irrigation that aggravates the stress of water resource management. Future development of cities is inevitably constrained by the limited availability of water resources, under challenges of emergent climate change and continuous population growth. This study used the Weather Research and Forecasting model with urban dynamics to assess the potential water buffering capacity of urban green infrastructure in arid environments and its implications for sustainable urban planning. The Phoenix metropolitan area, Arizona, United States, is adopted as a testbed with two hypothetical cases, viz. the water-saving and the fully-greening scenarios investigated. Modifications of the existing green infrastructure and irrigation practices are found to significantly influence the thermal environment of Phoenix. In addition, water saving by xeriscaping (0.77 ± 0.05 × 10^8 m^3) allows the region to support 19.8% of the annual water consumption by the projected 2.62 million population growth by 2050, at a cost of an increase in urban ambient temperature of about 1 o^C.

  17. Green infrastructure in high-rise residential development on steep slopes in city of Vladivostok

    NASA Astrophysics Data System (ADS)

    Kopeva, Alla; Ivanova, Olga; Khrapko, Olga

    2018-03-01

    The purpose of this study is to identify the facilities of green infrastructure that are able to improve living conditions in an urban environment in high-rise residential apartments buildings on steep slopes in the city of Vladivostok. Based on the analysis of theoretical sources and practices that can be observed in the world, green infrastructure facilities have been identified. These facilities meet the criteria of the sustainable development concept, and can be used in the city of Vladivostok. They include green roofs, green walls, and greening of disturbed slopes. All the existing high-rise apartments buildings situated on steep slopes in the city of Vladivostok, have been studied. It is concluded that green infrastructure is necessary to be used in new projects connected with designing and constructing of residential apartments buildings on steep slopes, as well as when upgrading the projects that have already been implemented. That will help to regulate the ecological characteristics of the sites. The results of the research can become a basis for increasing the sustainability of the habitat, and will facilitate the adoption of decisions in the field of urban design and planning.

  18. Linking International Development Actors to Geophysical Infrastructure: Exploring an IRIS Community Role in Bridging a Communications Gap

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Fisher, K.; Meltzer, A.; Nyblade, A.; Sandvol, E.; Willemann, R.

    2008-12-01

    Over the past quarter century, national investments in high-fidelity digital seismograph networks have resulted in a global infrastructure for real-time in situ earthquake monitoring. Many network operators adhere to community-developed standards, with the result that there are few technical impediments to data sharing and real-time information exchange. Two unanswered questions, however, are whether the existing models of international collaboration will ensure the stability and sustainability of global earthquake monitoring, and whether the participating institutions can work with international development agencies and non- governmental organizations in meeting linked development and natural hazard risk reduction goals. Since the 2004 Indian Ocean tsunami, many of these actors are enlarging their commitments to natural hazard risk reduction and building national technical capacities, among broader programs in poverty alleviation and adaptation to environmental stress. Despite this renewed commitment, international development organizations, with notable exceptions, have been relatively passive in discussions of how the existing earthquake monitoring infrastructure could be leveraged to support risk-reduction programs and meet sustainable development goals. At the same time, the international seismological community - comprising universities and government seismological surveys - has built research and education initiatives such as EarthScope, AfricaArray, and similar programs in China, Europe and South America, that use innovative instrumentation technologies and deployment strategies to enable new science and applications, and promote education and training in critical sectors. Can these developments be combined? Recognizing this communication or knowledge gap, the IRIS International Working Group (IWG) explores the link between the activities of IRIS Members using IRIS facilities and the missions of international development agencies, such as US AID, the World Bank, other international development banks, and agencies of the United Nations. Interests of US seismologists are served by encouraging development of modern seismographic systems in countries around the world to collect data that are useful in research as well as hazard mitigation and other national interests. Activities of the IWG to date include communicating the benefits of geophysical infrastructure and training to disaster risk reduction programs within the United Nations and development banks, coordinating an initiative to leverage retired PASSCAL data loggers through long-term loans to network operators in foreign countries, preparing a white paper outlining IRIS capabilities relevant to international development, and conducting a workshop, "Out of Africa", on modernizing geophysical infrastructure in the Americas and Southeast Asia through projects that are closely tied to university education and academic research.

  19. Software tools and e-infrastructure services to support the long term preservation of earth science data - new functionality from the SCIDIP-ES project

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Crompton, Shirley; Giaretta, David; Ritchie, Brian; Pepler, Sam; De Smet, Wim; Marelli, Fulvio; Mantovani, Pier-Luca

    2014-05-01

    The ability to preserve earth science data for the long-term is a key requirement to support on-going research and collaboration within and between earth science disciplines. A number of critically important current research initiatives (e.g. understanding climate change or ensuring sustainability of natural resources) typically rely on the continuous availability of data collected over several decades in a form which can be easily accessed and used by scientists. In many earth science disciplines the capture of key observational data may be difficult or even impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and earth observation data derived from a particular satellite mission is often unique. Another key driver for long-term data preservation is that the grand challenges of the kind described above frequently involve cross-disciplinary research utilising raw and interpreted data from a number of related earth science disciplines. Adopting effective data preservation strategies supports this requirement for interoperability as well as ensuring long term usability of earth science data, and has the added potential for stimulating innovative earth science research. The EU-funded SCIDIP-ES project seeks to address these challenges by developing a Europe-wide e-infrastructure for long-term data preservation by providing appropriate software tools and infrastructure services to enable and promote long-term preservation of earth science data. This poster will describe the current status of this e-infrastructure and outline the integration of the prototype SCIDIP-ES software components into the existing systems used by earth science archives and data providers. These prototypes utilise a system architecture which stores preservation information in a standardised OAIS-compliant way, and connects and adds value to existing earth science archives. A SCIDIP-ES test-bed has been implemented by the National Geoscience Data Centre (NGDC) and the British Atmospheric Data Centre (BADC) in the UK, which allows datasets to be more easily integrated and preserved for future use. Many of the data preservation requirements of these two key Natural Environment Research Council (NERC) data centres are common to other earth science data providers and are therefore more widely applicable. The capability for interoperability between datasets stored in different formats is a common requirement for the long-term preservation of data, and the way in which this is supported by the SCIDIP-ES tools and services will be explained.

  20. Emergency medicine in Dubai, UAE.

    PubMed

    Partridge, Robert; Abbo, Michael; Virk, Alamjit

    2009-08-18

    Dubai has rapidly risen to prominence in the Persian Gulf region as a center of global commerce and tourism and as a cultural crossroad between East and West. The health-care infrastructure has undergone rapid development. Collaborations with academic medical centers now exist to advance clinical care, teaching and research. Emergency medicine has also advanced and is undergoing dynamic change. Dubai may soon emerge as a regional leader in emergency medicine training and practice.

  1. Research and Development, Technology Requirements, and Use of Existing Space Assets

    NASA Technical Reports Server (NTRS)

    Grey, Jerry; Rowell, Larry

    1999-01-01

    Technology requirements are addressed in three categories: (1) Passenger-carrying STS(s); (2) orbital facilities (including on-orbit operations such as servicing) and human factors (crew and passenger training and recreation, on-orbit environmental control, etc.); and (3) ground infrastructure. An example tourism trip scenario is used in discussing possible targets for technology development activities. Some general comments are made as are considerations for other working groups.

  2. 44 CFR 201.7 - Tribal Mitigation Plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... buildings, infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate... particular emphasis on new and existing buildings and infrastructure. (iii) An action plan describing how the...

  3. The EGI-Engage EPOS Competence Center - Interoperating heterogeneous AAI mechanisms and Orchestrating distributed computational resources

    NASA Astrophysics Data System (ADS)

    Bailo, Daniele; Scardaci, Diego; Spinuso, Alessandro; Sterzel, Mariusz; Schwichtenberg, Horst; Gemuend, Andre

    2016-04-01

    The mission of EGI-Engage project [1] is to accelerate the implementation of the Open Science Commons vision, where researchers from all disciplines have easy and open access to the innovative digital services, data, knowledge and expertise they need for collaborative and excellent research. The Open Science Commons is grounded on three pillars: the e-Infrastructure Commons, an ecosystem of services that constitute the foundation layer of distributed infrastructures; the Open Data Commons, where observations, results and applications are increasingly available for scientific research and for anyone to use and reuse; and the Knowledge Commons, in which communities have shared ownership of knowledge, participate in the co-development of software and are technically supported to exploit state-of-the-art digital services. To develop the Knowledge Commons, EGI-Engage is supporting the work of a set of community-specific Competence Centres, with participants from user communities (scientific institutes), National Grid Initiatives (NGIs), technology and service providers. Competence Centres collect and analyse requirements, integrate community-specific applications into state-of-the-art services, foster interoperability across e-Infrastructures, and evolve services through a user-centric development model. One of these Competence Centres is focussed on the European Plate Observing System (EPOS) [2] as representative of the solid earth science communities. EPOS is a pan-European long-term plan to integrate data, software and services from the distributed (and already existing) Research Infrastructures all over Europe, in the domain of the solid earth science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. EPOS started its Implementation Phase in October 2015 and is now actively working in order to integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) - European wide organizations and e-Infrastructure providing community specific data and data products - and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into the Integrated Core Services (ICS) system, that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. The EPOS competence center (EPOS CC) goal is to tackle two of the main challenges that the ICS are going to face in the near future, by taking advantage of the technical solutions provided by EGI. In order to do this, we will present the two pilot use cases the EGI-EPOS CC is developing: 1) The AAI pilot, dealing with the provision of transparent and homogeneous access to the ICS infrastructure to users owning different kind of credentials (e.g. eduGain, OpenID Connect, X509 certificates etc.). Here the focus is on the mechanisms which allow the credential delegation. 2) The computational pilot, Improve the back-end services of an existing application in the field of Computational Seismology, developed in the context of the EC funded project VERCE. The application allows the processing and the comparison of data resulting from the simulation of seismic wave propagation following a real earthquake and real measurements recorded by seismographs. While the simulation data is produced directly by the users and stored in a Data Management System, the observations need to be pre-staged from institutional data-services, which are maintained by the community itself. This use case aims at exploiting the EGI FedCloud e-infrastructure for Data Intensive analysis and also explores possible interaction with other Common Data Infrastructure initiatives as EUDAT. In the presentation, the state of the art of the two use cases, together with the open challenges and the future application will be discussed. Also, possible integration of EGI solutions with EPOS and other e-infrastructure providers will be considered. [1] EGI-ENGAGE https://www.egi.eu/about/egi-engage/ [2] EPOS http://www.epos-eu.org/

  4. Facilities | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a

  5. Developing a clinical trial unit to advance research in an academic institution.

    PubMed

    Croghan, Ivana T; Viker, Steven D; Limper, Andrew H; Evans, Tamara K; Cornell, Alissa R; Ebbert, Jon O; Gertz, Morie A

    2015-11-01

    Research, clinical care, and education are the three cornerstones of academic health centers in the United States. The research climate has always been riddled with ebbs and flows, depending on funding availability. During a time of reduced funding, the number and scope of research studies have been reduced, and in some instances, a field of study has been eliminated. Recent reductions in the research funding landscape have led institutions to explore new ways to continue supporting research. Mayo Clinic in Rochester, MN has developed a clinical trial unit within the Department of Medicine, which provides shared resources for many researchers and serves as a solution for training and mentoring new investigators and study teams. By building on existing infrastructure and providing supplemental resources to existing research, the Department of Medicine clinical trial unit has evolved into an effective mechanism for conducting research. This article discusses the creation of a central unit to provide research support in clinical trials and presents the advantages, disadvantages, and required building blocks for such a unit. Copyright © 2015 Mayo Clinic. Published by Elsevier Inc. All rights reserved.

  6. Exploring perceptions and experiences of Bolivian health researchers with research ethics.

    PubMed

    Sullivan, Sarah; Aalborg, Annette; Basagoitia, Armando; Cortes, Jacqueline; Lanza, Oscar; Schwind, Jessica S

    2015-04-01

    In Bolivia, there is increasing interest in incorporating research ethics into study procedures, but there have been inconsistent application of research ethics practices. Minimal data exist regarding the experiences of researchers concerning the ethical conduct of research. A cross-sectional study was administered to Bolivian health leaders with research experience (n = 82) to document their knowledge, perceptions, and experiences of research ethics committees and infrastructure support for research ethics. Results showed that 16% of respondents reported not using ethical guidelines to conduct their research and 66% indicated their institutions did not consistently require ethics approval for research. Barriers and facilitators to incorporate research ethics into practice were outlined. These findings will help inform a comprehensive rights-based research ethics education program in Bolivia. © The Author(s) 2015.

  7. Roadmap for the establishment of a European vaccine R&D infrastructure.

    PubMed

    Leroy, Odile; Geels, Mark; Korejwo, Joanna; Dodet, Betty; Imbault, Nathalie; Jungbluth, Stefan

    2014-12-05

    To consolidate the integration of the fragmented European vaccine development landscape, TRANSVAC - the European Network of Vaccine Research and Development, funded by the European Commission (EC) - has initiated the development of a roadmap through a process of stakeholder consultation. The outcome of this consultation highlighted the need for transnational cooperation and the opportunities that could be generated by such efforts. This cooperation can be achieved through the establishment of a European Vaccine Research and Development Infrastructure (EVRI). EVRI will support cooperation between existing vaccine Research and Development (R&D) organisations from the public and private sector and other networks throughout Europe. It will become sustainable over time by receiving support from multiple sources including the EC, European Union (EU) Member States, European vaccine companies, EVRI partner organisations, and by income generated. Different stakeholders have demonstrated support for the concept of a vaccine infrastructure and agree that such an infrastructure can function as leverage institution between public and private institutions thus making significant contributions to the vaccine field as a whole in its quest to develop vaccines. EVRI will be launched in three phases: preparatory (during which the legal and administrative framework will be defined and a business plan will be elaborated), implementation and operational. If sufficient political and financial commitment can be secured from relevant national and European entities as well as from the private sector and other stakeholders, it could enter into operational phase from 2017 onwards. In conclusion, EVRI can make vaccine R&D more efficient and help address European and global health challenges, help alleviate the burden and spread of infectious diseases, thus contributing to the sustainability of public healthcare systems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...

  9. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...

  10. 44 CFR 201.6 - Local Mitigation Plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...

  11. More Bang for the Buck: Integrating Green Infrastructure into Existing Public Works Projects

    EPA Pesticide Factsheets

    shares lessons learned from municipal and county officials experienced in coordinating green infrastructure applications with scheduled street maintenance, park improvements, and projects on public sites.

  12. When the New Application Smell Is Gone: Traditional Intranet Best Practices and Existing Web 2.0 Intranet Infrastructures

    ERIC Educational Resources Information Center

    Yoose, Becky

    2010-01-01

    With the growth of Web 2.0 library intranets in recent years, many libraries are leaving behind legacy, first-generation intranets. As Web 2.0 intranets multiply and mature, how will traditional intranet best practices--especially in the areas of planning, implementation, and evaluation--translate into an existing Web 2.0 intranet infrastructure?…

  13. Engineering Infrastructures: Problems of Safety and Security in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.

    Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.

  14. AGING WATER INFRASTRUCTURE RESEARCH PROGRAM: ADDRESSING THE CHALLENGE THROUGH INNOVATION

    EPA Science Inventory

    A driving force behind the Sustainable Water Infrastructure (SI) initiative and the Aging Water Infrastructure (AWI) research program is the Clean Water and Drinking Water Infrastructure Gap Analysis. In this report, EPA estimated that if operation, maintenance, and capital inves...

  15. State investments in high-technology job growth.

    PubMed

    Leicht, Kevin T; Jenkins, J Craig

    2017-07-01

    Since the early 1970's state and local governments have launched an array of economic development programs designed to promote high-technology development. The question our analysis addresses is whether these programs promote long-term high-technology employment growth net of state location and agglomeration advantages. Proponents talk about an infrastructure strategy that promotes investment in public research and specialized infrastructure to attract and grow new high technology industries in specific locations, and a more decentralized entrepreneurial strategy that reinforces local agglomeration capacities by investing in new enterprises and products, promoting the development of local networks and partnerships. Our results support the entrepreneurial strategy, suggesting that state governments can accelerate high technology development by adopting market-supportive programs that complement private sector initiatives. In addition to positive direct benefits of technology deployment/transfer programs and SBIR programs, entrepreneurial programs affect change in high-technology employment in concert with existing locational and agglomeration advantages. Rural (i.e. low population density) states tend to benefit by technology development programs. Infrastructure strategy programs also facilitate high technology job growth in places where local advantages already exist. Our results suggest that critics of industrial policy are correct that high technology growth is organic and endogenous, yet state governments are able to "pick winners and losers" in ways that grow their local economy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A European perspective--the European clinical research infrastructures network.

    PubMed

    Demotes-Mainard, J; Kubiak, C

    2011-11-01

    Evaluating research outcomes requires multinational cooperation in clinical research for optimization of treatment strategies and comparative effectiveness research, leading to evidence-based practice and healthcare cost containment. The European Clinical Research Infrastructures Network (ECRIN) is a distributed ESFRI (European Strategy Forum on Research Infrastructures) roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific potential. Servicing multinational trials started during its preparatory phase, and ECRIN will now apply for an ERIC (European Research Infrastructures Consortium) status by 2011. By creating a single area for clinical research in Europe, this achievement will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of the research and education capacity, tackling the major societal challenges starting with the area of healthy ageing, and removing barriers to bring ideas to the market.

  17. Current status of the EPOS WG4 - GNSS and Other Geodetic Data

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Bastos, Luisa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu

    2014-05-01

    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also already includes members from countries that formally are not integrating EPOS in this first step. The geodetic component of EPOS (WG4) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS) in the current phase. The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Nevertheless, WG4 will continue to pursue the development of tools and methodologies that permit the access of the EPOS community to other geodetic information (e.g., gravimetry). Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WG4 EPOS towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for geodetic data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Five pillars have been defined proposed for the TCS: Dissemination, Preservation, Monitoring, and Analysis of geodetic data plus the Support and Governance Infrastructure. Current proposals and remaining open questions will be discussed.

  18. ENVRI PLUS: European initiative towards technical and research cultural solutions for across-disciplines accessible Research Infrastructure products

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Kutsch, W. L.

    2015-12-01

    Environmental Research Infrastructures are often built as bottom-up initiatives to provide products for specific target group, which often is very discipline specific. However, the societal or environmental challenges are typically not concentrated on specific disciplines, and require usage of data sets from many RIs. ENVRI PLUS is an initiative where the European environmental RIs work together to provide common technical background (in physical observation technologies and in data products and descriptions) to make the RI products more usable to user groups outside of the original RI target groups. ENVRI PLUS also includes many policy and dissemination concentrated actions to make the RI operations coherent and understandable to both scientists and other potential users. The actions include building common technological capital of the RIs (physical and data-oriented), creating common access procedures (especially for cross-diciplinary access), developing ethical guidelines and related policies, distributing know-how between RIs and building common communication and collaboration system for European environmental RIs. All ENVRI PLUS products are free to use, e.g. for use of new or existing environmental RIs worldwide.

  19. Existing Instrumentation and Scientific Drivers for a Subduction Zone Observatory in Latin America

    NASA Astrophysics Data System (ADS)

    Frassetto, A.; Woodward, R.; Detrick, R. S.

    2015-12-01

    The subduction zones along the western shore of the Americas provide numerous societally relevant scientific questions that have yet to be fully explored and would make an excellent target for a comprehensive, integrated Subduction Zone Observatory (SZO). Further, recent discussions in Latin America indicate that there are a large number of existing stations that could serve as a backbone for an SZO. Such preexisting geophysical infrastructure commonly plays a vital role in new science initiatives, from small PI-led experiments to the establishment of the USArray Transportable Array, Reference Network, Cascadia Amphibious Array, and the redeployment of EarthScope Transportable Array stations to Alaska. Creating an SZO along the western coast of the Americas could strongly leverage the portfolio of existing seismic and geodetic stations across regions of interest. In this presentation, we will discuss the concept and experience of leveraging existing infrastructure in major new observational programs, outline the state of geophysical networks in the Americas (emphasizing current seismic networks but also looking back on historical temporary deployments), and provide an overview of potential scientific targets in the Americas that encompass a sampling of recently produced research results and datasets. Additionally, we will reflect on strategies for establishing meaningful collaborations across Latin America, an aspect that will be critical to the international partnerships, and associated capacity building, needed for a successful SZO initiative.

  20. Aging Water Infrastructure Research Program Update: Innovation & Research for the 21st Century

    EPA Science Inventory

    This slide presentation summarizes key elements of the EOA, Office of Research and Development’s (ORD) Aging Water Infrastructure (AWI)) Research program. An overview of the national problems posed by aging water infrastructure is followed by a brief description of EPA’s overall...

  1. Creating an infrastructure for comparative effectiveness research in emergency medical services.

    PubMed

    Seymour, Christopher W; Kahn, Jeremy M; Martin-Gill, Christian; Callaway, Clifton W; Angus, Derek C; Yealy, Donald M

    2014-05-01

    Emergency medical services (EMS) providers deliver the initial care for millions of people in the United States each year. The Institute of Medicine noted a deficit in research necessary to improve prehospital care, created by the existence of data silos, absence of long-term outcomes, and limited stakeholder engagement in research. This article describes a regional effort to create a high-performing infrastructure in southwestern Pennsylvania addressing these fundamental barriers. Regional EMS records from 33 agencies in January 2011 were linked to hospital-based electronic health records (EHRs) in a single nine-hospital system, with manual review of matches for accuracy. The use of community stakeholder engagement was included to guide scientific inquiry, as well as 2-year follow up for patient-centered outcomes. Local EMS medicine stakeholders emphasized the limits of single-agency EMS research and suggested that studies focus on improving cross-cutting, long-term outcomes. Guided by this input, more than 95% of EMS records (2,675 of 2,800) were linked to hospital-based EHRs. More than 80% of records were linked to 2-year mortality, with more deaths among EMS patients with prehospital hypotension (30.5%) or respiratory distress (19.5%) than chest pain (5.4%) or nonspecific complaints (9.4%). A prehospital comparative effectiveness research infrastructure composed of patient-level EMS data, EHRs at multiple hospitals, long-term outcomes, and community stakeholder perspectives is feasible and may be scalable to larger regions and networks. The lessons learned and barriers identified offer a roadmap to answering community and policy-relevant research questions in prehospital care. © 2014 by the Society for Academic Emergency Medicine.

  2. Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape.

    PubMed

    Langlois, Lillie A; Drohan, Patrick J; Brittingham, Margaret C

    2017-07-15

    Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we will continue to lose core forest as a result of new pipelines and infrastructure particularly on private land. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of a public health nursing data infrastructure.

    PubMed

    Monsen, Karen A; Bekemeier, Betty; P Newhouse, Robin; Scutchfield, F Douglas

    2012-01-01

    An invited group of national public health nursing (PHN) scholars, practitioners, policymakers, and other stakeholders met in October 2010 identifying a critical need for a national PHN data infrastructure to support PHN research. This article summarizes the strengths, limitations, and gaps specific to PHN data and proposes a research agenda for development of a PHN data infrastructure. Future implications are suggested, such as issues related to the development of the proposed PHN data infrastructure and future research possibilities enabled by the infrastructure. Such a data infrastructure has potential to improve accountability and measurement, to demonstrate the value of PHN services, and to improve population health. © 2012 Wiley Periodicals, Inc.

  4. Prospects for rebuilding primary care using the patient-centered medical home.

    PubMed

    Landon, Bruce E; Gill, James M; Antonelli, Richard C; Rich, Eugene C

    2010-05-01

    Existing research suggests that models of enhanced primary care lead to health care systems with better performance. What the research does not show is whether such an approach is feasible or likely to be effective within the U.S. health care system. Many commentators have adopted the model of the patient-centered medical home as policy shorthand to address the reinvention of primary care in the United States. We analyze potential barriers to implementing the medical home model for policy makers and practitioners. Among others, these include developing new payment models, as well as the need for up-front funding to assemble the personnel and infrastructure required by an enhanced non-visit-based primary care practice and methods to facilitate transformation of existing practices to functioning medical homes.

  5. A Disability and Health Institutional Research Capacity Building and Infrastructure Model Evaluation: A Tribal College-Based Case Study

    ERIC Educational Resources Information Center

    Moore, Corey L.; Manyibe, Edward O.; Sanders, Perry; Aref, Fariborz; Washington, Andre L.; Robertson, Cherjuan Y.

    2017-01-01

    Purpose: The purpose of this multimethod study was to evaluate the institutional research capacity building and infrastructure model (IRCBIM), an emerging innovative and integrated approach designed to build, strengthen, and sustain adequate disability and health research capacity (i.e., research infrastructure and investigators' research skills)…

  6. Highways of the future : a strategic plan for highway infrastructure research and development

    DOT National Transportation Integrated Search

    2008-07-01

    This Highways of the FutureA Strategic Plan for Highway Infrastructure Research and Development was developed in response to a need expressed by the staff of the Federal Highway Administration (FHWA) Office of Infrastructure Research and Developme...

  7. Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures – Integrated city-scale analysis with VIBe

    PubMed Central

    Sitzenfrei, Robert; Möderl, Michael; Rauch, Wolfgang

    2013-01-01

    Traditional urban water management relies on central organised infrastructure, the most important being the drainage network and the water distribution network. To meet upcoming challenges such as climate change, the rapid growth and shrinking of cities and water scarcity, water infrastructure needs to be more flexible, adaptable and sustainable (e.g., sustainable urban drainage systems, SUDS; water sensitive urban design, WSUD; low impact development, LID; best management practice, BMP). The common feature of all solutions is the push from a central solution to a decentralised solution in urban water management. This approach opens up a variety of technical and socio-economic issues, but until now, a comprehensive assessment of the impact has not been made. This absence is most likely attributable to the lack of case studies, and the availability of adequate models is usually limited because of the time- and cost-intensive preparation phase. Thus, the results of the analysis are based on a few cases and can hardly be transferred to other boundary conditions. VIBe (Virtual Infrastructure Benchmarking) is a tool for the stochastic generation of urban water systems at the city scale for case study research. With the generated data sets, an integrated city-scale analysis can be performed. With this approach, we are able to draw conclusions regarding the technical effect of the transition from existing central to decentralised urban water systems. In addition, it is shown how virtual data sets can assist with the model building process. A simple model to predict the shear stress performance due to changes in dry weather flow production is developed and tested. PMID:24210508

  8. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    PubMed

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-05

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe. Copyright © 2015. Published by Elsevier Ltd.

  9. Insights and Challenges to Integrating Data from Diverse Ecological Networks

    NASA Astrophysics Data System (ADS)

    Peters, D. P. C.

    2014-12-01

    Many of the most dramatic and surprising effects of global change occur across large spatial extents, from regions to continents, that impact multiple ecosystem types across a range of interacting spatial and temporal scales. The ability of ecologists and inter-disciplinary scientists to understand and predict these dynamics depend, in large part, on existing site-based research infrastructures that developed in response to historic events. Integrating these diverse sources of data is critical to addressing these broad-scale questions. A conceptual approach is presented to synthesize and integrate diverse sources and types of data from different networks of research sites. This approach focuses on developing derived data products through spatial and temporal aggregation that allow datasets collected with different methods to be compared. The approach is illustrated through the integration, analysis, and comparison of hundreds of long-term datasets from 50 ecological sites in the US that represent ecosystem types commonly found globally. New insights were found by comparing multiple sites using common derived data. In addition to "bringing to light" many dark data in a standardized, open access, easy-to-use format, a suite of lessons were learned that can be applied to up and coming research networks in the US and internationally. These lessons will be described along with the challenges, including cyber-infrastructure, cultural, and behavioral constraints associated with the use of big and little data, that may keep ecologists and inter-disciplinary scientists from taking full advantage of the vast amounts of existing and yet-to-be exposed data.

  10. EPOS-IP WP10: services and data provision for the GNSS community

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui

    2016-04-01

    The EPOS-IP WP10 - "GNSS Data & Products" is the Working Package of the EPOS-IP project in charge of implementing the necessary services in order that the geo-sciences community can access the existing Pan-European Geodetic Infrastructures. The WP10 is formed by representatives of the participating institutions (10) but it is also open to the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP. During the EPOS-IP project, the geodetic component of EPOS (WP10) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS). The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WP10 towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. The collaboration with EUREF is also an essential component of the implementation plan.

  11. Identifying Audiences of E-Infrastructures - Tools for Measuring Impact

    PubMed Central

    van den Besselaar, Peter

    2012-01-01

    Research evaluation should take into account the intended scholarly and non-scholarly audiences of the research output. This holds too for research infrastructures, which often aim at serving a large variety of audiences. With research and research infrastructures moving to the web, new possibilities are emerging for evaluation metrics. This paper proposes a feasible indicator for measuring the scope of audiences who use web-based e-infrastructures, as well as the frequency of use. In order to apply this indicator, a method is needed for classifying visitors to e-infrastructures into relevant user categories. The paper proposes such a method, based on an inductive logic program and a Bayesian classifier. The method is tested, showing that the visitors are efficiently classified with 90% accuracy into the selected categories. Consequently, the method can be used to evaluate the use of the e-infrastructure within and outside academia. PMID:23239995

  12. IT Infrastructure Projects: A Framework for Analysis. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Grochow, Jerrold M.

    2014-01-01

    Just as maintaining a healthy infrastructure of water delivery and roads is essential to the functioning of cities and towns, maintaining a healthy infrastructure of information technology is essential to the functioning of universities. Deterioration in IT infrastructure can lead to deterioration in research, teaching, and administration. Given…

  13. Commonwealth Infrastructure Funding for Australian Universities: 2004 to 2011

    ERIC Educational Resources Information Center

    Koshy, Paul; Phillimore, John

    2013-01-01

    This paper provides an overview of recent trends in the provision of general infrastructure funding by the Commonwealth for Australian universities (Table A providers) over the period 2004 to 2011. It specifically examines general infrastructure development and excludes funding for research infrastructure through the Australian Research Council or…

  14. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David K.

    2011-01-01

    This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.

  15. Footprints of air pollution and changing environment on the sustainability of built infrastructure.

    PubMed

    Kumar, Prashant; Imam, Boulent

    2013-02-01

    Over 150 research articles relating three multi-disciplinary topics (air pollution, climate change and civil engineering structures) are reviewed to examine the footprints of air pollution and changing environment on the sustainability of building and transport structures (referred as built infrastructure). The aim of this review is to synthesize the existing knowledge on this topic, highlight recent advances in our understanding and discuss research priorities. The article begins with the background information on sources and emission trends of global warming (CO(2), CH(4), N(2)O, CFCs, SF(6)) and corrosive (SO(2), O(3), NO(X)) gases and their role in deterioration of building materials (e.g. steel, stone, concrete, brick and wood) exposed in outdoor environments. Further section covers the impacts of climate- and pollution-derived chemical pathways, generally represented by dose-response functions (DRFs), and changing environmental conditions on built infrastructure. The article concludes with the discussions on the topic areas covered and research challenges. A comprehensive inventory of DRFs is compiled. The case study carried out for analysing the inter-comparability of various DRFs on four different materials (carbon steel, limestone, zinc and copper) produced comparable results. Results of another case study revealed that future projected changes in temperature and/or relatively humidity are expected to have a modest effect on the material deterioration rate whereas changes in precipitation were found to show a more dominant impact. Evidences suggest that both changing and extreme environmental conditions are expected to affect the integrity of built infrastructure both in terms of direct structural damage and indirect losses of transport network functionality. Unlike stone and metals, substantially limited information is available on the deterioration of brick, concrete and wooden structures. Further research is warranted to develop more robust and theoretical DRFs for generalising their application, accurately mapping corrosion losses in an area, and costing risk of corrosion damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Creating a Road Map for Planetary Data Spatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Naß, A.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S.; Mazarico, E.; Patthoff, A.; Radebaugh, J.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.

