A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems
Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling
2015-01-01
The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598
A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.
Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling
2015-12-12
The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.
Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations
2011-03-01
leveraging public wireless communication networks for UAV-based sensor networks with respect to existing constraints and user requirements...Detection with an Autonomous Micro UAV Mesh Network . In the near future police departments, fire brigades and other homeland security ...UAV-based sensor networks with respect to existing constraints and user requirements. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring
NASA Astrophysics Data System (ADS)
Stocklöw, Carsten; Kamieth, Felix
In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.
2012-03-01
detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor
2014-01-01
Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277
Research on trust calculation of wireless sensor networks based on time segmentation
NASA Astrophysics Data System (ADS)
Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin
2017-05-01
Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network
Cognitive radio wireless sensor networks: applications, challenges and research trends.
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-08-22
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.
Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods
Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...
Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends
Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won
2013-01-01
A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152
A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.
Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi
2017-09-21
Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.
A feedback-based secure path approach for wireless sensor network data collection.
Mao, Yuxin; Wei, Guiyi
2010-01-01
The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.
A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop.
Zhang, Lifu; Zhang, Heng
2016-03-26
Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas.
Spatial aggregation query in dynamic geosensor networks
NASA Astrophysics Data System (ADS)
Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun
2007-11-01
Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.
Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges
Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey
2012-01-01
A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490
Multipath routing in wireless sensor networks: survey and research challenges.
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey
2012-01-01
A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.
NASA Astrophysics Data System (ADS)
Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian
2016-05-01
A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.
ReTrust: attack-resistant and lightweight trust management for medical sensor networks.
He, Daojing; Chen, Chun; Chan, Sammy; Bu, Jiajun; Vasilakos, Athanasios V
2012-07-01
Wireless medical sensor networks (MSNs) enable ubiquitous health monitoring of users during their everyday lives, at health sites, without restricting their freedom. Establishing trust among distributed network entities has been recognized as a powerful tool to improve the security and performance of distributed networks such as mobile ad hoc networks and sensor networks. However, most existing trust systems are not well suited for MSNs due to the unique operational and security requirements of MSNs. Moreover, similar to most security schemes, trust management methods themselves can be vulnerable to attacks. Unfortunately, this issue is often ignored in existing trust systems. In this paper, we identify the security and performance challenges facing a sensor network for wireless medical monitoring and suggest it should follow a two-tier architecture. Based on such an architecture, we develop an attack-resistant and lightweight trust management scheme named ReTrust. This paper also reports the experimental results of the Collection Tree Protocol using our proposed system in a network of TelosB motes, which show that ReTrust not only can efficiently detect malicious/faulty behaviors, but can also significantly improve the network performance in practice.
Operating systems and network protocols for wireless sensor networks.
Dutta, Prabal; Dunkels, Adam
2012-01-13
Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.
An agenda-based routing protocol in delay tolerant mobile sensor networks.
Wang, Xiao-Min; Zhu, Jin-Qi; Liu, Ming; Gong, Hai-Gang
2010-01-01
Routing in delay tolerant mobile sensor networks (DTMSNs) is challenging due to the networks' intermittent connectivity. Most existing routing protocols for DTMSNs use simplistic random mobility models for algorithm design and performance evaluation. In the real world, however, due to the unique characteristics of human mobility, currently existing random mobility models may not work well in environments where mobile sensor units are carried (such as DTMSNs). Taking a person's social activities into consideration, in this paper, we seek to improve DTMSN routing in terms of social structure and propose an agenda based routing protocol (ARP). In ARP, humans are classified based on their agendas and data transmission is made according to sensor nodes' transmission rankings. The effectiveness of ARP is demonstrated through comprehensive simulation studies.
A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection
Mao, Yuxin; Wei, Guiyi
2010-01-01
The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424
A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop
Zhang, Lifu; Zhang, Heng
2016-01-01
Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas. PMID:27023559
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search
Jiang, Peng; Feng, Yang; Wu, Feng
2016-01-01
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Salim, Shelly; Moh, Sangman
2016-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
Social Network Analysis and Its Applications in Wireless Sensor and Vehicular Networks
NASA Astrophysics Data System (ADS)
Papadimitriou, Alexis; Katsaros, Dimitrios; Manolopoulos, Yannis
Ever since the introduction of wireless sensor networks in the research and development agenda, the corresponding community has been eager to harness the endless possibilities that this new technology has to offer. These micro sensor nodes, whose capabilities have skyrocketed over the last couple of years, have allowed for a wide range of applications to be created; applications that not so long ago would seem impossible, impractical and time-consuming. It would only be logical to expect that researchers from other fields would take an interest in sensor networks, hence expanding the already wide variety of algorithms, theoretical proofs and applications that existed beforehand. Social Network Analysis is one such field, which has instigated a paradigm shift in the way we view sensor nodes.
Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks
NASA Astrophysics Data System (ADS)
Song, Jae-Gu; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo
This study aims to reduce security vulnerabilities of sensor networks which transmit data in an open environment by developing a forecasting service system. The system is to remove or monitor causes of breach incidents in advance. To that end, this research first examines general security vulnerabilities of sensor networks and analyzes characteristics of existing forecasting systems. Then, 5 steps of a forecasting service system are proposed in order to improve security responses.
Application of wireless sensor network technology in logistics information system
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-04-01
This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.
Fusion solution for soldier wearable gunfire detection systems
NASA Astrophysics Data System (ADS)
Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin
2012-06-01
Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.
On the reliability of Quake-Catcher Network earthquake detections
Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.
2015-01-01
Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).
An investigation on wireless sensors for asset management and health monitoring of civil structures
NASA Astrophysics Data System (ADS)
Furkan, Mustafa; Mao, Qiang; Mazzotti, Matteo; DeVitis, John; Sumitro, S. Paul; Faridazar, Fred; Aktan, A. Emin; Moon, Franklin; Bartoli, Ivan
2016-04-01
Application of wireless sensors and sensor networks for Structural Health Monitoring has been investigated for a long time. Key limitations for practical use are energy requirements, connectivity, and integration with existing systems. Current sensors and sensor networks mainly rely on wired connectivity for communication and external power source for energy. This paper presents a suite of wireless sensors that are low-cost, maintenance free, rugged, and have long service life. The majority of the sensors considered were designed by transforming existing, proven, and robust wired sensors into wireless units. In this study, the wireless sensors were tested in laboratory conditions for calibration and evaluation along with wired sensors. The experimental results were also compared to theoretical results. The tests mostly show satisfactory performance of the wireless units. This work is part of a broader Federal Highway Administration sponsored project intended to ultimately validate a wireless sensing system on a real, operating structure to account for all the uncertainties, environmental conditions and operational variability that are encountered in the field.
Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae
2009-01-01
Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.
Shaikh, Riaz Ahmed; Jameel, Hassan; d’Auriol, Brian J.; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae
2009-01-01
Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm. PMID:22454568
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-01-01
Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177
Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki
2016-08-19
Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.
DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.
Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang
2018-05-25
Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.
On computer vision in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Ko, Teresa H.
Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less
A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks
Ye, Dayon; Zhang, Minji; Yang, Yu
2015-01-01
Wireless sensor networks (WSNs) have been widely investigated in recent years. One of the fundamental issues in WSNs is packet routing, because in many application domains, packets have to be routed from source nodes to destination nodes as soon and as energy efficiently as possible. To address this issue, a large number of routing approaches have been proposed. Although every existing routing approach has advantages, they also have some disadvantages. In this paper, a multi-agent framework is proposed that can assist existing routing approaches to improve their routing performance. This framework enables each sensor node to build a cooperative neighbour set based on past routing experience. Such cooperative neighbours, in turn, can help the sensor to effectively relay packets in the future. This framework is independent of existing routing approaches and can be used to assist many existing routing approaches. Simulation results demonstrate the good performance of this framework in terms of four metrics: average delivery latency, successful delivery ratio, number of live nodes and total sensing coverage. PMID:25928063
Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani
2015-01-01
Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.
Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani
2015-01-01
Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.
Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero
2016-04-12
Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.
Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network
NASA Astrophysics Data System (ADS)
Dhaya, R.; Sadasivam, V.; Kanthavel, R.
2012-12-01
Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.
Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.
Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong
2018-01-01
Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.
Privacy-preserving data aggregation protocols for wireless sensor networks: a survey.
Bista, Rabindra; Chang, Jae-Woo
2010-01-01
Many wireless sensor network (WSN) applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA) protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.
Hwang, I-Shyan
2017-01-01
The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
Energy-efficient sensing in wireless sensor networks using compressed sensing.
Razzaque, Mohammad Abdur; Dobson, Simon
2014-02-12
Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.
Choi, D J; Park, H
2001-11-01
For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.
Autonomous vision networking: miniature wireless sensor networks with imaging technology
NASA Astrophysics Data System (ADS)
Messinger, Gioia; Goldberg, Giora
2006-09-01
The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor. Image processing at the sensor node level may also be required for applications in security, asset management and process control. Due to the data bandwidth requirements posed on the network by video sensors, new networking protocols or video extensions to existing standards (e.g. Zigbee) are required. To this end, Avaak has designed and implemented an ultra-low power networking protocol designed to carry large volumes of data through the network. The low power wireless sensor nodes that will be discussed include a chemical sensor integrated with a CMOS digital camera, a controller, a DSP processor and a radio communication transceiver, which enables relaying of an alarm or image message, to a central station. In addition to the communications, identification is very desirable; hence location awareness will be later incorporated to the system in the form of Time-Of-Arrival triangulation, via wide band signaling. While the wireless imaging kernel already exists specific applications for surveillance and chemical detection are under development by Avaak, as part of a co-founded program from ONR and DARPA. Avaak is also designing vision networks for commercial applications - some of which are undergoing initial field tests.
A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas
Wu, Chun-Hsien; Chung, Yeh-Ching
2009-01-01
The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
An Optimal Algorithm towards Successive Location Privacy in Sensor Networks with Dynamic Programming
NASA Astrophysics Data System (ADS)
Zhao, Baokang; Wang, Dan; Shao, Zili; Cao, Jiannong; Chan, Keith C. C.; Su, Jinshu
In wireless sensor networks, preserving location privacy under successive inference attacks is extremely critical. Although this problem is NP-complete in general cases, we propose a dynamic programming based algorithm and prove it is optimal in special cases where the correlation only exists between p immediate adjacent observations.
A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System
Yoo, Seong-eun
2013-01-01
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. PMID:23344388
A wireless sensor network-based portable vehicle detector evaluation system.
Yoo, Seong-eun
2013-01-17
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.
Cross-Layer Algorithms for QoS Enhancement in Wireless Multimedia Sensor Networks
NASA Astrophysics Data System (ADS)
Saxena, Navrati; Roy, Abhishek; Shin, Jitae
A lot of emerging applications like advanced telemedicine and surveillance systems, demand sensors to deliver multimedia content with precise level of QoS enhancement. Minimizing energy in sensor networks has been a much explored research area but guaranteeing QoS over sensor networks still remains an open issue. In this letter we propose a cross-layer approach combining Network and MAC layers, for QoS enhancement in wireless multimedia sensor networks. In the network layer a statistical estimate of sensory QoS parameters is performed and a nearoptimal genetic algorithmic solution is proposed to solve the NP-complete QoS-routing problem. On the other hand the objective of the proposed MAC algorithm is to perform the QoS-based packet classification and automatic adaptation of the contention window. Simulation results demonstrate that the proposed protocol is capable of providing lower delay and better throughput, at the cost of reasonable energy consumption, in comparison with other existing sensory QoS protocols.
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-01-01
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919
Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming
2015-11-17
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.
Study on the effect of sink moving trajectory on wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
Discovery Mechanisms for the Sensor Web
Jirka, Simon; Bröring, Arne; Stasch, Christoph
2009-01-01
This paper addresses the discovery of sensors within the OGC Sensor Web Enablement framework. Whereas services like the OGC Web Map Service or Web Coverage Service are already well supported through catalogue services, the field of sensor networks and the according discovery mechanisms is still a challenge. The focus within this article will be on the use of existing OGC Sensor Web components for realizing a discovery solution. After discussing the requirements for a Sensor Web discovery mechanism, an approach will be presented that was developed within the EU funded project “OSIRIS”. This solution offers mechanisms to search for sensors, exploit basic semantic relationships, harvest sensor metadata and integrate sensor discovery into already existing catalogues. PMID:22574038
An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks
Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero
2016-01-01
Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866
Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena
2010-09-01
A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.
Wireless sensor networks for heritage object deformation detection and tracking algorithm.
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-10-31
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.
Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-01-01
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458
DOT National Transportation Integrated Search
2011-01-01
The increasing emphasis on the maintenance of existing infrastructure systems have led to : greater use of advanced sensors and condition monitoring systems. Wireless sensors and : sensor networks are emerging as sensing paradigms that the structural...
NASA Astrophysics Data System (ADS)
Hafner, K.; Davis, P.; Wilson, D.; Sumy, D.
2017-12-01
The Global Seismographic Network (GSN) recently received delivery of the next generation Very Broadband (VBB) borehole sensors purchased through funding from the DOE. Deployment of these sensors will be underway during the end of summer and fall of 2017 and they will eventually replace the aging KS54000 sensors at approximately one-third of the GSN network stations. We will present the latest methods of deploying these sensors in the existing deep boreholes. To achieve lower noise performance at some sites, emplacement in shallow boreholes might result in lower noise performance for the existing site conditions. In some cases shallow borehole installations may be adapted to vault stations (which make up two thirds of the network), as a means of reducing tilt-induced signals on the horizontal components. The GSN is creating a prioritized list of equipment upgrades at selected stations with the ultimate goal of optimizing overall network data availability and noise performance. For an overview of the performance of the current GSN relative to selected set of metrics, we are utilizing data quality metrics and Probability Density Functions (PDFs)) generated by the IRIS Data Management Centers' (DMC) MUSTANG (Modular Utility for Statistical Knowledge Gathering) and LASSO (Latest Assessment of Seismic Station Observations) tools. We will present our metric analysis of GSN performance in 2016, and show the improvements at GSN sites resulting from recent instrumentation and infrastructure upgrades.
Innovative solutions in monitoring systems in flood protection
NASA Astrophysics Data System (ADS)
Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra
2018-02-01
The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.
A Survey on Node Clustering in Cognitive Radio Wireless Sensor Networks.
Joshi, Gyanendra Prasad; Kim, Sung Won
2016-09-10
Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-01-01
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238
Research on low-latency MAC protocols for wireless sensor networks
NASA Astrophysics Data System (ADS)
He, Chenguang; Sha, Xuejun; Lee, Chankil
2007-11-01
Energy-efficient should not be the only design goal in MAC protocols for wireless sensor networks, which involve the use of battery-operated computing and sensing devices. Low-latency operation becomes the same important as energy-efficient in the case that the traffic load is very heavy or the real-time constrain is used in applications like tracking or locating. This paper introduces some causes of traditional time delays which are inherent in a multi-hops network using existing WSN MAC protocols, illuminates the importance of low-latency MAC design for wireless sensor networks, and presents three MACs as examples of low-latency protocols designed specially for sleep delay, wait delay and wakeup delay in wireless sensor networks, respectively. The paper also discusses design trade-offs with emphasis on low-latency and points out their advantages and disadvantages, together with some design considerations and suggestions for MAC protocols for future applications and researches.
Protocol to Exploit Waiting Resources for UASNs.
Hung, Li-Ling; Luo, Yung-Jeng
2016-03-08
The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols.
Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks
Chen, Chin-Ling; Lin, I-Hsien
2010-01-01
Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606
Location-aware dynamic session-key management for grid-based Wireless Sensor Networks.
Chen, Chin-Ling; Lin, I-Hsien
2010-01-01
Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.
Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao
2018-03-01
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.
Cacades: A reliable dissemination protocol for data collection sensor network
Peng, Y.; Song, W.; Huang, R.; Xu, M.; Shirazi, B.; LaHusen, R.; Pei, G.
2009-01-01
In this paper, we propose a fast and reliable data dissemination protocol Cascades to disseminate data from the sink(base station) to all or a subset of nodes in a data collection sensor network. Cascades makes use of the parentmonitor-children analogy to ensure reliable dissemination. Each node monitors whether or not its children have received the broadcast messages through snooping children's rebroadcasts or waiting for explicit ACKs. If a node detects a gap in its message sequences, it can fetch the missing messages from its neighbours reactively. Cascades also considers many practical issues for field deployment, such as dynamic topology, link/node failure, etc.. It therefore guarantees that a disseminated message from the sink will reach all intended receivers and the dissemination is terminated in a short time period. Notice that, all existing dissemination protocols either do not guarantee reliability or do not terminate [1, 2], which does not meet the requirement of real-time command control. We conducted experiment evaluations in both TOSSIM simulator and a sensor network testbed to compare Cascades with those existing dissemination protocols in TinyOS sensor networks, which show that Cascades achieves a higher degree of reliability, lower communication cost, and less delivery delay. ??2009 IEEE.
NASA Astrophysics Data System (ADS)
Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.
2017-03-01
Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.
SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks
NASA Astrophysics Data System (ADS)
Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo
For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures
Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael
2010-01-01
Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537
Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael
2010-01-01
Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-01-01
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-12-30
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
A Survey of Routing Protocols in Wireless Body Sensor Networks
Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed
2014-01-01
Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses. PMID:24419163
A survey of routing protocols in wireless body sensor networks.
Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed
2014-01-13
Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.
Curiac, Daniel-Ioan
2016-04-07
Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
Secured remote health monitoring system
Ganesh Kumar, Pugalendhi
2017-01-01
Wireless medical sensor network is used in healthcare applications that have the collections of biosensors connected to a human body or emergency care unit to monitor the patient's physiological vital status. The real-time medical data collected using wearable medical sensors are transmitted to a diagnostic centre. The data generated from the sensors are aggregated at this centre and transmitted further to the doctor's personal digital assistant for diagnosis. The unauthorised access of one's health data may lead to misuse and legal complications while unreliable data transmission or storage may lead to life threatening risk to patients. So, this Letter combines the symmetric algorithm and attribute-based encryption to secure the data transmission and access control system for medical sensor network. In this work, existing systems and their algorithm are compared for identifying the best performance. The work also shows the graphical comparison of encryption time, decryption time and total computation time of the existing and the proposed systems. PMID:29383257
Wireless sensors and sensor networks for homeland security applications.
Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R
2012-11-01
New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.
Yap, Florence G H; Yen, Hong-Hsu
2014-02-20
Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.
Yap, Florence G. H.; Yen, Hong-Hsu
2014-01-01
Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401
MicroSensors Systems: detection of a dismounted threat
NASA Astrophysics Data System (ADS)
Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian
2005-05-01
The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.
Sleep Deprivation Attack Detection in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata
2012-02-01
Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.
Exploiting node mobility for energy optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
El-Moukaddem, Fatme Mohammad
Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.
A survey of body sensor networks.
Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi
2013-04-24
The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives.
Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions.
Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi
2016-12-24
It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources.
Design of nodes for embedded and ultra low-power wireless sensor networks
NASA Astrophysics Data System (ADS)
Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin
2008-10-01
Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.
A Survey of Body Sensor Networks
Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi
2013-01-01
The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives. PMID:23615581
Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions
Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi
2016-01-01
It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources. PMID:28029118
NASA Astrophysics Data System (ADS)
Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.
2009-04-01
In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy efficiency that permits measurements over a long period of time. A special sensor-board that accommodates the measuring sensors and the node of the WSN was developed. The standardized interfaces of the measuring sensors permit an easy interaction with the node and thus enable an uncomplicated data transfer to the gateway. The 3-axis acceleration sensor (measuring range: +/- 2g), the 2-axis inclination sensor (measuring range: +/- 30°) for measuring tilt and the barometric pressure sensor (measuring rang: 30kPa - 120 kPa) for measuring sub-meter height changes (altimeter) are currently integrated into the sensor network and are tested in realistic experiments. In addition sensor nodes with precise potentiometric displacement and linear magnetorestrictive position transducer are used for extension and convergence measurements. According to the accuracy of the first developed test stations, the results of the experiments showed that the selected sensors meet the requirement profile, as the stability is satisfying and the spreading of the data is quite low. Therefore the jet developed sensor boards can be tested in a larger environment of a sensor network. In order to get more information about accuracy in detail, experiments in a new more precise test bed and tests with different sampling rates will follow. Another increasingly important aspect for the future is the fusion of sensor data (i.e. combination and comparison) to identify malfunctions and to reduce false alarm rates, while increasing data quality at the same time. The correlation of different (complementary sensor fusion) but also identical sensor-types (redundant sensor fusion) permits a validation of measuring data. The development of special algorithms allows in a further step to analyze and evaluate the data from all nodes of the network together (sensor node fusion). The sensor fusion contributes to the decision making of alarm and early warning systems and allows a better interpretation of data. The network data are processed outside the network in a service orientated special data infrastructure (SDI) by standardized OGC (open Geospatial Consortium) conformal services and visualized according to the requirements of the end-user. The modular setup of the hardware, combined with standardized interfaces and open services for data processing allows an easy adaption or integration in existing solutions and other networks. The Monitoring system described here is characterized by very flexible structure, cost efficiency and high fail-safe level. The application of WSN in combination with MEMS provides an inexpensive, easy to set up and intelligent monitoring system for spatial data gathering in large areas.
Wireless Multimedia Sensor Networks: Current Trends and Future Directions
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian
2010-01-01
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.
Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal
2015-11-17
Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks
Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal
2015-01-01
Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics. PMID:26593924
Barrier Coverage for 3D Camera Sensor Networks
Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-01-01
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder’s face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks. PMID:28771167
Barrier Coverage for 3D Camera Sensor Networks.
Si, Pengju; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-08-03
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder's face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks.
A wireless sensor network deployment for rural and forest fire detection and verification.
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.
A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Bio-mimic optimization strategies in wireless sensor networks: a survey.
Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2013-12-24
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
Security issues in healthcare applications using wireless medical sensor networks: a survey.
Kumar, Pardeep; Lee, Hoon-Jae
2012-01-01
Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.
Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey
Kumar, Pardeep; Lee, Hoon-Jae
2012-01-01
Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs. PMID:22368458
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Philip
The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less
A smart indoor air quality sensor network
NASA Astrophysics Data System (ADS)
Wen, Jin
2006-03-01
The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.
Curiac, Daniel-Ioan
2016-01-01
Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues. PMID:27070601
Mobile Sensor Technologies Being Developed
NASA Technical Reports Server (NTRS)
Greer, Lawrence C.; Oberle, Lawrence G.
2003-01-01
The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a central command location. Web-based control and interrogation of similar mobile sensor platforms have also been demonstrated. Expected applications of this technology include robotic planetary exploration, astronaut-to-equipment communication, and remote aerospace engine inspections.
On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks
Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun
2011-01-01
This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason L. Wright; Milos Manic
Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.
Remote sensing of an agricultural soil moisture network in Walnut Creek, Iowa
USDA-ARS?s Scientific Manuscript database
The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Usually soil moisture sensors are added to existing precipitation networks which have as a singular requiremen...
Energy optimization in mobile sensor networks
NASA Astrophysics Data System (ADS)
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.
EMMNet: sensor networking for electricity meter monitoring.
Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang
2010-01-01
Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.
EMMNet: Sensor Networking for Electricity Meter Monitoring
Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang
2010-01-01
Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551
Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey
Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2014-01-01
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702
A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.
2009-01-01
A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185
Sense, decide, act, communicate (SDAC): next generation of smart sensor systems
NASA Astrophysics Data System (ADS)
Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian
2004-09-01
The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi
2016-02-05
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi
2016-01-01
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336
Distributed fault detection over sensor networks with Markovian switching topologies
NASA Astrophysics Data System (ADS)
Ge, Xiaohua; Han, Qing-Long
2014-05-01
This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.
Wireless Technologies in Support of ISS Experimentation and Operations
NASA Technical Reports Server (NTRS)
Wagner, Raymond; Fink, Patrick
2012-01-01
Presentation reviews: (1) Wireless Communications (a) Internal (b) External (2) RFID (Radio Frequency Identification) (a) Existing and R&D (3) Wireless Sensor Networks (a) Existing and R&D (4) Ultra-Wide Band (UWB) (a) R&D
Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Chayoung; Ahn, Jinho
In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.
2011-12-01
Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as the CUAHSI Hydrologic Information System (HIS). These efforts will enhance cross-disciplinary understanding of natural and anthropogenic influences on ecosystem function and ultimately inform decision-making.
Muhammed, Dalhatu; Anisi, Mohammad Hossein; Vargas-Rosales, Cesar; Khan, Anwar
2018-01-01
Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted. PMID:29389874
Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar
2018-02-01
Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.
Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le
2016-07-14
Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don't discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.
Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le
2016-01-01
Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability. PMID:27428970
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
2018-01-01
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884
Conflict management based on belief function entropy in sensor fusion.
Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong
2016-01-01
Wireless sensor network plays an important role in intelligent navigation. It incorporates a group of sensors to overcome the limitation of single detection system. Dempster-Shafer evidence theory can combine the sensor data of the wireless sensor network by data fusion, which contributes to the improvement of accuracy and reliability of the detection system. However, due to different sources of sensors, there may be conflict among the sensor data under uncertain environment. Thus, this paper proposes a new method combining Deng entropy and evidence distance to address the issue. First, Deng entropy is adopted to measure the uncertain information. Then, evidence distance is applied to measure the conflict degree. The new method can cope with conflict effectually and improve the accuracy and reliability of the detection system. An example is illustrated to show the efficiency of the new method and the result is compared with that of the existing methods.
Open hardware: a role to play in wireless sensor networks?
Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel
2015-03-20
The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.
Open Hardware: A Role to Play in Wireless Sensor Networks?
Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel
2015-01-01
The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the ‘thing’ level—devices and inter-device network communication—the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications. PMID:25803706
Staniec, Kamil; Habrych, Marcin
2016-07-19
The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect-in particular-the operation of chemical sensors implemented in the network as they often require additional heating.
Distributed clone detection in static wireless sensor networks: random walk with network division.
Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
ECS: efficient communication scheduling for underwater sensor networks.
Hong, Lu; Hong, Feng; Guo, Zhongwen; Li, Zhengbao
2011-01-01
TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols.
A survey on temperature-aware routing protocols in wireless body sensor networks.