    2017-09-01

    There currently exists a clear need for long-range planning in regard to planetary spatial data and the development of infrastructure to support its use. Planetary data are the hard-earned fruits of planetary exploration, and the Mapping and Planetary Spatial Infrastructure Team (MAPSIT) mission is to ensure their availability for any conceivable investigation, now or in the future.

  17. Development of a lunar infrastructure

    NASA Astrophysics Data System (ADS)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  18. DOIDB: Reusing DataCite's search software as metadata portal for GFZ Data Services

    NASA Astrophysics Data System (ADS)

    Elger, K.; Ulbricht, D.; Bertelmann, R.

    2016-12-01

    GFZ Data Services is the central service point for the publication of research data at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ). It provides data publishing services to scientists of GFZ, associated projects, and associated institutions. The publishing services aim to make research data and physical samples visible and citable, by assigning persistent identifiers (DOI, IGSN) and by complementing existing IT infrastructure. To integrate several research domains a modular software stack that is made of free software components has been created to manage data and metadata as well as register persistent identifiers [1]. Pivotal component for the registration of DOIs is the DOIDB. It has been derived from three software components provided by DataCite [2] that moderate the registration of DOIs and the deposition of metadata, allow the dissemination of metadata, and provide a user interface to navigate and discover datasets. The DOIDB acts as a proxy to the DataCite infrastructure and in addition to the DataCite metadata schema, it allows to deposit and disseminate metadata following the schemas ISO19139 and NASA GCMD DIF. The search component has been modified to meet the requirements of a geosciences metadata portal. In particular, the search component has been altered to make use of Apache SOLRs capability to index and query spatial coordinates. Furthermore, the user interface has been adjusted to provide a first impression of the data by showing a map, summary information and subjects. DOIDB and its components are available on GitHub [3].We present a software solution for registration of DOIs that allows to integrate existing data systems, keeps track of registered DOIs, and provides a metadata portal to discover datasets [4]. [1] Ulbricht, D.; Elger, K.; Bertelmann, R.; Klump, J. panMetaDocs, eSciDoc, and DOIDB—An Infrastructure for the Curation and Publication of File-Based Datasets for GFZ Data Services. ISPRS Int. J. Geo-Inf. 2016, 5, 25. http://doi.org/10.3390/ijgi5030025[2] https://github.com/datacite[3] https://github.com/ulbricht/search/tree/doidb , https://github.com/ulbricht/mds/tree/doidb , https://github.com/ulbricht/oaip/tree/doidb[4] http://doidb.wdc-terra.org

  19. The Svalbard Integrated Arctic Earth Observing System (SIOS) ESFRI Initiative - A possible future cornerstone of European Arctic research

    NASA Astrophysics Data System (ADS)

    Hansen, Georg H.; Refsnes, Karin

    2010-05-01

    The Norwegian initiative "Svalbard Integrated Arctic Earth Observing System (SIOS) was included in the Revised Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) in 2009; an application to perform a preparatory phase project is currently under evaluation. The main aim of the SIOS initiative is to establish an Earth System observation platform in the European Arctic that is capable to match the whole scope of Earth System Models (ESM) on the observational side, ranging from solar/space-terrestrial interaction via atmosphere-ocean land-cryosphere coupling at the ground to geosphere-biosphere coupling. To this end, it is planned to integrate and upgrade all Arctic research stations on- and offshore in the Svalbard region which are currently operated by 15 nations, both European and worldwide. The initiative will also include the comprehensive marine and airborne monitoring and research activities and utilize the easy access to remote sensing data emerging from the satellite receiving activities at Longyearbyen. The already very comprehensive activity - though with limited international coordination - on Svalbard preconditions, as a first step, a thorough gap analysis of existing infrastructure in light of the needs of the modeling community and a careful design of the future overarching infrastructure. The interdisciplinary scientific character of SIOS makes the initiative well-suited to serve as a catalyser and integrator of the environmental ESFRI initiatives in the Arctic, while the truly global composition of the consortium may serve as a model for the envisaged pan-Arctic observing system SAON.

  20. Pavement Technology and Airport Infrastructure Expansion Impact

    NASA Astrophysics Data System (ADS)

    Sabib; Setiawan, M. I.; Kurniasih, N.; Ahmar, A. S.; Hasyim, C.

    2018-01-01

    This research aims for analyzing construction and infrastructure development activities potential contribution towards Airport Performance. This research is correlation study with variable research that includes Airport Performance as X variable and construction and infrastructure development activities as Y variable. The population in this research is 148 airports in Indonesia. The sampling technique uses total sampling, which means 148 airports that becomes the population unit then all of it become samples. The results of coefficient correlation (R) test showed that construction and infrastructure development activities variable have a relatively strong relationship with Airport Performance variable, but the value of Adjusted R Square shows that an increase in the construction and infrastructure development activities is influenced by factor other than Airport Performance.

  1. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  2. e-Infrastructures supporting research into depression, self-harm and suicide.

    PubMed

    McCafferty, S; Doherty, T; Sinnott, R O; Watt, J

    2010-08-28

    The Economic and Social Research Council (ESRC)-funded Data Management through e-Social Sciences (DAMES) project is investigating, as one of its four research themes, how research into depression, self-harm and suicide may be enhanced through the adoption of e-Science infrastructures and techniques. In this paper, we explore the challenges in supporting such research infrastructures and describe the distributed and heterogeneous datasets that need to be provisioned to support such research. We describe and demonstrate the application of an advanced user and security-driven infrastructure that has been developed specifically to meet these challenges in an on-going study into depression, self-harm and suicide.

  3. Embedding a randomized clinical trial into an ongoing registry infrastructure: unique opportunities for efficiency in design of the Study of Access site For Enhancement of Percutaneous Coronary Intervention for Women (SAFE-PCI for Women).

    PubMed

    Hess, Connie N; Rao, Sunil V; Kong, David F; Aberle, Laura H; Anstrom, Kevin J; Gibson, C Michael; Gilchrist, Ian C; Jacobs, Alice K; Jolly, Sanjit S; Mehran, Roxana; Messenger, John C; Newby, L Kristin; Waksman, Ron; Krucoff, Mitchell W

    2013-09-01

    Women are at higher risk than men for bleeding and vascular complications after percutaneous coronary intervention (PCI). Compared with femoral access, radial access reduces these complications but may be more challenging in women because of higher rates of radial artery spasm, tortuosity, and occlusion as well as lower rates of procedure success. Whether the safety advantages of radial versus femoral access in women undergoing PCI are outweighed by reduced effectiveness has not been studied. The Study of Access site For Enhancement of PCI for Women is a prospective, randomized clinical trial comparing radial with femoral arterial access in women undergoing PCI. In conjunction with the US Food and Drug Administration's Critical Path Cardiac Safety Research Consortium, this study embeds the randomized clinical trial into the existing infrastructure of the National Cardiovascular Data Registry CathPCI Registry through the National Institute of Health's National Cardiovascular Research Infrastructure. The primary efficacy end point is a composite of bleeding (Bleeding Academic Research Consortium types 2, 3, or 5) or vascular complication requiring intervention occurring at 72 hours after PCI or by hospital discharge. The primary feasibility end point is procedure success. Secondary end points include procedure duration, contrast volume, radiation dose, quality of life, and a composite of 30-day death, vascular complication, or unplanned revascularization. © 2013.

  4. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    NASA Astrophysics Data System (ADS)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  5. Lessons from comparative effectiveness research methods development projects funded under the Recovery Act.

    PubMed

    Zurovac, Jelena; Esposito, Dominick

    2014-11-01

    The American Recovery and Reinvestment Act of 2009 (ARRA) directed nearly US$29.2 million to comparative effectiveness research (CER) methods development. To help inform future CER methods investments, we describe the ARRA CER methods projects, identify barriers to this research and discuss the alignment of topics with published methods development priorities. We used several existing resources and held discussions with ARRA CER methods investigators. Although funded projects explored many identified priority topics, investigators noted that much work remains. For example, given the considerable investments in CER data infrastructure, the methods development field can benefit from additional efforts to educate researchers about the availability of new data sources and about how best to apply methods to match their research questions and data.

  6. An operational data access infrastructure for accessing integrated environmental and socio-economic data from the Dutch Wadden Sea

    NASA Astrophysics Data System (ADS)

    De Bruin, T.

    2012-12-01

    The Wadden Sea, an UNESCO World Heritage Site along the Northern coasts of The Netherlands, Germany and Denmark, is a very valuable, yet also highly vulnerable tidal flats area. Knowledge is key to the sustainable management of the Wadden Sea. This knowledge should be reliable, founded on promptly accessible information and sufficiently broad to integrate both ecological and economic analyses. The knowledge is gained from extensive monotoring of both ecological and socio-economic parameters. Even though many organisations, research institutes, government agencies and NGOs carry out monitoring, there is no central overview of monitoring activities, nor easy access to the resulting data. The 'Wadden Sea Long-Term Ecosystem Research' (WaLTER) project (2011-2015) aims to set-up an integrated monitoring plan for the main environmental and management issues relevant to the Wadden Sea, such as sea-level rise, fisheries management, recreation and industry activities. The WaLTER data access infrastructure will be a distributed system of data providers, with a centralized data access portal. It is based on and makes use of the existing data access infrastructure of the Netherlands National Oceanographic Data Committee (NL-NODC), which has been operational since early 2009. The NL-NODC system is identical to and in fact developed by the European SeaDataNet project, furthering standardisation on a pan-European scale. The presentation will focus on the use of a distributed data access infrastructure to address the needs of different user groups such as policy makers, scientists and the general public.

  7. Helix Nebula: Enabling federation of existing data infrastructures and data services to an overarching cross-domain e-infrastructure

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard

    2014-05-01

    Helix Nebula has established a growing public private partnership of more than 30 commercial cloud providers, SMEs, and publicly funded research organisations and e-infrastructures. The Helix Nebula strategy is to establish a federated cloud service across Europe. Three high-profile flagships, sponsored by CERN (high energy physics), EMBL (life sciences) and ESA/DLR/CNES/CNR (earth science), have been deployed and extensively tested within this federated environment. The commitments behind these initial flagships have created a critical mass that attracts suppliers and users to the initiative, to work together towards an "Information as a Service" market place. Significant progress in implementing the following 4 programmatic goals (as outlined in the strategic Plan Ref.1) has been achieved: × Goal #1 Establish a Cloud Computing Infrastructure for the European Research Area (ERA) serving as a platform for innovation and evolution of the overall infrastructure. × Goal #2 Identify and adopt suitable policies for trust, security and privacy on a European-level can be provided by the European Cloud Computing framework and infrastructure. × Goal #3 Create a light-weight governance structure for the future European Cloud Computing Infrastructure that involves all the stakeholders and can evolve over time as the infrastructure, services and user-base grows. × Goal #4 Define a funding scheme involving the three stake-holder groups (service suppliers, users, EC and national funding agencies) into a Public-Private-Partnership model to implement a Cloud Computing Infrastructure that delivers a sustainable business environment adhering to European level policies. Now in 2014 a first version of this generic cross-domain e-infrastructure is ready to go into operations building on federation of European industry and contributors (data, tools, knowledge, ...). This presentation describes how Helix Nebula is being used in the domain of earth science focusing on geohazards. The so called "Supersite Exploitation Platform" (SSEP) provides scientists an overarching federated e-infrastructure with a very fast access to (i) large volume of data (EO/non-space data), (ii) computing resources (e.g. hybrid cloud/grid), (iii) processing software (e.g. toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform capabilities (e.g. user management and access control, accounting, information portal, collaborative tools, social networks etc.). In this federation each data provider remains in full control of the implementation of its data policy. This presentation outlines the Architecture (technical and services) supporting very heterogeneous science domains as well as the procedures for new-comers to join the Helix Nebula Market Place. Ref.1 http://cds.cern.ch/record/1374172/files/CERN-OPEN-2011-036.pdf

  8. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  9. Contemporary (post-Wills) survey of the views of Australian medical researchers: importance of funding, infrastructure and motivators for a research career.

    PubMed

    Shewan, Louise G; Glatz, Jane A; Bennett, Christine C; Coats, Andrew J S

    To investigate the perceptions of Australian health and medical researchers 4 years after the Wills Report recommended and led to a substantial increase in health and medical research funding in Australia. A telephone poll of 501 active health and medical researchers, conducted between 28 April and 5 May, 2003. Researchers' views on the adequacy of funding, infrastructure and support, salary, community recognition, the excitement of discovery and research outcomes such as publication and patenting in research. Research funding was the most important concern: 91% of researchers (455/498) viewed funding as "very" or "extremely" important to their role, but only 10% (52/500) were "very" or "extremely" satisfied with the level of funding. Research infrastructure and support were seen as "very" or "extremely" important by 90% of researchers (449/501), while only 21% (104/501) were "very" or "extremely" satisfied. Researchers in medical research institutes were significantly more likely to be satisfied (27% [56/205] "very" or "extremely" satisfied) with the level of infrastructure and support than those working in universities (15% [41/268] "very" or "extremely" satisfied; P = 0.001). Among the factors that motivate researchers, the excitement of discovery stood out in terms of both high importance and satisfaction. Publications were viewed as more important research outcomes than patenting or commercial ventures. Funding and infrastructure support remain overwhelmingly researchers' greatest concerns. University-based researchers were less satisfied with infrastructure and support than those in independent medical research institutes.

  10. Real-time Identification System using Mobile Hand-held Devices: Mobile Biometrics Evaluation Framework

    DTIC Science & Technology

    2014-04-01

    must be done to determine current infrastructure and capabilities so that necessary updates and changes can be addressed up front. Mobile biometric...with existing satellite communications infrastructure . 20 PSTP 03-427BIOM 4 State of Mobile Biometric Device Market 4.1 Fingerprint...is a wireless information system highlighted by Real-time wireless data collection mobile device independence, wireless infrastructure independence

  11. Advanced space-based InSAR risk analysis of planned and existing transportation infrastructure.

    DOT National Transportation Integrated Search

    2017-03-21

    The purpose of this document is to summarize activities by Stanford University and : MDA Geospatial Services Inc. (MDA) to estimate surface deformation and associated : risk to transportation infrastructure using SAR Interferometric methods for the :...

  12. Potential impacts of solar arrays on highway environment, safety and operations.

    DOT National Transportation Integrated Search

    2015-10-01

    The advent of solar energy utilization in highway infrastructure around the country has been increasing in : recent years. Right of Ways (ROWs) have several advantages for energy development such as the existing : electrical infrastructure aligned wi...

  13. Expanded Transportation Performance Measures to Supplement Level of Service (LOS) for Growth Management and Transportation Impact Analysis

    DOT National Transportation Integrated Search

    2012-10-01

    Floridas transportation infrastructure must continually evolve to meet the demands of its growing population. Many jurisdictions are moving toward multimodal transportation systems that utilize existing infrastructure more efficiently, providing u...

  14. Adapting to climate change : the public policy response - public infrastructure

    DOT National Transportation Integrated Search

    2009-06-01

    This paper assesses the threats and needs that multidimensional climate change imposes for : public infrastructure, reviews the existing adaptive capacity that could be applied to respond : to these threats and needs, and presents options for enhanci...

  15. Green Infrastructure Models and Tools

    EPA Science Inventory

    The objective of this project is to modify and refine existing models and develop new tools to support decision making for the complete green infrastructure (GI) project lifecycle, including the planning and implementation of stormwater control in urban and agricultural settings,...

  16. User-level framework for performance monitoring of HPC applications

    NASA Astrophysics Data System (ADS)

    Hristova, R.; Goranov, G.

    2013-10-01

    HP-SEE is an infrastructure that links the existing HPC facilities in South East Europe in a common infrastructure. The analysis of the performance monitoring of the High-Performance Computing (HPC) applications in the infrastructure can be useful for the end user as diagnostic for the overall performance of his applications. The existing monitoring tools for HP-SEE provide to the end user only aggregated information for all applications. Usually, the user does not have permissions to select only the relevant information for him and for his applications. In this article we present a framework for performance monitoring of the HPC applications in the HP-SEE infrastructure. The framework provides standardized performance metrics, which every user can use in order to monitor his applications. Furthermore as a part of the framework a program interface is developed. The interface allows the user to publish metrics data from his application and to read and analyze gathered information. Publishing and reading through the framework is possible only with grid certificate valid for the infrastructure. Therefore the user is authorized to access only the data for his applications.

  17. The GEOSS solution for enabling data interoperability and integrative research.

    PubMed

    Nativi, Stefano; Mazzetti, Paolo; Craglia, Max; Pirrone, Nicola

    2014-03-01

    Global sustainability research requires an integrative research effort underpinned by digital infrastructures (systems) able to harness data and heterogeneous information across disciplines. Digital data and information sharing across systems and applications is achieved by implementing interoperability: a property of a product or system to work with other products or systems, present or future. There are at least three main interoperability challenges a digital infrastructure must address: technological, semantic, and organizational. In recent years, important international programs and initiatives are focusing on such an ambitious objective. This manuscript presents and combines the studies and the experiences carried out by three relevant projects, focusing on the heavy metal domain: Global Mercury Observation System, Global Earth Observation System of Systems (GEOSS), and INSPIRE. This research work recognized a valuable interoperability service bus (i.e., a set of standards models, interfaces, and good practices) proposed to characterize the integrative research cyber-infrastructure of the heavy metal research community. In the paper, the GEOSS common infrastructure is discussed implementing a multidisciplinary and participatory research infrastructure, introducing a possible roadmap for the heavy metal pollution research community to join GEOSS as a new Group on Earth Observation community of practice and develop a research infrastructure for carrying out integrative research in its specific domain.

  18. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeslee, Samuel Norman; Toman, William I.; Williams, Richard B.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  19. Human Health Countermeasures (HHC) Element Management Plan: Human Research Program. Revision B

    NASA Technical Reports Server (NTRS)

    Norsk, Peter; Baumann, David

    2012-01-01

    NASA s Human Research Program (HRP) is an applied research and technology program within the Human Exploration and Operations Mission Directorate (HEOMD) that addresses human health and performance risk mitigation strategies in support of exploration missions. The HRP research and technology development is focused on the highest priority risks to crew health and safety with the goal of ensuring mission success and maintaining long-term crew health. Crew health and performance standards, defined by the NASA Chief Health and Medical Officer (CHMO), set the acceptable risk level for exploration missions. The HRP conducts research to inform these standards as well as provide deliverables, such as countermeasures, that ensure standards can be met to maximize human performance and mission success. The Human Health Countermeasures (HHC) Element was formed as part of the HRP to develop a scientifically-based, integrated approach to understanding and mitigating the health risks associated with human spaceflight. These health risks have been organized into four research portfolios that group similar or related risks. A fifth portfolio exists for managing technology developments and infrastructure projects. The HHC Element portfolios consist of: a) Vision and Cardiovascular; b) Exercise and Performance; c) Multisystem; d) Bone; and e) Technology and Infrastructure. The HHC identifies gaps associated with the health risks and plans human physiology research that will result in knowledge required to more fully understand risks and will result in validated countermeasures to mitigate risks.

  20. An action research approach for developing research and innovation in nursing and midwifery practice: building research capacity in one NHS foundation trust.

    PubMed

    Moore, Jenny; Crozier, Kenda; Kite, Katharine

    2012-01-01

    The National Health Service in the United Kingdom is committed to a process of reform centred on quality care and innovative practice. Central to this process is the need for research capacity building within the workforce. The aim of this study was to develop an infrastructure for research capacity building within one National Health Service Foundation Trust. Using an Action Research methodology, sixteen individuals were purposefully selected from a population of nurses and midwives to participate in the study. This nonprobability sampling method enabled the researchers to select participants on the basis of who would be most informative about existing research capacity building structures and processes within the Trust. Data were collected in the form of semi-structured individual interviews with each participant. The main findings were that research activity was not embedded in the culture of the organisation, and initiating and undertaking change was a complex process. As a result, a range of structures and processes which were considered necessary to enable the Trust move forward in developing capacity and capability for research were developed and implemented. This paper reports the first two stages of this process, namely: the findings from the pre-step and an outline of how these findings were used to create an infrastructure to support research capacity building within one NHS Foundation Trust Hospital in the United Kingdom. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. NREL Serves as the Energy Department's Showcase for Cutting-Edge Fuel Cell

    Science.gov Websites

    vehicle on loan from Hyundai through a one-year Cooperative Research and Development Agreement and a B produced at the Hydrogen Infrastructure Testing and Research Facility (HITRF) located at NREL's Energy and infrastructure as part of the Energy Department's Hydrogen Fueling Infrastructure Research and

  2. Overview of U.S. EPA Aging Water Infrastructure Research Program - Interfacing with the Water Industry on Technology Assessment

    EPA Science Inventory

    This slide presentation summarizes key elements of the EPA Office of Research and Development’s (ORD) Aging Water Infrastructure (AWI) Research program. An overview of the national problems posed by aging water infrastructure is followed by a brief description of EPA’s overall r...

  3. Economic performance of water storage capacity expansion for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  4. FOSS Tools for Research Infrastructures - A Success Story?

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a success story.

  5. Towards an advanced e-Infrastructure for Civil Protection applications: Research Strategies and Innovation Guidelines

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.; Verlato, M.; Angelini, V.

    2009-04-01

    In the context of the EU co-funded project CYCLOPS (http://www.cyclops-project.eu) the problem of designing an advanced e-Infrastructure for Civil Protection (CP) applications has been addressed. As a preliminary step, some studies about European CP systems and operational applications were performed in order to define their specific system requirements. At a higher level it was verified that CP applications are usually conceived to map CP Business Processes involving different levels of processing including data access, data processing, and output visualization. At their core they usually run one or more Earth Science models for information extraction. The traditional approach based on the development of monolithic applications presents some limitations related to flexibility (e.g. the possibility of running the same models with different input data sources, or different models with the same data sources) and scalability (e.g. launching several runs for different scenarios, or implementing more accurate and computing-demanding models). Flexibility can be addressed adopting a modular design based on a SOA and standard services and models, such as OWS and ISO for geospatial services. Distributed computing and storage solutions could improve scalability. Basing on such considerations an architectural framework has been defined. It is made of a Web Service layer providing advanced services for CP applications (e.g. standard geospatial data sharing and processing services) working on the underlying Grid platform. This framework has been tested through the development of prototypes as proof-of-concept. These theoretical studies and proof-of-concept demonstrated that although Grid and geospatial technologies would be able to provide significant benefits to CP applications in terms of scalability and flexibility, current platforms are designed taking into account requirements different from CP. In particular CP applications have strict requirements in terms of: a) Real-Time capabilities, privileging time-of-response instead of accuracy, b) Security services to support complex data policies and trust relationships, c) Interoperability with existing or planned infrastructures (e.g. e-Government, INSPIRE compliant, etc.). Actually these requirements are the main reason why CP applications differ from Earth Science applications. Therefore further research is required to design and implement an advanced e-Infrastructure satisfying those specific requirements. In particular five themes where further research is required were identified: Grid Infrastructure Enhancement, Advanced Middleware for CP Applications, Security and Data Policies, CP Applications Enablement, and Interoperability. For each theme several research topics were proposed and detailed. They are targeted to solve specific problems for the implementation of an effective operational European e-Infrastructure for CP applications.

  6. Geotechnical Engineering Circular No. 3. Design Guidance: Geotechnical Earthquake Engineering for Highways. Volume II - Design Examples

    DOT National Transportation Integrated Search

    1994-02-01

    The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...

  7. Public-private partnerships in transportation infrastructure : survey of experiences and perceptions.

    DOT National Transportation Integrated Search

    2013-09-01

    The use of public-private partnerships (PPPs) for transportation infrastructure delivery has increased in : the U.S. However, concerns about and opposition to these agreements exist due to a variety of factors. : This paper explores the perceptions t...

  8. Toward Information Infrastructure Studies: Ways of Knowing in a Networked Environment

    NASA Astrophysics Data System (ADS)

    Bowker, Geoffrey C.; Baker, Karen; Millerand, Florence; Ribes, David

    This article presents Information Infrastructure Studies, a research area that takes up some core issues in digital information and organization research. Infrastructure Studies simultaneously addresses the technical, social, and organizational aspects of the development, usage, and maintenance of infrastructures in local communities as well as global arenas. While infrastructure is understood as a broad category referring to a variety of pervasive, enabling network resources such as railroad lines, plumbing and pipes, electrical power plants and wires, this article focuses on information infrastructure, such as computational services and help desks, or federating activities such as scientific data repositories and archives spanning the multiple disciplines needed to address such issues as climate warming and the biodiversity crisis. These are elements associated with the internet and, frequently today, associated with cyberinfrastructure or e-science endeavors. We argue that a theoretical understanding of infrastructure provides the context for needed dialogue between design, use, and sustainability of internet-based infrastructure services. This article outlines a research area and outlines overarching themes of Infrastructure Studies. Part one of the paper presents definitions for infrastructure and cyberinfrastructure, reviewing salient previous work. Part two portrays key ideas from infrastructure studies (knowledge work, social and political values, new forms of sociality, etc.). In closing, the character of the field today is considered.

  9. Mobilising Open Access to Research Data: Recommendations from the RECODE project

    NASA Astrophysics Data System (ADS)

    Finn, Rachel; Sveinsdottir, Thordis

    2015-04-01

    This paper will introduce the findings and policy recommendations from the FP7 project RECODE (Policy RECommendations for Open Access to Research Data in Europe) which aims to leverage existing networks, communities and projects to address challenges within the open access and data dissemination and preservation sector. We will introduce the key recommendations, which provide solutions relevant to opening access to PSI. The project is built on case study research of five scientific disciplines with the aim of recognizing and working with disciplinary fragmentation associated with open access to research data. The RECODE findings revealed that the mobilisation of open access to research data requires a partnership approach for developing a coherent and flexible ecosystem that is easy and transparent to embed in research practice and process. As such, the development of open access to research data needs to be: • Informed by research practices and processes in different fields • Supported by an integrated institutional and technological data infrastructure and guided by ethical and regulatory frameworks • Underpinned by infrastructure and guiding frameworks that allow for differences in disciplinary research and data management practices • Characterised by a partnership approach involving the key stakeholders, researchers, and institutions The proposed presentation will examine each of these aspects in detail and use information and good practices from the RECODE project to consider how stakeholders within the PSI movement might action each of these points. It will also highlight areas where RECODE findings and good practice recommendations have clear relevance for the PSI sector.

  10. Experiences and Lessons Learnt with Collaborative e-Research Infrastructure and the application of Identity Management and Access Control for the Centre for Environmental Data Analysis

    NASA Astrophysics Data System (ADS)

    Kershaw, P.

    2016-12-01

    CEDA, the Centre for Environmental Data Analysis, hosts a range of services on behalf of NERC (Natural Environment Research Council) for the UK environmental sciences community and its work with international partners. It is host to four data centres covering atmospheric science, earth observation, climate and space data domain areas. It holds this data on behalf of a number of different providers each with their own data policies which has thus required the development of a comprehensive system to manage access. With the advent of CMIP5, CEDA committed to be one of a number of centres to host the climate model outputs and make them available through the Earth System Grid Federation, a globally distributed software infrastructure developed for this purpose. From the outset, a means for restricting access to datasets was required, necessitating the development a federated system for authentication and authorisation so that access to data could be managed across multiple providers around the world. From 2012, CEDA has seen a further evolution with the development of JASMIN, a multi-petabyte data analysis facility. Hosted alongside the CEDA archive, it provides a range of services for users including a batch compute cluster, group workspaces and a community cloud. This has required significant changes and enhancements to the access control system. In common with many other examples in the research community, the experiences of the above underline the difficulties of developing collaborative e-Research infrastructures. Drawing from these there are some recurring themes: Clear requirements need to be established at the outset recognising that implementing strict access policies can incur additional development and administrative overhead. An appropriate balance is needed between ease of access desired by end users and metrics and monitoring required by resource providers. The major technical challenge is not with security technologies themselves but their effective integration with services and resources which they must protect. Effective policy and governance structures are needed for ongoing operations Federated identity infrastructures often exist only at the national level making it difficult for international research collaborations to exploit them.

  11. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.

  12. A Framework For Analysis Of Coastal Infrastructure Vunerabilty To Global Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Obrien, P. S.; White, K. D.; Veatch, W.; Marzion, R.; Moritz, H.; Moritz, H. R.

    2017-12-01

    Recorded impacts of global sea rise on coastal water levels have been documented over the past 100 to 150 years. In the recent 40 years the assumption of hydrologic stationarity has been recognized as invalid. New coastal infrastructure designs must recognize the paradigm shift from hydrologic stationarity to non-stationarity in coastal hydrology. A framework for the evaluation of existing coastal infrastructure is proposed to effectively assess design vulnerability. Two data sets developed from existing structures are chosen to test a proposed framework for vunerabilty to global sea level rise, with the proposed name Climate Preparedness and Resilience Register (CPRR). The CPRR framework consists of four major elements; Datum Adjustment, Coastal Water Levels, Scenario Projections and Performance Thresholds.

  13. Patient engagement in patient-centered outcomes research: challenges, facilitators and actions to strengthen the field.

    PubMed

    Ellis, Lauren E; Kass, Nancy E

    2017-06-01

    To describe challenges to and facilitators of patient engagement to inform future strategies and suggested actions to strengthen engagement. Interviews with 19 principal investigators of projects funded by the Patient-Centered Outcomes Research Institute and with 33 patients from 18 of the 19 projects. Facilitators included using existing resources, having clear goals, educating patients and treating patients respectfully. Logistical challenges included extra time and work, institutional barriers and difficulty having meetings. Substantive challenges to selecting, educating and engaging patients, and incorporating feedback were also reported. To bolster the infrastructure for engagement, we suggest funders, institutions and researchers focus on resources and training for researchers and patients, networks and programs to connect stakeholders and model policies.

  14. EVER-EST: a virtual research environment for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Albani, Mirko; Glaves, Helen

    2016-04-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST data processing infrastructure will be based on a Cloud Computing approach, in which new applications can be integrated using "virtual machines" that have their own specifications (disk size, processor speed, operating system etc.) and run on shared private (physical deployment over local hardware) or commercial Cloud infrastructures. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains including: ocean monitoring, natural hazards, land monitoring and risk management (volcanoes and seismicity). Each VRC will use the virtual research environment according to its own specific requirements for data, software, best practice and community engagement. This user-centric approach will allow an assessment to be made of the capability for the proposed solution to satisfy the heterogeneous needs of a variety of Earth Science communities for more effective collaboration, and higher efficiency and creativity in research. EVER-EST is funded by the European Commission's H2020 for three years starting in October 2015. The project is led by the European Space Agency (ESA), involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.

  15. Enhancing future resilience in urban drainage system: Green versus grey infrastructure.

    PubMed

    Dong, Xin; Guo, Hao; Zeng, Siyu

    2017-11-01

    In recent years, the concept transition from fail-safe to safe-to-fail makes the application of resilience analysis popular in urban drainage systems (UDSs) with various implications and quantifications. However, most existing definitions of UDSs resilience are confined to the severity of flooding, while uncertainties from climate change and urbanization are not considered. In this research, we take into account the functional variety, topological complexity, and disturbance randomness of UDSs and define a new formula of resilience based on three parts of system severity, i.e. social severity affected by urban flooding, environmental severity caused by sewer overflow, and technological severity considering the safe operation of downstream facilities. A case study in Kunming, China is designed to compare the effect of green and grey infrastructure strategies on the enhancement of system resilience together with their costs. Different system configurations with green roofs, permeable pavement and storage tanks are compared by scenario analysis with full consideration of future uncertainties induced by urbanization and climate change. The research contributes to the development of sustainability assessment of urban drainage system with consideration of the resilience of green and grey infrastructure under future change. Finding the response measures with high adaptation across a variety of future scenarios is crucial to establish sustainable urban drainage system in a long term. Copyright © 2017. Published by Elsevier Ltd.

  16. Green Infrastructure Research at EPA's Edison Environmental Center

    EPA Science Inventory

    The presentation outline includes: (1) Green infrastructure research objectives (2) Introduction to ongoing research projects - Aspects of design, construction, and maintenence that affect function - Real-world applications of GI research

  17. How do we get from cell and animal data to risks for humans from space radiations?

    NASA Technical Reports Server (NTRS)

    Dicello, J. F.

    2002-01-01

    After four decades of human exploration in space, many scientists consider the medical consequences from radiation exposures to be the major biological risk associated with long-term missions. This conclusion is based upon results from a research program that has evolved over the past thirty years. Despite the diversity in both opinions and approaches that necessarily arise in research endeavors such as this, a commonality has emerged from our community. We need epidemiological data for humans, animal data in areas where no human data exist, and data on mechanisms to get from animal to humans. We need a programmatic infrastructure that addresses specific goals as well as basic research. These concepts might be deemed overly simplistic and even tautologous were it not for the fact that they are frequently underutilized and even ignored. This article examines the goals, premises, and infrastructures proposed by expert panels and agencies to address radiation risks in space. It is proposed that the required level of effort and the resources available demand a unified, focused international effort that is, at the same time, subjected to rigorous peer review if it is to be successful. There is a plan; let us implement it.

  18. The use of sustainable materials for quick repair of aging bridges : phase II final report.

    DOT National Transportation Integrated Search

    2012-02-01

    "During the last decade fiber reinforced polymer (FRP) materials have gained wide acceptance for repair and strengthening of existing infrastructures or to design new infrastructures due to their desirable properties (high strength to weight ratio, l...

  19. Broad roads in a thin country : infrastructure concessions in Chile

    DOT National Transportation Integrated Search

    2000-01-01

    Chile has experienced rapid economic growth for more than a decade. Demand for basic infrastructure services has grown in tandem with the economic expansion, quickly outstripping the supply capacity of existing assets. In the early 90's a policy deci...

  20. Characteristics of the auto users and non-users of central Texas toll roads.

    DOT National Transportation Integrated Search

    2009-08-01

    As toll road usage increases to finance new road infrastructure or add capacity to existing road infrastructure, the : question of who does and does not use toll roads becomes increasingly important to toll road developers, financiers, : Traffic and ...

  1. Reshoring and its impact on transportation infrastructure & US economy.

    DOT National Transportation Integrated Search

    2016-12-01

    Reshoring is expected to have a tremendous impact on the United States (US) economy and on the utilization of the existing : transportation infrastructures of the country. It is an immense need to identify the potential companies in the US that will ...

  2. Standardized cardiovascular data for clinical research, registries, and patient care: a report from the Data Standards Workgroup of the National Cardiovascular Research Infrastructure project.

    PubMed

    Anderson, H Vernon; Weintraub, William S; Radford, Martha J; Kremers, Mark S; Roe, Matthew T; Shaw, Richard E; Pinchotti, Dana M; Tcheng, James E

    2013-05-07

    Relatively little attention has been focused on standardization of data exchange in clinical research studies and patient care activities. Both are usually managed locally using separate and generally incompatible data systems at individual hospitals or clinics. In the past decade there have been nascent efforts to create data standards for clinical research and patient care data, and to some extent these are helpful in providing a degree of uniformity. Nonetheless, these data standards generally have not been converted into accepted computer-based language structures that could permit reliable data exchange across computer networks. The National Cardiovascular Research Infrastructure (NCRI) project was initiated with a major objective of creating a model framework for standard data exchange in all clinical research, clinical registry, and patient care environments, including all electronic health records. The goal is complete syntactic and semantic interoperability. A Data Standards Workgroup was established to create or identify and then harmonize clinical definitions for a base set of standardized cardiovascular data elements that could be used in this network infrastructure. Recognizing the need for continuity with prior efforts, the Workgroup examined existing data standards sources. A basic set of 353 elements was selected. The NCRI staff then collaborated with the 2 major technical standards organizations in health care, the Clinical Data Interchange Standards Consortium and Health Level Seven International, as well as with staff from the National Cancer Institute Enterprise Vocabulary Services. Modeling and mapping were performed to represent (instantiate) the data elements in appropriate technical computer language structures for endorsement as an accepted data standard for public access and use. Fully implemented, these elements will facilitate clinical research, registry reporting, administrative reporting and regulatory compliance, and patient care. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Hydrologists in the City: Re-envisioning How We Manage Water in Urban Areas

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.

    2014-12-01

    As the footprint of our urban areas expands, so does our manipulation of the hydrology. For decades we have channeled runoff into storm sewers, wreaking havoc on downstream water bodies with pulses of polluted stormwater. Recently, there has been a push for 'green infrastructure' to replace this hard, grey infrastructure, where green infrastructure- from rain gardens to green roofs to restored riparian areas- would detain stormwater and promote pollutant removal, in addition to a plethora of other ecosystem services. Primarily, it has been landscape architects, engineers, and urban planners who have jumped on the green infrastructure bandwagon. I believe there is also a niche for hydrologists and biogeochemists in re-envisioning how we manage stormwater in urban areas. Developed areas may not be as enticing as a remote mountain field site and their hydrology may be a lot more complicated to model than that of a forest hillslope, but these areas are where the majority of people live and where we could have a great impact on informing better water management practices. In collaboration with more applied fields like landscape architecture and engineering, we can provide crucial insight on existing hydrology as well as how certain green infrastructure or other alternative considerations could support a more sustainable and resilient city, particularly in the face of climate change. Our knowledge on landscape hydrological processes and biogeochemical cycling- combined with the expertise of these other fields- can inform design of truly multi-functional green infrastructure that can effectively manage storm runoff in addition to providing wildlife habitat, carbon sequestration, improved aesthetics, and even an opportunity to engage with citizens. While there are certainly some hydrologists that have recognized this opportunity, I hope to see many more pursuing research and seeking solutions for better management of water in urbanized areas.

  4. caGrid 1.0: a Grid enterprise architecture for cancer research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  5. ARTES: the future of satellite telecommunication

    NASA Astrophysics Data System (ADS)

    González-Blázquez, Angel; Detain, Dominique

    2005-08-01

    Throughout its 30-year existence, ESA has played a key role by providing telecommunications infrastructures that have allowed the in-orbit validation, qualification and demonstration of equipment, technology and services. In the past, this has been achieved through the provision of dedicated satellites like OTS, Marecs, Olympus and Artemis, as well as by the implementation of piggy-back payloads on other ESA or commercial satellites. Today, due to the importance of satellite telecommunications, ESA continues to support this sector mainly through its ARTES - Advanced Research in Telecommunications - Programme.

  6. An open science cloud for scientific research

    NASA Astrophysics Data System (ADS)

    Jones, Bob

    2016-04-01

    The Helix Nebula initiative was presented at EGU 2013 (http://meetingorganizer.copernicus.org/EGU2013/EGU2013-1510-2.pdf) and has continued to expand with more research organisations, providers and services. The hybrid cloud model deployed by Helix Nebula has grown to become a viable approach for provisioning ICT services for research communities from both public and commercial service providers (http://dx.doi.org/10.5281/zenodo.16001). The relevance of this approach for all those communities facing societal challenges in explained in a recent EIROforum publication (http://dx.doi.org/10.5281/zenodo.34264). This presentation will describe how this model brings together a range of stakeholders to implement a common platform for data intensive services that builds upon existing public funded e-infrastructures and commercial cloud services to promote open science. It explores the essential characteristics of a European Open Science Cloud if it is to address the big data needs of the latest generation of Research Infrastructures. The high-level architecture and key services as well as the role of standards is described. A governance and financial model together with the roles of the stakeholders, including commercial service providers and downstream business sectors, that will ensure a European Open Science Cloud can innovate, grow and be sustained beyond the current project cycles is described.

  7. Aging Water Infrastructure Research Program Innovation & Research for the 21st Century

    EPA Science Inventory

    The U.S. infrastructure is critical for providing essential services: protect public health and the environment and support and sustain our economy. Significant investment in water infrastructure: over 16,000 WWTPs serving 190 million people; about 54,000 community water syste...

  8. Climate Change Impacts on Runoff Generation for the Design of Sustainable Stormwater Infrastructure

    DOT National Transportation Integrated Search

    2011-06-01

    Climate change over the Pacific Northwest is expected to alter the hydrological cycle, such as an increase in winter flooding potential due to more precipitation falling as snow and more frequent rain on snow events. Existing infrastructure for storm...

  9. Characteristics of the truck users and non-users of Texas toll roads.

    DOT National Transportation Integrated Search

    2009-08-01

    As the use of toll roads increase to finance new road infrastructure or add capacity to existing road infrastructure, the : question of who use and do not use toll roads becomes increasingly important to toll road developers, financiers, : Traffic an...

  10. Minimizing Overhead for Secure Computation and Fully Homomorphic Encryption: Overhead

    DTIC Science & Technology

    2015-11-01

    many inputs. We also improved our compiler infrastructure to handle very large circuits in a more scalable way. In Jan’13, we employed the AESNI and...Amazon’s elastic compute infrastructure , and is running under a Xen hypervisor. Since we do not have direct access to the bare metal, we cannot...creating novel opportunities for compressing au- thentication overhead. It is especially compelling that existing public key infrastructures can be used

  11. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of hydrological system changes, and to develop and implement tools and technologies for monitoring, prevention and mitigation of environmental risks and pressures. In addition, NOHA will provide long-term statistical series of hydrological state variables and fluxes for the analysis and prognosis of Global Change consequences using integrated model systems. These data will support the development and establishment of efficient prevention, mitigation and adaptation strategies (E.g. EU-Water Framework Directive) and spur the development and validation of hydrological theories and models. The second network, ALPS, - the Alpine Observing System - will create an unique infrastructure for environmental and climate research and observation for the whole Alpine region, providing a common platform for the benefit of the society in Europe as a whole. The initiative will build on existing infrastructure in the participating countries and on new and emerging technology, allowing an unprecedented coverage of observation systems at affordable cost. ALPS will create a new collaboration between scientists, engineers, monitoring agencies, public and decision makers, with the aim to gain an integrated understanding of complex environmental systems. The ALPS effort will be structured along three major axes: (i) harmonize and strengthen the backbone of permanent measurement infrastructures and complement these with dense deployments of intelligent networks, to improve the recording of environmental parameters overcoming disciplinary and national borders, (ii) link the main data centres to create a distributed cyber-infrastructure with the final aim to enable effective data access and retrieval to all science and society users, and (iii) invest in data assimilation and exploitation toward scientific and practical results in particular with respect to dealing with extreme events and natural hazards. In this presentation, we will focus on the motivation, the concept and the scientific and organizational challenges of ALPS and NOHA.

  12. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  13. Overcoming Barriers in Kidney Health-Forging a Platform for Innovation.

    PubMed

    Linde, Peter G; Archdeacon, Patrick; Breyer, Matthew D; Ibrahim, Tod; Inrig, Jula K; Kewalramani, Reshma; Lee, Celeste Castillo; Neuland, Carolyn Y; Roy-Chaudhury, Prabir; Sloand, James A; Meyer, Rachel; Smith, Kimberly A; Snook, Jennifer; West, Melissa; Falk, Ronald J

    2016-07-01

    Innovation in kidney diseases is not commensurate with the effect of these diseases on human health and mortality or innovation in other key therapeutic areas. A primary cause of the dearth in innovation is that kidney diseases disproportionately affect a demographic that is largely disenfranchised, lacking sufficient advocacy, public attention, and funding. A secondary and likely consequent cause is that the existing infrastructure supporting nephrology research pales in comparison with those for other internal medicine specialties, especially cardiology and oncology. Citing such inequities, however, is not enough. Changing the status quo will require a coordinated effort to identify and redress the existing deficits. Specifically, these deficits relate to the need to further develop and improve the following: understanding of the disease mechanisms and pathophysiology, patient engagement and activism, clinical trial infrastructure, and investigational clinical trial designs as well as coordinated efforts among critical stakeholders. This paper identifies potential solutions to these barriers, some of which are already underway through the Kidney Health Initiative. The Kidney Health Initiative is unique and will serve as a current and future platform from which to overcome these barriers to innovation in nephrology. Copyright © 2016 by the American Society of Nephrology.

  14. Probabilistic Determination of Green Infrastructure Pollutant Removal Rates from the International Stormwater BMP Database

    NASA Astrophysics Data System (ADS)

    Gilliom, R.; Hogue, T. S.; McCray, J. E.

    2017-12-01

    There is a need for improved parameterization of stormwater best management practices (BMP) performance estimates to improve modeling of urban hydrology, planning and design of green infrastructure projects, and water quality crediting for stormwater management. Percent removal is commonly used to estimate BMP pollutant removal efficiency, but there is general agreement that this approach has significant uncertainties and is easily affected by site-specific factors. Additionally, some fraction of monitored BMPs have negative percent removal, so it is important to understand the probability that a BMP will provide the desired water quality function versus exacerbating water quality problems. The widely used k-C* equation has shown to provide a more adaptable and accurate method to model BMP contaminant attenuation, and previous work has begun to evaluate the strengths and weaknesses of the k-C* method. However, no systematic method exists for obtaining first-order removal rate constants needed to use the k-C* equation for stormwater BMPs; thus there is minimal application of the method. The current research analyzes existing water quality data in the International Stormwater BMP Database to provide screening-level parameterization of the k-C* equation for selected BMP types and analysis of factors that skew the distribution of efficiency estimates from the database. Results illustrate that while certain BMPs are more likely to provide desired contaminant removal than others, site- and design-specific factors strongly influence performance. For example, bioretention systems show both the highest and lowest removal rates of dissolved copper, total phosphorous, and total nitrogen. Exploration and discussion of this and other findings will inform the application of the probabilistic pollutant removal rate constants. Though data limitations exist, this research will facilitate improved accuracy of BMP modeling and ultimately aid decision-making for stormwater quality management in urban systems.

  15. Research infrastructure support to address ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Los, Wouter

    2014-05-01

    Predicting the evolution of ecosystems to climate change or human pressures is a challenge. Even understanding past or current processes is complicated as a result of the many interactions and feedbacks that occur within and between components of the system. This talk will present an example of current research on changes in landscape evolution, hydrology, soil biogeochemical processes, zoological food webs, and plant community succession, and how these affect feedbacks to components of the systems, including the climate system. Multiple observations, experiments, and simulations provide a wealth of data, but not necessarily understanding. Model development on the coupled processes on different spatial and temporal scales is sensitive for variations in data and of parameter change. Fast high performance computing may help to visualize the effect of these changes and the potential stability (and reliability) of the models. This may than allow for iteration between data production and models towards stable models reducing uncertainty and improving the prediction of change. The role of research infrastructures becomes crucial is overcoming barriers for such research. Environmental infrastructures are covering physical site facilities, dedicated instrumentation and e-infrastructure. The LifeWatch infrastructure for biodiversity and ecosystem research will provide services for data integration, analysis and modeling. But it has to cooperate intensively with the other kinds of infrastructures in order to support the iteration between data production and model computation. The cooperation in the ENVRI project (Common operations of environmental research infrastructures) is one of the initiatives to foster such multidisciplinary research.

  16. Comprehending the multiple 'values' of green infrastructure - Valuing nature-based solutions for urban water management from multiple perspectives.

    PubMed

    Wild, T C; Henneberry, J; Gill, L

    2017-10-01

    The valuation of urban water management practices and associated nature-based solutions (NBS) is highly contested, and is becoming increasingly important to cities seeking to increase their resilience to climate change whilst at the same time facing budgetary pressures. Different conceptions of 'values' exist, each being accompanied by a set of potential measures ranging from calculative practices (closely linked to established market valuation techniques) - through to holistic assessments that seek to address wider concerns of sustainability. Each has the potential to offer important insights that often go well beyond questions of balancing the costs and benefits of the schemes concerned. However, the need to address - and go beyond - economic considerations presents policy-makers, practitioners and researchers with difficult methodological, ethical and practical challenges, especially when considered without the benefit of a broader theoretical framework or in the absence of well-established tools (as might apply within more traditional infrastructural planning contexts, such as the analysis of transport interventions). Drawing on empirical studies undertaken in Sheffield over a period of 10 years, and delivered in partnership with several other European cities and regions, we compare and examine different attempts to evaluate the benefits of urban greening options and future development scenarios. Comparing these different approaches to the valuation of nature-based solutions alongside other, more conventional forms of infrastructure - and indeed integrating both 'green and grey' interventions within a broader framework of infrastructures - throws up some surprising results and conclusions, as well as providing important sign-posts for future research in this rapidly emerging field. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Astronomy: On the Bleeding Edge of Scholarly Infrastructure

    NASA Astrophysics Data System (ADS)

    Borgman, Christine; Sands, A.; Wynholds, L. A.

    2013-01-01

    The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have interviewed and observed.

  18. Urban Mobility Analysis on Efficiency and Sustainability by Means of Transportation

    NASA Astrophysics Data System (ADS)

    Branea, Ana-Maria; Gaman, Marius; Badescu, Stefana

    2017-10-01

    Patterns of urban land use are inherently linked to the predominantly used means of transportation, both generating and being generated themselves. While each mode of transportation shapes a different development typology a clear understanding of their interrelations and dependencies is needed in order to create a comprehensive mobility strategy. The study proposes a 15-criteria analysis framework developed to identify and quantify the main modes of transportation’s key aspects. The analysis framework was applied to a yearlong research on Timisoara, Romania, comprising hard, quantitative data, digital simulations and mobility pattern analysis and soft data, quality assessment and perceived needs and satisfaction levels. The research was carried out in clear opposition to the national trend of official mobility strategies focusing on accommodating increased levels of car traffic on the underdeveloped existing roads infrastructure. By analysing the efficiency and sustainability of all four main modes of transportation the results offer a holistic comprehensive view. While, despite current practices, no mobility strategy can focus on a single means of transportation, the article will only present in detail the research on cycling, infrastructure and use, as it is the most underdeveloped and least discussed at the national level and proven through our study to be the most efficient for a city of Timisoara’s size and characteristics. By identifying a clear link between urban land use patterns, infrastructure quality and perceptions and the most efficient means of transportation for each particular city type mobility strategies could shift the trend of urban development towards a more sustainable one.

  19. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    NASA Astrophysics Data System (ADS)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  20. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    PubMed

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags 1 . Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATALUCCI,RUDOLPH V.; O'CONNOR,SHARON

    The mission of the Architectural Surety{trademark} program at Sandia National Laboratories is to assure the performance of buildings, facilities, and other infrastructure systems under normal, abnormal, and malevolent threat conditions. Through educational outreach efforts in the classroom, at conferences, and presentations such as this one, public and professional awareness of the need to defuse and mitigate such threats is increased. Buildings, airports, utilities, and other kinds of infrastructure deteriorate over time, as evidenced most dramatically by the crumbling cities and aging buildings, bridges, and other facility systems. Natural disasters such as tornadoes, earthquakes, hurricanes, and flooding also stress the materialsmore » and structural elements of the built environment. In addition, criminals, vandals, and terrorists attack federal buildings, dams, bridges, tunnels, and other public and private facilities. Engineers and architects are beginning to systematically consider these threats during the design, construction, and retrofit phases of buildings and infrastructures and are recommending advanced research in new materials and techniques. Existing building codes and standards do not adequately address nor protect the infrastructure or the public from many of these emerging threats. The activities in Sandia National Laboratories' Architectural Surety{trademark} efforts take a risk management approach to enhancing the safety, security, and reliability of the constructed environment. The technologies and techniques developed during Sandia's 50 years as the nation's lead laboratory for nuclear weapons surety are now being applied to assessing and reducing the vulnerability of dams, to enhancing the safety and security of staff in foreign embassies, and assuring the reliability of other federal facilities. High consequence surety engineering and design brings together technological advancements, new material requirements, systems integration, and risk management to improve the safety, security, and reliability of the as-built environment. The thrust of this paper is the role that new materials can play in protecting the infrastructure. Retrofits of existing buildings, innovative approaches to the design and construction of new facilities, and the mitigation of consequences in the event of an unpreventable disaster are some of the areas that new construction materials can benefit the Architectural Surety{trademark} of the constructed environment.« less

  2. AURORA BOREALIS - Development of a New Research Icebreaker with Drilling Capability

    NASA Astrophysics Data System (ADS)

    Thiede, J.; Biebow, N.; Egerton, P.; Kunz-Pirrung, M.; Lembke-Jene, L.

    2007-12-01

    Polar research both on land and in the sea cannot achieve the needed progress without novel and state of the art technologies and infrastructure. In addition, we have the obligation to equip the upcoming young and courageous generation of polar researchers with the most modern and safest research platforms the 21st century can provide. This effort will require major investments, both in terms of generating new tools, as well as maintaining and renovating existing infrastructure. There are many different novel tools under development for polar research, we will concentrate on the presently largest one, the planning for a new type of research icebreaker, the AURORA BOREALIS with an all-season capability of operations in permanently ice-covered waters and with the possibility to carry out deep-sea drilling in ice-covered deep-sea basins. AURORA BOREALIS will be the most advanced Polar Research Vessel in the world with a multi-functional role of drilling in deep ocean basins and supporting climate and environmental research and decision support for stakeholder governments for the next 35 to 40 years. The vessel is planned as a large research icebreaker with 44,000 tons displacement and a length of up to 196 m, with about 50 Megawatt propulsion power. Advanced technological features will include azimuth propulsion systems, extensive instrumental and airborne ice- management support, and the routine operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from two moon-pools. An unique feature of this icebreaker will be the drilling rig that will enable sampling of the ocean floor and sub-sea down to 5000 m water depth and 1000 m penetration at the most inhospitable places on earth. The possibility to flexibly equip the ship with laboratory and supply containers, and the variable arrangement of other modular infrastructure (in particular, winches, cranes, etc.), free deck- space, and separate protected deck areas, will allow the planned research vessel to cover the needs of most disciplines in marine research. aurora-borealis.eu/en/about_aurora_borealis/

  3. Converging research needs across framework convention on tobacco control articles: making research relevant to global tobacco control practice and policy.

    PubMed

    Leischow, Scott J; Ayo-Yusuf, Olalekan; Backinger, Cathy L

    2013-04-01

    Much of the research used to support the ratification of the WHO Framework Convention on Tobacco Control (FCTC) was conducted in high-income countries or in highly controlled environments. Therefore, for the global tobacco control community to make informed decisions that will continue to effectively inform policy implementation, it is critical that the tobacco control community, policy makers, and funders have updated information on the state of the science as it pertains to provisions of the FCTC. Following the National Cancer Institute's process model used in identifying the research needs of the U.S. Food and Drug Administration's relatively new tobacco law, a core team of scientists from the Society for Research on Nicotine and Tobacco identified and commissioned internationally recognized scientific experts on the topics covered within the FCTC. These experts analyzed the relevant sections of the FCTC and identified critical gaps in research that is needed to inform policy and practice requirements of the FCTC. This paper summarizes the process and the common themes from the experts' recommendations about the research and related infrastructural needs. Research priorities in common across Articles include improving surveillance, fostering research communication/collaboration across organizations and across countries, and tracking tobacco industry activities. In addition, expanding research relevant to low- and middle-income countries (LMIC), was also identified as a priority, including identification of what existing research findings are transferable, what new country-specific data are needed, and the infrastructure needed to implement and disseminate research so as to inform policy in LMIC.

  4. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO network as a platform for ongoing research and hazard monitoring equipment may also continue to serve the needs of the research community and the public beyond the sun-setting and completion of EarthScope science plan in 2018.

  5. Characterizing pediatric surgical capacity in the Eastern Democratic Republic of Congo: results of a pilot study.

    PubMed

    Cairo, Sarah B; Kalisya, Luc Malemo; Bigabwa, Richard; Rothstein, David H

    2018-03-01

    Characterize pediatric surgical capacity in the eastern Democratic Republic of Congo (DRC) to identify areas of potential improvement. The Pediatric Personnel, Infrastructure, Procedures, Equipment, and Supplies (PediPIPES) survey was used in two representative eastern DRC provinces to assess existing surgical infrastructure and capacity. We compared our results to previously published reports from other sub-Saharan African countries. Fourteen hospitals in the eastern DRC and 37 in 19 sub-Saharan African (SSA) countries were compared. The average PediPIPES index for the DRC was 7.7 compared to 13.5 for SSAs. The greatest disparities existed in the areas of personnel and infrastructure. Running water was reportedly available to 57.1% of the hospitals in the DRC, and the majority of hospitals (78.6%) were dependent on generators and solar panels for electricity. Only two hospitals in the DRC (14.3%) reported a pediatric surgeon equivalent on staff, compared to 86.5% of facilities sampled in SSA reporting ≥ 1 pediatric surgeon. Significant barriers in personnel, infrastructure, procedures, equipment, and supplies impede the provision of adequate surgical care to children. Further work is needed to assess allocation and utilization of existing resources, and to enhance training of personnel with specific attention to pediatric surgery.

  6. Current status of the EPOS WG4 - GNSS and Other Geodetic Data

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Bastos, Luísa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu

    2013-04-01

    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support the European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also includes members from countries that formally are not part of the current phase of EPOS. In an ongoing effort, the majority of existing GNSS Research Infrastructures in Europe were identified. The current database, available at http://epos-couch.cloudant.com/epos-couch/_design/epos-couch/, lists a total of 50 Research Infrastructures managing a total of 1534 GNSS CORS sites. This presentation intends to detail the work being produced within the working group WG4 related with the definition of strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. The first step toward the design of an implementation and business plan is the definition of the core services for geodetic data within EPOS. In this talk, we will present the current status of the discussion about the content of core services. Three levels of core services could be distinguished, for which their content need to be defined. The 3 levels are: (1) the core services associated to data (diffusion, archive, long-term preservation, quality check, rapid analysis) (2) core services associated to geodetic products (analysis, products definition like position time series, velocity field and Zenithal Total Delay) (3) User oriented services (reference frames, real-time solutions for early warning systems, strain rate maps, meteorology, space weather, …). Current propositions and remaining open questions will be discussed.

  7. Strengthening of bridge columns subjected to an impact lateral load caused by vehicle collision : phase I final report.

    DOT National Transportation Integrated Search

    2011-08-01

    "Fiber reinforced polymer (FRP) materials have gained wide acceptance for repair and retrofit of existing infrastructures or to design new infrastructures due to their desirable properties (high strength to weight ratio, light weight and consequent e...

  8. 75 FR 30460 - Notice of Funding Availability for the Department of Transportation's National Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... provide quantitative information regarding expected reductions in emissions of CO 2 or fuel consumption as... provide quantitative information that validates the existence of substantial transportation-related costs... infrastructure investments on systematic analysis of expected benefits and costs, including both quantitative and...

  9. EPA Office of Research and Development Green Infrastructure Research

    EPA Science Inventory

    This presentation provides an overview introduction to the USEPA Office of Research and Development (ORD)'s ongoing green infrastructure (GI) research efforts for stormwater management. GI approaches that increase infiltration, evapotranspiration, and rainwater harvesting offer ...

  10. Role of federal policy in building research infrastructure among emerging minorities: the Asian American experience.

    PubMed

    Trinh-Shevrin, Chau; Ro, Marguerite; Tseng, Winston; Islam, Nadia Shilpi; Rey, Mariano J; Kwon, Simona C

    2012-01-01

    Considerable progress in Asian American health research has occurred over the last two decades. However, greater and sustained federal support is needed for reducing health disparities in Asian American communities. PURPOSE OF THE ARTICLE: This paper reviews federal policies that support infrastructure to conduct minority health research and highlights one model for strengthening research capacity and infrastructure in Asian American communities. Research center infrastructures can play a significant role in addressing pipeline/workforce challenges, fostering campus-community research collaborations, engaging communities in health, disseminating evidence-based strategies and health information, and policy development. Research centers provide the capacity needed for academic institutions and communities to work together synergistically in achieving the goal to reduce health disparities in the Asian American community. Policies that support the development of concentrated and targeted research for Asian Americans must continue so that these centers will reach their full potential.

  11. Herbal medicine research and global health: an ethical analysis.

    PubMed

    Tilburt, Jon C; Kaptchuk, Ted J

    2008-08-01

    Governments, international agencies and corporations are increasingly investing in traditional herbal medicine research. Yet little literature addresses ethical challenges in this research. In this paper, we apply concepts in a comprehensive ethical framework for clinical research to international traditional herbal medicine research. We examine in detail three key, underappreciated dimensions of the ethical framework in which particularly difficult questions arise for international herbal medicine research: social value, scientific validity and favourable risk-benefit ratio. Significant challenges exist in determining shared concepts of social value, scientific validity and favourable risk-benefit ratio across international research collaborations. However, we argue that collaborative partnership, including democratic deliberation, offers the context and process by which many of the ethical challenges in international herbal medicine research can, and should be, resolved. By "cross-training" investigators, and investing in safety-monitoring infrastructure, the issues identified by this comprehensive framework can promote ethically sound international herbal medicine research that contributes to global health.

  12. Rehabilitation, Replacement and Redesign of the Nation's Water and Wastewater Infrastructure as a Valuable Adaptation Opportunity

    EPA Science Inventory

    In support of the Agency's Sustainable Water Infrastructure Initiative, EPA's Office of Research and Develpment initiated the Aging Water Infrastructure Research Program in 2007. The program, with its core focus on the support of strategic asset management, is designed to facili...