Oey, Christian Henry Wijaya; Moh, Sangman
2013-08-02
The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN) is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node's circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.
A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks
Oey, Christian Henry Wijaya; Moh, Sangman
2013-01-01
The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN) is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node's circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols. PMID:23917259
Zhang, Wenyu; Zhang, Zhenjiang
2015-01-01
Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks
Wang, Qiuhua
2017-01-01
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate. PMID:28165423
A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.
Wang, Qiuhua
2017-02-04
Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.
Authentication in Reprogramming of Sensor Networks for Mote Class Adversaries
2006-01-01
based approach. In this paper, we propose a symmetric key-based protocol for authenticating the reprogramming process. Our protocol is based on the ... secret instantiation algorithm, which requires only O(log n) keys to be maintained at each sensor. We integrate this algorithm with the existing
A configurable sensor network applied to ambient assisted living.
Villacorta, Juan J; Jiménez, María I; Del Val, Lara; Izquierdo, Alberto
2011-01-01
The rising older people population has increased the interest in ambient assisted living systems. This article presents a system for monitoring the disabled or older persons developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios.
Wireless Sensing Opportunities for Aerospace Applications
NASA Technical Reports Server (NTRS)
Wilson, William; Atkinson, Gary
2007-01-01
Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.
Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Mengshoel, Ole
2008-01-01
Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.
Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774
Distributed Joint Source-Channel Coding in Wireless Sensor Networks
Zhu, Xuqi; Liu, Yu; Zhang, Lin
2009-01-01
Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560
A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks
Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal
2014-01-01
Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107
Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.
Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang
2016-11-01
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.
Sensing network for electromagnetic fields generated by seismic activities
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.
2014-06-01
The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.
Using Internet of Things technologies for wireless sensor networks
NASA Astrophysics Data System (ADS)
Martinez, K.; Hart, J. K.; Basford, P. J.; Bragg, G. M.; Ward, T.
2013-12-01
Numerous authors have envisioned the future internet where anything will be connected: the Internet of Things (IoT). The idea is an extrapolation of the spread of networked devices such as phones, tablets etc. Each device is expected to have its own Internet address and thus be easy to access. The key building blocks of any IoT system are networking, hardware platforms and node software - so they are similar to wireless sensor network requirements. Most existing IoT demonstrators and applications have been gadget-style objects where power and connectivity problems are not too restricting. Environmental sensor networks can benefit from using some of the technologies involved in IoT development. However it is expected that tuning the networking and power management will be necessary to make them as efficient as state of the art wireless sensor networks. Some IoT assumptions such as always-connected nodes and full IP capability need to be considered. This paper will illustrate the advantages and disadvantages of IoT techniques for environment sensing drawing on a range of employment scenarios. We also describe a glacial 'Internet of things' project, which aims to monitor glacial processes. In particular we describe the IoT developments in a deployment in Iceland to examine glacier seismicity, velocity and provide camera images.
A QoS-guaranteed coverage precedence routing algorithm for wireless sensor networks.
Jiang, Joe-Air; Lin, Tzu-Shiang; Chuang, Cheng-Long; Chen, Chia-Pang; Sun, Chin-Hong; Juang, Jehn-Yih; Lin, Jiun-Chuan; Liang, Wei-Wen
2011-01-01
For mission-critical applications of wireless sensor networks (WSNs) involving extensive battlefield surveillance, medical healthcare, etc., it is crucial to have low-power, new protocols, methodologies and structures for transferring data and information in a network with full sensing coverage capability for an extended working period. The upmost mission is to ensure that the network is fully functional providing reliable transmission of the sensed data without the risk of data loss. WSNs have been applied to various types of mission-critical applications. Coverage preservation is one of the most essential functions to guarantee quality of service (QoS) in WSNs. However, a tradeoff exists between sensing coverage and network lifetime due to the limited energy supplies of sensor nodes. In this study, we propose a routing protocol to accommodate both energy-balance and coverage-preservation for sensor nodes in WSNs. The energy consumption for radio transmissions and the residual energy over the network are taken into account when the proposed protocol determines an energy-efficient route for a packet. The simulation results demonstrate that the proposed protocol is able to increase the duration of the on-duty network and provide up to 98.3% and 85.7% of extra service time with 100% sensing coverage ratio comparing with LEACH and the LEACH-Coverage-U protocols, respectively.
Klueh, Ulrike; Antar, Omar; Qiao, Yi; Kreutzer, Donald L.
2014-01-01
The concept of increased blood vessel (BV) density proximal to glucose sensors implanted in the interstitial tissue increases the accuracy and lifespan of sensors is accepted, despite limited existing experimental data. Interestingly, there is no previous data or even conjecture in the literature on the role of lymphatic vessels (LV) alone, or in combination with BV, in enhancing continuous glucose monitoring (CGM) in vivo. To investigate the impact of inducing vascular networks (BV and LV) at sites of glucose sensor implantation, we utilized adenovirus based local gene therapy of vascular endothelial cell growth factor-A (VEGF-A) to induce vessels at sensor implantation sites. The results of these studies demonstrated that 1) VEGF-A based local gene therapy increases vascular networks (blood vessels and lymphatic vessels) at sites of glucose sensor implantation; and 2) this local increase of vascular networks enhances glucose sensor function in vivo from 7 days to greater than 28 days post sensor implantation. This data provides “proof of concept” for the effective usage of local angiogenic factor (AF) gene therapy in mammalian models in an effort to extend CGM in vivo. It also supports the practice of a variety of viral and non-viral vectors as well as gene products (e.g. anti-inflammatory and anti-fibrosis genes) to engineer “implant friendly tissues” for the usage with implantable glucose sensors as well as other implantable devices. PMID:24243850
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
An Overview of Data Routing Approaches for Wireless Sensor Networks
Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri
2012-01-01
Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:23443040
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin
2016-01-01
The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035
Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol
Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.
Yu, Shanen; Xu, Yiming; Jiang, Peng; Wu, Feng; Xu, Huan
2017-01-01
At present, free-to-move node self-deployment algorithms aim at event coverage and cannot improve network coverage under the premise of considering network connectivity, network reliability and network deployment energy consumption. Thus, this study proposes pigeon-based self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the network coverage in its one-hop region. The one-hop nodes subsequently divide the network into layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement distance of the node to the change in the coverage redundancy ratio as the target function and employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show that PSA improves both network connectivity and network reliability, decreases network deployment energy consumption, and increases network coverage. PMID:28338615
Intelligent On-Board Processing in the Sensor Web
NASA Astrophysics Data System (ADS)
Tanner, S.
2005-12-01
Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.
An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.
Yoon, Yourim; Kim, Yong-Hyuk
2013-10-01
Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.
A Proposal for Modeling Real Hardware, Weather and Marine Conditions for Underwater Sensor Networks
Climent, Salvador; Capella, Juan Vicente; Blanc, Sara; Perles, Angel; Serrano, Juan José
2013-01-01
Network simulators are useful for researching protocol performance, appraising new hardware capabilities and evaluating real application scenarios. However, these tasks can only be achieved when using accurate models and real parameters that enable the extraction of trustworthy results and conclusions. This paper presents an underwater wireless sensor network ecosystem for the ns-3 simulator. This ecosystem is composed of a new energy-harvesting model and a low-cost, low-power underwater wake-up modem model that, alongside existing models, enables the performance of accurate simulations by providing real weather and marine conditions from the location where the real application is to be deployed. PMID:23748171
Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.
2010-01-01
The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307
ECS: Efficient Communication Scheduling for Underwater Sensor Networks
Hong, Lu; Hong, Feng; Guo, Zhongwen; Li, Zhengbao
2011-01-01
TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols. PMID:22163775
Distributed Clone Detection in Static Wireless Sensor Networks: Random Walk with Network Division
Khan, Wazir Zada; Aalsalem, Mohammed Y.; Saad, N. M.
2015-01-01
Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads. PMID:25992913
Staniec, Kamil; Habrych, Marcin
2016-01-01
The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect—in particular—the operation of chemical sensors implemented in the network as they often require additional heating. PMID:27447633
Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming
2015-01-01
It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes’ mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network. PMID:26633405
Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming
2015-12-01
It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.
All-Optical Fibre Networks For Coal Mines
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1987-09-01
A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.
Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Hloupis, George; Stavrakas, Ilias; Triantis, Dimos
2010-05-01
Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor (based on plastic optical fiber). Data transmitted directly to server where the early warning algorithms monitor the water level variations in real time. Both sensor nodes use power harvesting techniques in order to extend their battery life as much as possible. [1] Yick J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330. [2] Garcia, M.; Bri, D.; Boronat, F.; Lloret, J. A new neighbor selection strategy for group-based wireless sensor networks, In The Fourth International Conference on Networking and Services (ICNS 2008), Gosier, Guadalupe, March 16-21, 2008.
Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks
Bashir, Ali Kashif; Lim, Se-Jung; Hussain, Chauhdary Sajjad; Park, Myong-Soon
2011-01-01
RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes’ energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes. PMID:22163999
Development of a GNSS Volcano Ash Plume Detector
NASA Astrophysics Data System (ADS)
Rainville, N.; Palo, S. E.; Larson, K. M.; Naik, S. R.
2015-12-01
Global Navigation Satellite Systems (GNSS), broadcast signals continuously from mid Earth orbit at a frequency near 1.5GHz. Of the four GNSS constellations, GPS and GLONASS are complete with more than 55 satellites in total. While GNSS signals are intended for navigation and timing, they have also proved to be useful for remote sensing applications. Reflections of the GNSS signals have been used to sense soil moisture, snow depth, and wind speed while refraction of the signals through the atmosphere has provided data on the electron density in the ionosphere as well as water vapor and temperature in the troposphere. Now analysis at the University of Colorado has shown that the attenuation of GNSS signals by volcanic ash plumes can be used to measure the presence and structure of the ash plume. This discovery is driving development of a distributed GNSS sensor network to complement existing optical and radar based ash plume monitoring systems. A GNSS based sensing system operating in L-band is unaffected by weather conditions or time of day. Additionally, the use of an existing signal source greatly reduces the per sensor cost and complexity compared to a radar system. However since any one measurement using this method provides only the total attenuation between the GNSS satellite and the receiver, full tomographic imaging of a plume requires a large number of sensors observing over a diversity of geometries. This presentation will provide an overview of the ongoing development of the GNSS sensor system. Evaluation of low priced commercial GNSS receivers will be discussed, as well as details on the inter sensor network. Based on analysis of existing GPS receivers near volcanic vents, the baseline configuration for an ash plume monitoring network is a 1km spaced ring of receivers 5km from the vent updating every 5 seconds. Preliminary data from field tests will be presented to show the suitability of the sensor system for this configuration near an active volcano.
W-MAC: A Workload-Aware MAC Protocol for Heterogeneous Convergecast in Wireless Sensor Networks
Xia, Ming; Dong, Yabo; Lu, Dongming
2011-01-01
The power consumption and latency of existing MAC protocols for wireless sensor networks (WSNs) are high in heterogeneous convergecast, where each sensor node generates different amounts of data in one convergecast operation. To solve this problem, we present W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in WSNs. A subtree-based iterative cascading scheduling mechanism and a workload-aware time slice allocation mechanism are proposed to minimize the power consumption of nodes, while offering a low data latency. In addition, an efficient schedule adjustment mechanism is provided for adapting to data traffic variation and network topology change. Analytical and simulation results show that the proposed protocol provides a significant energy saving and latency reduction in heterogeneous convergecast, and can effectively support data aggregation to further improve the performance. PMID:22163753
Wireless Integrated Microelectronic Vacuum Sensor System
NASA Technical Reports Server (NTRS)
Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun
2013-01-01
NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.
Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting
2016-01-01
Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes “recharging while moving” into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle. PMID:28025567
Optimizing Retransmission Threshold in Wireless Sensor Networks
Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang
2016-01-01
The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092
Seo, Jaewan; Kim, Moonseong; Hur, In; Choi, Wook; Choo, Hyunseung
2010-01-01
Recent studies have shown that in realistic wireless sensor network environments links are extremely unreliable. To recover from corrupted packets, most routing schemes with an assumption of ideal radio environments use a retransmission mechanism, which may cause unnecessary retransmissions. Therefore, guaranteeing energy-efficient reliable data transmission is a fundamental routing issue in wireless sensor networks. However, it is not encouraged to propose a new reliable routing scheme in the sense that every existing routing scheme cannot be replaced with the new one. This paper proposes a Distributed and Reliable Data Transmission (DRDT) scheme with a goal to efficiently guarantee reliable data transmission. In particular, this is based on a pluggable modular approach so that it can be extended to existing routing schemes. DRDT offers reliable data transmission using neighbor nodes, i.e., helper nodes. A helper node is selected among the neighbor nodes of the receiver node which overhear the data packet in a distributed manner. DRDT effectively reduces the number of retransmissions by delegating the retransmission task from the sender node to the helper node that has higher link quality to the receiver node when the data packet reception fails due to the low link quality between the sender and the receiver nodes. Comprehensive simulation results show that DRDT improves end-to-end transmission cost by up to about 45% and reduces its delay by about 40% compared to existing schemes.