  13. In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms, a State-of-the-art (STAR) Report

    DOE PAGES

    Bethel, EW; Bauer, A; Abbasi, H; ...

    2016-06-10

    The considerable interest in the high performance computing (HPC) community regarding analyzing and visualization data without first writing to disk, i.e., in situ processing, is due to several factors. First is an I/O cost savings, where data is analyzed /visualized while being generated, without first storing to a filesystem. Second is the potential for increased accuracy, where fine temporal sampling of transient analysis might expose some complex behavior missed in coarse temporal sampling. Third is the ability to use all available resources, CPU’s and accelerators, in the computation of analysis products. This STAR paper brings together researchers, developers and practitionersmore » using in situ methods in extreme-scale HPC with the goal to present existing methods, infrastructures, and a range of computational science and engineering applications using in situ analysis and visualization.« less

  14. National Scale Marine Geophysical Data Portal for the Israel EEZ with Public Access Web-GIS Platform

    NASA Astrophysics Data System (ADS)

    Ketter, T.; Kanari, M.; Tibor, G.

    2017-12-01

    Recent offshore discoveries and regulation in the Israel Exclusive Economic Zone (EEZ) are the driving forces behind increasing marine research and development initiatives such as infrastructure development, environmental protection and decision making among many others. All marine operations rely on existing seabed information, while some also generate new data. We aim to create a single platform knowledge-base to enable access to existing information, in a comprehensive, publicly accessible web-based interface. The Israel EEZ covers approx. 26,000 sqkm and has been surveyed continuously with various geophysical instruments over the past decades, including 10,000 km of multibeam survey lines, 8,000 km of sub-bottom seismic lines, and hundreds of sediment sampling stations. Our database consists of vector and raster datasets from multiple sources compiled into a repository of geophysical data and metadata, acquired nation-wide by several research institutes and universities. The repository will enable public access via a web portal based on a GIS platform, including datasets from multibeam, sub-bottom profiling, single- and multi-channel seismic surveys and sediment sampling analysis. Respective data products will also be available e.g. bathymetry, substrate type, granulometry, geological structure etc. Operating a web-GIS based repository allows retrieval of pre-existing data for potential users to facilitate planning of future activities e.g. conducting marine surveys, construction of marine infrastructure and other private or public projects. User interface is based on map oriented spatial selection, which will reveal any relevant data for designated areas of interest. Querying the database will allow the user to obtain information about the data owner and to address them for data retrieval as required. Wide and free public access to existing data and metadata can save time and funds for academia, government and commercial sectors, while aiding in cooperation and data sharing among the various stakeholders.

  15. Integrated Facilities and Infrastructure Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisz Westlund, Jennifer Jill

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continuedmore » to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.« less

  16. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  17. Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories

    NASA Astrophysics Data System (ADS)

    Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst

    2016-04-01

    The EC policy for research in the new millennium supports the development of european-scale research infrastructures. In this perspective, the existing research infrastructures are going to be integrated with the objective to increase their accessibility and to enhance the usability of their multidisciplinary data. Building up integrating Earth Sciences infrastructures in Europe is the mission of the Implementation Phase (IP) of the European Plate Observing System (EPOS) project (2015-2019). The integration of european multiscale laboratories - analytical, experimental petrology and volcanology, magnetic and analogue laboratories - plays a key role in this context and represents a specific task of EPOS IP. In the frame of the WP16 of EPOS IP working package 16, European geosciences multiscale laboratories aims to be linked, merging local infrastructures into a coherent and collaborative network. In particular, the EPOS IP WP16-task 4 "Data services" aims at standardize data and data products, already existing and newly produced by the participating laboratories, and made them available through a new digital platform. The following data and repositories have been selected for the purpose: 1) analytical and properties data a) on volcanic ash from explosive eruptions, of interest to the aviation industry, meteorological and government institutes, b) on magmas in the context of eruption and lava flow hazard evaluation, and c) on rock systems of key importance in mineral exploration and mining operations; 2) experimental data describing: a) rock and fault properties of importance for modelling and forecasting natural and induced subsidence, seismicity and associated hazards, b) rock and fault properties relevant for modelling the containment capacity of rock systems for CO2, energy sources and wastes, c) crustal and upper mantle rheology as needed for modelling sedimentary basin formation and crustal stress distributions, d) the composition, porosity, permeability, and frackability of reservoir rocks of interest in relation to unconventional resources and geothermal energy; 3) repository of analogue models on tectonic processes, from the plate to the reservoir scale, relevant to the understanding of Earth dynamics, geo-hazards and geo-energy; 4) paleomagnetic data, that are crucial a) for understanding the evolution of sedimentary basins and associated resources, and b) for charting geo-hazard frequency. EPOS IP WP16 - task 5 aims to create mechanisms and procedures for easy trans-national access to multiscale laboratory facilities. Moreover, the same task will coordinate all the activities in a pilot phase to test, validate and consolidate the over mentioned services and to provide a proof of concept for what will be offered beyond the completion of the EPOS IP.

  18. Optimising the use of linked administrative data for infectious diseases research in Australia.

    PubMed

    Moore, Hannah C; Blyth, Christopher C

    2018-06-14

    Infectious diseases remain a major cause of morbidity in Australia. A wealth of data exists in administrative datasets, which are linked through established data-linkage infrastructure in most Australian states and territories. These linkages can support robust studies to investigate the burden of disease, the relative contribution of various aetiological agents to disease, and the effectiveness of population-based prevention policies - research that is critical to the success of current and future vaccination programs. At a recent symposium in Perth, epidemiologists, clinicians and policy makers in the infectious diseases field discussed the various benefits of, and barriers to, data-linkage research, with a focus on respiratory infection research. A number of issues and recommendations emerged. The demand for data-linkage projects is starting to outweigh the capabilities of exisiting data-linkage infrastructure. There is a need to further streamline processes relating to data access, increase data sharing and conduct nationally collaborative projects. Concerns about data security and sharing across jurisdictional borders can be addressed through multiple safe data solutions. Researchers need to do more to ensure that the benefits of linking datasets to answer policy-relevant questions are being realised for the benefit of community groups, government authorities, funding bodies and policy makers. Increased collaboration and engagement across all sectors can optimise the use of linked data to help reduce the burden of infectious diseases.

  19. Policy and Policy Formulation Considerations for Incorporation of Secure Mobile Devices in USMC Ground Combat Units

    DTIC Science & Technology

    2014-09-01

    power. The wireless infrastructure is an expansion of the current DOD IE which can be leveraged to connect mobile capabilities and technologies. The...DOD must focus on three critical areas central to mobility : the wireless infrastructure , the devices themselves, and the applications the devices use... infrastructure to support mobile devices. – The intent behind this goal is to improve the existing wireless backbone to support secure voice, data, and video

  20. Role of EPA in Asset Management Research – The Aging Water Infrastructure Research Program

    EPA Science Inventory

    This slide presentation provides an overview of the EPA Office of Research and Development’s Aging Water infrastructure Research Program (AWIRP). The research program origins, goals, products, and plans are described. The research program focuses on four areas: condition asses...

  1. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  2. The SCIDIP-ES project - towards an international collaboration strategy for long term preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability and collaboration, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach promotes international collaboration between researchers and will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key results of an in-depth user requirements exercise, and also the conclusions from a survey of existing technologies and policies for earth science data preservation involving almost five hundred respondents across Europe and beyond will also be outlined. A key aim of the project will also be to create harmonised data preservation and access policies for earth science data in Europe, taking into account the requirements of relevant earth science data users and archive providers across Europe, and liaising appropriately with other European data integration and e-infrastructure projects to ensure a collaborative strategy.

  3. Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid

    NASA Astrophysics Data System (ADS)

    Boston, Edwin J., Jr.

    The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.

  4. Green infrastructure development at European Union's eastern border: Effects of road infrastructure and forest habitat loss.

    PubMed

    Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau

    2017-05-15

    The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.

  5. 47 CFR 54.504 - Requests for services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pricing and technology infrastructure information submitted as part of an FCC Form 471 shall be treated as... disclosure of pricing or technology infrastructure information. (ii) The exemption for existing contract... school” as defined in § 54.500 of this subpart, do not operate as for-profit businesses, and do not have...

  6. DRIHM: Distributed Research Infrastructure for Hydro-Meteorology

    NASA Astrophysics Data System (ADS)

    Parodi, A.; Rebora, N.; Kranzlmueller, D.; Schiffers, M.; Clematis, A.; Tafferner, A.; Garrote, L. M.; Llasat Botija, M.; Caumont, O.; Richard, E.; Cros, P.; Dimitrijevic, V.; Jagers, B.; Harpham, Q.; Hooper, R. P.

    2012-12-01

    Hydro-Meteorology Research (HMR) is an area of critical scientific importance and of high societal relevance. It plays a key role in guiding predictions relevant to the safety and prosperity of humans and ecosystems from highly urbanized areas, to coastal zones, and to agricultural landscapes. Of special interest and urgency within HMR is the problem of understanding and predicting the impacts of severe hydro-meteorological events, such as flash-floods and landslides in complex orography areas, on humans and the environment, under the incoming climate change effects. At the heart of this challenge lies the ability to have easy access to hydrometeorological data and models, and facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in this field. To face these problems the DRIHM (Distributed Research Infrastructure for Hydro-Meteorology) project is developing a prototype e-Science environment to facilitate this collaboration and provide end-to-end HMR services (models, datasets and post-processing tools) at the European level, with the ability to expand to global scale (e.g. cooperation with Earth Cube related initiatives). The objectives of DRIHM are to lead the definition of a common long-term strategy, to foster the development of new HMR models and observational archives for the study of severe hydrometeorological events, to promote the execution and analysis of high-end simulations, and to support the dissemination of predictive models as decision analysis tools. DRIHM combines the European expertise in HMR, in Grid and High Performance Computing (HPC). Joint research activities will improve the efficient use of the European e-Infrastructures, notably Grid and HPC, for HMR modelling and observational databases, model evaluation tool sets and access to HMR model results. Networking activities will disseminate DRIHM results at the European and global levels in order to increase the cohesion of European and possibly worldwide HMR communities and increase the awareness of ICT potential for HMR. Service activities will deploy the end-to-end DRIHM services and tools in support of HMR networks and virtual organizations on top of the existing European e-Infrastructures.

  7. Fostering Collaboration Across the U.S. Critical Zone Observatories Network

    NASA Astrophysics Data System (ADS)

    Sharkey, S.; White, T. S.

    2017-12-01

    The Critical Zone (CZ) is defined as the permeable layer from the top of the vegetation canopy to the bottom of freely circulating groundwater where rock, soil, water, air and life meet. The study of the CZ is motivated by an overall lack of understanding of the coupled physical, chemical, and biological processes in this zone at differing spatial and temporal scales. Critical Zone Observatories (CZOs), supported by the U.S. National Science Foundation's Geosciences Directorate, are natural laboratories that aim to provide infrastructure, data and models to gain understanding of the evolution and function of the CZ from grain-to-watershed scales. The nine U.S. observatories span a range of climatic, ecologic, geologic, and physiographic environments from California to Puerto Rico, working on site-specific hypotheses and network-scale goals. CZO research infrastructure allows for teams of cross-disciplinary scientists at each site to further CZ science using field and theoretical approaches, education and outreach, and cross-CZO science. Cross-CZO science emerges from a set of common CZ science questions and hypotheses focused on CZ structure and evolution, event-based and continuous fluxes across CZ interfaces, and changes in storage of major CZ reservoirs at the catchment scale. CZO research seeks to understand coupled processes across all timescales using quantitative models parameterized from observations of meteorological variables, streams, and groundwater, and sampling and analyzing landforms, bedrock, soils, and ecosystems. Each observatory strives to apply common infrastructure, protocols and measurements that help quantify the composition and fluxes of energy, water, solutes, sediments, energy, and mass across boundaries of the CZ system through both space and time. This type of approach enables researchers to access and integrate data in a way that allows for the isolation of environmental variables and comparison of processes and responses across environmental gradients. There is opportunity to foster cross-collaborations with existing research infrastructure (i.e. LTER, NEON, international CZOs) to promote cross-site science and expand upon geologic, climatic, ecological, land use and hydrologic gradients required to understand the CZ.

  8. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee.

    PubMed

    Keeley, Melissa; Koburger, Althea; Dolowitz, David P; Medearis, Dale; Nickel, Darla; Shuster, William

    2013-06-01

    Green infrastructure is a general term referring to the management of landscapes in ways that generate human and ecosystem benefits. Many municipalities have begun to utilize green infrastructure in efforts to meet stormwater management goals. This study examines challenges to integrating gray and green infrastructure for stormwater management, informed by interviews with practitioners in Cleveland, OH and Milwaukee WI. Green infrastructure in these cities is utilized under conditions of extreme fiscal austerity and its use presents opportunities to connect stormwater management with urban revitalization and economic recovery while planning for the effects of negative- or zero-population growth. In this context, specific challenges in capturing the multiple benefits of green infrastructure exist because the projects required to meet federally mandated stormwater management targets and the needs of urban redevelopment frequently differ in scale and location.

  9. Perspectives on the Use of Green Infrastructure for Stormwater Management in Cleveland and Milwaukee

    NASA Astrophysics Data System (ADS)

    Keeley, Melissa; Koburger, Althea; Dolowitz, David P.; Medearis, Dale; Nickel, Darla; Shuster, William

    2013-06-01

    Green infrastructure is a general term referring to the management of landscapes in ways that generate human and ecosystem benefits. Many municipalities have begun to utilize green infrastructure in efforts to meet stormwater management goals. This study examines challenges to integrating gray and green infrastructure for stormwater management, informed by interviews with practitioners in Cleveland, OH and Milwaukee WI. Green infrastructure in these cities is utilized under conditions of extreme fiscal austerity and its use presents opportunities to connect stormwater management with urban revitalization and economic recovery while planning for the effects of negative- or zero-population growth. In this context, specific challenges in capturing the multiple benefits of green infrastructure exist because the projects required to meet federally mandated stormwater management targets and the needs of urban redevelopment frequently differ in scale and location.

  10. Rural Oregon community perspectives: introducing community-based participatory research into a community health coalition.

    PubMed

    Young-Lorion, Julia; Davis, Melinda M; Kirks, Nancy; Hsu, Anna; Slater, Jana Kay; Rollins, Nancy; Aromaa, Susan; McGinnis, Paul

    2013-01-01

    The Community Health Improvement Partnership (CHIP) model has supported community health development in more than 100 communities nationally. In 2011, four rural Oregon CHIPs collaborated with investigators from the Oregon Rural Practice-based Research Network (ORPRN), a component of the Oregon Clinical and Translational Research Institute (OCTRI), to obtain training on research methods, develop and implement pilot research studies on childhood obesity, and explore matches with academic partners. This article summarizes the experiences of the Lincoln County CHIP, established in 2003, as it transitioned from CHIP to Community Health Improvement and Research Partnership (CHIRP). Our story and lessons learned may inform rural community-based health coalitions and academicians who are engaged in or considering Community-based participatory research (CBPR) partnerships. Utilizing existing infrastructure and relationships in community and academic settings provides an ideal starting point for rural, bidirectional research partnerships.

  11. Initial implementation of a comparative data analysis ontology.

    PubMed

    Prosdocimi, Francisco; Chisham, Brandon; Pontelli, Enrico; Thompson, Julie D; Stoltzfus, Arlin

    2009-07-03

    Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species) are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: "Operational Taxonomic Units" (OTUs), representing the entities to be compared; "character-state data" representing the observations compared among OTUs; "phylogenetic tree", representing the historical path of evolution among the entities; and "transitions", the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL), we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO). CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc.) that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.

  12. Private medical education--the doctor's perspective.

    PubMed

    Abdul Hamid, A K

    2000-08-01

    The Government's decision to drastically and speedily increase the number of doctors in the country needs to be reviewed. The standard and quality of health care does not depend on the number of doctors, but on the improvement of the health care infrastructure. Increasing the number of government medical schools and increasing the intake of students should be done on a need-to basis, with the above perspective in mind. The selection criteria of candidates must not be compromised and the teaching staff must be adequate and experienced. The number of doctors should be gradually increased over the years in tandem with the development of the health care infrastructure and the deployment of doctors must be directed at providing equitable care to the people at all economic levels and geographic locations. The strength of academic staff in existing government medical schools must be upgraded to provide high level of teaching and research, perhaps reinforced with the recruitment of suitably qualified and experienced foreign teachers. The infrastructure of existing government medical schools must be upgraded to cater for the gradual increasing demand for more doctors as the country develops. The selection of candidates for the government medical schools must be based on merit and without undue emphasis on ethnic considerations, for it is only in the arena of fair competitiveness that excellence can be born. The considerations of merit in selection must include assessment of attitude, self-development, moral ethics and reasoning. If the above perspectives are fully appreciated, then there is really no requirement for private medical colleges in Malaysia.

  13. The development of Korea's new long-term care service infrastructure and its results: focusing on the market-friendly policy used for expansion of the numbers of service providers and personal care workers.

    PubMed

    Chon, Yongho

    2013-01-01

    One of the main reasons for reforming long-term care systems is a deficient existing service infrastructure for the elderly. This article provides an overview of why and how the Korean government expanded long-term care infrastructure through the introduction of a new compulsory insurance system, with a particular focus on the market-friendly policies used to expand the infrastructure. Then, the positive results of the expansion of the long-term care infrastructure and the challenges that have emerged are examined. Finally, it is argued that the Korean government should actively implement a range of practical policies and interventions within the new system.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    Hybrid programming models for beyond-CMOS technologies will prove critical for integrating new computing technologies alongside our existing infrastructure. Unfortunately the software infrastructure required to enable this is lacking or not available. XACC is a programming framework for extreme-scale, post-exascale accelerator architectures that integrates alongside existing conventional applications. It is a pluggable framework for programming languages developed for next-gen computing hardware architectures like quantum and neuromorphic computing. It lets computational scientists efficiently off-load classically intractable work to attached accelerators through user-friendly Kernel definitions. XACC makes post-exascale hybrid programming approachable for domain computational scientists.

  15. Network and computing infrastructure for scientific applications in Georgia

    NASA Astrophysics Data System (ADS)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  16. Research Practices, Evaluation and Infrastructure in the Digital Environment

    ERIC Educational Resources Information Center

    Houghton, John W.

    2004-01-01

    This paper examines changing research practices in the digital environment and draws out implications for research evaluation and the development of research infrastructure. Reviews of the literature, quantitative indicators of research activities and our own field research in Australia suggest that a new mode of knowledge production is emerging,…

  17. Changing Research Practices and Research Infrastructure Development

    ERIC Educational Resources Information Center

    Houghton, John W.

    2005-01-01

    This paper examines changing research practices in the digital environment and draws out implications for the development of research infrastructure. Reviews of the literature, quantitative indicators of research activities and our own field research in Australia suggest that there is a new mode of knowledge production emerging, changing research…

  18. An extensible infrastructure for fully automated spike sorting during online experiments.

    PubMed

    Santhanam, Gopal; Sahani, Maneesh; Ryu, Stephen; Shenoy, Krishna

    2004-01-01

    When recording extracellular neural activity, it is often necessary to distinguish action potentials arising from distinct cells near the electrode tip, a process commonly referred to as "spike sorting." In a number of experiments, notably those that involve direct neuroprosthetic control of an effector, this cell-by-cell classification of the incoming signal must be achieved in real time. Several commercial offerings are available for this task, but all of these require some manual supervision per electrode, making each scheme cumbersome with large electrode counts. We present a new infrastructure that leverages existing unsupervised algorithms to sort and subsequently implement the resulting signal classification rules for each electrode using a commercially available Cerebus neural signal processor. We demonstrate an implementation of this infrastructure to classify signals from a cortical electrode array, using a probabilistic clustering algorithm (described elsewhere). The data were collected from a rhesus monkey performing a delayed center-out reach task. We used both sorted and unsorted (thresholded) action potentials from an array implanted in pre-motor cortex to "predict" the reach target, a common decoding operation in neuroprosthetic research. The use of sorted spikes led to an improvement in decoding accuracy of between 3.6 and 6.4%.

  19. Research note: Mapping spatial patterns in sewer age, material, and proximity to surface waterways to infer sewer leakage hotspots

    USGS Publications Warehouse

    Hopkins, Kristina G.; Bain, Daniel J.

    2018-01-01

    Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.

  20. Stormwater management and ecosystem services: a review

    NASA Astrophysics Data System (ADS)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.

  1. Examination of State-of-the-Art Rehabilitation Technologies for the Nation's Water Infrastructure - slides

    EPA Science Inventory

    The research overview of the US EPA Aging Water Infrastructure Research Program includes: Research areas: condition assessment; rehabilitation; advanced design/treatment concepts and Research project focused on innovative rehabilitation technologies to reduce costs and increase...

  2. Roadmap for Developing of Brokering as a Component of EarthCube

    NASA Astrophysics Data System (ADS)

    Pearlman, J.; Khalsa, S. S.; Browdy, S.; Duerr, R. E.; Nativi, S.; Parsons, M. A.; Pearlman, F.; Robinson, E. M.

    2012-12-01

    The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Key to achieving the EarthCube vision is establishing a process that will guide the evolution of the infrastructure through community engagement and appropriate investment so that the infrastructure is embraced and utilized by the entire geosciences community. In this presentation we describe a roadmap, developed through the EarthCube Brokering Concept Award, for an evolutionary process of infrastructure and interoperability development. All geoscience communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for consolidating these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. This process of consolidation will be achieved by creating "interfaces," what we call "brokers," between systems. Brokers connect disparate systems without imposing new burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities targeted to specific communities. These pilots can then grow into larger prototypes addressing intercommunity problems working towards a full-scale socio-technical infrastructure vision. Brokering, as a critical capability for connecting systems, evolves over time through more connections and increased functionality. This adaptive process allows for continual evaluation as to how well science-driven use cases are being met. Several NSF infrastructure projects are underway and beginning to shape the next generation of information sharing. There is a near term, and possibly unique, opportunity to increase the impact and interconnectivity of these projects, and further improve science research collaboration through brokering. Brokering has been demonstrated to be an essential part of a robust, adaptive infrastructure, but critical questions of governance and detailed implementation remain. Our roadmap proposes the expansion of brokering pilots into fully operational prototypes that work with the broader science and informatics communities to answer these questions, connect existing and emerging systems, and evolve the EarthCube infrastructure.

  3. Sustainable access to data, products, services and software from the European seismological Research Infrastructures: the EPOS TCS Seismology

    NASA Astrophysics Data System (ADS)

    Haslinger, Florian; Dupont, Aurelien; Michelini, Alberto; Rietbrock, Andreas; Sleeman, Reinoud; Wiemer, Stefan; Basili, Roberto; Bossu, Rémy; Cakti, Eser; Cotton, Fabrice; Crawford, Wayne; Diaz, Jordi; Garth, Tom; Locati, Mario; Luzi, Lucia; Pinho, Rui; Pitilakis, Kyriazis; Strollo, Angelo

    2016-04-01

    Easy, efficient and comprehensive access to data, data products, scientific services and scientific software is a key ingredient in enabling research at the frontiers of science. Organizing this access across the European Research Infrastructures in the field of seismology, so that it best serves user needs, takes advantage of state-of-the-art ICT solutions, provides cross-domain interoperability, and is organizationally and financially sustainable in the long term, is the core challenge of the implementation phase of the Thematic Core Service (TCS) Seismology within the EPOS-IP project. Building upon the existing European-level infrastructures ORFEUS for seismological waveforms, EMSC for seismological products, and EFEHR for seismological hazard and risk information, and implementing a pilot Computational Earth Science service starting from the results of the VERCE project, the work within the EPOS-IP project focuses on improving and extending the existing services, aligning them with global developments, to at the end produce a well coordinated framework that is technically, organizationally, and financially integrated with the EPOS architecture. This framework needs to respect the roles and responsibilities of the underlying national research infrastructures that are the data owners and main providers of data and products, and allow for active input and feedback from the (scientific) user community. At the same time, it needs to remain flexible enough to cope with unavoidable challenges in the availability of resources and dynamics of contributors. The technical work during the next years is organized in four areas: - constructing the next generation software architecture for the European Integrated (waveform) Data Archive EIDA, developing advanced metadata and station information services, fully integrate strong motion waveforms and derived parametric engineering-domain data, and advancing the integration of mobile (temporary) networks and OBS deployments in EIDA; - further development and expansion of services to access seismological products of scientific interest as provided by the community by implementing a common collection and development (IT) platform, improvements in the earthquake information services e.g. by introducing more robust quality indicators and diversifying collection and dissemination mechanisms, as well as improving historical earthquake data services; - development of a comprehensive suite of earthquake hazard products, tools, and services harmonized on the European level and available through a common access platform, encompassing information on seismic sources, seismogenic faults, ground-motion prediction equations, geotechnical information, and strong-motion recordings in buildings, together with an interface to earthquake risk; - a portal implementation of computational seismology tools and services, specifically for seismic waveform propagation in complex 3D media following the results of the VERCE project, and initiating the inclusion of further suitable codes on that portal in discussion with the community, forming the basis of EPOS computational earth science infrastructure. This will be accompanied by development and implementation of integrated and interoperable metadata structures, adequate and referencable persistent identifiers, and appropriate user access and authorization mechanisms. Here we present further detail on the work plan with the attempt to foster interaction with the target user community on the spectrum of services as well as on feedback mechanisms and governance.

  4. Touristic infrastructure of municipalities in the border section of Bug valley's Dołhobyczów-Włodawa in the context of existing protected areas

    NASA Astrophysics Data System (ADS)

    Kałamucka, Wioletta; Kałamucki, Krzysztof

    2011-01-01

    This article presents results of research concerning tourist infrastructure in some districts located in the Bug river valley, in the context of protected areas. The territory examined includes 9 rural districts and 2 towns in the immediate neighborhood of the river. These administrative units are characterized by great natural value. Their total area is 687,7 km2 that makes 6,7% of the whole Lublin voivodship. On the other hand, the share of protected areas (without Natura 2000) is twice as high - 11,1%. Protected areas makes 37,6% of the territory under study. In some units, share of protected areas is very high: Dubienka - 72%, Horodło - 69,5%. In 2009 in the region examined there were 48 objects of collective accommodation - 16,8% of total number in the voivodship. 83,6% of all objects were situated in Włodawa. Characteristic feature of accommodation is seasonality. There are only 7 objects that functions the whole year and year-round lodging places (280) makes barely 9,3% of the totality. Comparing tourist management with presence of areas of the highest natural values, one can see strong correlation between these two indexes only in rural unit - Włodawa, located within the borders of Biosphere Reserves "Polesie Zachodnie" (West Polesie) In case of other units such a interdependance does not exist. On the contrary, there is opposite relation. In Dołhobyczów, Mircze, Horodło, where apart from areas of Natura 2000, in the Bug river valley landscapes protected areas and landscapes parks were created, tourist infrastructure is insignificant or even does not exist. The existence of large protected areas and natural value make it possible to develop various forms of environmentally friendly tourism - tourism qualified, especially fishing and canoeing, hiking, biking, nature education tourism. Tourist service centers should be located outside the valley. Due to the high natural values, caution is advisable to adapt the area for tourism. Such decisions should precede the insightful observations and fieldstudy in order not to affect the structure of natural and touristic values of this area.

  5. An element search ant colony technique for solving virtual machine placement problem

    NASA Astrophysics Data System (ADS)

    Srija, J.; Rani John, Rose; Kanaga, Grace Mary, Dr.

    2017-09-01

    The data centres in the cloud environment play a key role in providing infrastructure for ubiquitous computing, pervasive computing, mobile computing etc. This computing technique tries to utilize the available resources in order to provide services. Hence maintaining the resource utilization without wastage of power consumption has become a challenging task for the researchers. In this paper we propose the direct guidance ant colony system for effective mapping of virtual machines to the physical machine with maximal resource utilization and minimal power consumption. The proposed algorithm has been compared with the existing ant colony approach which is involved in solving virtual machine placement problem and thus the proposed algorithm proves to provide better result than the existing technique.

  6. Ten years research activities in Earth observation at the Cyprus University of Technology

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Agapiou, Athos; Mamouri, Rodanthi; Nisantzi, Argyro; Papoutsa, Christiana; Tzouvaras, Marios; Neoclous, Kyriacos; Mettas, Christodoulos; Michaelides, Silas

    2017-09-01

    This paper presents the achievements for the last 10 years of the Remote Sensing and Geo-Environment Laboratory of the Cyprus University of Technology in the Earth observation through the ERATOSTHENES Research Centre. Over the past 10 years, the Centre has secured competitive research funding from various sources, such as the European Commission, the Cyprus Research Promotion Foundation, as well as industrial partners, having participated either as a coordinator or as a partner in more than 60 research projects. The research activities of the Centre encompass remote sensing and GIS applications in the fields of Cultural Heritage, Agriculture, Water Resource Management, Environment, Infrastructure, Marine Spatial Planning, Atmospheric, Air Pollution and Coastal Applications, Natural Resource Management and Hazard Assessment. The aim of this paper is to map the existing activities and identify the future trends and goals of the Eratosthenes Research Centre for the next 15 years.

  7. A Framework for Conducting Deceased Donor Research in the United States.

    PubMed

    Glazier, Alexandra K; Heffernan, Kate Gallin; Rodrigue, James R

    2015-11-01

    There are a number of regulatory barriers both perceived and real that have hampered widespread clinical research in the field of donation and transplantation. This article sets forth a framework clarifying the existing legal requirements and their application to the conduct of research on deceased donors and donor organs within the United States. Recommendations are focused on resolving some of the ambiguity surrounding deceased donor authorization for research, Health Insurance Portability and Accountability Act requirements and the role of institutional review board oversight. The successful conduct of clinical research in the field of donation and transplantation requires an understanding of these regulatory nuances as well as identification of important ethical principles to consider. Facilitation of these concepts will ultimately provide support for innovative research designed to increase the availability of organs for transplantation. Further work identifying the optimal infrastructure for overview of clinical research in the field should be given priority.

  8. Ten steps to developing a national agenda to address financial conflicts of interest in industry sponsored clinical research.

    PubMed

    Tereskerz, Patricia M; Moreno, Jonathan

    2005-01-01

    Financial liaisons between clinical researchers, research institutions, and industrial sponsors have gained momentum in recent years. In the process, it has been argued by many that trust in the research infrastructure is being eroded by the financial conflicts of interest that emerge from these arrangements. Yet, the financial resources of industry are needed to continue technology transfer from the bench to the bedside. Policy makers and government regulators are currently struggling to determine how to best manage financial conflicts of interest that emerge from these liaisons. Various organizations and government entities have proposed different strategies. This paper explores the limitations of existing measures and recommends that a unified national agenda is needed. We propose 10 steps to develop an agenda to address financial conflicts of interest in industry-sponsored clinical research.