Monitoring the Storm Tide of Hurricane Wilma in Southwestern Florida, October 2005
Soderqvist, Lars E.; Byrne, Michael J.
2007-01-01
Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm tide of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm tide and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm tide water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm tide water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm tide monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm tide by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.
Network-Capable Application Process and Wireless Intelligent Sensors for ISHM
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray
2011-01-01
Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This invention enables wide-area sensing and employs numerous globally distributed sensing devices that observe the physical world through the existing sensor network. This innovation enables distributed storage, distributed processing, distributed intelligence, and the availability of DiaK (Data, Information, and Knowledge) to any element as needed. It also enables the simultaneous execution of multiple processes, and represents models that contribute to the determination of the condition and health of each element in the system. The NCAP (intelligent process) can configure data-collection and filtering processes in reaction to sensed data, allowing it to decide when and how to adapt collection and processing with regard to sophisticated analysis of data derived from multiple sensors. The user will be able to view the sensing device network as a single unit that supports a high-level query language. Each query would be able to operate over data collected from across the global sensor network just as a search query encompasses millions of Web pages. The sensor web can preserve ubiquitous information access between the querier and the queried data. Pervasive monitoring of the physical world raises significant data and privacy concerns. This innovation enables different authorities to control portions of the sensing infrastructure, and sensor service authors may wish to compose services across authority boundaries.
A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks.
Akram, Sana; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Imran, Muhammad; Guizani, Mohsen; Hayat, Amir; Ilahi, Manzoor
2015-12-01
As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics.
Distributed cluster management techniques for unattended ground sensor networks
NASA Astrophysics Data System (ADS)
Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon
2005-05-01
Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also simplify multi-target tracking within the cluster.
Meteorology and hydrology in Yosemite National Park: A sensor network application
Lundquist, J.D.; Cayan, D.R.; Dettinger, M.D.
2003-01-01
Over half of California's water supply comes from high elevations in the snowmelt-dominated Sierra Nevada. Natural climate fluctuations, global warming, and the growing needs of water consumers demand intelligent management of this water resource. This requires a comprehensive monitoring system across and within the Sierra Nevada. Unfortunately, because of severe terrain and limited access, few measurements exist. Thus, meteorological and hydrologic processes are not well understood at high altitudes. However, new sensor and wireless communication technologies are beginning to provide sensor packages designed for low maintenance operation, low power consumption and unobtrusive footprints. A prototype network of meteorological and hydrological sensors has been deployed in Yosemite National Park, traversing elevation zones from 1,200 to 3,700 m. Communication techniques must be tailored to suit each location, resulting in a hybrid network of radio, cell-phone, land-line, and satellite transmissions. Results are showing how, in some years, snowmelt may occur quite uniformly over the Sierra, while in others it varies with elevation. ?? Springer-Verlag Berlin Heidelberg 2003.
Parametric Loop Division for 3D Localization in Wireless Sensor Networks
Ahmad, Tanveer
2017-01-01
Localization in Wireless Sensor Networks (WSNs) has been an active topic for more than two decades. A variety of algorithms were proposed to improve the localization accuracy. However, they are either limited to two-dimensional (2D) space, or require specific sensor deployment for proper operations. In this paper, we proposed a three-dimensional (3D) localization scheme for WSNs based on the well-known parametric Loop division (PLD) algorithm. The proposed scheme localizes a sensor node in a region bounded by a network of anchor nodes. By iteratively shrinking that region towards its center point, the proposed scheme provides better localization accuracy as compared to existing schemes. Furthermore, it is cost-effective and independent of environmental irregularity. We provide an analytical framework for the proposed scheme and find its lower bound accuracy. Simulation results shows that the proposed algorithm provides an average localization accuracy of 0.89 m with a standard deviation of 1.2 m. PMID:28737714
NASA Astrophysics Data System (ADS)
Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.
2012-12-01
Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal of building a scalable network around the world to understand and predict how lakes respond to global change. Creating synergies among networks at these divergent scales requires open discussions ranging from data collection and management to data serving and sharing. Coordination of these efforts can provide an additional opportunity to educate both students and the public in innovative new ways about the broader continental to global scale of ecological and environmental challenges that they have observed in their more local ecosystems.
Remote Autonomous Sensor Networks: A Study in Redundancy and Life Cycle Costs
NASA Astrophysics Data System (ADS)
Ahlrichs, M.; Dotson, A.; Cenek, M.
2017-12-01
The remote nature of the United States and Canada border and their extreme seasonal shifts has made monitoring much of the area impossible using conventional monitoring techniques. Currently, the United States has large gaps in its ability to detect movement on an as-needed-basis in remote areas. The proposed autonomous sensor network aims to meet that need by developing a product that is low cost, robust, and can be deployed on an as-needed-basis for short term monitoring events. This is accomplished by identifying radio frequency disturbance and acoustic disturbance. This project aims to validate the proposed design and offer optimization strategies by conducting a redundancy model as well as performing a Life Cycle Assessment (LCA). The model will incorporate topological, meteorological, and land cover datasets to estimate sensor loss over a three-month period, ensuring that the remaining network does not have significant gaps in coverage which preclude being able to receive and transmit data. The LCA will investigate the materials used to create the sensor to generate an estimate of the total environmental energy that is utilized to create the network and offer alternative materials and distribution methods that can lower this cost. This platform can function as a stand-alone monitoring network or provide additional spatial and temporal resolution to existing monitoring networks. This study aims to create the framework to determine if a sensor's design and distribution is appropriate for the target environment. The incorporation of a LCA will seek to answer if the data a proposed sensor network will collect outweighs the environmental damage that will result from its deployment. Furthermore, as the arctic continues to thaw and economic development grows, the methodology described in paper will function as a guidance document to ensure that future sensor networks have a minimal impact on these pristine areas.
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
Real-Time Alpine Measurement System Using Wireless Sensor Networks
2017-01-01
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape. PMID:29120376
Real-Time Alpine Measurement System Using Wireless Sensor Networks.
Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D
2017-11-09
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.
Mixed Criticality Scheduling for Industrial Wireless Sensor Networks
Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng
2016-01-01
Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741
ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-08-15
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.
ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-01-01
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435
Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare
Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul
2015-01-01
Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786
NASA Astrophysics Data System (ADS)
Salman Arafath, Mohammed; Rahman Khan, Khaleel Ur; Sunitha, K. V. N.
2018-01-01
Nowadays due to most of the telecommunication standard development organizations focusing on using device-to-device communication so that they can provide proximity-based services and add-on services on top of the available cellular infrastructure. An Oppnets and wireless sensor network play a prominent role here. Routing in these networks plays a significant role in fields such as traffic management, packet delivery etc. Routing is a prodigious research area with diverse unresolved issues. This paper firstly focuses on the importance of Opportunistic routing and its concept then focus is shifted to prime aspect i.e. on packet reception ratio which is one of the highest QoS Awareness parameters. This paper discusses the two important functions of routing in wireless sensor networks (WSN) namely route selection using least routing time algorithm (LRTA) and data forwarding using clustering technique. Finally, the simulation result reveals that LRTA performs relatively better than the existing system in terms of average packet reception ratio and connectivity.
Moving target tracking through distributed clustering in directional sensor networks.
Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif
2014-12-18
The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.
Moving Target Tracking through Distributed Clustering in Directional Sensor Networks
Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif
2014-01-01
The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205
NASA Astrophysics Data System (ADS)
Zhang, Ziran; Glaser, Steven D.; Bales, Roger C.; Conklin, Martha; Rice, Robert; Marks, Danny G.
2017-05-01
A network of sensors for spatially representative water-balance measurements was developed and deployed across the 2000 km2 snow-dominated portion of the upper American River basin, primarily to measure changes in snowpack and soil-water storage, air temperature, and humidity. This wireless sensor network (WSN) consists of 14 sensor clusters, each with 10 measurement nodes that were strategically placed within a 1 km2 area, across different elevations, aspects, slopes, and canopy covers. Compared to existing operational sensor installations, the WSN reduces hydrologic uncertainty in at least three ways. First, redundant measurements improved estimation of lapse rates for air and dew-point temperature. Second, distributed measurements captured local variability and constrained uncertainty in air and dew-point temperature, snow accumulation, and derived hydrologic attributes important for modeling and prediction. Third, the distributed relative-humidity measurements offer a unique capability to monitor upper-basin patterns in dew-point temperature and characterize elevation gradient of water vapor-pressure deficit across steep, variable topography. Network statistics during the first year of operation demonstrated that the WSN was robust for cold, wet, and windy conditions in the basin. The electronic technology used in the WSN-reduced adverse effects, such as high current consumption, multipath signal fading, and clock drift, seen in previous remote WSNs.
GPS-Free Localization Algorithm for Wireless Sensor Networks
Wang, Lei; Xu, Qingzheng
2010-01-01
Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694
Evaluation of Alternative Field Buses for Lighting ControlApplications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Ed; Rubinstein, Francis
2005-03-21
The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include atmore » least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.« less
Enhanced compressed sensing for visual target tracking in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Qiang, Guo
2017-11-01
Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.
Attack Detection in Sensor Network Target Localization Systems With Quantized Data
NASA Astrophysics Data System (ADS)
Zhang, Jiangfan; Wang, Xiaodong; Blum, Rick S.; Kaplan, Lance M.
2018-04-01
We consider a sensor network focused on target localization, where sensors measure the signal strength emitted from the target. Each measurement is quantized to one bit and sent to the fusion center. A general attack is considered at some sensors that attempts to cause the fusion center to produce an inaccurate estimation of the target location with a large mean-square-error. The attack is a combination of man-in-the-middle, hacking, and spoofing attacks that can effectively change both signals going into and coming out of the sensor nodes in a realistic manner. We show that the essential effect of attacks is to alter the estimated distance between the target and each attacked sensor to a different extent, giving rise to a geometric inconsistency among the attacked and unattacked sensors. Hence, with the help of two secure sensors, a class of detectors are proposed to detect the attacked sensors by scrutinizing the existence of the geometric inconsistency. We show that the false alarm and miss probabilities of the proposed detectors decrease exponentially as the number of measurement samples increases, which implies that for sufficiently large number of samples, the proposed detectors can identify the attacked and unattacked sensors with any required accuracy.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2018-04-05
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes
Ahmed, Faisal
2018-01-01
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models. PMID:29621169
Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.
Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif
2017-03-19
In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.
Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks
Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif
2017-01-01
In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494
Mao, Yuxing; Cheng, Tao; Zhao, Huiyuan; Shen, Na
2017-11-27
In Wireless Sensor Networks (WSNs), unlicensed users, that is, sensor nodes, have excessively exploited the unlicensed radio spectrum. Through Cognitive Radio (CR), licensed radio spectra, which are owned by licensed users, can be partly or entirely shared with unlicensed users. This paper proposes a strategic bargaining spectrum-sharing scheme, considering a CR-based heterogeneous WSN (HWSN). The sensors of HWSNs are discrepant and exist in different wireless environments, which leads to various signal-to-noise ratios (SNRs) for the same or different licensed users. Unlicensed users bargain with licensed users regarding the spectrum price. In each round of bargaining, licensed users are allowed to adaptively adjust their spectrum price to the best for maximizing their profits. . Then, each unlicensed user makes their best response and informs licensed users of "bargaining" and "warning". Through finite rounds of bargaining, this scheme can obtain a Nash bargaining solution (NBS), which makes all licensed and unlicensed users reach an agreement. The simulation results demonstrate that the proposed scheme can quickly find a NBS and all players in the game prefer to be honest. The proposed scheme outperforms existing schemes, within a certain range, in terms of fairness and trade success probability.
Privacy-preserved behavior analysis and fall detection by an infrared ceiling sensor network.
Tao, Shuai; Kudo, Mineichi; Nonaka, Hidetoshi
2012-12-07
An infrared ceiling sensor network system is reported in this study to realize behavior analysis and fall detection of a single person in the home environment. The sensors output multiple binary sequences from which we know the existence/non-existence of persons under the sensors. The short duration averages of the binary responses are shown to be able to be regarded as pixel values of a top-view camera, but more advantageous in the sense of preserving privacy. Using the "pixel values" as features, support vector machine classifiers succeeded in recognizing eight activities (walking, reading, etc.) performed by five subjects at an average recognition rate of 80.65%. In addition, we proposed a martingale framework for detecting falls in this system. The experimental results showed that we attained the best performance of 95.14% (F1 value), the FAR of 7.5% and the FRR of 2.0%. This accuracy is not sufficient in general but surprisingly high with such low-level information. In summary, it is shown that this system has the potential to be used in the home environment to provide personalized services and to detect abnormalities of elders who live alone.
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate. PMID:25793221
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.
A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.
Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun
2017-11-29
As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.
Sensor data security level estimation scheme for wireless sensor networks.
Ramos, Alex; Filho, Raimir Holanda
2015-01-19
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.
Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks
Ramos, Alex; Filho, Raimir Holanda
2015-01-01
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215
A new range-free localisation in wireless sensor networks using support vector machine
NASA Astrophysics Data System (ADS)
Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing
2018-02-01
Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.
NASA Astrophysics Data System (ADS)
Simonis, Ingo
2015-04-01
Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.
Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores
Kim, Youngmin; Lee, Chan-Gun
2017-01-01
In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695
Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi
2016-05-23
A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.