  9. US EPA/ORD Condition Assessment Research for Drinking Water Conveyance Infrastructure

    EPA Science Inventory

    This presentation describes research on condition assessment for drinking water transmission and distribution systems that EPA is conducting under the U.S. Environmental Protection Agency’s Aging Water Infrastructure (AWI) Research Program. This research program will help U.S. ...

  10. Collaborative Access Control For Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Baina, Amine; El Kalam, Anas Abou; Deswarte, Yves; Kaaniche, Mohamed

    A critical infrastructure (CI) can fail with various degrees of severity due to physical and logical vulnerabilities. Since many interdependencies exist between CIs, failures can have dramatic consequences on the entire infrastructure. This paper focuses on threats that affect information and communication systems that constitute the critical information infrastructure (CII). A new collaborative access control framework called PolyOrBAC is proposed to address security problems that are specific to CIIs. The framework offers each organization participating in a CII the ability to collaborate with other organizations while maintaining control of its resources and internal security policy. The approach is demonstrated on a practical scenario involving the electrical power grid.

  11. The Resilient Infrastructure Initiative

    DOE PAGES

    Clifford, Megan

    2016-10-01

    Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less

  12. Hydrogen Infrastructure Testing and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-04-10

    Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.

  13. A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research.

    PubMed

    Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila

    2015-11-01

    Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  14. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  15. Insecurity of Wireless Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA,more » allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.« less

  16. Safety impacts of bicycle infrastructure: A critical review.

    PubMed

    DiGioia, Jonathan; Watkins, Kari Edison; Xu, Yanzhi; Rodgers, Michael; Guensler, Randall

    2017-06-01

    This paper takes a critical look at the present state of bicycle infrastructure treatment safety research, highlighting data needs. Safety literature relating to 22 bicycle treatments is examined, including findings, study methodologies, and data sources used in the studies. Some preliminary conclusions related to research efficacy are drawn from the available data and findings in the research. While the current body of bicycle safety literature points toward some defensible conclusions regarding the safety and effectiveness of certain bicycle treatments, such as bike lanes and removal of on-street parking, the vast majority treatments are still in need of rigorous research. Fundamental questions arise regarding appropriate exposure measures, crash measures, and crash data sources. This research will aid transportation departments with regard to decisions about bicycle infrastructure and guide future research efforts toward understanding safety impacts of bicycle infrastructure. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  17. EPA Research Highlights: EPA Studies Aging Water Infrastructure

    EPA Science Inventory

    The nation's extensive water infrastructure has the capacity to treat, store, and transport trillions of gallons of water and wastewater per day through millions of miles of pipelines. However, some infrastructure components are more than 100 years old, and as the infrastructure ...

  18. Evaluation of Green Infrastructure on Peak Flow Mitigation Focusing on the Connectivity of Impervious Areas

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Hwang, J.; Kwon, Y.

    2017-12-01

    The existence of impervious areas is one of the most distinguishing characteristics of urban catchments. It decreases infiltration and increases direct runoff in urban catchments. The recent introduction of green infrastructure in urban catchments for the purpose of sustainable development contributes to the decrease of the directly connected impervious areas (DCIA) by isolating existing impervious areas and consequently, to the flood risk mitigation. This study coupled the width function-based instantaneous hydrograph (WFIUH), which is able to handle the spatial distribution of the impervious areas, with the concept of the DCIA to assess the impact of decreasing DCIA on the shape of direct runoff hydrographs. Using several scenarios for typical green infrastructure and corresponding changes of DCIA in a test catchment, this study evaluated the effect of green infrastructure on the shape of the resulting direct runoff hydrographs and peak flows. The results showed that the changes in the DCIA immediately affects the shape of the direct runoff hydrograph and decreases peak flows depending on spatial implementation scenarios. The quantitative assessment of the spatial distribution of impervious areas and also the changes to the DCIA suggests effective and well-planned green infrastructure can be introduced in urban environments for flood risk management.

  19. The "New Guy": "Good Management Begins with Good People"

    ERIC Educational Resources Information Center

    Vicars, Dennis

    2011-01-01

    The author believes the two most valuable employees in an organization are the valued person(s) that has been there forever and helped build the infrastructure and processes and a "new guy" who questions why they exist. The seasoned professionals not only understand the processes, infrastructure, culture, educational programs, and vision, but were…

  20. Preliminary Identification of Urban Park Infrastructure Resilience in Semarang Central Java

    NASA Astrophysics Data System (ADS)

    Muzdalifah, Aji Uhfatun; Maryono

    2018-02-01

    Park is one of the spot green infrastructure. There are two major characteristic of park, first Active parks and second passive park. Those of two open spaces have been significant on the fulfillment of urban environment. To maintenance the urban park, it is very importance to identify the characteristic of active and passive park. The identification also needs to fostering stakeholder effort to increase quality of urban park infrastructure. This study aims to explore and assess the characteristic of urban park infrastructure in Semarang City, Central Java. Data collection methods conduct by review formal document, field observation and interview with key government officer. The study founded that urban active parks infrastructure resilience could be defined by; Park Location, Garden Shape, Vegetation, Support Element, Park Function, and Expected Benefit from Park Existence. Moreover, the vegetation aspect and the supporting elements are the most importance urban park infrastructure in Semarang.

  1. [Current situation and existing problems of acupuncture for primary hypertension].

    PubMed

    Zhang, Lili; Wei, Pengfei; Chen, Shaozong

    2018-03-12

    To analyze the present situation and existing problems of acupuncture for primary hypertension (PH) based on clinical research literature in recent 20 years. The clinical research literature regarding acupuncture for PH were searched from China National Knowledge Infrastructure (CNKI), VIP data network (VIP) and Wanfang database from 1997 through 2016; a total of 218 papers met the inclusive criteria. Microsoft Excel and Apriori algorithm of SPSS Clementine software were applied to analyze the data. The main acupoints of acupuncture for PH were Taichong (LR 3), Quchi (LI 11), Zusanli (ST 36) and Hegu (LI 4), but its support degree was only 12.21%. 127 papers were randomized controlled trials, accounting for 58.26%. 158 papers had clear diagnostic criteria, accounting for 72.48%. 138 papers had clear efficacy evaluation criteria, accounting for 63.30%. Only 5.05% of the papers were classified as high-quality literature by using Jadad scale. In recent 20 years, some rules existed in acupoint selection for PH, but the support degree was low so it could not accurately guide clinical treatment. Although the clinical literature quality of acupuncture for PH was gradually increasing, the proportion of high-quality literature was low, therefore modern medical research model and foreign similar research should be followed to design a more rigorous trial protocol. As a result, the quality of clinical research is increased to provide reference for future clinical treatment.

  2. The European Research Infrastructure for Heritage Science (erihs)

    NASA Astrophysics Data System (ADS)

    Striova, J.; Pezzati, L.

    2017-08-01

    The European Research Infrastructure for Heritage Science (E-RIHS) entered the European strategic roadmap for research infrastructures (ESFRI Roadmap [1]) in 2016, as one of its six new projects. E-RIHS supports research on heritage interpretation, preservation, documentation and management. Both cultural and natural heritage are addressed: collections, artworks, buildings, monuments and archaeological sites. E-RIHS aims to become a distributed research infrastructure with a multi-level star-structure: facilities from single Countries will be organized in national nodes, coordinated by National Hubs. The E-RIHS Central Hub will provide the unique access point to all E-RIHS services through coordination of National Hubs. E-RIHS activities already started in some of its national nodes. In Italy the access to some E-RIHS services started in 2015. A case study concerning the diagnostic of a hypogea cave is presented.

  3. A Framework to Support the Sharing and Reuse of Computable Phenotype Definitions Across Health Care Delivery and Clinical Research Applications.

    PubMed

    Richesson, Rachel L; Smerek, Michelle M; Blake Cameron, C

    2016-01-01

    The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use.

  4. A Framework to Support the Sharing and Reuse of Computable Phenotype Definitions Across Health Care Delivery and Clinical Research Applications

    PubMed Central

    Richesson, Rachel L.; Smerek, Michelle M.; Blake Cameron, C.

    2016-01-01

    Introduction: The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. Method: Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. Framework: An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. Next Steps: We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use. PMID:27563686

  5. Software and hardware infrastructure for research in electrophysiology

    PubMed Central

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Řondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Štěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software. PMID:24639646

  6. Software and hardware infrastructure for research in electrophysiology.

    PubMed

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Rondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Stěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  7. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm) - Volume #2 - Appendices #16-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooher, Brendan; Toman, William I.; Davy, Doug M.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  8. Critical Infrastructure Interdependencies Assessment

    DOE PAGES

    Petit, Frederic; Verner, Duane

    2016-11-01

    Throughout the world there is strong recognition that critical infrastructure security and resilience needs to be improved. In the United States, the National Infrastructure Protection Plan (NIPP) provides the strategic vision to guide the national effort to manage risk to the Nation’s critical infrastructure.”1 The achievement of this vision is challenged by the complexity of critical infrastructure systems and their inherent interdependencies. The update to the NIPP presents an opportunity to advance the nation’s efforts to further understand and analyze interdependencies. Such an important undertaking requires the involvement of public and private sector stakeholders and the reinforcement of existing partnershipsmore » and collaborations within the U.S. Department of Homeland Security (DHS) and other Federal agencies, including national laboratories; State, local, tribal, and territorial governments; and nongovernmental organizations.« less

  9. Transportation security research : coordination needed in selecting and implementing infrastructure vulnerability assessments

    DOT National Transportation Integrated Search

    2003-05-01

    The Department of Transportation's (DOT) Research and Special Programs Administration (RSPA) began research in to assess the vulnerabilities of the nation's transportation infrastructure and develop needed improvements in security in June 2001. The g...

  10. caGrid 1.0: A Grid Enterprise Architecture for Cancer Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-01-01

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIGTM) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIGTM. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5. PMID:18693901

  11. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  12. Health services research and data linkages: issues, methods, and directions for the future.

    PubMed

    Bradley, Cathy J; Penberthy, Lynne; Devers, Kelly J; Holden, Debra J

    2010-10-01

    Research on pressing health services and policy issues requires access to complete, accurate, and timely patient and organizational data. This paper describes how administrative and health records (including electronic medical records) can be linked for comparative effectiveness and health services research. We categorize the major agents (i.e., who owns and controls data and who carries out the data linkage) into three areas: (1) individual investigators; (2) government sponsored linked data bases; and (3) public-private partnerships that facilitate linkage of data owned by private organizations. We describe challenges that may be encountered in the linkage process, and the benefits of combining secondary databases with primary qualitative and quantitative sources. We use cancer care research to illustrate our points. To fill the gaps in the existing data infrastructure, additional steps are required to foster collaboration among institutions, researchers, and public and private components of the health care sector. Without such effort, independent researchers, governmental agencies, and nonprofit organizations are likely to continue building upon a fragmented and costly system with limited access. Discussion. Without the development and support for emerging information technologies across multiple health care settings, the potential for data collected for clinical and transactional purposes to benefit the research community and, ultimately, the patient population may go unrealized. The current environment is characterized by budget and technical challenges, but investments in data infrastructure are arguably cost-effective given the need to reform our health care system and to monitor the impact of health reform initiatives. © Health Research and Educational Trust.

  13. Family learning research in museums: An emerging disciplinary matrix?

    NASA Astrophysics Data System (ADS)

    Ellenbogen, Kirsten M.; Luke, Jessica J.; Dierking, Lynn D.

    2004-07-01

    Thomas Kuhn's notion of a disciplinary matrix provides a useful framework for investigating the growth of research on family learning in and from museums over the last decade. To track the emergence of this disciplinary matrix we consider three issues. First are shifting theoretical perspectives that result in new shared language, beliefs, values, understandings, and assumptions about what counts as family learning. Second are realigning methodologies, driven by underlying disciplinary assumptions about how research in this arena is best conducted, what questions should be addressed, and criteria for valid and reliable evidence. Third is resituating the focus of our research to make the family central to what we study, reflecting a more holistic understanding of the family as an educational institution within larger learning infrastructure. We discuss research that exemplifies these three issues and demonstrates the ways in which shifting theoretical perspectives, realigning methodologies, and resituating research foci signal the existence of a nascent disciplinary matrix.

  14. Computers, the Internet and medical education in Africa.

    PubMed

    Williams, Christopher D; Pitchforth, Emma L; O'Callaghan, Christopher

    2010-05-01

    OBJECTIVES This study aimed to explore the use of information and communications technology (ICT) in undergraduate medical education in developing countries. METHODS Educators (deans and heads of medical education) in English-speaking countries across Africa were sent a questionnaire to establish the current state of ICT at medical schools. Non-respondents were contacted firstly by e-mail, subsequently by two postal mailings at 3-month intervals, and finally by telephone. Main outcome measures included cross-sectional data about the availability of computers, specifications, Internet connection speeds, use of ICT by students, and teaching of ICT and computerised research skills, presented by country or region. RESULTS The mean computer : student ratio was 0.123. Internet speeds were rated as 'slow' or 'very slow' on a 5-point Likert scale by 25.0% of respondents overall, but by 58.3% in East Africa and 33.3% in West Africa (including Cameroon). Mean estimates showed that campus computers more commonly supported CD-ROM (91.4%) and sound (87.3%) than DVD-ROM (48.1%) and Internet (72.5%). The teaching of ICT and computerised research skills, and the use of computers by medical students for research, assignments and personal projects were common. CONCLUSIONS It is clear that ICT infrastructure in Africa lags behind that in other regions. Poor download speeds limit the potential of Internet resources (especially videos, sound and other large downloads) to benefit students, particularly in East and West (including Cameroon) Africa. CD-ROM capability is more widely available, but has not yet gained momentum as a means of distributing materials. Despite infrastructure limitations, ICT is already being used and there is enthusiasm for developing this further. Priority should be given to developing partnerships to improve ICT infrastructure and maximise the potential of existing technology.

  15. Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT

    NASA Astrophysics Data System (ADS)

    Ou, Jinping

    2005-06-01

    The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.

  16. The decade of discovery in astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A survey of astronomy and astrophysics in the 1990s is presented and a prioritized agenda is offered for space- and ground-based research into the 21st century. In addition to proposing new telescopes for ground and space, the research infrastructure is discussed. The urgent need is emphasized for increased support of individual investigators, for appropriate maintenance and refurbishment of existing facilities, and for a balanced program of space astronomy. The scientific and the technical opportunities of the 1990s are summarized and the technological development is described needed for instruments to be built in the first years of the next century. Also addressed is the suitability of the Moon as an observation site.

  17. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    PubMed

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  18. Building Research Infrastructure in Community Health Centers: A Community Health Applied Research Network (CHARN) Report

    PubMed Central

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E.

    2015-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and “matchmaking” between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings. PMID:24004710

  19. The impact of natural hazard on critical infrastructure systems: definition of an ontology

    NASA Astrophysics Data System (ADS)

    Dimauro, Carmelo; Bouchon, Sara; Frattini, Paolo; Giusto, Claudia

    2013-04-01

    According to the Council of the European Union Directive (2008), 'critical infrastructure' means an asset, system or part thereof which is essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact as a result of the failure to maintain those functions. Critical infrastructure networks are exposed to natural events, such as floods, storms, landslides, earthquakes, etc. Recent natural disasters show that socio-economic consequences can be very much aggravated by the impact on these infrastructures. Though, there is still a lack of a recognized approach or methodology to assess the vulnerability of critical infrastructure assets against natural threats. The difficulty to define such an approach is increased by the need to consider a very high number of natural events, which differ in nature, magnitude and probability, as well as the need to assess the vulnerability of a high variety of infrastructure assets (e.g. bridges, roads, tunnels, pipelines, etc.) To meet this challenge, the objective of the THREVI2 EU-CIPS project is to create a database linking the relationships between natural hazards and critical infrastructure assets. The query of the database will allow the end-users (critical infrastructure protection authorities and operators) to identify the relevant scenarios according to the own priorities and criteria. The database builds on an ontology optimized for the assessment of the impact of threats on critical infrastructures. The ontology aims at capturing the existing knowledge on natural hazards, critical infrastructures assets and their related vulnerabilities. Natural phenomena that can threaten critical infrastructures are classified as "events", and organized in a genetic-oriented hierarchy. The main attributes associated to each event are the probability, the magnitude and the "modus". The modus refers to the physical-chemical process by means the event (e.g., a pyroclastic flow) can interact and damage a critical infrastructure asset (e.g., a pipe). Each event can be characterized by several modi (e.g., impact load, heating, burying) that can cause damages to the asset. Hence, the damage is linked to the modus and not directly to the event. The advantage of using the "modus" approach is to allow reducing the number of interactions (natural hazard/Critical infrastructure assets) to be addressed. All different events exert their impact on infrastructures by means of a limited number of different modus. This allows adapting existing vulnerability or fragility laws to events that have not been studied yet, and for which these laws are not available.

  20. Transit vehicle-to-infrastructure (V2I) applications : near term research and development : transit traveler information infrastructure mobility application : operational concept.

    DOT National Transportation Integrated Search

    2015-06-01

    This document serves as an Operational Concept for the Transit Traveler Information Infrastructure Mobility Application. The purpose of this document is to provide an operational description of how the Transit Traveler Information Infrastructur...

  1. Storing and using health data in a virtual private cloud.

    PubMed

    Regola, Nathan; Chawla, Nitesh V

    2013-03-13

    Electronic health records are being adopted at a rapid rate due to increased funding from the US federal government. Health data provide the opportunity to identify possible improvements in health care delivery by applying data mining and statistical methods to the data and will also enable a wide variety of new applications that will be meaningful to patients and medical professionals. Researchers are often granted access to health care data to assist in the data mining process, but HIPAA regulations mandate comprehensive safeguards to protect the data. Often universities (and presumably other research organizations) have an enterprise information technology infrastructure and a research infrastructure. Unfortunately, both of these infrastructures are generally not appropriate for sensitive research data such as HIPAA, as they require special accommodations on the part of the enterprise information technology (or increased security on the part of the research computing environment). Cloud computing, which is a concept that allows organizations to build complex infrastructures on leased resources, is rapidly evolving to the point that it is possible to build sophisticated network architectures with advanced security capabilities. We present a prototype infrastructure in Amazon's Virtual Private Cloud to allow researchers and practitioners to utilize the data in a HIPAA-compliant environment.

  2. Deployment strategies of managed lanes on arterials : [summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Floridas continuing growth has often been attracted to areas where good highway : infrastructure already exists. Traffic loads have developed to the point where widening existing : highways is not sufficient, or perhaps impossible, to accommodate ...

  3. GREEN INFRASTRUCTURE RESEARCH PROGRAM: Rain Gardens

    EPA Science Inventory

    the National Risk Management Research Laboratory (NRMRL) rain garden evaluation is part of a larger collection of long-term research that evaluates a variety of stormwater management practices. The U.S. EPA recognizes the potential of rain gardens as a green infrastructure manag...

  4. White Paper on Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The Office of Research and Development’s National Risk Management Research Laboratory has published this report in support of the Aging Water Infrastructure (AWI) Research Program, which directly supports the Office of Water’s Sustainable Water Infrastructure Initiative. Scienti...

  5. The ELIXIR channel in F1000Research.

    PubMed

    Blomberg, Niklas; Oliveira, Arlindo; Mons, Barend; Persson, Bengt; Jonassen, Inge

    2015-01-01

    ELIXIR, the European life science infrastructure for biological information, is a unique initiative to consolidate Europe's national centres, services, and core bioinformatics resources into a single, coordinated infrastructure. ELIXIR brings together Europe's major life-science data archives and connects these with national bioinformatics infrastructures  - the ELIXIR Nodes. This editorial introduces the ELIXIR channel in F1000Research; the aim of the channel is to collect and present ELIXIR's scientific and operational output, engage with the broad life science community and encourage discussion on proposed infrastructure solutions. Submissions will be assessed by the ELIXIR channel Advisory Board to ensure they are relevant to ELIXIR community, and subjected to F1000Research open peer review process.

  6. The ELIXIR channel in F1000Research

    PubMed Central

    Blomberg, Niklas; Oliveira, Arlindo; Mons, Barend; Persson, Bengt; Jonassen, Inge

    2016-01-01

    ELIXIR, the European life science infrastructure for biological information, is a unique initiative to consolidate Europe’s national centres, services, and core bioinformatics resources into a single, coordinated infrastructure. ELIXIR brings together Europe’s major life-science data archives and connects these with national bioinformatics infrastructures  - the ELIXIR Nodes. This editorial introduces the ELIXIR channel in F1000Research; the aim of the channel is to collect and present ELIXIR’s scientific and operational output, engage with the broad life science community and encourage discussion on proposed infrastructure solutions. Submissions will be assessed by the ELIXIR channel Advisory Board to ensure they are relevant to ELIXIR community, and subjected to F1000Research open peer review process. PMID:26913192

  7. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE FOR THE 21ST CENTURY RESEARCH PLAN

    EPA Science Inventory

    This plan has been developed to provide the Office of Research and Development (ORD) with a guide for implementing a research program that addresses high priority needs of the Nation relating to its drinking water and wastewater infrastructure. By identifying these critical need...

  8. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, G; Abhayaratne, P; Bale, J

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CImore » facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that determine whether a terrorist organization will attack critical infrastructure. In other words, this research investigates: (1) why terrorists choose to attack critical infrastructure rather than other targets; (2) how groups make such decisions; (3) what, if any, types of groups are most inclined to attack critical infrastructure targets; and (4) which types of critical infrastructure terrorists prefer to attack and why. In an effort to address the above questions as comprehensively as possible, the project team employed four discrete investigative approaches in its research design. These include: (1) a review of existing terrorism and threat assessment literature to glean expert consensus regarding terrorist target selection, as well as to identify theoretical approaches that might be valuable to analysts and decision-makers who are seeking to understand such terrorist group decision-making processes; (2) the preparation of several concise case studies to help identify internal group factors and contextual influences that have played significant roles in leading some terrorist groups to attack critical infrastructure; (3) the creation of a new database--the Critical Infrastructure Terrorist Incident Catalog (CrITC)--to capture a large sample of empirical CI attack data that might be used to illuminate the nature of such attacks to date; and (4) the development of a new analytical framework--the Determinants Effecting Critical Infrastructure Decisions (DECIDe) Framework--designed to make the factors and dynamics identified by the study more ''usable'' in any future efforts to assess terrorist intentions to target critical infrastructure. Although each is addressed separately in the following chapters, none of the four aspects of this study were developed in isolation. Rather, all the constituent elements of the project informed--and were informed by--the others. For example, the review of the available literature on terrorist target selection made possible the identification of several target selection factors that were both important in the development of the analytical framework and subsequently validated by the case studies. Similarly, statistical analysis of the CrITIC data yielded measurable evidence that supported hypotheses derived from the framework, the case studies, and the writings of various experts. Besides providing an important mechanism of self-reinforcement and validation, the project's multifaceted nature made it possible to discern aspects of CI attack motivations that would likely have been missed if any single approach had been adopted.« less

  9. Spatial aspects of the research on tourist infrastructure with the use of the cartographic method on the basis of Roztoczański National Park

    NASA Astrophysics Data System (ADS)

    Kałamucki, Krzysztof; Kamińska, Anna; Buk, Dorota

    2012-01-01

    The aim of the research was to demonstrate changes in tourist trails and in the distribution of tourist infrastructure spots in the area of Roztoczański National Park in its vicinity. Another, equally important aim, was to check the usefulness of tourist infrastructure in both cartographic method of infrastructure research and in cartography of presentation methods. The research covered the region of Roztoczański National Park. The following elements of tourist infrastructure were selected for the analysis: linear elements (walking trails, education paths) and spot elements (accommodation, eating places and the accompanied basis). In order to recreate the state of infrastructure during the last 50 years, it was necessary to analyse the following source material: tourist maps issued as independent publications, maps issued as supplements to tour guides and aerial photography. The information from text sources was used, e.g. from tourist guides, leaflets and monographs. The temporal framework was defined as 50 years from the 1960's until 2009. This time range was divided into five 10-year periods. In order to present the state of tourist infrastructure, its spatial and qualitative changes, 6 maps were produces (maps of states and types of changes). The conducted spatial analyses and the interpretations of maps of states and changes in tourist infrastructure allowed to capture both qualitative and quantitative changes. It was stated that the changes in the trails were not regular. There were parts of trails that did not change for 40 years. There were also some that were constructed during the last decade. Presently, the area is densely covered with tourist trails and education paths. The measurements of lengths of tourist trails and their parts with regard to land cover and category of roads allowed to determine the character of trails and the scope of changes. The conducted analyses proved the usefulness of cartographic methods in researching tourist infrastructure in spatial and quantitative aspects.

  10. Sovereign cat bonds and infrastructure project financing.

    PubMed

    Croson, David; Richter, Andreas

    2003-06-01

    We examine the opportunities for using catastrophe-linked securities (or equivalent forms of nondebt contingent capital) to reduce the total costs of funding infrastructure projects in emerging economies. Our objective is to elaborate on methods to reduce the necessity for unanticipated (emergency) project funding immediately after a natural disaster. We also place the existing explanations of sovereign-level contingent capital into a catastrophic risk management framework. In doing so, we address the following questions. (1) Why might catastrophe-linked securities be useful to a sovereign nation, over and above their usefulness for insurers and reinsurers? (2) Why are such financial instruments ideally suited for protecting infrastructure projects in emerging economies, under third-party sponsorship, from low-probability, high-consequence events that occur as a result of natural disasters? (3) How can the willingness to pay of a sovereign government in an emerging economy (or its external project sponsor), who values timely completion of infrastructure projects, for such instruments be calculated? To supplement our treatment of these questions, we use a multilayer spreadsheet-based model (in Microsoft Excel format) to calculate the overall cost reductions possible through the judicious use of catastrophe-based financial tools. We also report on numerical comparative statics on the value of contingent-capital financing to avoid project disruption based on varying costs of capital, probability and consequences of disasters, the feasibility of strategies for mid-stage project abandonment, and the timing of capital commitments to the infrastructure investment. We use these results to identify high-priority applications of catastrophe-linked securities so that maximal protection can be realized if the total number of catastrophe instruments is initially limited. The article concludes with potential extensions to our model and opportunities for future research.

  11. Assessing Research Interest and Capacity in Community Health Centers

    PubMed Central

    Bhuiya, Nazmim; Pernice, Joan; Khan, Sami M.; Sequist, Thomas D.; Tendulkar, Shalini A.

    2013-01-01

    Abstract Objective Community health centers (CHCs) have great potential to participate in the development of evidence‐based primary care but face obstacles to engagement in clinical translational research. Methods To understand factors associated with CHC interest in building research infrastructure, Harvard Catalyst and the Massachusetts League of Community Health Centers conducted an online survey of medical directors in all 50 Massachusetts CHC networks. Results Thirty‐two (64%) medical directors completed the survey representing 126 clinical sites. Over 80% reported that their primary care providers (PCPs) were slightly to very interested in future clinical research and that they were interested in building research infrastructure at their CHC. Frequently cited barriers to participation in research included financial issues, lack of research skills, and lack of research infrastructure. In bivariate analyses, PCP interest in future clinical research and a belief that involvement in research contributed to PCP retention were significantly associated with interest in building research infrastructure. Conclusion CHCs critical role in caring for vulnerable populations ideally positions them to raise relevant research questions and translate evidence into practice. Our findings suggest a high interest in engagement in research among CHC leadership. CTSAs have a unique opportunity to support local CHCs in this endeavor. PMID:24127928

  12. The GILDA t-Infrastructure: grid training activities in Africa and future opportunities

    NASA Astrophysics Data System (ADS)

    Ardizzone, V.; Barbera, R.; Ciuffo, L.; Giorgio, E.

    2009-04-01

    Scientists, educators, and students from many parts of the worlds are not able to take advantage of ICT because the digital divide is growing and prevents less developed countries to exploit its benefits. Instead of becoming more empowered and involved in worldwide developments, they are becoming increasingly marginalised as the world of education and science becomes increasingly Internet-dependent. The Grid Infn Laboratory for Dissemination Activities (GILDA) spreads since almost five years the awareness of Grid technology to a large audience, training new communities and fostering new organisations to provide resources. The knowledge dissemination process guided by the training activities is a key factor to ensure that all users can fully understand the characteristics of the Grid services offered by large existing e-Infrastructure. GILDA is becoming a "de facto" standard in training infrastructures (t-Infrastructures) and it is adopted by many grid projects worldwide. In this contribution we will report on the latest status of GILDA services and on the training activities recently carried out in sub-Saharan Africa (Malawi and South Africa). Particular care will be devoted to show how GILDA can be "cloned" to satisfy both education and research demands of African Organisations. The opportunities to benefit from GILDA in the framework of the EPIKH project as well as the plans of the European Commission on grid training and education for the 2010-2011 calls of its 7th Framework Programme will be presented and discussed.

  13. Human-Technology Centric In Cyber Security Maintenance For Digital Transformation Era

    NASA Astrophysics Data System (ADS)

    Ali, Firkhan Ali Bin Hamid; Zalisham Jali, Mohd, Dr

    2018-05-01

    The development of the digital transformation in the organizations has become more expanding in these present and future years. This is because of the active demand to use the ICT services among all the organizations whether in the government agencies or private sectors. While digital transformation has led manufacturers to incorporate sensors and software analytics into their offerings, the same innovation has also brought pressure to offer clients more accommodating appliance deployment options. So, their needs a well plan to implement the cyber infrastructures and equipment. The cyber security play important role to ensure that the ICT components or infrastructures execute well along the organization’s business successful. This paper will present a study of security management models to guideline the security maintenance on existing cyber infrastructures. In order to perform security model for the currently existing cyber infrastructures, combination of the some security workforces and security process of extracting the security maintenance in cyber infrastructures. In the assessment, the focused on the cyber security maintenance within security models in cyber infrastructures and presented a way for the theoretical and practical analysis based on the selected security management models. Then, the proposed model does evaluation for the analysis which can be used to obtain insights into the configuration and to specify desired and undesired configurations. The implemented cyber security maintenance within security management model in a prototype and evaluated it for practical and theoretical scenarios. Furthermore, a framework model is presented which allows the evaluation of configuration changes in the agile and dynamic cyber infrastructure environments with regard to properties like vulnerabilities or expected availability. In case of a security perspective, this evaluation can be used to monitor the security levels of the configuration over its lifetime and to indicate degradations.

  14. Synergizing green and gray infrastructures to increase water supply resilience in the Brazos River basin in Texas

    NASA Astrophysics Data System (ADS)

    Gao, H.; Yamazaki, D.; Finley, T.; Bohn, T. J.; Low, G.; Sabo, J. L.