Hybrid ARQ Scheme with Autonomous Retransmission for Multicasting in Wireless Sensor Networks.
Jung, Young-Ho; Choi, Jihoon
2017-02-25
A new hybrid automatic repeat request (HARQ) scheme for multicast service for wireless sensor networks is proposed in this study. In the proposed algorithm, the HARQ operation is combined with an autonomous retransmission method that ensure a data packet is transmitted irrespective of whether or not the packet is successfully decoded at the receivers. The optimal number of autonomous retransmissions is determined to ensure maximum spectral efficiency, and a practical method that adjusts the number of autonomous retransmissions for realistic conditions is developed. Simulation results show that the proposed method achieves higher spectral efficiency than existing HARQ techniques.
Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Zhong, Xionghu
2015-01-01
Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of the decoded binary data due to modulation, reception mode and communication channel into account. The average bit error rate (BER) is employed to characterize such an uncertainty. Further, the detection performance is analyzed under both non-identical and identical local detection performance indices. In addition, the performance of the proposed method is compared with the existing optimal and suboptimal LRT fusion rules. The results show that the proposed fusion rule is more robust compared to these existing ones. PMID:26251908
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-03-28
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.
NASA Astrophysics Data System (ADS)
Wang, Zi; Pakzad, Shamim; Cheng, Liang
2012-04-01
In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.
A Mobile Sensor Network to Map CO2 in Urban Environments
NASA Astrophysics Data System (ADS)
Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.
2014-12-01
Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.
Exploring the impact of big data in economic geology using cloud-based synthetic sensor networks
NASA Astrophysics Data System (ADS)
Klump, J. F.; Robertson, J.
2015-12-01
In a market demanding lower resource prices and increasing efficiencies, resources companies are increasingly looking to the realm of real-time, high-frequency data streams to better measure and manage their minerals processing chain, from pit to plant to port. Sensor streams can include real-time drilling engineering information, data streams from mining trucks, and on-stream sensors operating in the plant feeding back rich chemical information. There are also many opportunities to deploy new sensor streams - unlike environmental monitoring networks, the mine environment is not energy- or bandwidth-limited. Although the promised efficiency dividends are inviting, the path to achieving these is difficult to see for most companies. As well as knowing where to invest in new sensor technology and how to integrate the new data streams, companies must grapple with risk-laden changes to their established methods of control to achieve maximum gains. What is required is a sandbox data environment for the development of analysis and control strategies at scale, allowing companies to de-risk proposed changes before actually deploying them to a live mine environment. In this presentation we describe our approach to simulating real-time scaleable data streams in a mine environment. Our sandbox consists of three layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, (b) a measurement layer - a network of RESTful synthetic sensor microservices which can simulate measurements of ground-truth properties, and (c) a control layer, which integrates the sensor streams and drives the measurement and optimisation strategies. The control layer could be a new machine learner, or simply a company's existing data infrastructure. Containerisation allows rapid deployment of large numbers of sensors, as well as service discovery to form a dynamic network of thousands of sensors, at a far lower cost than physically building the network.
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-01-01
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-02-04
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-02-03
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.
Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range
Feng, Zuren; Ren, Zhigang
2018-01-01
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham’s Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm. PMID:29401649
Distributed estimation of sensors position in underwater wireless sensor network
NASA Astrophysics Data System (ADS)
Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi
2016-05-01
In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.
A deployment of fine-grained sensor network and empirical analysis of urban temperature.
Thepvilojanapong, Niwat; Ono, Takahiro; Tobe, Yoshito
2010-01-01
Temperature in an urban area exhibits a complicated pattern due to complexity of infrastructure. Despite geographical proximity, structures of a group of buildings and streets affect changes in temperature. To investigate the pattern of fine-grained distribution of temperature, we installed a densely distributed sensor network called UScan. In this paper, we describe the system architecture of UScan as well as experience learned from installing 200 sensors in downtown Tokyo. The field experiment of UScan system operated for two months to collect long-term urban temperature data. To analyze the collected data in an efficient manner, we propose a lightweight clustering methodology to study the correlation between the pattern of temperature and various environmental factors including the amount of sunshine, the width of streets, and the existence of trees. The analysis reveals meaningful results and asserts the necessity of fine-grained deployment of sensors in an urban area.
A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks
Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O.
2017-01-01
This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks. PMID:28555023
A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks.
Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O
2017-05-27
This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-01-01
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-06-26
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.
Miniature Wireless BioSensor for Remote Endoscopic Monitoring
NASA Astrophysics Data System (ADS)
Nemiroski, Alex; Brown, Keith; Issadore, David; Westervelt, Robert; Thompson, Chris; Obstein, Keith; Laine, Michael
2009-03-01
We have built a miniature wireless biosensor with fluorescence detection capability that explores the miniaturization limit for a self-powered sensor device assembled from the latest off-the-shelf technology. The device is intended as a remote medical sensor to be inserted endoscopically and remainin a patient's gastrointestinal tract for a period of weeks, recording and transmitting data as necessary. A sensing network may be formed by using multiple such devices within the patient, routing information to an external receiver that communicates through existing mobilephone networks to relay data remotely. By using a monolithic IC chip with integrated processor, memory, and 2.4 GHz radio,combined with a photonic sensor and miniature battery, we have developed a fully functional computing device in a form factorcompliantwith insertion through the narrowest endoscopic channels (less than 3mm x 3mm x 20mm). We envision similar devices with various types of sensors to be used in many different areas of the human body.
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
DOT National Transportation Integrated Search
2012-05-01
Problem: : Most Intelligent Transportation System (ITS) applications require distributed : acquisition of various traffic metrics such as traffic speed, volume, and density. : The existing measurement technologies, such as inductive loops, infrared, ...
NASA Astrophysics Data System (ADS)
Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig
2010-05-01
Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool to detect movement more reliable and thus contributes essential to the improvement of Early Warning Systems.
A wireless sensor network for urban traffic characterization and trend monitoring.
Fernández-Lozano, J J; Martín-Guzmán, Miguel; Martín-Ávila, Juan; García-Cerezo, A
2015-10-15
Sustainable mobility requires a better management of the available infrastructure resources. To achieve this goal, it is necessary to obtain accurate data about road usage, in particular in urban areas. Although a variety of sensor alternates for urban traffic exist, they usually require extensive investments in the form of construction works for installation, processing means, etc. Wireless Sensor Networks (WSN) are an alternative to acquire urban traffic data, allowing for flexible, easy deployment. Together with the use of the appropriate sensors, like Bluetooth identification, and associate processing, WSN can provide the means to obtain in real time data like the origin-destination matrix, a key tool for trend monitoring which previously required weeks or months to be completed. This paper presents a system based on WSN designed to characterize urban traffic, particularly traffic trend monitoring through the calculation of the origin-destination matrix in real time by using Bluetooth identification. Additional sensors are also available integrated in different types of nodes. Experiments in real conditions have been performed, both for separate sensors (Bluetooth, ultrasound and laser), and for the whole system, showing the feasibility of this approach.
Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai
2013-05-15
The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.
Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai
2013-01-01
The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeigler, Kristine E.; Ferguson, Blythe A.
2012-07-01
The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less
A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks
Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek
2017-01-01
As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks’ survivability, in terms of anti-interference, network energy saving, etc. PMID:29186072
Yi, Meng; Chen, Qingkui; Xiong, Neal N
2016-11-03
This paper considers the distributed access and control problem of massive wireless sensor networks' data access center for the Internet of Things, which is an extension of wireless sensor networks and an element of its topology structure. In the context of the arrival of massive service access requests at a virtual data center, this paper designs a massive sensing data access and control mechanism to improve the access efficiency of service requests and makes full use of the available resources at the data access center for the Internet of things. Firstly, this paper proposes a synergistically distributed buffer access model, which separates the information of resource and location. Secondly, the paper divides the service access requests into multiple virtual groups based on their characteristics and locations using an optimized self-organizing feature map neural network. Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally, the experimental results demonstrate that this mechanism outperforms the existing schemes in terms of enhancing the accessibility of service requests effectively, reducing network delay, and has higher load balancing capacity and higher resource utility rate.
Analytical network process based optimum cluster head selection in wireless sensor network.
Farman, Haleem; Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad
2017-01-01
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process.
Analytical network process based optimum cluster head selection in wireless sensor network
Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad
2017-01-01
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process. PMID:28719616
Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong
2017-10-27
In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor's mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.
Novel Visual Sensor Coverage and Deployment in Time Aware PTZ Wireless Visual Sensor Networks.
Yap, Florence G H; Yen, Hong-Hsu
2016-12-30
In this paper, we consider the visual sensor deployment algorithm in Pan-Tilt-Zoom (PTZ) Wireless Visual Sensor Networks (WVSNs). With PTZ capability, a sensor's visual coverage can be extended to reduce the number of visual sensors that need to be deployed. The coverage zone of a visual sensor in PTZ WVSN is composed of two regions, a Direct Coverage Region (DCR) and a PTZ Coverage Region (PTZCR). In the PTZCR, a visual sensor needs a mechanical pan-tilt-zoom operation to cover an object. This mechanical operation can take seconds, so the sensor might not be able to adjust the camera in time to capture the visual data. In this paper, for the first time, we study this PTZ time-aware PTZ WVSN deployment problem. We formulate this PTZ time-aware PTZ WVSN deployment problem as an optimization problem where the objective is to minimize the total visual sensor deployment cost so that each area is either covered in the DCR or in the PTZCR while considering the PTZ time constraint. The proposed Time Aware Coverage Zone (TACZ) model successfully captures the PTZ visual sensor coverage in terms of camera focal range, angle span zone coverage and camera PTZ time. Then a novel heuristic, called Time Aware Deployment with PTZ camera (TADPTZ) algorithm, is proposed to solve the problem. From our computational experiments, we found out that TACZ model outperforms the existing M coverage model under all network scenarios. In addition, as compared to the optimal solutions, the TACZ model is scalable and adaptable to the different PTZ time requirements when deploying large PTZ WVSNs.
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-01-01
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-10-09
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-01-01
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200
Browsing the Real World using Organic Electronics, Si-Chips, and a Human Touch.
Berggren, Magnus; Simon, Daniel T; Nilsson, David; Dyreklev, Peter; Norberg, Petronella; Nordlinder, Staffan; Ersman, Peter Andersson; Gustafsson, Göran; Wikner, J Jacob; Hederén, Jan; Hentzell, Hans
2016-03-09
Organic electronics have been developed according to an orthodox doctrine advocating "all-printed'', "all-organic'' and "ultra-low-cost'' primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng
2018-01-11
Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes.
Applications of inertial-sensor high-inheritance instruments to DSN precision antenna pointing
NASA Technical Reports Server (NTRS)
Goddard, R. E.
1992-01-01
Laboratory test results of the initialization and tracking performance of an existing inertial-sensor-based instrument are given. The instrument, although not primarily designed for precision antenna pointing applications, demonstrated an on-average 10-hour tracking error of several millidegrees. The system-level instrument performance is shown by analysis to be sensor limited. Simulated instrument improvements show a tracking error of less than 1 mdeg, which would provide acceptable performance, i.e., low pointing loss, for the DSN 70-m antenna sub network, operating at Ka-band (1-cm wavelength).
Applications of inertial-sensor high-inheritance instruments to DSN precision antenna pointing
NASA Technical Reports Server (NTRS)
Goddard, R. E.
1992-01-01
Laboratory test results of the initialization and tracking performance of an existing inertial-sensor-based instrument are given. The instrument, although not primarily designed for precision antenna pointing applications, demonstrated an on-average 10-hour tracking error of several millidegrees. The system-level instrument performance is shown by analysis to be sensor limited. Simulated instrument improvements show a tracking error of less than 1 mdeg, which would provide acceptable performance, i.e., low pointing loss, for the Deep Space Network 70-m antenna subnetwork, operating at Ka-band (1-cm wavelength).
NASA Astrophysics Data System (ADS)
Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.
2011-12-01
We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.
Gao, Meiling; Cao, Junji; Seto, Edmund
2015-04-01
Fine particulate matter (PM2.5) is a growing public health concern especially in industrializing countries but existing monitoring networks are unable to properly characterize human exposures due to low resolution spatiotemporal data. Low-cost portable monitors can supplement existing networks in both developed and industrializing regions to increase density of sites and data. This study tests the performance of a low-cost sensor in high concentration urban environments. Seven Portable University of Washington Particle (PUWP) monitors were calibrated with optical and gravimetric PM2.5 reference monitors in Xi'an, China in December 2013. Pairwise correlations between the raw PUWP and the reference monitors were high (R(2) = 0.86-0.89). PUWP monitors were also simultaneously deployed at eight sites across Xi'an alongside gravimetric PM2.5 monitors (R(2) = 0.53). The PUWP monitors were able to identify the High-technology Zone site as a potential PM2.5 hotspot with sustained high concentrations compared to the city average throughout the day. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gil Jiménez, Víctor P.; Armada, Ana García
2009-01-01
Frequently, Wireless Sensor Networks (WSN) are designed focusing on applications and omitting transmission problems in these wireless networks. In this paper, we present a measurement campaign that has been carried out using one of the most commonly used WSN platforms, the micaZ from Crossbow©. Based on these measurements, some guidelines to deploy a robust and reliable WSN are provided. The results are focused on security and environmental applications but can also be extrapolated to other scenarios. A main conclusion that can be extracted is that, from the transmission point of view, a dense WSN is one of the best choices to overcome many of the transmission problems such as the existence of a transitional region, redundance, forwarding, obstructions or interference with other systems. PMID:22303175
An Optimized Handover Scheme with Movement Trend Awareness for Body Sensor Networks
Sun, Wen; Zhang, Zhiqiang; Ji, Lianying; Wong, Wai-Choong
2013-01-01
When a body sensor network (BSN) that is linked to the backbone via a wireless network interface moves from one coverage zone to another, a handover is required to maintain network connectivity. This paper presents an optimized handover scheme with movement trend awareness for BSNs. The proposed scheme predicts the future position of a BSN user using the movement trend extracted from the historical position, and adjusts the handover decision accordingly. Handover initiation time is optimized when the unnecessary handover rate is estimated to meet the requirement and the outage probability is minimized. The proposed handover scheme is simulated in a BSN deployment area in a hospital environment in UK. Simulation results show that the proposed scheme reduces the outage probability by 22% as compared with the existing hysteresis-based handover scheme under the constraint of acceptable handover rate. PMID:23736852
Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin
2015-07-01
Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.