    2017-12-01

    Water infrastructure lies at the heart of the challenges and opportunities of Integrated Water Resource Management (IWRM). Green infrastructure (e.g., wetlands restoration) presents an alternative to its hard-path counterpart - gray infrastructure, which often has external, economic and unmeasured ecological costs. But the science framework to prioritize green infrastructure buildout is nascent. In this study, we addressed this gap in Brazos River basin in Texas, in the context of corporate decisions to secure water supplies for various water stewardship objectives. We developed a physically-based tool to quantify the potential for wetland restoration to restore desired flows (hydrology), and a financial framework for comparing its cost-benefit with heightening an existing dam (conservation finance). Our framework has three components. First, we harnessed a topographic index (HAND) to identify the potential wetlands sites. Second, we coupled a land surface model (VIC) with a hydrodynamic model (CaMa-Flood) to investigate the effects of wetland size, location, and vegetation on hydrology. Finally, we estimated the net present value, indirect rate of return and payback period for green (wetlands) vs. gray (reservoir expansion) infrastructure. We found wetlands have more substantial impact on peak flow than baseflow. Interestingly, wetlands can improve baseflow reliability but not directly except with the largest (>400 km2) projects. Peak flow reduction volumes of wetlands if used as credits towards reservoir flood-control storage provide adequate conservation storage to deliver guaranteed reliability of baseflow. Hence, the synergy of existing dams with newly created wetlands offers a promising natural solution to increase water supply resilience, while green projects also generate revenue compared to their gray counterparts. This study demonstrates the possibility of using innovative engineering design to synergize green and gray infrastructures to convert water conflict to opportunities.

  15. The Contribution of the Geodetic Community (WG4) to EPOS

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Bastos, L. C.; Bruyninx, C.; D'Agostino, N.; Dousa, J.; Ganas, A.; Lidberg, M.; Nocquet, J.-M.

    2012-04-01

    WG4 - "EPOS Geodetic Data and Infrastructure" is the Working Group of the EPOS project responsible to define and prepare the integration of the existing Pan-European Geodetic Infrastructures into a unique future consistent infrastructure that supports the European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries and from EUREF (European Reference Frame), which also ensures the inclusion and the contact with countries that formally are not part of the current phase of EPOS. In reality, the fact that Europe is formed by many countries (having different laws and policies) lacking an infrastructure similar to UNAVCO (which concentrates the effort of the local geo-science community) raises the difficulties to create a common geodetic infrastructure serving not only the entire geo-science community, but also many other areas of great social-economic impact. The benefits of the creation of such infrastructure (shared and easily accessed by all) are evident in order to optimize the existing and future geodetic resources. This presentation intends to detail the work being produced within the working group WG4 related with the definition of strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Discussed issues include the access to high-rate data in near real-time, storage and backup of historical and future data, the sustainability of the networks in order to achieve long-term stability in the observation infrastructure, seamless access to the data, open data policies, and processing tools.

  16. Connectivity and Resilience: A Multidimensional Analysis of Infrastructure Impacts in the Southwestern Amazon

    ERIC Educational Resources Information Center

    Perz, Stephen G.; Shenkin, Alexander; Barnes, Grenville; Cabrera, Liliana; Carvalho, Lucas A.; Castillo, Jorge

    2012-01-01

    Infrastructure is a worldwide policy priority for national development via regional integration into the global economy. However, economic, ecological and social research draws contrasting conclusions about the consequences of infrastructure. We present a synthetic approach to the study of infrastructure, focusing on a multidimensional treatment…

  17. Geo-Seas - building a unified e-infrastructure for marine geoscientific data management in Europe

    NASA Astrophysics Data System (ADS)

    Glaves, H.; Schaap, D.

    2012-04-01

    A significant barrier to marine geoscientific research in Europe is the lack of standardised marine geological and geophysical data and data products which could potentially facilitate multidisciplinary marine research extending across national and international boundaries. Although there are large volumes of geological and geophysical data available for the marine environment it is currently very difficult to use these datasets in an integrated way due to different nomenclatures, formats, scales and coordinate systems being used within different organisations as well as between countries. This makes the direct use of primary data very difficult and also hampers use of the data to produce integrated multidisciplinary data products and services. The Geo-Seas project, an EU Framework 7 funded initiative, is developing a unified e-infrastructure to facilitate the sharing of marine geoscientific data within Europe. This e-infrastructure is providing on-line access to both discovery metadata and the associated federated data sets from 26 European data centres via a dedicated portal. The implementation of the Geo-Seas portal is allowing a range of end users to locate, assess and access standardised geoscientific data from multiple sources which is interoperable with other marine data types. Geo-Seas is building on the work already done by the existing SeaDataNet project which currently provides a data management e-infrastructure for oceanographic data which allows users to locate and access federated oceanographic data sets. By adopting and adapting the SeaDataNet methodologies and technologies the Geo-Seas project has not only avoid unnecessary duplication of effort by reusing existing and proven technologies but also contributed to the development of a multidisciplinary approach to ocean science across Europe through the creation of a joint infrastructure for both marine geoscientific and oceanographic data. This approach is also leading to the development of collaborative links with other European projects including EMODNET, Eurofleets. Genesi-DEC and iMarine as well as extending to the wider marine geoscientific and oceanographic community including projects in the USA such as the Rolling Deck Repository (R2R) initiative and also organisations in both the USA and Australia. On behalf of the Geo-Seas consortium partners: NERC-BGS (United Kingdom), NERC-BODC (United Kingdom), NERC-NOCS (United Kingdom), MARIS (Netherlands), IFREMER (France), BRGM (France), TNO (Netherlands), BSH (Germany), IGME (Spain), LNEG (Portugal), GSI (Ireland), BGR (Germany), OGS (Italy), GEUS (Denmark), NGU (Norway), PGI (Poland), EGK (Estonia), NRC-IGG (Lithuania), IO-BAS (Bulgaria), NOA (Greece), CIRIA (United Kingdom), MUMM (Belgium), UB (Spain), UCC (Ireland), EU-Consult (Netherlands), CNRS (France), SHOM (France), CEFAS (United Kingdom), and LU (Latvia).

  18. Women in EPOS: the role of women in a large pan-European Research Infrastructure for Solid Earth sciences

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Freda, Carmela; Baracchi, Laura

    2017-04-01

    Women are outnumbered by men in geosciences senior research positions, but what is the situation if we consider large pan-European Research Infrastructures? With this contribution we want to show an analysis of the role of women in the implementation of the European Plate Observing System (EPOS): a planned research infrastructure for European Solid Earth sciences, integrating national and transnational research infrastructures to enable innovative multidisciplinary research. EPOS involves 256 national research infrastructures, 47 partners (universities and research institutes) from 25 European countries and 4 international organizations. The EPOS integrated platform demands significant coordination between diverse solid Earth disciplinary communities, national research infrastructures and the policies and initiatives they drive, geoscientists and information technologists. The EPOS architecture takes into account governance, legal, financial and technical issues and is designed so that the enterprise works as a single, but distributed, sustainable research infrastructure. A solid management structure is vital for the successful implementation and sustainability of EPOS. The internal organization relies on community-specific Working Packages (WPs), Transversal WPs in charge of the overall EPOS integration and implementation, several governing, executive and advisory bodies, a Project Management Office (PMO) and the Project Coordinator. Driven by the timely debate on gender balance and commitment of the European Commission to promote gender equality in research and innovation, we decided to conduct a mapping exercise on a project that crosses European national borders and that brings together diverse geoscience disciplines under one management structure. We present an analysis of women representation in decision-making positions in each EPOS Working Package (WP Leader, proxy, legal, financial and IT contact persons), in the Boards and Councils and in the PMO, together with statistics on women participation based on the project intranet, which counts more than 500 users. The analysis allows us not only to assess the gender balance in decision-making positions in a pan-European research infrastructure, but also to investigate how women's participation varies with different aspects of the project implementation (management, coordination, legal, financial or technical). Most of the women in EPOS are active geoscientists (academic or in national research institutes), or have a scientific background. By interviewing some of them we report also on how being involved in the project affects their careers. We believe this kind of analysis is an important starting point to promote awareness and achieve gender equality in research and innovation.

  19. Developing Istanbul into a Regional Business Hub

    DTIC Science & Technology

    2004-12-01

    infrastructure, industrial concentration, availability of work force, political stability and cultural affinity. (Galan, Gonzalez-Benito, 2001...and transportation costs, infrastructure, political stability , and quality of labor, appear with a certain degree of relevance on a second level...degree of political stability and government intervention in the economy; the existence of property rights legislation determining the legal rights

  20. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  1. Communication: Essential for Leadership to a Public Good--an Information Infrastructure.

    ERIC Educational Resources Information Center

    Moran, Robert F., Jr.

    This paper discusses the central role of effective communication in library leadership and how a leadership role in the library and information community can define and help establish an information infrastructure in our society. The opportunity for this leadership to exist in the convergence of libraries and computer centers is examined in a…

  2. Developing an Information Infrastructure To Support Information Retrieval: Towards a Theory of Clustering Based in Classification.

    ERIC Educational Resources Information Center

    Micco, Mary; Popp, Rich

    Techniques for building a world-wide information infrastructure by reverse engineering existing databases to link them in a hierarchical system of subject clusters to create an integrated database are explored. The controlled vocabulary of the Library of Congress Subject Headings is used to ensure consistency and group similar items. Each database…

  3. Technography and Design-Actuality Gap-Analysis of Internet Computer Technologies-Assisted Education: Western Expectations and Global Education

    ERIC Educational Resources Information Center

    Greenhalgh-Spencer, Heather; Jerbi, Moja

    2017-01-01

    In this paper, we provide a design-actuality gap-analysis of the internet infrastructure that exists in developing nations and nations in the global South with the deployed internet computer technologies (ICT)-assisted programs that are designed to use internet infrastructure to provide educational opportunities. Programs that specifically…

  4. Youth and Lifelong Education: After-School Programmes as a Vital Component of Lifelong Education Infrastructure

    ERIC Educational Resources Information Center

    Lauzon, Allan C.

    2013-01-01

    This paper argues that after-school programmes need to be considered an essential part of lifelong learning infrastructure, particularly in light of the dominance of the economic discourse in both lifelong learning literature and the initial schooling literature. The paper, which is based upon existing literature, begins by providing an overview…

  5. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  6. Permeability of existing structures for terrestrial wildlife : a passage assessment system.

    DOT National Transportation Integrated Search

    2011-07-01

    "A Passage Assessment System (PAS) was developed to help the Washington Department of : Transportation (WSDOT) evaluate existing transportation infrastructure for its ability to facilitate : terrestrial wildlife movement from one side of a roadway to...

  7. Traffic prediction using wireless cellular networks : final report.

    DOT National Transportation Integrated Search

    2016-03-01

    The major objective of this project is to obtain traffic information from existing wireless : infrastructure. : In this project freeway traffic is identified and modeled using data obtained from existing : wireless cellular networks. Most of the prev...

  8. Optimal infrastructure maintenance scheduling problem under budget uncertainty.

    DOT National Transportation Integrated Search

    2010-05-01

    This research addresses a general class of infrastructure asset management problems. Infrastructure : agencies usually face budget uncertainties that will eventually lead to suboptimal planning if : maintenance decisions are made without taking the u...

  9. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  10. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  11. International Development of e-Infrastructures and Data Management Priorities for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Gurney, R. J.

    2015-12-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations to the Belmont Forum collaboration of national science funding agencies and others on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: adoption of data principles that promote a global, interoperable e-infrastructure establishment of information and data officers for coordination of global data management and e-infrastructure efforts promotion of effective data planning determination of best practices development of a cross-disciplinary training curriculum on data management and curation The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. The international collaborative process that went into forming these recommendations is contributing to national governments and funding agencies and international bodies working together to execute them.

  12. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key results of an in-depth user requirements exercise, and also the conclusions from a survey of existing technologies and policies for earth science data preservation involving almost five hundred respondents across Europe and beyond will also be outlined. A key aim of the project will also be to create harmonised data preservation and access policies for earth science data in Europe, taking into account the requirements of relevant earth science data users and archive providers across Europe, liaising appropriately with other European e-infrastructure projects, and progress on this will be explained.

  13. Managing Critical Infrastructures C.I.M. Suite

    ScienceCinema

    Dudenhoeffer, Donald

    2018-05-23

    See how a new software package developed by INL researchers could help protect infrastructure during natural disasters, terrorist attacks and electrical outages. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  14. Green Infrastructure Research and Demonstration at the Edison Environmental Center

    EPA Science Inventory

    This presentation will review the need for storm water control practices and will present a portion of the green infrastructure research and demonstration being performed at the Edison Environmental Center.

  15. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  16. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE IN THE 21ST CENTURY: U.S. EPA'S RESEARCH PLAN FOR GRAVITY SEWERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has long recognized the need for research and development in the area of drinking water and wastewater infrastructure. Most recently in support of the Agency’s Sustainable Water Infrastructu...

  17. INNOVATION AND RESEARCH FOR WATER INFRASTRUCTURE IN THE 21ST CENTURY: U.S. EPA’S RESEARCH PLANS FOR GRAVITY SEWERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has long recognized the need for research and development in the area of drinking water and wastewater infrastructure. Most recently in support of the Agency’s Sustainable Water ...

  18. Implementation Practice and Implementation Research: A Report from the Field

    ERIC Educational Resources Information Center

    Brekke, John S.; Phillips, Elizabeth; Pancake, Laura; O, Anne; Lewis, Jenebah; Duke, Jessica

    2009-01-01

    The Interventions and Practice Research Infrastructure Program (IPRISP) funding mechanism was introduced by the National Institute of Mental Health (NIMH) to bridge the gap between the worlds of services research and the usual care practice in the community. The goal was to build infrastructure that would provide a platform for research to…

  19. Clinical research: business opportunities for pharmacy-based investigational drug services.

    PubMed

    Marnocha, R M

    1999-02-01

    The application by an academic health center of business principles to the conduct of clinical research is described. Re-engineering of the infrastructure for clinical research at the University of Wisconsin and University of Wisconsin Hospital and Clinics began in 1990 with the creation of the Center for Clinical Trials (CCT) and the restructuring of the investigational drug services (IDS). Strategies to further improve the institution's clinical research activities have been continually assessed and most recently have centered on the adaptation of a business philosophy within the institution's multidisciplinary research infrastructure. Toward that end, the CCT and IDS have introduced basic business principles into operational activities. Four basic business concepts have been implemented: viewing the research protocol as a commodity, seeking payment for services rendered, tracking investments, and assessing performance. It is proposed that incorporation of these basic business concepts is not only compatible with the infrastructure for clinical research but beneficial to that infrastructure. The adaptation of a business mindset is likely to enable an academic health center to reach its clinical research goals.

  20. Capabilities of the RENEB network for research and large scale radiological and nuclear emergency situations.

    PubMed

    Monteiro Gil, Octávia; Vaz, Pedro; Romm, Horst; De Angelis, Cinzia; Antunes, Ana Catarina; Barquinero, Joan-Francesc; Beinke, Christina; Bortolin, Emanuela; Burbidge, Christopher Ian; Cucu, Alexandra; Della Monaca, Sara; Domene, Mercedes Moreno; Fattibene, Paola; Gregoire, Eric; Hadjidekova, Valeria; Kulka, Ulrike; Lindholm, Carita; Meschini, Roberta; M'Kacher, Radhia; Moquet, Jayne; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Montoro Pastor, Alegria; Popescu, Irina-Anca; Quattrini, Maria Cristina; Ricoul, Michelle; Rothkamm, Kai; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Trompier, François; Vral, Anne

    2017-01-01

    To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems. A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties. The survey focused on several main areas: laboratory's general information, country and staff involved in biological and physical dosimetry; retrospective assays used, the number of assays available per laboratory and other information related to biodosimetry and emergency preparedness. Following technical intercomparisons amongst RENEB members, an update of the survey was performed one year later concerning the staff and the available assays. The analysis of RENEB questionnaires allowed a detailed assessment of existing capacity of the RENEB network to respond to nuclear and radiological emergencies. This highlighted the key importance of international cooperation in order to guarantee an effective and timely response in the event of radiological or nuclear accidents involving a considerable number of casualties. The deployment of the scientific and technical capabilities existing within the RENEB network members seems mandatory, to help other countries with less or no capacity for biological or physical dosimetry, or countries overwhelmed in case of a radiological or nuclear accident involving a large number of individuals.

  1. Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.

  2. National Study of Nursing Research Characteristics at Magnet®-Designated Hospitals.

    PubMed

    Pintz, Christine; Zhou, Qiuping Pearl; McLaughlin, Maureen Kirkpatrick; Kelly, Katherine Patterson; Guzzetta, Cathie E

    2018-05-01

    To describe the research infrastructure, culture, and characteristics of building a nursing research program in Magnet®-designated hospitals. Magnet recognition requires hospitals to conduct research and implement evidence-based practice (EBP). Yet, the essential characteristics of productive nursing research programs are not well described. We surveyed 181 nursing research leaders at Magnet-designated hospitals to assess the characteristics in their hospitals associated with research infrastructure, research culture, and building a nursing research program. Magnet hospitals provide most of the needed research infrastructure and have a culture that support nursing research. Higher scores for the 3 categories were found when hospitals had a nursing research director, a research department, and more than 10 nurse-led research studies in the past 5 years. While some respondents indicated their nurse executives and leaders support the enculturation of EBP and research, there continue to be barriers to full implementation of these characteristics in practice.

  3. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  4. Changes in Data Sharing and Data Reuse Practices and Perceptions among Scientists Worldwide

    PubMed Central

    Tenopir, Carol; Dalton, Elizabeth D.; Allard, Suzie; Frame, Mike; Pjesivac, Ivanka; Birch, Ben; Pollock, Danielle; Dorsett, Kristina

    2015-01-01

    The incorporation of data sharing into the research lifecycle is an important part of modern scholarly debate. In this study, the DataONE Usability and Assessment working group addresses two primary goals: To examine the current state of data sharing and reuse perceptions and practices among research scientists as they compare to the 2009/2010 baseline study, and to examine differences in practices and perceptions across age groups, geographic regions, and subject disciplines. We distributed surveys to a multinational sample of scientific researchers at two different time periods (October 2009 to July 2010 and October 2013 to March 2014) to observe current states of data sharing and to see what, if any, changes have occurred in the past 3–4 years. We also looked at differences across age, geographic, and discipline-based groups as they currently exist in the 2013/2014 survey. Results point to increased acceptance of and willingness to engage in data sharing, as well as an increase in actual data sharing behaviors. However, there is also increased perceived risk associated with data sharing, and specific barriers to data sharing persist. There are also differences across age groups, with younger respondents feeling more favorably toward data sharing and reuse, yet making less of their data available than older respondents. Geographic differences exist as well, which can in part be understood in terms of collectivist and individualist cultural differences. An examination of subject disciplines shows that the constraints and enablers of data sharing and reuse manifest differently across disciplines. Implications of these findings include the continued need to build infrastructure that promotes data sharing while recognizing the needs of different research communities. Moving into the future, organizations such as DataONE will continue to assess, monitor, educate, and provide the infrastructure necessary to support such complex grand science challenges. PMID:26308551

  5. Changes in data sharing and data reuse practices and perceptions among scientists worldwide

    USGS Publications Warehouse

    Tenopir, Carol; Dalton, Elizabeth D.; Allard, Suzie; Frame, Mike; Pjesivac, Ivanka; Birch, Ben; Pollock, Danielle; Dorsett, Kristina

    2015-01-01

    The incorporation of data sharing into the research lifecycle is an important part of modern scholarly debate. In this study, the DataONE Usability and Assessment working group addresses two primary goals: To examine the current state of data sharing and reuse perceptions and practices among research scientists as they compare to the 2009/2010 baseline study, and to examine differences in practices and perceptions across age groups, geographic regions, and subject disciplines. We distributed surveys to a multinational sample of scientific researchers at two different time periods (October 2009 to July 2010 and October 2013 to March 2014) to observe current states of data sharing and to see what, if any, changes have occurred in the past 3–4 years. We also looked at differences across age, geographic, and discipline-based groups as they currently exist in the 2013/2014 survey. Results point to increased acceptance of and willingness to engage in data sharing, as well as an increase in actual data sharing behaviors. However, there is also increased perceived risk associated with data sharing, and specific barriers to data sharing persist. There are also differences across age groups, with younger respondents feeling more favorably toward data sharing and reuse, yet making less of their data available than older respondents. Geographic differences exist as well, which can in part be understood in terms of collectivist and individualist cultural differences. An examination of subject disciplines shows that the constraints and enablers of data sharing and reuse manifest differently across disciplines. Implications of these findings include the continued need to build infrastructure that promotes data sharing while recognizing the needs of different research communities. Moving into the future, organizations such as DataONE will continue to assess, monitor, educate, and provide the infrastructure necessary to support such complex grand science challenges.

  6. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Nucleus: A pilot project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnell, Joshua Eugene; Klein, Martin; Cain, Brian J.

    2017-05-09

    The proposal is to provide institutional infrastructure that facilitates management of research projects, research collaboration, and management, preservation, and discovery of data. Deploying such infrastructure will amplify the effectiveness, efficiency, and impact of research, as well as assist researchers in regards to compliance with both data management mandates and LANL security policy. This will facilitate discoverability of LANL research both within the lab and external to LANL.

  8. Risk assessment framework on time impact: Infrastructure projects in soft soil during construction stage

    NASA Astrophysics Data System (ADS)

    Low, W. W.; Wong, K. S.; Lee, J. L.

    2018-04-01

    With the growth of economy and population, there is an increase in infrastructure construction projects. As such, it is unavoidable to have construction projects on soft soil. Without proper risk management plan, construction projects are vulnerable to different types of risks which will have negative impact on project’s time, cost and quality. Literature review showed that little or none of the research is focused on the risk assessment on the infrastructure project in soft soil. Hence, the aim of this research is to propose a risk assessment framework in infrastructure projects in soft soil during the construction stage. This research was focused on the impact of risks on project time and internal risk factors. The research method was Analytical Hierarchy Process and the sample population was experienced industry experts who have experience in infrastructure projects. Analysis was completed and result showed that for internal factors, the five most significant risks on time element are lack of special equipment, potential contractual disputes and claims, shortage of skilled workers, delay/lack of materials supply, and insolvency of contractor/sub-contractor. Results indicated that resources risk factor play a critical role on project time frame in infrastructure projects in soft soil during the construction stage.

  9. Strategic behaviors and governance challenges in social-ecological systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Rachata; Anderies, John M.

    2017-08-01

    The resource management and environmental policy literature focuses on devising regulations and incentive structures to achieve desirable goals. It often presumes the existence of public infrastructure that actualizes these incentives and regulations through a process loosely referred to as `governance.' In many cases, it is not clear if and how such governance infrastructure can be created and supported. Here, we take a complex systems view in which `governance' is an emergent phenomenon generated by interactions between social, economic, and environmental (both built and natural) factors. We present a framework and formal stylized model to explore under what circumstances stable governance structures may emerge endogenously in coupled infrastructure systems comprising shared natural, social, and built infrastructures of which social-ecological systems are specific examples. The model allows us to derive general conditions for a sustainable coupled infrastructure system in which critical infrastructure (e.g., canals) is provided by a governing entity that enables resource users (e.g., farmers) to produce outputs from natural infrastructure (e.g., water) to meet their needs while supporting the governing entity.

  10. Storing and Using Health Data in a Virtual Private Cloud

    PubMed Central

    Regola, Nathan

    2013-01-01

    Electronic health records are being adopted at a rapid rate due to increased funding from the US federal government. Health data provide the opportunity to identify possible improvements in health care delivery by applying data mining and statistical methods to the data and will also enable a wide variety of new applications that will be meaningful to patients and medical professionals. Researchers are often granted access to health care data to assist in the data mining process, but HIPAA regulations mandate comprehensive safeguards to protect the data. Often universities (and presumably other research organizations) have an enterprise information technology infrastructure and a research infrastructure. Unfortunately, both of these infrastructures are generally not appropriate for sensitive research data such as HIPAA, as they require special accommodations on the part of the enterprise information technology (or increased security on the part of the research computing environment). Cloud computing, which is a concept that allows organizations to build complex infrastructures on leased resources, is rapidly evolving to the point that it is possible to build sophisticated network architectures with advanced security capabilities. We present a prototype infrastructure in Amazon’s Virtual Private Cloud to allow researchers and practitioners to utilize the data in a HIPAA-compliant environment. PMID:23485880

  11. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  12. BCube: Building a Geoscience Brokering Framework

    NASA Astrophysics Data System (ADS)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay

    2014-05-01

    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  13. Application of green IT for physics data processing at INCDTIM

    NASA Astrophysics Data System (ADS)

    Farcas, Felix; Trusca, Radu; Albert, Stefan; Szabo, Izabella; Popeneciu, Gabriel

    2012-02-01

    Green IT is the next generation technology used in all datacenter around the world. Its benefit is of economic and financial interest. The new technologies are energy efficient, reduce cost and avoid potential disruptions to the existing infrastructure. The most important problem appears at the cooling systems which are the most important in the functionality of a datacenter. Green IT used in Grid Network will benefit the environment and is the next phase in computer infrastructure that will fundamentally change the way we think about and use computing power. At the National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca (INCDTIM) we have implemented such kind of technology and its support helped us in processing multiple data in different domains, which brought INCDTIM on the major Grid domain with the RO-14-ITIM Grid site. In this paper we present benefits that the new technology brought us and the result obtained in the last year after the implementation of the new green technology.

  14. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  15. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and developmentmore » to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.« less

  16. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  17. A vision for collaborative training infrastructure for bioinformatics.

    PubMed

    Williams, Jason J; Teal, Tracy K

    2017-01-01

    In biology, a missing link connecting data generation and data-driven discovery is the training that prepares researchers to effectively manage and analyze data. National and international cyberinfrastructure along with evolving private sector resources place biologists and students within reach of the tools needed for data-intensive biology, but training is still required to make effective use of them. In this concept paper, we review a number of opportunities and challenges that can inform the creation of a national bioinformatics training infrastructure capable of servicing the large number of emerging and existing life scientists. While college curricula are slower to adapt, grassroots startup-spirited organizations, such as Software and Data Carpentry, have made impressive inroads in training on the best practices of software use, development, and data analysis. Given the transformative potential of biology and medicine as full-fledged data sciences, more support is needed to organize, amplify, and assess these efforts and their impacts. © 2016 New York Academy of Sciences.

  18. Assured communications and combat resiliency: the relationship between effective national communications and combat efficiency

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay

    2009-05-01

    Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.

  19. Infrastructure of electronic information management

    USGS Publications Warehouse

    Twitchell, G.D.

    2004-01-01

    The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.

  20. Research Infrastructure and Scientific Collections: The Supply and Demand of Scientific Research

    NASA Astrophysics Data System (ADS)

    Graham, E.; Schindel, D. E.

    2016-12-01

    Research infrastructure is essential in both experimental and observational sciences and is commonly thought of as single-sited facilities. In contrast, object-based scientific collections are distributed in nearly every way, including by location, taxonomy, geologic epoch, discipline, collecting processes, benefits sharing rules, and many others. These diffused collections may have been amassed for a particular discipline, but their potential for use and impact in other fields needs to be explored. Through a series of cross-disciplinary activities, Scientific Collections International (SciColl) has explored and developed new ways in which the supply of scientific collections can meet the demand of researchers in unanticipated ways. From cross-cutting workshops on emerging infectious diseases and food security, to an online portal of collections, SciColl aims to illustrate the scope and value of object-based scientific research infrastructure. As distributed infrastructure, the full impact of scientific collections to the research community is a result of discovering, utilizing, and networking these resources. Examples and case studies from infectious disease research, food security topics, and digital connectivity will be explored.

  1. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  2. Challenges in the detection, prevention, and treatment of HIV-associated malignancies in low- and middle-income countries in Africa.

    PubMed

    Adebamowo, Clement A; Casper, Corey; Bhatia, Kishor; Mbulaiteye, Sam M; Sasco, Annie J; Phipps, Warren; Vermund, Sten H; Krown, Susan E

    2014-09-01

    Cancers associated with immunosuppression and infections have long been recognized as a major complication of HIV/AIDS. More recently, persons living with HIV are increasingly diagnosed with a wider spectrum of HIV-associated malignancies (HIVAM) as they live longer on combination antiretroviral therapy. This has spurred research to characterize the epidemiology and determine the optimal management of HIVAM with a focus on low-and middle-income countries (LMICs). Given background coinfections, environmental exposures, host genetic profiles, antiretroviral therapy usage, and varying capacities for early diagnosis and treatment, one can expect the biology of cancers in HIV-infected persons in LMICs to have a significant impact on chronic HIV care, as is now the case in high-income countries. Thus, new strategies must be developed to effectively prevent, diagnose, and treat HIVAM in LMICs; provide physical/clinical infrastructures; train the cancer and HIV workforce; and expand research capacity-particularly given the challenges posed by the limitations on available transportation and financial resources and the population's general rural concentration. Opportunities exist to extend resources supported by the President's Emergency Plan for AIDS Relief and the Global Fund to Fight AIDS, Tuberculosis, and Malaria to improve the health-care infrastructure and train the personnel required to prevent and manage cancers in persons living with HIV. These HIV chronic care infrastructures could also serve cancer patients regardless of their HIV status, facilitating long-term care and treatment for persons who do not live near cancer centers, so that they receive the same degree of care as those receiving chronic HIV care today.

  3. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    PubMed

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing.

  4. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Barron, E. J.; Fine, R. A.; Bellingham, J. G.; Boss, E.; Boyle, E. A.; Edwards, M.; Johnson, K. S.; Kelley, D. S.; Kite-Powell, H.; Ramberg, S. E.; Rudnick, D. L.; Schofield, O.; Tamburri, M.; Wiebe, P. H.; Wright, D. J.; Committee on an Ocean Infrastructure StrategyU. S. Ocean Research in 2030

    2011-12-01

    At the request of the Subcommittee on Ocean Science and Technology, an expert committee was convened by the National Research Council to identify major research questions anticipated to be at the forefront of ocean science in 2030, define categories of infrastructure that should be included in planning, provide advice on criteria and processes that could be used to set priorities, and recommend ways to maximize the value of investments in ocean infrastructure. The committee identified 32 future ocean research questions in four themes: enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions reflect challenging, multidisciplinary science questions that are clearly relevant now and are likely to take decades to solve. U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations and autonomous monitoring at a broad range of spatial and temporal scales. A coordinated national plan for making future strategic investments will be needed and should be based upon known priorities and reviewed every 5-10 years. After assessing trends in ocean infrastructure and technology development, the committee recommended implementing a comprehensive, long-term research fleet plan in order to retain access to the sea; continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. They also recommended that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit. Particular consideration should be given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. Estimating the economic costs and benefits of each potential infrastructure investment using these criteria would allow funding of investments that produce the largest expected net benefit over time.

  5. Swiss Experiment: Design, implemention and use of a cross-disciplinary infrastructure for data intensive science

    NASA Astrophysics Data System (ADS)

    Dawes, N.; Salehi, A.; Clifton, A.; Bavay, M.; Aberer, K.; Parlange, M. B.; Lehning, M.