Lin, Di; Labeau, Fabrice; Yao, Yuanzhe; Vasilakos, Athanasios V; Tang, Yu
2016-07-01
Wireless technologies and vehicle-mounted or wearable medical sensors are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario rests at the electromagnetic interference (EMI) caused by radio frequency transmission. A high level of EMI may lead to a critical malfunction of medical sensors, and in such a scenario, a few users who are not transmitting emergency data could be required to reduce their transmit power or even temporarily disconnect from the network in order to guarantee the normal operation of medical sensors as well as the transmission of emergency data. In this paper, we propose a joint power and admission control algorithm to schedule the users' transmission of medical data. The objective of this algorithm is to minimize the number of users who are forced to disconnect from the network while keeping the EMI on medical sensors at an acceptable level. We show that a fixed point of proposed algorithm always exists, and at the fixed point, our proposed algorithm can minimize the number of low-priority users who are required to disconnect from the network. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments.
A case for user-generated sensor metadata
NASA Astrophysics Data System (ADS)
Nüst, Daniel
2015-04-01
Cheap and easy to use sensing technology and new developments in ICT towards a global network of sensors and actuators promise previously unthought of changes for our understanding of the environment. Large professional as well as amateur sensor networks exist, and they are used for specific yet diverse applications across domains such as hydrology, meteorology or early warning systems. However the impact this "abundance of sensors" had so far is somewhat disappointing. There is a gap between (community-driven) sensor networks that could provide very useful data and the users of the data. In our presentation, we argue this is due to a lack of metadata which allows determining the fitness of use of a dataset. Syntactic or semantic interoperability for sensor webs have made great progress and continue to be an active field of research, yet they often are quite complex, which is of course due to the complexity of the problem at hand. But still, we see the most generic information to determine fitness for use is a dataset's provenance, because it allows users to make up their own minds independently from existing classification schemes for data quality. In this work we will make the case how curated user-contributed metadata has the potential to improve this situation. This especially applies for scenarios in which an observed property is applicable in different domains, and for set-ups where the understanding about metadata concepts and (meta-)data quality differs between data provider and user. On the one hand a citizen does not understand the ISO provenance metadata. On the other hand a researcher might find issues in publicly accessible time series published by citizens, which the latter might not be aware of or care about. Because users will have to determine fitness for use for each application on their own anyway, we suggest an online collaboration platform for user-generated metadata based on an extremely simplified data model. In the most basic fashion, metadata generated by users can be boiled down to a basic property of the world wide web: many information items, such as news or blog posts, allow users to create comments and rate the content. Therefore we argue to focus a core data model on one text field for a textual comment, one optional numerical field for a rating, and a resolvable identifier for the dataset that is commented on. We present a conceptual framework that integrates user comments in existing standards and relevant applications of online sensor networks and discuss possible approaches, such as linked data, brokering, or standalone metadata portals. We relate this framework to existing work in user generated content, such as proprietary rating systems on commercial websites, microformats, the GeoViQua User Quality Model, the CHARMe annotations, or W3C Open Annotation. These systems are also explored for commonalities and based on their very useful concepts and ideas; we present an outline for future extensions of the minimal model. Building on this framework we present a concept how a simplistic comment-rating-system can be extended to capture provenance information for spatio-temporal observations in the sensor web, and how this framework can be evaluated.
Novel Visual Sensor Coverage and Deployment in Time Aware PTZ Wireless Visual Sensor Networks
Yap, Florence G. H.; Yen, Hong-Hsu
2016-01-01
In this paper, we consider the visual sensor deployment algorithm in Pan-Tilt-Zoom (PTZ) Wireless Visual Sensor Networks (WVSNs). With PTZ capability, a sensor’s visual coverage can be extended to reduce the number of visual sensors that need to be deployed. The coverage zone of a visual sensor in PTZ WVSN is composed of two regions, a Direct Coverage Region (DCR) and a PTZ Coverage Region (PTZCR). In the PTZCR, a visual sensor needs a mechanical pan-tilt-zoom operation to cover an object. This mechanical operation can take seconds, so the sensor might not be able to adjust the camera in time to capture the visual data. In this paper, for the first time, we study this PTZ time-aware PTZ WVSN deployment problem. We formulate this PTZ time-aware PTZ WVSN deployment problem as an optimization problem where the objective is to minimize the total visual sensor deployment cost so that each area is either covered in the DCR or in the PTZCR while considering the PTZ time constraint. The proposed Time Aware Coverage Zone (TACZ) model successfully captures the PTZ visual sensor coverage in terms of camera focal range, angle span zone coverage and camera PTZ time. Then a novel heuristic, called Time Aware Deployment with PTZ camera (TADPTZ) algorithm, is proposed to solve the problem. From our computational experiments, we found out that TACZ model outperforms the existing M coverage model under all network scenarios. In addition, as compared to the optimal solutions, the TACZ model is scalable and adaptable to the different PTZ time requirements when deploying large PTZ WVSNs. PMID:28042829
Real-time method for establishing a detection map for a network of sensors
Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L
2012-09-11
A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.
Fault-Tolerant Algorithms for Connectivity Restoration in Wireless Sensor Networks.
Zeng, Yali; Xu, Li; Chen, Zhide
2015-12-22
As wireless sensor network (WSN) is often deployed in a hostile environment, nodes in the networks are prone to large-scale failures, resulting in the network not working normally. In this case, an effective restoration scheme is needed to restore the faulty network timely. Most of existing restoration schemes consider more about the number of deployed nodes or fault tolerance alone, but fail to take into account the fact that network coverage and topology quality are also important to a network. To address this issue, we present two algorithms named Full 2-Connectivity Restoration Algorithm (F2CRA) and Partial 3-Connectivity Restoration Algorithm (P3CRA), which restore a faulty WSN in different aspects. F2CRA constructs the fan-shaped topology structure to reduce the number of deployed nodes, while P3CRA constructs the dual-ring topology structure to improve the fault tolerance of the network. F2CRA is suitable when the restoration cost is given the priority, and P3CRA is suitable when the network quality is considered first. Compared with other algorithms, these two algorithms ensure that the network has stronger fault-tolerant function, larger coverage area and better balanced load after the restoration.
Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks
Guo, Kehua; Zhang, Ping; Ma, Jianhua
2016-01-01
Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599
Seluge++: A Secure Over-the-Air Programming Scheme in Wireless Sensor Networks
Doroodgar, Farzan; Razzaque, Mohammad Abdur; Isnin, Ismail Fauzi
2014-01-01
Over-the-air dissemination of code updates in wireless sensor networks have been researchers' point of interest in the last few years, and, more importantly, security challenges toward the remote propagation of code updating have occupied the majority of efforts in this context. Many security models have been proposed to establish a balance between the energy consumption and security strength, having their concentration on the constrained nature of wireless sensor network (WSN) nodes. For authentication purposes, most of them have used a Merkle hash tree to avoid using multiple public cryptography operations. These models mostly have assumed an environment in which security has to be at a standard level. Therefore, they have not investigated the tree structure for mission-critical situations in which security has to be at the maximum possible level (e.g., military applications, healthcare). Considering this, we investigate existing security models used in over-the-air dissemination of code updates for possible vulnerabilities, and then, we provide a set of countermeasures, correspondingly named Security Model Requirements. Based on the investigation, we concentrate on Seluge, one of the existing over-the-air programming schemes, and we propose an improved version of it, named Seluge++, which complies with the Security Model Requirements and replaces the use of the inefficient Merkle tree with a novel method. Analytical and simulation results show the improvements in Seluge++ compared to Seluge. PMID:24618781
Power harvesting for railroad track safety enhancement using vertical track displacement
NASA Astrophysics Data System (ADS)
Nelson, Carl A.; Platt, Stephen R.; Hansen, Sean E.; Fateh, Mahmood
2009-03-01
A significant portion of railroad infrastructure exists in areas that are relatively remote. Railroad crossings in these areas are typically only marked with reflective signage and do not have warning light systems or crossbars due to the cost of electrical infrastructure. Distributed sensor networks used for railroad track health monitoring applications would be useful in these areas, but the same limitation regarding electrical infrastructure exists. This motivates the search for a long-term, low-maintenance power supply solution for remote railroad deployment. This paper describes the development of a mechanical device for harvesting mechanical power from passing railcar traffic that can be used to supply electrical power to warning light systems at crossings and to remote networks of sensors via rechargeable batteries. The device is mounted to and spans two rail ties such that it directly harnesses the vertical displacement of the rail and attached ties and translates the linear motion into rotational motion. The rotational motion is amplified and mechanically rectified to rotate a PMDC generator that charges a system of batteries. A prototype was built and tested in a laboratory setting for verifying functionality of the design. Results indicate power production capabilities on the order of 10 W per device in its current form. This is sufficient for illuminating high-efficiency LED lights at a railroad crossing or for powering track-health sensor networks.
Seluge++: a secure over-the-air programming scheme in wireless sensor networks.
Doroodgar, Farzan; Abdur Razzaque, Mohammad; Isnin, Ismail Fauzi
2014-03-11
Over-the-air dissemination of code updates in wireless sensor networks have been researchers' point of interest in the last few years, and, more importantly, security challenges toward the remote propagation of code updating have occupied the majority of efforts in this context. Many security models have been proposed to establish a balance between the energy consumption and security strength, having their concentration on the constrained nature of wireless sensor network (WSN) nodes. For authentication purposes, most of them have used a Merkle hash tree to avoid using multiple public cryptography operations. These models mostly have assumed an environment in which security has to be at a standard level. Therefore, they have not investigated the tree structure for mission-critical situations in which security has to be at the maximum possible level (e.g., military applications, healthcare). Considering this, we investigate existing security models used in over-the-air dissemination of code updates for possible vulnerabilities, and then, we provide a set of countermeasures, correspondingly named Security Model Requirements. Based on the investigation, we concentrate on Seluge, one of the existing over-the-air programming schemes, and we propose an improved version of it, named Seluge++, which complies with the Security Model Requirements and replaces the use of the inefficient Merkle tree with a novel method. Analytical and simulation results show the improvements in Seluge++ compared to Seluge.
Sensor Network Architectures for Monitoring Underwater Pipelines
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669
Sensor network architectures for monitoring underwater pipelines.
Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren
2011-01-01
This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.
Yen, Hong-Hsu
2009-01-01
In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers as the link arc weight, the optimization-based heuristics are proposed to get energy-efficient data aggregation tree with better resource (channel and radio) utilization. From the computational experiments, the proposed optimization-based approach is superior to existing heuristics under all tested cases.
An Investigation of New Snow Water Equivalence Sensing Modalities
NASA Astrophysics Data System (ADS)
Frolik, J.; Skalka, C.; Wemple, B.
2008-12-01
It is well known that snowpack is highly variable and influenced by a range of factors, including topography and vegetation cover. As such, single point measurements may be viewed as being inadequate to characterize snowpack in a given area. Thus motivated by the desire for distributed sensing, this work presents results of a proof-of-concept investigation for new, low-cost, snow water equivalence (SWE) sensors based on the attenuation of microwave and gamma radiation. First, our work considers the attenuation of microwave signals at 2.4 GHz and 5 GHz due to an accumulating snowpack. These frequencies coincide with those used for common wireless networks and thus our proposed sensor can leverage existing hardware designs which are low-cost and power efficient. Second, we present attenuation data for radiation energy occurring between 500 keV and 1 MeV. These results were obtained utilizing a radiation detector based on Cadmium Zinc Telluride (CZT) technology. The proposed sensor will leverage recent investments such CZT based designs for homeland security applications. We contend that sensors based on these modalities will be low-cost and low-energy and thus readily integrated with wireless sensor network hardware for distributed monitoring. In addition, these sensors will be compact and thus can be placed in locations not feasible for current SWE sensor designs (e.g., snow pillows) or in locations too dangerous for snow course measurements (e.g., areas prone to avalanche). Since neither sensing methods requires contact with the snowpack, these modalities are also immune to snow bridging effects which plague existing designs. We also present preliminary findings of work conducted in a mountainous forested setting in northern New England which examines the influence of forest vegetation on snowpack.
Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.
Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il
2015-06-05
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.
Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks
Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il
2015-01-01
Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols. PMID:26057037
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong
2017-01-01
In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay. PMID:29077017
Environmental Monitoring Using Sensor Networks
NASA Astrophysics Data System (ADS)
Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.
2008-12-01
Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired sensor system and the WSN-based wireless sensor system. The RFG also supports remote manipulation of the devices in the field such as the SBC, datalogger, and WSN. Sensor data collected from the distributed monitoring stations are stored in a database (DB) Server. The CDC Server acts as an intermediate component to hide the heterogeneity of different devices and support data validation required by the DB Server. Daemon programs running on the CDC Server pre-process the data before it is inserted into the database, and periodically perform synchronization tasks. A SWE-compliant data repository is installed to enable data exchange, accepting data from both internal DB Server and external sources through the OGC web services. The web portal, i.e. TEO Online, serves as a user-friendly interface for data visualization, analysis, synthesis, modeling, and K-12 educational outreach activities. It also provides useful capabilities for system developers and operators to remotely monitor system status and remotely update software and system configuration, which greatly simplifies the system debugging and maintenance tasks. We also implement Sensor Observation Services (SOS) at this layer, conforming to the SWE standard to facilitate data exchange. The standard SensorML/O&M data representation makes it easy to integrate our sensor data into the existing Geographic Information Systems (GIS) web services and exchange the data with other organizations.
Augmenting Trust Establishment in Dynamic Systems with Social Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagesse, Brent J; Kumar, Mohan; Venkatesh, Svetha
2010-01-01
Social networking has recently flourished in popularity through the use of social websites. Pervasive computing resources have allowed people stay well-connected to each other through access to social networking resources. We take the position that utilizing information produced by relationships within social networks can assist in the establishment of trust for other pervasive computing applications. Furthermore, we describe how such a system can augment a sensor infrastructure used for event observation with information from mobile sensors (ie, mobile phones with cameras) controlled by potentially untrusted third parties. Pervasive computing systems are invisible systems, oriented around the user. As a result,more » many future pervasive systems are likely to include a social aspect to the system. The social communities that are developed in these systems can augment existing trust mechanisms with information about pre-trusted entities or entities to initially consider when beginning to establish trust. An example of such a system is the Collaborative Virtual Observation (CoVO) system fuses sensor information from disaparate sources in soft real-time to recreate a scene that provides observation of an event that has recently transpired. To accomplish this, CoVO must efficently access services whilst protecting the data from corruption from unknown remote nodes. CoVO combines dynamic service composition with virtual observation to utilize existing infrastructure with third party services available in the environment. Since these services are not under the control of the system, they may be unreliable or malicious. When an event of interest occurs, the given infrastructure (bus cameras, etc.) may not sufficiently cover the necessary information (be it in space, time, or sensor type). To enhance observation of the event, infrastructure is augmented with information from sensors in the environment that the infrastructure does not control. These sensors may be unreliable, uncooperative, or even malicious. Additionally, to execute queries in soft real-time, processing must be distributed to available systems in the environment. We propose to use information from social networks to satisfy these requirements. In this paper, we present our position that knowledge gained from social activities can be used to augment trust mechanisms in pervasive computing. The system uses social behavior of nodes to predict a subset that it wants to query for information. In this context, social behavior such as transit patterns and schedules (which can be used to determine if a queried node is likely to be reliable) or known relationships, such as a phone's address book, that can be used to determine networks of nodes that may also be able to assist in retrieving information. Neither implicit nor explicit relationships necessarily imply that the user trusts an entity, but rather will provide a starting place for establishing trust. The proposed framework utilizes social network information to assist in trust establishment when third-party sensors are used for sensing events.« less
Low-Cost Sensor Units for Measuring Urban Air Quality
NASA Astrophysics Data System (ADS)
Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.
2010-12-01
Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.
A Wireless Sensor Network for Urban Traffic Characterization and Trend Monitoring
Fernández-Lozano, J.J.; Martín-Guzmán, Miguel; Martín-Ávila, Juan; García-Cerezo, A.
2015-01-01
Sustainable mobility requires a better management of the available infrastructure resources. To achieve this goal, it is necessary to obtain accurate data about road usage, in particular in urban areas. Although a variety of sensor alternates for urban traffic exist, they usually require extensive investments in the form of construction works for installation, processing means, etc. Wireless Sensor Networks (WSN) are an alternative to acquire urban traffic data, allowing for flexible, easy deployment. Together with the use of the appropriate sensors, like Bluetooth identification, and associate processing, WSN can provide the means to obtain in real time data like the origin-destination matrix, a key tool for trend monitoring which previously required weeks or months to be completed. This paper presents a system based on WSN designed to characterize urban traffic, particularly traffic trend monitoring through the calculation of the origin-destination matrix in real time by using Bluetooth identification. Additional sensors are also available integrated in different types of nodes. Experiments in real conditions have been performed, both for separate sensors (Bluetooth, ultrasound and laser), and for the whole system, showing the feasibility of this approach. PMID:26501278
NASA Astrophysics Data System (ADS)
Benson, R. B.; Ahern, T. K.; Trabant, C.
2006-12-01
The IRIS Data Management System has long supported international collaboration for seismology by both deploying a global network of seismometers and creating and maintaining an open and accessible archive in Seattle, WA, known as the Data Management Center (DMC). With sensors distributed on a global scale spanning more than 30 years of digital data, the DMC provides a rich repository of observations across broad time and space domains. Primary seismological data types include strong motion and broadband seismometers, conventional and superconducting gravimeters, tilt and creep meters, GPS measurements, along with other similar sensors that record accurate and calibrated ground motion. What may not be as well understood is the volume of environmental data that accompanies typical seismological data these days. This poster will review the types of time-series data that are currently being collected, how they are collected, and made freely available for download at the IRIS DMC. Environmental sensor data that is often co-located with geophysical data sensors include temperature, barometric pressure, wind direction and speed, humidity, insolation, rain gauge, and sometimes hydrological data like water current, level, temperature and depth. As the primary archival institution of the International Federation of Digital Seismograph Networks (FDSN), the IRIS DMC collects approximately 13,600 channels of real-time data from 69 different networks, from close to 1600 individual stations, currently averaging 10Tb per year in total. A major contribution to the IRIS archive currently is the EarthScope project data, a ten-year science undertaking that is collecting data from a high-resolution, multi-variate sensor network. Data types include magnetotelluric, high-sample rate seismics from a borehole drilled into the San Andreas fault (SAFOD) and various types of strain data from the Plate Boundary Observatory (PBO). In addition to the DMC, data centers located in other countries are networked seamlessly, and are providing access for researchers to these data from national networks around the world utilizing the IRIS developed Data Handling Interface (DHI) system. This poster will highlight some of the DHI enabled clients that allow geophysical information to be directly transferred to the clients. This ability allows one to construct a virtual network of data centers providing the illusion of a single virtual observatory. Furthermore, some of the features that will be shown include direct connections to MATLAB and the ability to access globally distributed sensor data in real time. We encourage discussion and participation from network operators who would like to leverage existing technology, as well as enabling collaboration.
Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks
Wang, Haiyan; He, Ke
2018-01-01
The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay. PMID:29690621
Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.
Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin
2018-04-23
The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.
Performance Evaluation of a Prototyped Wireless Ground Sensor Network
2005-03-01
the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types
Bulk Data Dissemination in Low Power Sensor Networks: Present and Future Directions
Xu, Zhirong; Hu, Tianlei; Song, Qianshu
2017-01-01
Wireless sensor network-based (WSN-based) applications need an efficient and reliable data dissemination service to facilitate maintenance, management and data distribution tasks. As WSNs nowadays are becoming pervasive and data intensive, bulk data dissemination protocols have been extensively studied recently. This paper provides a comprehensive survey of the state-of-the-art bulk data dissemination protocols. The large number of papers available in the literature propose various techniques to optimize the dissemination protocols. Different from the existing survey works which separately explores the building blocks of dissemination, our work categorizes the literature according to the optimization purposes: Reliability, Scalability and Transmission/Energy efficiency. By summarizing and reviewing the key insights and techniques, we further discuss on the future directions for each category. Our survey helps unveil three key findings for future direction: (1) The recent advances in wireless communications (e.g., study on cross-technology interference, error estimating codes, constructive interference, capture effect) can be potentially exploited to support further optimization on the reliability and energy efficiency of dissemination protocols; (2) Dissemination in multi-channel, multi-task and opportunistic networks requires more efforts to fully exploit the spatial-temporal network resources to enhance the data propagation; (3) Since many designs incur changes on MAC layer protocols, the co-existence of dissemination with other network protocols is another problem left to be addressed. PMID:28098830
Sensor Authentication in Collaborating Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielefeldt, Jake Uriah
2014-11-01
In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator O i of Sensor Network S imore » to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.« less
Image quality assessment using deep convolutional networks
NASA Astrophysics Data System (ADS)
Li, Yezhou; Ye, Xiang; Li, Yong
2017-12-01
This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.
An efficient management system for wireless sensor networks.
Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu
2010-01-01
Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.
Impact of reduced scale free network on wireless sensor network
NASA Astrophysics Data System (ADS)
Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar
2016-12-01
In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.
NASA Astrophysics Data System (ADS)
Bell, Caroline; Nammari, Abdullah; Uttamchandani, Pranay; Rai, Amit; Shah, Pujan; Moore, Arden L.
2017-06-01
Diabetic individuals need simple, accurate, and cost effective means by which to independently assess their glucose levels in a non-invasive way. In this work, a sensor based on randomly oriented CuO nanowire networks supported by a polyethylene terephthalate thin film is evaluated as a flexible, transparent, non-enzymatic glucose sensing system analogous to those envisioned for future wearable diagnostic devices. The amperometric sensing characteristics of this type of device architecture are evaluated both before and after bending, with the system’s glucose response, sensitivity, lower limit of detection, and effect of applied bias being experimentally determined. The obtained data shows that the sensor is capable of measuring changes in glucose levels within a physiologically relevant range (0-12 mM glucose) and at lower limits of detection (0.05 mM glucose at +0.6 V bias) consistent with patient tears and saliva. Unlike existing studies utilizing a conductive backing layer or macroscopic electrode setup, this sensor demonstrates a percolation network-like trend of current versus glucose concentration. In this implementation, controlling the architectural details of the CuO nanowire network could conceivably allow the sensor’s sensitivity and optimal sensing range to be tuned. Overall, this work shows that integrating CuO nanowires into a sensor architecture compatible with transparent, flexible electronics is a promising avenue to realizing next generation wearable non-enzymatic glucose diagnostic devices.
Detecting unknown attacks in wireless sensor networks that contain mobile nodes.
Banković, Zorana; Fraga, David; Moya, José M; Vallejo, Juan Carlos
2012-01-01
As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.
Li, Yehai; Wang, Kai
2018-01-01
Self-sensing capability of composite materials has been the core of intensive research over the years and particularly boosted up by the recent quantum leap in nanotechnology. The capacity of most existing self-sensing approaches is restricted to static strains or low-frequency structural vibration. In this study, a new breed of functionalized epoxy-based composites is developed and fabricated, with a graphene nanoparticle-enriched, dispersed sensing network, whereby to self-perceive broadband elastic disturbance from static strains, through low-frequency vibration to guided waves in an ultrasonic regime. Owing to the dispersed and networked sensing capability, signals can be captured at any desired part of the composites. Experimental validation has demonstrated that the functionalized composites can self-sense strains, outperforming conventional metal foil strain sensors with a significantly enhanced gauge factor and a much broader response bandwidth. Precise and fast self-response of the composites to broadband ultrasonic signals (up to 440 kHz) has revealed that the composite structure itself can serve as ultrasound sensors, comparable to piezoceramic sensors in performance, whereas avoiding the use of bulky cables and wires as used in a piezoceramic sensor network. This study has spotlighted promising potentials of the developed approach to functionalize conventional composites with a self-sensing capability of high-sensitivity yet minimized intrusion to original structures. PMID:29724032
Jiang, Ailian; Zheng, Lihong
2018-03-29
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
2018-01-01
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336
SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.
Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan
2015-11-24
Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes' positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes' positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes' relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobed, Parham; Pednekar, Pratik; Bhattacharyya, Debangsu
Design and operation of energy producing, near “zero-emission” coal plants has become a national imperative. This report on model-based sensor placement describes a transformative two-tier approach to identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail, and the level of resolution desiredmore » for any specific failure. Because of the presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island, including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level. Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition monitoring. This work could have a major impact on the design and operation of future fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the same algorithms developed in this report can be further enhanced to be used in retrofits, where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors.« less
Lee, Jungwook; Chung, Kwangsue
2011-01-01
Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.