    2010-12-01

    It has long been known that environmental processes are cross-disciplinary, but data has continued to be acquired and held for a single purpose. Swiss Experiment is a rapidly evolving cross-disciplinary, distributed sensor data infrastructure, where tools for the environmental science community stem directly from computer science research. The platform uses the bleeding edge of computer science to acquire, store and distribute data and metadata from all environmental science disciplines at a variety of temporal and spatial resolutions. SwissEx is simultaneously developing new technologies to allow low cost, high spatial and temporal resolution measurements such that small areas can be intensely monitored. This data is then combined with existing widespread, low density measurements in the cross-disciplinary platform to provide well documented datasets, which are of use to multiple research disciplines. We present a flexible, generic infrastructure at an advanced stage of development. The infrastructure makes the most of Web 2.0 technologies for a collaborative working environment and as a user interface for a metadata database. This environment is already closely integrated with GSN, an open-source database middleware developed under Swiss Experiment for acquisition and storage of generic time-series data (2D and 3D). GSN can be queried directly by common data processing packages and makes data available in real-time to models and 3rd party software interfaces via its web service interface. It also provides real-time push or pull data exchange between instances, a user management system which leaves data owners in charge of their data, advanced real-time processing and much more. The SwissEx interface is increasingly gaining users and supporting environmental science in Switzerland. It is also an integral part of environmental education projects ClimAtscope and O3E, where the technologies can provide rapid feedback of results for children of all ages and where the data from their own stations can be compared to national data networks.

  6. WATER INFRASTRUCTURE IN THE 21ST CENTURY: U.S. EPA’S RESEARCH PLANS FOR GRAVITY SEWERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has long recognized the need for research and development in the area of drinking water and wastewater infrastructure. Most recently in support of the Agency’s Sustainable Water Infrastruct...

  7. A green infrastructure experimental site for developing and evaluating models

    EPA Science Inventory

    The Ecosystems Research Division (ERD) of the U.S. EPA’s National Exposure Research Laboratory (NERL) in Athens, GA has a 14-acre urban watershed which has become an experimental research site for green infrastructure studies. About half of the watershed is covered by pervious la...

  8. 77 FR 20872 - Enabling a Secure Environment for Vehicle-to-Infrastructure Research Workshop; Notice of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... DEPARTMENT OF TRANSPORTATION Enabling a Secure Environment for Vehicle-to-Infrastructure Research Workshop; Notice of Public Meeting AGENCY: ITS Joint Program Office, Research and Innovative Technology Administration, U.S. Department of Transportation. ACTION: Notice. The U.S. Department of Transportation (USDOT...

  9. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Raghavan, Sesha; Rames, Clement

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networksmore » to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.« less

  10. ENVRI PLUS project: Developing an ethical framework for Environmental and Earth System Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Peppoloni, Silvia; Di Capua, Giuseppe; Haslinger, Florian

    2016-04-01

    ENVRI PLUS is a Horizon 2020 project bringing together Environmental and Earth System Research Infrastructures (RIs), projects and networks with technical specialist partners to create a more coherent, interdisciplinary and interoperable cluster of Environmental Research Infrastructures across Europe (http://www.envriplus.eu/). One theme of the project deals with the societal relevance and understanding, and within that theme an entire work-package (WP) aims at developing an ethical framework for RIs. Objectives of this WP are: • increase the awareness of both the scientists and the public on the importance of ethical aspects in Earth sciences; • establish a shared ethical framework of reference, to be adopted by RIs governing bodies; • increase the awareness of RIs management and operational levels and of the individual involved scientists on their social role in conducting research activities and research work environment; • assess the ethical and social aspects related to the results achieved and deliverables released within the project. The ongoing activities include: • reviewing the state of art on ethical issues useful for the goals of the project (collection and analysis of materials already existing within scientific organizations, institutions all over the world); • the creation of a questionnaire, through which to investigate how each RI participating in ENVRI PLUS faces ethical issues in relation to its activities, and so to understand the level of perception that researchers and technicians involved in the project have on the ethical implications of their scientific activities; • the definition of ethics guidelines to be used by partners for building their policies and their own codes of conduct; • the elaboration of an ethical label template to characterize each product of the project, that partners will be able to use in order to give essential information about the ethical and social implications of their products; • the dissemination of all the results of the previous activities on websites and social networks, so that they are suitable for the public. ENVRI PLUS is the first European project in which ethics applied to geosciences find space as a fundamental issue, at the base of scientific activities.

  11. Supporting the scientific lifecycle through cloud services

    NASA Astrophysics Data System (ADS)

    Gensch, S.; Klump, J. F.; Bertelmann, R.; Braune, C.

    2014-12-01

    Cloud computing has made resources and applications available for numerous use cases ranging from business processes in the private sector to scientific applications. Developers have created tools for data management, collaborative writing, social networking, data access and visualization, project management and many more; either for free or as paid premium services with additional or extended features. Scientists have begun to incorporate tools that fit their needs into their daily work. To satisfy specialized needs, some cloud applications specifically address the needs of scientists for sharing research data, literature search, laboratory documentation, or data visualization. Cloud services may vary in extent, user coverage, and inter-service integration and are also at risk of being abandonend or changed by the service providers making changes to their business model, or leaving the field entirely.Within the project Academic Enterprise Cloud we examine cloud based services that support the research lifecycle, using feature models to describe key properties in the areas of infrastructure and service provision, compliance to legal regulations, and data curation. Emphasis is put on the term Enterprise as to establish an academic cloud service provider infrastructure that satisfies demands of the research community through continious provision across the whole cloud stack. This could enable the research community to be independent from service providers regarding changes to terms of service and ensuring full control of its extent and usage. This shift towards a self-empowered scientific cloud provider infrastructure and its community raises implications about feasability of provision and overall costs. Legal aspects and licensing issues have to be considered, when moving data into cloud services, especially when personal data is involved.Educating researchers about cloud based tools is important to help in the transition towards effective and safe use. Scientists can benefit from the provision of standard services, like weblog and website creation, virtual machine deployments, and groupware provision using cloud based app store-like portals. And, other than in an industrial environment, researchers will want to keep their existing user profile when moving from one institution to another.

  12. Applications of the INTELSAT system to remote health care

    NASA Technical Reports Server (NTRS)

    Maleter, Andrea

    1991-01-01

    INTELSAT, the International Telecommunications Satellite Organization, is a not-for-profit commercial cooperate of 124 member nations, created on 20 August 1964. It owns and operates a global system of communications satellites that provides international telecommunications services to 180 countries, territories, and dependencies, and domestic telecommunications services to 40 nations. INTELSAT has actively encouraged the use of satellites for both telemedicine and disaster relief. Topics discussed include: INTELSAT domestic/regional services; use of transportable antennas; INTELNET; using the existing telecommunications infrastructure for remote health care applications: Project Access; INTELSAT's role in disaster telecommunications efforts; and how INTELSAT's existing infrastructure can be used for disaster telecommunications.

  13. Simulation and Verification of Synchronous Set Relations in Rewriting Logic

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Munoz, Cesar A.

    2011-01-01

    This paper presents a mathematical foundation and a rewriting logic infrastructure for the execution and property veri cation of synchronous set relations. The mathematical foundation is given in the language of abstract set relations. The infrastructure consists of an ordersorted rewrite theory in Maude, a rewriting logic system, that enables the synchronous execution of a set relation provided by the user. By using the infrastructure, existing algorithm veri cation techniques already available in Maude for traditional asynchronous rewriting, such as reachability analysis and model checking, are automatically available to synchronous set rewriting. The use of the infrastructure is illustrated with an executable operational semantics of a simple synchronous language and the veri cation of temporal properties of a synchronous system.

  14. New Geodetic Infrastructure for Australia: The NCRIS / AuScope Geospatial Component

    NASA Astrophysics Data System (ADS)

    Tregoning, P.; Watson, C. S.; Coleman, R.; Johnston, G.; Lovell, J.; Dickey, J.; Featherstone, W. E.; Rizos, C.; Higgins, M.; Priebbenow, R.

    2009-12-01

    In November 2006, the Australian Federal Government announced AUS15.8M in funding for geospatial research infrastructure through the National Collaborative Research Infrastructure Strategy (NCRIS). Funded within a broader capability area titled ‘Structure and Evolution of the Australian Continent’, NCRIS has provided a significant investment across Earth imaging, geochemistry, numerical simulation and modelling, the development of a virtual core library, and geospatial infrastructure. Known collectively as AuScope (www.auscope.org.au), this capability area has brought together Australian’s leading Earth scientists to decide upon the most pressing scientific issues and infrastructure needs for studying Earth systems and their impact on the Australian continent. Importantly and at the same time, the investment in geospatial infrastructure offers the opportunity to raise Australian geodetic science capability to the highest international level into the future. The geospatial component of AuScope builds onto the AUS15.8M of direct funding through the NCRIS process with significant in-kind and co-investment from universities and State/Territory and Federal government departments. The infrastructure to be acquired includes an FG5 absolute gravimeter, three gPhone relative gravimeters, three 12.1 m radio telescopes for geodetic VLBI, a continent-wide network of continuously operating geodetic quality GNSS receivers, a trial of a mobile SLR system and access to updated cluster computing facilities. We present an overview of the AuScope geospatial capability, review the current status of the infrastructure procurement and discuss some examples of the scientific research that will utilise the new geospatial infrastructure.

  15. Evidence-based surgery: barriers, solutions, and the role of evidence synthesis.

    PubMed

    Garas, George; Ibrahim, Amel; Ashrafian, Hutan; Ahmed, Kamran; Patel, Vanash; Okabayashi, Koji; Skapinakis, Petros; Darzi, Ara; Athanasiou, Thanos

    2012-08-01

    Surgery is a rapidly evolving field, making the rigorous testing of emerging innovations vital. However, most surgical research fails to employ randomized controlled trials (RCTs) and has particularly been based on low-quality study designs. Subsequently, the analysis of data through meta-analysis and evidence synthesis is particularly difficult. Through a systematic review of the literature, this article explores the barriers to achieving a strong evidence base in surgery and offers potential solutions to overcome the barriers. Many barriers exist to evidence-based surgical research. They include enabling factors, such as funding, time, infrastructure, patient preference, ethical issues, and additionally barriers associated with specific attributes related to researchers, methodologies, or interventions. Novel evidence synthesis techniques in surgery are discussed, including graphics synthesis, treatment networks, and network meta-analyses that help overcome many of the limitations associated with existing techniques. They offer the opportunity to assess gaps and quantitatively present inconsistencies within the existing evidence of RCTs. Poorly or inadequately performed RCTs and meta-analyses can give rise to incorrect results and thus fail to inform clinical practice or revise policy. The above barriers can be overcome by providing academic leadership and good organizational support to ensure that adequate personnel, resources, and funding are allocated to the researcher. Training in research methodology and data interpretation can ensure that trials are conducted correctly and evidence is adequately synthesized and disseminated. The ultimate goal of overcoming the barriers to evidence-based surgery includes the improved quality of patient care in addition to enhanced patient outcomes.

  16. Cloud Environment Automation: from infrastructure deployment to application monitoring

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.

    2017-10-01

    The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.

  17. Towards a joint approach for access to environmental research infrastructures

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Tjulin, Anders; Pappalardo, Gelsomina; Gagliardi, Simone; Philippin, Sabine; Sellegri, Karine; Chabbi, Abad

    2016-04-01

    Geoscience is a multi-disciplinary field and in many cases its research benefits from considering different kinds of observational results. Geoscience observations are in some cases of direct interest also to the public. For these reasons effective knowledge transfer and access also across disciplines are especially important for research infrastructures (RIs) in the environmental domain. More generally, the ultimate success of a RI is measured by its scientific outcome and this is best achieved based on efficient access for a broad scientific community. In this presentation the authors report activities to develop governance tools so that the access to environmental RIs and to the data that they provide is common, fair and based on scientific rationale, regarding at the same time economically and technically reasonable use of limited resources. Implementing such governance tools will indeed foster and widen the access to RIs across environmental science domains while addressing societal challenges. The strategies also need to be flexible and sustainable over the expected lifetimes of the RIs. The reported activities involve researchers from different projects and environmental subdomains that come together in the project ENVRI_plus. ENVRI_plus is a Cluster project of RIs that brings together the current ESFRI roadmap RIs in the environmental domain and other relevant existing and developing RIs and projects. ENVRI_plus also offers opportunities for free-of-charge transnational access to four multi-disciplinary research platforms. These calls for access target research groups and companies wishing to conduct research or to test instruments for cross-disciplinary topics within the environmental domains atmosphere, biosphere, marine, and solid earth. They are initiated specifically to gain experience with access across different disciplines (further information is given at www.envriplus.eu). ENVRI_plus receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654182.

  18. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  19. The Emerging Information Infrastructure: Players, Issues, Technology, and Strategies. Proceedings of Part I of the Meeting of the Association of Research Libraries (123rd, Arlington, Virginia, October 20-22, 1993).

    ERIC Educational Resources Information Center

    Mogge, Dru, Ed.; And Others

    The topic of the 123rd meeting of the Association of Research Libraries (ARL) is the information infrastructure. The ARL is seeking to influence the policies that will form the backbone of the emerging information infrastructure. The first session concentrated on government roles and initiatives and included the following papers: "Opening…

  20. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, themore » International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.« less

  1. Analyzing existing conventional soil information sources to be incorporated in thematic Spatial Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Pascual-Aguilar, J. A.; Rubio, J. L.; Domínguez, J.; Andreu, V.

    2012-04-01

    New information technologies give the possibility of widespread dissemination of spatial information to different geographical scales from continental to local by means of Spatial Data Infrastructures. Also administrative awareness on the need for open access information services has allowed the citizens access to this spatial information through development of legal documents, such as the INSPIRE Directive of the European Union, adapted by national laws as in the case of Spain. The translation of the general criteria of generic Spatial Data Infrastructures (SDI) to thematic ones is a crucial point for the progress of these instruments as large tool for the dissemination of information. In such case, it must be added to the intrinsic criteria of digital information, such as the harmonization information and the disclosure of metadata, the own environmental information characteristics and the techniques employed in obtaining it. In the case of inventories and mapping of soils, existing information obtained by traditional means, prior to the digital technologies, is considered to be a source of valid information, as well as unique, for the development of thematic SDI. In this work, an evaluation of existing and accessible information that constitutes the basis for building a thematic SDI of soils in Spain is undertaken. This information framework has common features to other European Union states. From a set of more than 1,500 publications corresponding to the national territory of Spain, the study was carried out in those documents (94) found for five autonomous regions of northern Iberian Peninsula (Asturias, Cantabria, Basque Country, Navarra and La Rioja). The analysis was performed taking into account the criteria of soil mapping and inventories. The results obtained show a wide variation in almost all the criteria: geographic representation (projections, scales) and geo-referencing the location of the profiles, map location of profiles integrated with edaphic units, description and taxonomic classification systems of soils (FAO, Soil taxonomy, etc.), amount and type of soil analysis parameters and dates of the inventories. In conclusion, the construction of thematic SDI on soil should take into account, prior to the integration of all maps and inventories, a series of processes of harmonization that allows spatial continuity between existing information and also temporal identification of the inventories and maps. This should require the development of at least two types of integration tools: (1) enabling spatial continuity without contradictions between maps made at different times and with different criteria and (2) the development of information systems data (metadata) to highlight the characteristics of information and connection possibilities with other sources that comprise the Spatial Data Infrastructure. Acknowledgements This research has financed by the European Union within the framework of the GS Soil project (eContentplus Programme ECP-2008-GEO-318004).

  2. Developing the academic nursing practice in the midst of new realities in higher education.

    PubMed

    Miller, Karen L; Bleich, Michael R; Hathaway, Donna; Warren, Carol

    2004-02-01

    The academic nursing practice has a role in replenishing the diminished resources that confront higher education and, if well conceived and managed, is a viable option to support existing academic program stability and growth. An alternative model for defining the academic practice--beyond traditional nurse-managed centers--is presented in this article. The cohesive interconnection of the education, research, and practice missions is addressed with examples of how each contributes to a variety of communities of interest and expands professional nursing roles through innovative care model testing and development. With effective business planning and infrastructure support, faculty practice plans can evolve to a second generation, with heightened societal accountability for service, academic, and collaborative research outcomes.

  3. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.

    2008-12-01

    The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.

  4. Synthesis Study on Transitions in Signal Infrastructure and Control Algorithms for Connected and Automated Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Wang, Hong; Young, Stan

    Documenting existing state of practice is an initial step in developing future control infrastructure to be co-deployed for heterogeneous mix of connected and automated vehicles with human drivers while leveraging benefits to safety, congestion, and energy. With advances in information technology and extensive deployment of connected and automated vehicle technology anticipated over the coming decades, cities globally are making efforts to plan and prepare for these transitions. CAVs not only offer opportunities to improve transportation systems through enhanced safety and efficient operations of vehicles. There are also significant needs in terms of exploring how best to leverage vehicle-to-vehicle (V2V) technology,more » vehicle-to-infrastructure (V2I) technology and vehicle-to-everything (V2X) technology. Both Connected Vehicle (CV) and Connected and Automated Vehicle (CAV) paradigms feature bi-directional connectivity and share similar applications in terms of signal control algorithm and infrastructure implementation. The discussion in our synthesis study assumes the CAV/CV context where connectivity exists with or without automated vehicles. Our synthesis study explores the current state of signal control algorithms and infrastructure, reports the completed and newly proposed CV/CAV deployment studies regarding signal control schemes, reviews the deployment costs for CAV/AV signal infrastructure, and concludes with a discussion on the opportunities such as detector free signal control schemes and dynamic performance management for intersections, and challenges such as dependency on market adaptation and the need to build a fault-tolerant signal system deployment in a CAV/CV environment. The study will serve as an initial critical assessment of existing signal control infrastructure (devices, control instruments, and firmware) and control schemes (actuated, adaptive, and coordinated-green wave). Also, the report will help to identify the future needs for the signal infrastructure to act as the nervous system for urban transportation networks, providing not only signaling, but also observability, surveillance, and measurement capacity. The discussion of the opportunities space includes network optimization and control theory perspectives, and the current states of observability for key system parameters (what can be detected, how frequently can it be reported) as well as controllability of dynamic parameters (this includes adjusting not only the signal phase and timing, but also the ability to alter vehicle trajectories through information or direct control). The perspective of observability and controllability of the dynamic systems provides an appropriate lens to discuss future directions as CAV/CV become more prevalent in the future.« less

  5. Walking behavior on Lapangan Merdeka district in Medan city

    NASA Astrophysics Data System (ADS)

    Zahrah, W.; Mandai, A. J. O.; Nasution, A. D.

    2018-03-01

    Lapangan Merdeka district in Medan City is an area with a lot of functions and activities. Pedestrians in this area pose particular behavior for walking. Such behavior can be formed due to certain factors. This study aimed to identify the behavior and motivation of walking, as well as knowing the perception of pedestrians on pedestrian facilities and infrastructures. This research is a qualitative descriptive study. This research was conducted in five streets that have pedestrian lanes by collecting data through observation of pedestrian facilities and infrastructures, as well as the distribution of questionnaires to investigate the characteristics of pedestrians, the behavior and motivation of walking, and perceptions of pedestrian facilities and infrastructure. The research found that the behavior of pedestrians when walking are different on certain characteristics of pedestrians as well as the specific conditions of facilities and infrastructures. The most dominant motivation when walking in this area is easy transportation access. The results of the perception of pedestrians also show that pedestrian facilities and infrastructure are good in this area.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford, Megan

    Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less

  7. Navigating the unfolding open data landscape in ecology and evolution.

    PubMed

    Culina, Antica; Baglioni, Miriam; Crowther, Tom W; Visser, Marcel E; Woutersen-Windhouwer, Saskia; Manghi, Paolo

    2018-03-01

    Open access to data is revolutionizing the sciences. To allow ecologists and evolutionary biologists to confidently find and use the existing data, we provide an overview of the landscape of online data infrastructures, and highlight the key points to consider when using open data. We introduce an online collaborative platform to keep a community-driven, updated list of the best sources that enable search for data in one interface. In doing so, our aim is to lower the barrier to accessing open data, and encourage its use by researchers hoping to increase the scope, reliability and value of their findings.

  8. Grid computing in large pharmaceutical molecular modeling.

    PubMed

    Claus, Brian L; Johnson, Stephen R

    2008-07-01

    Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.

  9. Infrastructure Systems for Advanced Computing in E-science applications

    NASA Astrophysics Data System (ADS)

    Terzo, Olivier

    2013-04-01

    In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.

  10. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSImore » addressed some of these issues to create a more manageable public key infrastructure.« less

  11. Utilizing an integrated infrastructure for outcomes research: a systematic review.

    PubMed

    Dixon, Brian E; Whipple, Elizabeth C; Lajiness, John M; Murray, Michael D

    2016-03-01

    To explore the ability of an integrated health information infrastructure to support outcomes research. A systematic review of articles published from 1983 to 2012 by Regenstrief Institute investigators using data from an integrated electronic health record infrastructure involving multiple provider organisations was performed. Articles were independently assessed and classified by study design, disease and other metadata including bibliometrics. A total of 190 articles were identified. Diseases included cognitive, (16) cardiovascular, (16) infectious, (15) chronic illness (14) and cancer (12). Publications grew steadily (26 in the first decade vs. 100 in the last) as did the number of investigators (from 15 in 1983 to 62 in 2012). The proportion of articles involving non-Regenstrief authors also expanded from 54% in the first decade to 72% in the last decade. During this period, the infrastructure grew from a single health system into a health information exchange network covering more than 6 million patients. Analysis of journal and article metrics reveals high impact for clinical trials and comparative effectiveness research studies that utilised data available in the integrated infrastructure. Integrated information infrastructures support growth in high quality observational studies and diverse collaboration consistent with the goals for the learning health system. More recent publications demonstrate growing external collaborations facilitated by greater access to the infrastructure and improved opportunities to study broader disease and health outcomes. Integrated information infrastructures can stimulate learning from electronic data captured during routine clinical care but require time and collaboration to reach full potential. © 2015 Health Libraries Group.

  12. Molecular Genetics Information System (MOLGENIS): alternatives in developing local experimental genomics databases.

    PubMed

    Swertz, Morris A; De Brock, E O; Van Hijum, Sacha A F T; De Jong, Anne; Buist, Girbe; Baerends, Richard J S; Kok, Jan; Kuipers, Oscar P; Jansen, Ritsert C

    2004-09-01

    Genomic research laboratories need adequate infrastructure to support management of their data production and research workflow. But what makes infrastructure adequate? A lack of appropriate criteria makes any decision on buying or developing a system difficult. Here, we report on the decision process for the case of a molecular genetics group establishing a microarray laboratory. Five typical requirements for experimental genomics database systems were identified: (i) evolution ability to keep up with the fast developing genomics field; (ii) a suitable data model to deal with local diversity; (iii) suitable storage of data files in the system; (iv) easy exchange with other software; and (v) low maintenance costs. The computer scientists and the researchers of the local microarray laboratory considered alternative solutions for these five requirements and chose the following options: (i) use of automatic code generation; (ii) a customized data model based on standards; (iii) storage of datasets as black boxes instead of decomposing them in database tables; (iv) loosely linking to other programs for improved flexibility; and (v) a low-maintenance web-based user interface. Our team evaluated existing microarray databases and then decided to build a new system, Molecular Genetics Information System (MOLGENIS), implemented using code generation in a period of three months. This case can provide valuable insights and lessons to both software developers and a user community embarking on large-scale genomic projects. http://www.molgenis.nl

  13. p-BioSPRE—an information and communication technology framework for transnational biomaterial sharing and access

    PubMed Central

    Weiler, Gabriele; Schröder, Christina; Schera, Fatima; Dobkowicz, Matthias; Kiefer, Stephan; Heidtke, Karsten R; Hänold, Stefanie; Nwankwo, Iheanyi; Forgó, Nikolaus; Stanulla, Martin; Eckert, Cornelia; Graf, Norbert

    2014-01-01

    Biobanks represent key resources for clinico-genomic research and are needed to pave the way to personalised medicine. To achieve this goal, it is crucial that scientists can securely access and share high-quality biomaterial and related data. Therefore, there is a growing interest in integrating biobanks into larger biomedical information and communication technology (ICT) infrastructures. The European project p-medicine is currently building an innovative ICT infrastructure to meet this need. This platform provides tools and services for conducting research and clinical trials in personalised medicine. In this paper, we describe one of its main components, the biobank access framework p-BioSPRE (p-medicine Biospecimen Search and Project Request Engine). This generic framework enables and simplifies access to existing biobanks, but also to offer own biomaterial collections to research communities, and to manage biobank specimens and related clinical data over the ObTiMA Trial Biomaterial Manager. p-BioSPRE takes into consideration all relevant ethical and legal standards, e.g., safeguarding donors’ personal rights and enabling biobanks to keep control over the donated material and related data. The framework thus enables secure sharing of biomaterial within open and closed research communities, while flexibly integrating related clinical and omics data. Although the development of the framework is mainly driven by user scenarios from the cancer domain, in this case, acute lymphoblastic leukaemia and Wilms tumour, it can be extended to further disease entities. PMID:24567758

  14. Raising the Bar on External Research Funding: Infrastructure and Strategies for Enhancing Faculty Productivity

    ERIC Educational Resources Information Center

    Chval, Kathryn B.; Nossaman, Larry D.

    2014-01-01

    Administrators seek faculty who have the expertise to secure external funding to support their research agenda. Administrators also seek strategies to support and enhance faculty productivity across different ranks. In this manuscript, we describe the infrastructure we established and strategies we implemented to enhance the research enterprise at…

  15. An experimental study of gully sidewall expansion

    USDA-ARS?s Scientific Manuscript database

    Soil erosion, in its myriad forms, devastates arable land and infrastructure and strains the balance between economic stability and viability. Gullies may form in existing channels or where no previous channel drainage existed. Typically, gullies are a result of a disequilibrium between the eroding ...

  16. Abandoned rail corridors in Texas : a policy and infrastructure evaluation.

    DOT National Transportation Integrated Search

    2011-03-01

    The use of existing and abandoned railroad rights-of-way has been a proven method of acquiring linear : corridors for the construction of roadways since the formation of the Texas Highway Department. Either : paralleling existing rail lines or re-usi...

  17. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2016-05-12

    discovery of new oil and gas deposits far from existing storage, pipelines , and shipping facilities cannot be developed until infrastructure is built...markets. Other questions in need of answers include the status of port, pipeline , and liquid natural gas infrastructure; whether methane hydrates...Changes to the Arctic brought about by warming temperatures will likely allow more exploration for oil, gas , and minerals. Warming that causes

  18. Unified messaging solution for biosurveillance and disease surveillance.

    PubMed

    Abellera, John P; Srinivasan, Arunkumar; Danos, C Scott; McNabb, Scott; Rhodes, Barry

    2007-10-11

    Biosurveillance and disease surveillance systems serve different purposes. However, the richness and quality of an existing data stream and infrastructure used in biosurveillance may prove beneficial for any state-based electronic disease surveillance system, especially if an electronic laboratory data feed does not exist between a hospital and state-based system. The use of an Enterprise Application Integration(EAI) engine, such as the BioSense Integrator,will be necessary to map heterogeneous messages into standard representations, then validate and route them [1] to a disparate system. This poster illustrates the use of an existing BioSense Integrator in order to create a unified message to support the exchange of electronic lab messages necessary for reportable disease notification. An evaluation of the infrastructure for data messaging will be examined and presented, along with a cost and benefit analysis between hospital and state-based system.

  19. Identifying the Role of the International Consortium ``MIT/ LINC'' in Supporting the Integration of ICT in Higher Education in Emerging Countries

    NASA Astrophysics Data System (ADS)

    Park, Young; Moser, Franziska Zellweger

    2008-04-01

    The goal of this research effort is to provide insights on what core needs and difficulties exist toward the implementation of ICT in higher education in emerging countries and how a consortium like LINC can best support these efforts. An exploratory research design combining a survey, on-site interviews, participant observation and document analysis were employed to answer the research questions. Main challenges in establishing technology- based learning environments were identified in the area of pedagogies, finances, technological infrastructure, cultural change, organization, and management. LINC, as an non-political organization embedded in an academic environment, can take an important role in facilitating the dialogue among participants through various platforms, take an active role in promoting joint programs and assist with efforts to "localize" tools and practice.

  20. The International Collaboration for Autism Registry Epidemiology (iCARE): multinational registry-based investigations of autism risk factors and trends.

    PubMed

    Schendel, Diana E; Bresnahan, Michaeline; Carter, Kim W; Francis, Richard W; Gissler, Mika; Grønborg, Therese K; Gross, Raz; Gunnes, Nina; Hornig, Mady; Hultman, Christina M; Langridge, Amanda; Lauritsen, Marlene B; Leonard, Helen; Parner, Erik T; Reichenberg, Abraham; Sandin, Sven; Sourander, Andre; Stoltenberg, Camilla; Suominen, Auli; Surén, Pål; Susser, Ezra

    2013-11-01

    The International Collaboration for Autism Registry Epidemiology (iCARE) is the first multinational research consortium (Australia, Denmark, Finland, Israel, Norway, Sweden, USA) to promote research in autism geographical and temporal heterogeneity, phenotype, family and life course patterns, and etiology. iCARE devised solutions to challenges in multinational collaboration concerning data access security, confidentiality and management. Data are obtained by integrating existing national or state-wide, population-based, individual-level data systems and undergo rigorous harmonization and quality control processes. Analyses are performed using database federation via a computational infrastructure with a secure, web-based, interface. iCARE provides a unique, unprecedented resource in autism research that will significantly enhance the ability to detect environmental and genetic contributions to the causes and life course of autism.

  1. Overview of Ongoing NRMRL GI Research

    EPA Science Inventory

    This presentation is an overview of ongoing NRMRL Green Infrastructure research and addresses the question: What do we need to know to present a cogent estimate of the value of Green Infrastructure? Discussions included are: stormwater well study, rain gardens and permeable su...

  2. Co-location and Self-Similar Topologies of Urban Infrastructure Networks

    NASA Astrophysics Data System (ADS)

    Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh

    2016-04-01

    The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.

  3. The biobanking research infrastructure BBMRI_CZ: a critical tool to enhance translational cancer research.

    PubMed

    Holub, P; Greplova, K; Knoflickova, D; Nenutil, R; Valik, D

    2012-01-01

    We introduce the national research biobanking infrastructure, BBMRI_CZ. The infrastructure has been founded by the Ministry of Education and became a partner of the European biobanking infrastructure BBMRI.eu. It is designed as a network of individual biobanks where each biobank stores samples obtained from associated healthcare providers. The biobanks comprise long term storage (various types of tissues classified by diagnosis, serum at surgery, genomic DNA and RNA) and short term storage (longitudinally sampled patient sera). We discuss the operation workflow of the infrastructure that needs to be the distributed system: transfer of the samples to the biobank needs to be accompanied by extraction of data from the hospital information systems and this data must be stored in a central index serving mainly for sample lookup. Since BBMRI_CZ is designed solely for research purposes, the data is anonymised prior to their integration into the central BBMRI_CZ index. The index is then available for registered researchers to seek for samples of interest and to request the samples from biobank managers. The paper provides an overview of the structure of data stored in the index. We also discuss monitoring system for the biobanks, incorporated to ensure quality of the stored samples.

  4. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    NASA Astrophysics Data System (ADS)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  5. Sustainability considerations for health research and analytic data infrastructures.

    PubMed

    Wilcox, Adam; Randhawa, Gurvaneet; Embi, Peter; Cao, Hui; Kuperman, Gilad J

    2014-01-01

    The United States has made recent large investments in creating data infrastructures to support the important goals of patient-centered outcomes research (PCOR) and comparative effectiveness research (CER), with still more investment planned. These initial investments, while critical to the creation of the infrastructures, are not expected to sustain them much beyond the initial development. To provide the maximum benefit, the infrastructures need to be sustained through innovative financing models while providing value to PCOR and CER researchers. Based on our experience with creating flexible sustainability strategies (i.e., strategies that are adaptive to the different characteristics and opportunities of a resource or infrastructure), we define specific factors that are important considerations in developing a sustainability strategy. These factors include assets, expansion, complexity, and stakeholders. Each factor is described, with examples of how it is applied. These factors are dimensions of variation in different resources, to which a sustainability strategy should adapt. We also identify specific important considerations for maintaining an infrastructure, so that the long-term intended benefits can be realized. These observations are presented as lessons learned, to be applied to other sustainability efforts. We define the lessons learned, relating them to the defined sustainability factors as interactions between factors. Using perspectives and experiences from a diverse group of experts, we define broad characteristics of sustainability strategies and important observations, which can vary for different projects. Other descriptions of adaptive, flexible, and successful models of collaboration between stakeholders and data infrastructures can expand this framework by identifying other factors for sustainability, and give more concrete directions on how sustainability can be best achieved.

  6. European environmental research infrastructures are going for common 30 years strategy

    NASA Astrophysics Data System (ADS)

    Asmi, Ari; Konjin, Jacco; Pursula, Antti

    2014-05-01

    Environmental Research infrastructures are facilities, resources, systems and related services that are used by research communities to conduct top-level research. Environmental research is addressing processes at very different time scales, and supporting research infrastructures must be designed as long-term facilities in order to meet the requirements of continuous environmental observation, measurement and analysis. This longevity makes the environmental research infrastructures ideal structures to support the long-term development in environmental sciences. ENVRI project is a collaborative action of the major European (ESFRI) Environmental Research Infrastructures working towards increased co-operation and interoperability between the infrastructures. One of the key products of the ENVRI project is to combine the long-term plans of the individual infrastructures towards a common strategy, describing the vision and planned actions. The envisaged vision for environmental research infrastructures toward 2030 is to support the holistic understanding of our planet and it's behavior. The development of a 'Standard Model of the Planet' is a common ambition, a challenge to define an environmental standard model; a framework of all interactions within the Earth System, from solid earth to near space. Indeed scientists feel challenged to contribute to a 'Standard Model of the Planet' with data, models, algorithms and discoveries. Understanding the Earth System as an interlinked system requires a systems approach. The Environmental Sciences are rapidly moving to become a one system-level science. Mainly since modern science, engineering and society are increasingly facing complex problems that can only be understood in the context of the full overall system. The strategy of the supporting collaborating research infrastructures is based on developing three key factors for the Environmental Sciences: the technological, the cultural and the human capital. The technological capital development concentrates on improving the capacities to measure, observe, preserve and compute. This requires staff, technologies, sensors, satellites, floats, software to integrate and to do analysis and modeling, including data storage, computing platforms and networks. The cultural capital development addresses issues such as open access to data, rules, licenses, citation agreements, IPR agreements, technologies for machine-machine interaction, workflows, metadata, and RI community on the policy level. Human capital actions are based on anticipated need of specialists, including data scientists and 'generalists' that oversee more than just their own discipline. Developing these, as interrelated services, should help the scientific community to enter innovative and large projects contributing to a 'Standard Model of the Planet'. To achieve the overall goal, ENVRI will publish a set of action items that contains intermediate aims, bigger and smaller steps to work towards the development of the 'Standard Model of the Planet' approach. This timeline of actions can used as reference and 'common denominator' in defining new projects and research programs. Either within the various environmental scientific disciplines or when cooperating among these disciplines or even when outreaching towards other disciplines like social sciences, physics/chemistry, medical/life sciences etc.

  7. Capacity evaluation and infrastructure planning techniques for heterogeneous railway traffic under structured, flexible and mixed operations.

    DOT National Transportation Integrated Search

    2017-01-22

    The objective of this study is to develop new railway capacity evaluation tools and infrastructure planning techniques to address infrastructure or operations planning challenges under different operating styles. Three main research questions will be...

  8. Field Evaluation of Innovative Wastewater Collection System Condition Assessment Technologies

    EPA Science Inventory

    As part of an effort to address aging infrastructure needs, the U.S. Environmental Protection Agency (USEPA) initiated research under the Aging Water Infrastructure program, part of the USEPA Office of Water’s Sustainable Infrastructure Initiative. This presentation discusses fi...

  9. 76 FR 34286 - ITS Joint Program Office; Webinar on Connected Vehicle Infrastructure Deployment Analysis Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Deployment Analysis Report Review; Notice of Public Meeting AGENCY: Research and Innovative Technology... discuss the Connected Vehicle Infrastructure Deployment Analysis Report. The webinar will provide an... and Transportation Officials (AASHTO) Connected Vehicle Infrastructure Deployment Analysis Report...

  10. The Euratom Seventh Framework Programme FP7 (2007-2011)

    NASA Astrophysics Data System (ADS)

    Garbil, R.

    2010-10-01

    The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.

  11. Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure

    USGS Publications Warehouse

    ,; Foley, Duncan; Fournier, Robert O.; Heasler, Henry P.; Hinckley, Bern; Ingebritsen, Steven E.; Lowenstern, Jacob B.; Susong, David D.

    2014-01-01

    There are many documented examples at YNP and elsewhere where human infrastructure and natural thermal features have negatively affected each other. Unless action is taken, human conflicts with the Old Faithful hydrothermal system are likely to increase over the coming years. This is partly because of the increase in park visitation over the past decades, but also because the interval between eruptions of Old Faithful has increased, lengthening the time spent (and services needed) for each visitor at Old Faithful. To avoid an increase in visitor impacts, the National Park Service should consider 2 alternate strategies to accommodate people, vehicles, and services in the Upper Geyser Basin, such as shuttle services from staging (parking and dining) areas with little or no recent hydrothermal activity. We further suggest that YNP consider a zone system to guide maintenance and development of infrastructure in the immediate Old Faithful area. A “red” zone includes hydrothermally active land where new development is discouraged and existing infrastructure is modified with great care. An outer “green” zone represents areas where cooler temperatures and less hydrothermal flow are thought to exist, and where development and maintenance could proceed as occurs elsewhere in the park. An intermediate “yellow” zone would require preliminary assessment of subsurface temperatures and gas concentrations to assess suitability for infrastructure development. The panel recommends that YNP management follow the lead of the National Park System Advisory Board Science Committee (2012) by applying the “precautionary principle” when making decisions regarding the interaction of hydrothermal phenomena and park infrastructure in the Old Faithful area and other thermal areas within YNP.

  12. Five strategies for accelerating the war on cancer in an era of budget deficits.

    PubMed

    Doroshow, James H; Croyle, Robert T; Niederhuber, John E

    2009-02-01

    In recent years, the National Institutes of Health's largest institute, the National Cancer Institute (NCI), has adapted to difficult economic conditions by leveraging its robust infrastructure -- which includes risk factor surveillance and population monitoring, research centers (focused on basic, translation, clinical, and behavioral sciences), clinical trials and health care research networks, and rigorously validated statistical models -- to maximize the impact of scientific progress on the public health. To continue advancement and realize the opportunity of significant, population-level changes in cancer mortality, the NCI recommends that five national-level actions be taken: (1) significantly increase enrollment of Medicare patients into cancer clinical trials through adequate physician reimbursement, (2) increase NCI/Centers for Medicare and Medicaid Services collaboration on clinical trials research to evaluate the therapeutic efficacy of anticancer drugs, (3) establish a national outcomes research demonstration project to test strategies for measuring and improving health care quality and provide an evidence base for public policy, (4) leverage existing tobacco-control collaborations and possible new authorities at the U.S. Food and Drug Administration to realize the outstanding health gains possible from a reduction in tobacco use, and (5) increase colorectal cancer screening rates though intensified collaboration between federal agencies working to address barriers to access and use of screening. These cost-effective strategies provide the opportunity for extraordinary results in an era of budget deficits. Of the chronic diseases, cancer has the strongest national research infrastructure that can be leveraged to produce rapid results to inform budget prioritization and public policy, as well as mobilize new projects to answer critical public health questions.

  13. Using existing health care systems to respond to the AIDS epidemic: research and recommendations for Chile.

    PubMed

    Aiken, L H; Smith, H L; Lake, E T

    1997-01-01

    Chile is a country with a relatively low prevalence of HIV infection, where successful prevention has the potential to change the future course of the epidemic. A controversial national prevention strategy based upon public education has emerged in response to characterizations of the epidemic as well-dispersed with a growing involvement of heterosexuals. This characterization is not consistent with the observed facts. There is a comparatively well-organized health care system in Santiago that is doing a good job of detecting HIV infection and already has in place the elements of a targeted intervention scheme. Chile should place priority on the use of the existing health care infrastructure for implementing both the traditional public health interventions for sexually transmitted diseases (contact tracing and partner notification) and the AIDS-necessitated strategy of focused counseling and education.

  14. COCONet enhancements to circum-Caribbean tsunami warning, tidal, and sea-level monitoring: update on tide gauge installations

    NASA Astrophysics Data System (ADS)

    Dausz, K.; Dittmann, S. T.; Feaux, K.; von Hillebrandt-Andrade, C.; Mattioli, G. S.; Normandeau, J.

    2014-12-01

    The Continually Operating Caribbean GPS Observational Network (COCONet) is a National Science Foundation (NSF) funded multi-hazard geodetic and meteorological network distributed throughout the Caribbean, which provides infrastructure and capacity building for a broad range of earth science questions. The network is a multi-national collaboration consisting of 46 newly constructed continuous Global Positioning Systems (cGPS) and 21 refurbished existing GPS stations, all co-located with meteorological sensors. One recommendation of the COCONet working group was to improve the vertical reference frame for long-term sea level monitoring. A COCONet supplement was awarded by the NSF to further address this particular objective through the co-location of GPS and tide gauges. This COCOnet infrastructure, along with the new tide gauges, will have broad scientific implications for hazards mitigation, solid earth, and atmospheric science research. UNAVCO engineers have meet with members of the Caribbean tide gauge community to establish target locations and design station layout. Allocated NSF funds allow for the construction of two complete new tide gauge systems each with two complimentary cGPS. Following the recommendations of NOAA and the sea level monitoring community, the two "new" locales will be Port Royal, Jamaica and Puerto Morelos, Mexico. Both locations had previously existing, but currently non-operational tide gauges. UNAVCO engineers will install a Sutron Radar Level Recorder and a backup pressure sensor tide gauge with GOES satellite telemetry. Tide data will be freely available by the Intergovernmental Oceanographic Commission (www.ioc-sealevelmonitoring.org). The NSF supplement also provided funds for adding cGPS to two additional locations where currently functioning tide gauge systems exist. Proposed locations for this additional infrastructure are Barahona, Dominican Republic and Bocas del Toro, Panama. All four locations will feature two standard COCONet cGPS systems consisting of a Trimble Choke Ring GNSS antenna, Trimble NetR9 GPS receiver, and a Vaisala meteorological sensor. All GPS data will be collected, processed and distributed via standard COCONet archiving and processing along with raw meteorological data at coconet.unavco.org.

  15. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  16. Improving the Research Infrastructure at U.S. Universities and Colleges. Hearing before the Committee on Science and Technology. U.S. House of Representatives, Ninety-Eighth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    The state of university science and engineering research capabilities is considered. Attention is directed to the need for improving and enhancing the research infrastructure, including support for instrumentation, buildings, and other related research facilities. U.S. universities and colleges are encountering severe facilities and…

  17. Fundamental Biological Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Yost, Bruce; Fletcher, L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    The fundamental Biology Program of NASA's Life Sciences Division is chartered with enabling and sponsoring research on the International Space Station (ISS) in order to understand the effects of the space flight environment, particularly microgravity, on living systems. To accomplish this goal, NASA Ames Research Center (ARC) has been tasked with managing the development of a number of biological habitats, along with their support systems infrastructure. This integrated suite of habitats and support systems is being designed to support research requirements identified by the scientific community. As such, it will support investigations using cells and tissues, avian eggs, insects, plants, aquatic organisms and rodents. Studies following organisms through complete life cycles and over multiple generations will eventually be possible. As an adjunct to the development of these basic habitats, specific analytical and monitoring technologies are being targeted for maturation to complete the research cycle by transferring existing or emerging analytical techniques, sensors, and processes from the laboratory bench to the ISS research platform.

  18. Data governance requirements for distributed clinical research networks: triangulating perspectives of diverse stakeholders

    PubMed Central

    Kim, Katherine K; Browe, Dennis K; Logan, Holly C; Holm, Roberta; Hack, Lori; Ohno-Machado, Lucila

    2014-01-01

    There is currently limited information on best practices for the development of governance requirements for distributed research networks (DRNs), an emerging model that promotes clinical data reuse and improves timeliness of comparative effectiveness research. Much of the existing information is based on a single type of stakeholder such as researchers or administrators. This paper reports on a triangulated approach to developing DRN data governance requirements based on a combination of policy analysis with experts, interviews with institutional leaders, and patient focus groups. This approach is illustrated with an example from the Scalable National Network for Effectiveness Research, which resulted in 91 requirements. These requirements were analyzed against the Fair Information Practice Principles (FIPPs) and Health Insurance Portability and Accountability Act (HIPAA) protected versus non-protected health information. The requirements addressed all FIPPs, showing how a DRN's technical infrastructure is able to fulfill HIPAA regulations, protect privacy, and provide a trustworthy platform for research. PMID:24302285

  19. Analysis of the World Experience of Smart Grid Deployment: Economic Effectiveness Issues

    NASA Astrophysics Data System (ADS)

    Ratner, S. V.; Nizhegorodtsev, R. M.

    2018-06-01

    Despite the positive dynamics in the growth of RES-based power production in electric power systems of many countries, the further development of commercially mature technologies of wind and solar generation is often constrained by the existing grid infrastructure and conventional energy supply practices. The integration of large wind and solar power plants into a single power grid and the development of microgeneration require the widespread introduction of a new smart grid technology cluster (smart power grids), whose technical advantages over the conventional ones have been fairly well studied, while issues of their economic effectiveness remain open. Estimation and forecasting potential economic effects from the introduction of innovative technologies in the power sector during the stage preceding commercial development is a methodologically difficult task that requires the use of knowledge from different sciences. This paper contains the analysis of smart grid project implementation in Europe and the United States. Interval estimates are obtained for their basic economic parameters. It was revealed that the majority of smart grid implemented projects are not yet commercially effective, since their positive externalities are usually not recognized on the revenue side due to the lack of universal methods for public benefits monetization. The results of the research can be used in modernization and development planning for the existing grid infrastructure both at the federal level and at the level of certain regions and territories.

  20. Sun-Burned: Space Weather's Impact on United States National Security

    NASA Astrophysics Data System (ADS)

    Stebbins, B.

    2014-12-01

    The heightened media attention surrounding the 2013-14 solar maximum presented an excellent opportunity to examine the ever-increasing vulnerability of US national security and its Department of Defense to space weather. This vulnerability exists for three principal reasons: 1) a massive US space-based infrastructure; 2) an almost exclusive reliance on an aging and stressed continental US power grid; and 3) a direct dependence upon a US economy adapted to the conveniences of space and uninterrupted power. I tailored my research and work for the national security policy maker and military strategists in an endeavor to initiate and inform a substantive dialogue on America's preparation for, and response to, a major solar event that would severely degrade core national security capabilities, such as military operations. Significant risk to the Department of Defense exists from powerful events that could impact its space-based infrastructure and even the terrestrial power grid. Given this ever-present and increasing risk to the United States, my work advocates raising the issue of space weather and its impacts to the level of a national security threat. With the current solar cycle having already peaked and the next projected solar maximum just a decade away, the government has a relatively small window to make policy decisions that prepare the nation and its Defense Department to mitigate impacts from these potentially catastrophic phenomena.

  1. URBAN INFRASTRUCTURE RESEARCH PLAN WATER AND WASTEWATER ISSUES

    EPA Science Inventory

    As we approach the twenty-first century, we should be considering where we are today and where the consequences of our actions will place us tomorrow. This is especially true in the management of our aging and growing infrastructure. Infrastructure facilitates movement of people ...

  2. Towards a distributed infrastructure for research drilling in Europe

    NASA Astrophysics Data System (ADS)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.

    2012-04-01

    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.

  3. Building Research Infrastructure in Schools of Social Work: A University Perspective

    ERIC Educational Resources Information Center

    Videka, Lynn; Blackburn, James A.; Moran, James R.

    2008-01-01

    This article addresses strategies for research infrastructure development in social work by building on the profession's work of the past two decades and by drawing on the experiences of the larger university environment. The article provides a set of recommendations for the next generation of social work research, which is likely to be highly…

  4. Effects and mechanisms of an allied health research position in a Queensland regional and rural health service: a descriptive case study.

    PubMed

    Wenke, Rachel J; Tynan, Anna; Scott, Annette; Mickan, Sharon

    2017-10-30

    The aim of the present case study is to illustrate the outcomes of a dedicated allied health (AH) research position within a large Queensland regional and rural health service. The secondary aim of the case study is to describe the enabling and hindering mechanisms to the success of the role. Semistructured interviews were conducted with the Executive Director of Allied Health and the current AH research fellow incumbent within the health service. A focus group was also undertaken with six stakeholders (e.g. clinicians, team leaders) who had engaged with the research position. Outcomes of the AH research fellow included clinical and service improvements, enhanced research culture and staff up-skilling, development of research infrastructure and the formation of strategic research collaborations. Despite being a sole position in a geographically expansive health service with constrained resources, key enabling mechanisms to the success of the role were identified, including strong advocacy and regular communication with the Executive. In conclusion, the case study highlights the potential value of an AH research position in building research capacity within a large non-metropolitan health service. Factors to facilitate ongoing success could include additional research and administrative funding, as well as increased use of technology and team-based research. What is known about the topic? Dedicated research positions embedded within health care settings are a well cited strategy to increase research capacity building of allied health professionals (AHPs). However the majority of these positions are within metropolitan health settings and unique challenges exist for these roles in regional and rural areas. Few studies have described the impact of dedicated AH research positions within regional health centres or the factors which facilitate or hinder their role. What does this paper add? Dedicated research positions within a non-metropolitan Australian health service may have a positive impact on AH clinical services, research culture, staff upskilling, research infrastructure and research collaborations. Key enabling mechanisms to support the role may include advocacy from higher level management, strong networks and communication channels. Additional research and administrative funding, the use of technology and team based research may enhance sustainability of such roles. What are the implications for practitioners? AH research positions have potential value in building research capacity within a large non-metropolitan health service. Health managers and researchers should be aware of the unique challenges to these roles and consider mechanisms that may best enhance and sustain outcomes of the positions including: the development of infrastructure (i.e. technology, website of resources), networks, and communication strategies (i.e. regular meetings with leadership and promotion internally).

  5. Remotely Measuring Trash Fluxes in the Flood Canals of Megacities with Time Lapse Cameras and Computer Vision Algorithms - a Case Study from Jakarta, Indonesia.

    NASA Astrophysics Data System (ADS)

    Sedlar, F.; Turpin, E.; Kerkez, B.

    2014-12-01

    As megacities around the world continue to develop at breakneck speeds, future development, investment, and social wellbeing are threatened by a number of environmental and social factors. Chief among these is frequent, persistent, and unpredictable urban flooding. Jakarta, Indonesia with a population of 28 million, is a prime example of a city plagued by such flooding. Yet although Jakarta has ample hydraulic infrastructure already in place with more being constructed, the increasingly severity of the flooding it experiences is not from a lack of hydraulic infrastructure but rather a failure of existing infrastructure. As was demonstrated during the most recent floods in Jakarta, the infrastructure failure is often the result of excessive amounts of trash in the flood canals. This trash clogs pumps and reduces the overall system capacity. Despite this critical weakness of flood control in Jakarta, no data exists on the overall amount of trash in the flood canals, much less on how it varies temporally and spatially. The recent availability of low cost photography provides a means to obtain such data. Time lapse photography postprocessed with computer vision algorithms yields a low cost, remote, and automatic solution to measuring the trash fluxes. When combined with the measurement of key hydrological parameters, a thorough understanding of the relationship between trash fluxes and the hydrology of massive urban areas becomes possible. This work examines algorithm development, quantifying trash parameters, and hydrological measurements followed by data assimilation into existing hydraulic and hydrological models of Jakarta. The insights afforded from such an approach allows for more efficient operating of hydraulic infrastructure, knowledge of when and where critical levels of trash originate from, and the opportunity for community outreach - which is ultimately needed to reduce the trash in the flood canals of Jakarta and megacities around the world.

  6. Investigations into Gravitational Wave Emission from Compact Body Inspiral Into Massive Black Holes

    NASA Technical Reports Server (NTRS)

    Hughes, Scott A.

    2004-01-01

    Much of the grant's support (and associated time) was used in developmental activity, building infrastructure for the core of the work that the grant supports. Though infrastructure development was the bulk of the activity supported this year, important progress was made in research as well. The two most important "infrastructure" items were in computing hardware and personnel. Research activities were primarily focused on improving and extending. Hughes' Teukolsky-equation-based gravitational-wave generator. Several improvements have been incorporated into this generator.

  7. Building the National Information Infrastructure in K-12 Education: A Comprehensive Survey of Attitudes towards Linking Both Sides of the Desk. A Report of the Global Telecommunications Infrastructure Research Project. Research Report Series.

    ERIC Educational Resources Information Center

    Pereira, Francis; And Others

    This survey was designed to elicit the perceptions of the members of the educational community on four issues concerning the NII (National Information Infrastructure), and to test whether these visions of the NII were shared by educators. The issues were: (1) the benefits of the NII to the education sector and specifically whether the NII will be…

  8. Establishing green roof infrastructure through environmental policy instruments.

    PubMed

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.

  9. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    NASA Astrophysics Data System (ADS)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.

  10. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  11. Quality of service provision assessment in the healthcare information and telecommunications infrastructures.

    PubMed

    Babulak, Eduard

    2006-01-01

    The continuous increase in the complexity and the heterogeneity of corporate and healthcare telecommunications infrastructures will require new assessment methods of quality of service (QoS) provision that are capable of addressing all engineering and social issues with much faster speeds. Speed and accessibility to any information at any time from anywhere will create global communications infrastructures with great performance bottlenecks that may put in danger human lives, power supplies, national economy and security. Regardless of the technology supporting the information flows, the final verdict on the QoS is made by the end user. The users' perception of telecommunications' network infrastructure QoS provision is critical to the successful business management operation of any organization. As a result, it is essential to assess the QoS Provision in the light of user's perception. This article presents a cost effective methodology to assess the user's perception of quality of service provision utilizing the existing Staffordshire University Network (SUN) by adding a component of measurement to the existing model presented by Walker. This paper presents the real examples of CISCO Networking Solutions for Health Care givers and offers a cost effective approach to assess the QoS provision within the campus network, which could be easily adapted to any health care organization or campus network in the world.

  12. On the sensitivity of geospatial low impact development locations to the centralized sewer network.

    PubMed

    Zischg, Jonatan; Zeisl, Peter; Winkler, Daniel; Rauch, Wolfgang; Sitzenfrei, Robert

    2018-04-01

    In the future, infrastructure systems will have to become smarter, more sustainable, and more resilient requiring new methods of urban infrastructure design. In the field of urban drainage, green infrastructure is a promising design concept with proven benefits to runoff reduction, stormwater retention, pollution removal, and/or the creation of attractive living spaces. Such 'near-nature' concepts are usually distributed over the catchment area in small scale units. In many cases, these above-ground structures interact with the existing underground pipe infrastructure, resulting in hybrid solutions. In this work, we investigate the effect of different placement strategies for low impact development (LID) structures on hydraulic network performance of existing drainage networks. Based on a sensitivity analysis, geo-referenced maps are created which identify the most effective LID positions within the city framework (e.g. to improve network resilience). The methodology is applied to a case study to test the effectiveness of the approach and compare different placement strategies. The results show that with a simple targeted LID placement strategy, the flood performance is improved by an additional 34% as compared to a random placement strategy. The developed map is easy to communicate and can be rapidly applied by decision makers when deciding on stormwater policies.

  13. Development of a relationship between external measurements and reinforcement stress

    NASA Astrophysics Data System (ADS)

    Brault, Andre; Hoult, Neil A.; Lees, Janet M.

    2015-03-01

    As many countries around the world face an aging infrastructure crisis, there is an increasing need to develop more accurate monitoring and assessment techniques for reinforced concrete structures. One of the challenges associated with assessing existing infrastructure is correlating externally measured parameters such as crack widths and surface strains with reinforcement stresses as this is dependent on a number of variables. The current research investigates how the use of distributed fiber optic sensors to measure reinforcement strain can be correlated with digital image correlation measurements of crack widths to relate external crack width measurements to reinforcement stresses. An initial set of experiments was undertaken involving a series of small-scale beam specimens tested in three-point bending with variable reinforcement properties. Relationships between crack widths and internal reinforcement strains were observed including that both the diameter and number of bars affected the measured maximum strain and crack width. A model that uses measured crack width to estimate reinforcement strain was presented and compared to the experimental results. The model was found to provide accurate estimates of load carrying capacity for a given crack width, however, the model was potentially less accurate when crack widths were used to estimate the experimental reinforcement strains. The need for more experimental data to validate the conclusions of this research was also highlighted.

  14. Integrated Service Provisioning in an Ipv6 over ATM Research Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eli Dart; Helen Chen; Jerry Friesen

    1999-02-01

    During the past few years, the worldwide Internet has grown at a phenomenal rate, which has spurred the proposal of innovative network technologies to support the fast, efficient and low-latency transport of a wide spectrum of multimedia traffic types. Existing network infrastructures have been plagued by their inability to provide for real-time application traffic as well as their general lack of resources and resilience to congestion. This work proposes to address these issues by implementing a prototype high-speed network infrastructure consisting of Internet Protocol Version 6 (IPv6) on top of an Asynchronous Transfer Mode (ATM) transport medium. Since ATM ismore » connection-oriented whereas IP uses a connection-less paradigm, the efficient integration of IPv6 over ATM is especially challenging and has generated much interest in the research community. We propose, in collaboration with an industry partner, to implement IPv6 over ATM using a unique approach that integrates IP over fast A TM hardware while still preserving IP's connection-less paradigm. This is achieved by replacing ATM's control software with IP's routing code and by caching IP's forwarding decisions in ATM's VPI/VCI translation tables. Prototype ''VR'' and distributed-parallel-computing applications will also be developed to exercise the realtime capability of our IPv6 over ATM network.« less

  15. Building electronic data infrastructure for comparative effectiveness research: accomplishments, lessons learned and future steps.

    PubMed

    Randhawa, Gurvaneet S

    2014-11-01

    There are large gaps in our knowledge on the potential impact of diagnostics and therapeutics on outcomes of patients treated in the real world. Comparative effectiveness research aims to fill these gaps to maximize effectiveness of these interventions. Health information technology has the potential to dramatically improve the practice of medicine and of research. This is an overview of about US$100 million of American Recovery and Reinvestment Act investment in 12 projects managed by the Agency for Healthcare Research and Quality to build an electronic clinical data infrastructure that connects research with healthcare delivery. The achievements and lessons learned from these projects provided a foundation for the National Patient-Centered Clinical Research Network (PCORnet)and will help to guide future infrastructure development needed to build an efficient, scalable and sustainable learning health system.

  16. Capacity for research in minority health: the need for infrastructure plus will.

    PubMed

    Pearson, T A

    2001-11-01

    Cardiovascular mortality has continued to decline, but racial disparities in cardiovascular diseases (CVD) continue to grow. To build the capacity to address these racial disparities, two things will be required. First, a research and policy infrastructure must be in place to provide guidance on what to do and how to do it. Second, the will to implement and activate this infrastructure must be present at the community and policy-making levels. The Jackson Heart Study is an example of a research infrastructure with the economic resources, scientific expertise, and technical manpower required to monitor, organize, assess, and follow a cohort of individuals over time to study the burden, natural history, predictive factors, and level of care for CVD in an African American community. The creation of will within the community for CVD research may require additional strategies than in the majority community, such as community organization and local policy development. These additional efforts at the community level should create a fertile environment to develop research and, ultimately, test strategies for reducing national disparities in cardiovascular health.

  17. Transforming Our Cities: High-Performance Green Infrastructure (WERF Report INFR1R11)

    EPA Science Inventory

    The objective of this project is to demonstrate that the highly distributed real-time control (DRTC) technologies for green infrastructure being developed by the research team can play a critical role in transforming our nation’s urban infrastructure. These technologies include a...

  18. Software Reuse Methods to Improve Technological Infrastructure for e-Science

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2011-01-01

    Social computing has the potential to contribute to scientific research. Ongoing developments in information and communications technology improve capabilities for enabling scientific research, including research fostered by social computing capabilities. The recent emergence of e-Science practices has demonstrated the benefits from improvements in the technological infrastructure, or cyber-infrastructure, that has been developed to support science. Cloud computing is one example of this e-Science trend. Our own work in the area of software reuse offers methods that can be used to improve new technological development, including cloud computing capabilities, to support scientific research practices. In this paper, we focus on software reuse and its potential to contribute to the development and evaluation of information systems and related services designed to support new capabilities for conducting scientific research.

  19. Reliability analysis of interdependent lattices

    NASA Astrophysics Data System (ADS)

    Limiao, Zhang; Daqing, Li; Pengju, Qin; Bowen, Fu; Yinan, Jiang; Zio, Enrico; Rui, Kang

    2016-06-01

    Network reliability analysis has drawn much attention recently due to the risks of catastrophic damage in networked infrastructures. These infrastructures are dependent on each other as a result of various interactions. However, most of the reliability analyses of these interdependent networks do not consider spatial constraints, which are found important for robustness of infrastructures including power grid and transport systems. Here we study the reliability properties of interdependent lattices with different ranges of spatial constraints. Our study shows that interdependent lattices with strong spatial constraints are more resilient than interdependent Erdös-Rényi networks. There exists an intermediate range of spatial constraints, at which the interdependent lattices have minimal resilience.

  20. The NWRA Classification Infrastructure: description and extension to the Discriminant Analysis Flare Forecasting System (DAFFS)

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2018-04-01

    A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.

Top