Fiber optic sensor for monitoring a density of road traffic
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Jargus, Jan; Vasinek, Vladimir
2017-10-01
Authors of this article have focused on the use of fiber-optic technology in the car traffic. The article describes the use of fiber-optic interferometer for the purpose of the dynamic calculation of traffic density and inclusion the vehicle into the traffic lane. The objective is to increase safety and traffic flow. Presented solution is characterized by the non-destructive character to the road - sensor no need built into the roadway. The sensor works with standard telecommunications fibers of the G.652 standard. Other hallmarks are immunity to electromagnetic interference (EMI) and passivity of concerning the power supply. The massive expansion of optical cables within telecommunication needs along roads offers the possibility of connecting to the existing telecommunications fiber-optic network without a converter. Information can be transmitted at distances of several km up to tens km by this fiber-optic network. Set of experimental measurements in real traffic flow verified the functionality of presented solution.
Game Theory for Wireless Sensor Networks: A Survey
Shi, Hai-Yan; Wang, Wan-Liang; Kwok, Ngai-Ming; Chen, Sheng-Yong
2012-01-01
Game theory (GT) is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs). This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field. PMID:23012533
NASA Astrophysics Data System (ADS)
Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.
2016-03-01
Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.
Hybrid architecture for building secure sensor networks
NASA Astrophysics Data System (ADS)
Owens, Ken R., Jr.; Watkins, Steve E.
2012-04-01
Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.
2014-03-31
Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for
Cooperative UAV-Based Communications Backbone for Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R S
2001-10-07
The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs aremore » used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.« less
Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng
2018-01-01
Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes. PMID:29324719
Intelligent approach to prognostic enhancements of diagnostic systems
NASA Astrophysics Data System (ADS)
Vachtsevanos, George; Wang, Peng; Khiripet, Noppadon; Thakker, Ash; Galie, Thomas R.
2001-07-01
This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions from the virtual sensor area. This research has been motivated and supported by the U.S. Navy's active interest in integrating advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions. We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures are presented to illustrate the effectiveness of the methodology.
RUASN: a robust user authentication framework for wireless sensor networks.
Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae
2011-01-01
In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost.
An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System
NASA Astrophysics Data System (ADS)
Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed
PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.
RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks
Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng
2017-01-01
Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197
Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang
2017-11-01
The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.
NASA Astrophysics Data System (ADS)
Viecco, Camilo H.; Camp, L. Jean
Effective defense against Internet threats requires data on global real time network status. Internet sensor networks provide such real time network data. However, an organization that participates in a sensor network risks providing a covert channel to attackers if that organization’s sensor can be identified. While there is benefit for every party when any individual participates in such sensor deployments, there are perverse incentives against individual participation. As a result, Internet sensor networks currently provide limited data. Ensuring anonymity of individual sensors can decrease the risk of participating in a sensor network without limiting data provision.
NASA Astrophysics Data System (ADS)
Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.
2007-12-01
The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings and prognosis may be derived. Implementation of sensor algorithms is an important task to form the business logic. This will be represented in self-contained web-based processing services (WPS). In the future different types of sensor networks can communicate via an infrastructure of OGC services using an interoperable way by standardized protocols as the Sensor Markup Language (SensorML) and Observations & Measurements Schema (O&M). Synchronous and asynchronous information services as the Sensor Alert Service (SAS) and the Web Notification Services (WNS) will provide defined users and user groups with time-critical readings from the observation site. Techniques using services for visualizing mapping data (WMS), meta data (CSW), vector (WFS) and raster data (WCS) will range from high detailed expert based output to fuzzy graphical warning elements.The expected results will be an advancement regarding classical alarm and early warning systems as the WSN are free scalable, extensible and easy to install.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
Time Synchronization in Wireless Sensor Networks
2003-01-01
University of California Los Angeles Time Synchronization in Wireless Sensor Networks A dissertation submitted in partial satisfaction of the...4. TITLE AND SUBTITLE Time Synchronization in Wireless Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1 1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time Synchronization in Sensor Networks
Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines.
Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan
2017-07-11
Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs) as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Network (WSN) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs.
Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines
Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan
2017-01-01
Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs)as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Networks (WSNs) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs. PMID:28696390
NASA Astrophysics Data System (ADS)
Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.
2015-12-01
The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.
Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing
2016-12-30
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network
Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing
2016-01-01
Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang; Hu, Jianjun
2017-07-28
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster-Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions.
Li, Shaobo; Liu, Guokai; Tang, Xianghong; Lu, Jianguang
2017-01-01
Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster–Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations of the IDSCNN on the Case Western Reserve Dataset showed that our IDSCNN algorithm can achieve better fault diagnosis performance than existing machine learning methods by fusing complementary or conflicting evidences from different models and sensors and adapting to different load conditions. PMID:28788099
A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.
Yang, Wenlun; Fu, Minyue
2017-11-01
Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
McCallum, Brian E.; Painter, Jaime A.; Frantz, Eric R.
2012-01-01
The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level sensors at 212 locations along the Atlantic coast from South Carolina to Maine during August 2011 to record the timing, areal extent, and magnitude of inland hurricane storm tide and coastal flooding generated by Hurricane Irene. Water-level sensor locations were selected to augment existing tide-gage networks to ensure adequate monitoring in areas forecasted to have substantial storm tide. As defined by the National Oceanic and Atmospheric Administration (NOAA; 2011a,b), storm tide is the water-level rise generated by a coastal storm as a result of the combination of storm surge and astronomical tide.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
Physical parameters collection based on wireless senor network
NASA Astrophysics Data System (ADS)
Chen, Xin; Wu, Hong; Ji, Lei
2013-12-01
With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.
A novel load balanced energy conservation approach in WSN using biogeography based optimization
NASA Astrophysics Data System (ADS)
Kaushik, Ajay; Indu, S.; Gupta, Daya
2017-09-01
Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN
NASA Astrophysics Data System (ADS)
Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.
2010-12-01
The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are similar to those reported in regional and global catalogs. As the network expands, it will become increasingly important to provide volunteers access to the data they collect, both to encourage continued participation in the network and to improve community engagement in scientific discourse related to seismic hazard. In the future, we hope to provide access to both images and raw data from seismograms in formats accessible to the general public through existing seismic data archives (e.g. IRIS, SCSN) and/or through the QCN project website. While encouraging community participation in seismic data collection, we can extend the capabilities of existing seismic networks to rapidly detect and characterize strong motion events. In addition, the dense waveform observations may provide high-resolution ground shaking information to improve source imaging and seismic risk assessment.
Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok
2013-01-01
In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317
Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang
2018-03-01
This paper is concerned with the distributed filtering problem for a class of discrete time-varying stochastic parameter systems with error variance constraints over a sensor network where the sensor outputs are subject to successive missing measurements. The phenomenon of the successive missing measurements for each sensor is modeled via a sequence of mutually independent random variables obeying the Bernoulli binary distribution law. To reduce the frequency of unnecessary data transmission and alleviate the communication burden, an event-triggered mechanism is introduced for the sensor node such that only some vitally important data is transmitted to its neighboring sensors when specific events occur. The objective of the problem addressed is to design a time-varying filter such that both the requirements and the variance constraints are guaranteed over a given finite-horizon against the random parameter matrices, successive missing measurements, and stochastic noises. By recurring to stochastic analysis techniques, sufficient conditions are established to ensure the existence of the time-varying filters whose gain matrices are then explicitly characterized in term of the solutions to a series of recursive matrix inequalities. A numerical simulation example is provided to illustrate the effectiveness of the developed event-triggered distributed filter design strategy.
Achieving Passive Localization with Traffic Light Schedules in Urban Road Sensor Networks
Niu, Qiang; Yang, Xu; Gao, Shouwan; Chen, Pengpeng; Chan, Shibing
2016-01-01
Localization is crucial for the monitoring applications of cities, such as road monitoring, environment surveillance, vehicle tracking, etc. In urban road sensor networks, sensors are often sparely deployed due to the hardware cost. Under this sparse deployment, sensors cannot communicate with each other via ranging hardware or one-hop connectivity, rendering the existing localization solutions ineffective. To address this issue, this paper proposes a novel Traffic Lights Schedule-based localization algorithm (TLS), which is built on the fact that vehicles move through the intersection with a known traffic light schedule. We can first obtain the law by binary vehicle detection time stamps and describe the law as a matrix, called a detection matrix. At the same time, we can also use the known traffic light information to construct the matrices, which can be formed as a collection called a known matrix collection. The detection matrix is then matched in the known matrix collection for identifying where sensors are located on urban roads. We evaluate our algorithm by extensive simulation. The results show that the localization accuracy of intersection sensors can reach more than 90%. In addition, we compare it with a state-of-the-art algorithm and prove that it has a wider operational region. PMID:27735871
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.
Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J
2012-01-01
The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.
Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos
2017-11-01
In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.
Alanazi, Adwan; Elleithy, Khaled
2016-01-01
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048
Alanazi, Adwan; Elleithy, Khaled
2016-09-07
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.
A secure cluster-based multipath routing protocol for WMSNs.
Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N
2011-01-01
The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption.
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.
2017-10-01
The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.
A Secure Cluster-Based Multipath Routing Protocol for WMSNs
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.
2011-01-01
The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption. PMID:22163854
Yi, Meng; Chen, Qingkui; Xiong, Neal N.
2016-01-01
This paper considers the distributed access and control problem of massive wireless sensor networks’ data access center for the Internet of Things, which is an extension of wireless sensor networks and an element of its topology structure. In the context of the arrival of massive service access requests at a virtual data center, this paper designs a massive sensing data access and control mechanism to improve the access efficiency of service requests and makes full use of the available resources at the data access center for the Internet of things. Firstly, this paper proposes a synergistically distributed buffer access model, which separates the information of resource and location. Secondly, the paper divides the service access requests into multiple virtual groups based on their characteristics and locations using an optimized self-organizing feature map neural network. Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally, the experimental results demonstrate that this mechanism outperforms the existing schemes in terms of enhancing the accessibility of service requests effectively, reducing network delay, and has higher load balancing capacity and higher resource utility rate. PMID:27827878
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections
Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2016-01-01
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. PMID:27455270
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections.
Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2016-07-22
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.
NASA Astrophysics Data System (ADS)
Kelly, G.
2015-12-01
Over the past decade, there has been a resurgence of interest in the sustainability of the world's food system and its contributions to feeding the world's population as well as to ensuring environmental sustainability of the planet. The elements of this grand challenge are by now well known. Analysis of agricultural sustainability is made more challenging by the fact that the local responses to these global drivers of change are extremely variable in space and time due to the biophysical and geopolitical heterogeneity across the United States, and the world. Utilizing research networks allows the scientific community to leverage existing knowledge, models and data to develop a framework for understanding the interplay between global change drivers, regional, and continental sustainability of US agriculture. For example, well-established instrumented and calibrated research networks will allow for the examination of the potential tradeoffs between: 1) crop production, 2) land use and carbon emissions and sequestration, 3) groundwater depletion, and 4) nitrogen dynamics. NEON represents a major investment in scientific infrastructure in support of ecological research at a continental scale and is intended to address multiple ecological grand challenges. NEON will collect data from automated sensors and sample organisms and ecological variables in 20 eco-climatic domains. We will provide examples of how NEON's full potential can be realized when these data are combined with long term experimental results and other sensor networks [e.g., Ameriflux, Fluxnet, the Long-term Ecological Research Program (LTER), the Long-term Agroecosystem Research Network (LTAR)], Critical Zone Observatory (CZO).
Dependable Wireless Sensor Networks for Prognostics and Health Management: A Survey
2014-10-02
sensor network has many advantages. First of all, the absence of wires gives sensor networks the ability to cover a large scale surveillance area...system/component health state. Usually, this information is gathered through independent sensors or a wired network of sensors. The use of a wireless
Low-Latency and Energy-Efficient Data Preservation Mechanism in Low-Duty-Cycle Sensor Networks.
Jiang, Chan; Li, Tao-Shen; Liang, Jun-Bin; Wu, Heng
2017-05-06
Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes serious data transmission delay. However, each source node that has sensed data needs to quickly disseminate its data to other nodes in the network for redundant storage. Otherwise, data would be lost due to its source node possibly being destroyed by outer forces in a harsh environment. The quick dissemination requirement produces a contradiction with the sleeping delay in the network. How to quickly disseminate all the source data to all the nodes with limited memory in the network for effective preservation is a challenging issue. In this paper, a low-latency and energy-efficient data preservation mechanism in LDC-WSN is proposed. The mechanism is totally distributed. The data can be disseminated to the network with low latency by using a revised probabilistic broadcasting mechanism, and then stored by the nodes with LT (Luby Transform) codes, which are a famous rateless erasure code. After the process of data dissemination and storage completes, some nodes may die due to being destroyed by outer forces. If a mobile sink enters the network at any time and from any place to collect the data, it can recover all of the source data by visiting a small portion of survived nodes in the network. Theoretical analyses and simulation results show that our mechanism outperforms existing mechanisms in the performances of data dissemination delay and energy efficiency.
Wireless Sensor Networks for Detection of IED Emplacement
2009-06-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
NASA Astrophysics Data System (ADS)
Redfern, Andrew; Koplow, Michael; Wright, Paul
2007-01-01
Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.
A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.
Zhang, Qingguo; Fok, Mable P
2017-01-09
Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.
A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks
Zhang, Qingguo; Fok, Mable P.
2017-01-01
Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches. PMID:28075365
NASA Astrophysics Data System (ADS)
Gonzalez, Elias; Kish, Laszlo B.
2016-03-01
As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.
Three-dimensional ocean sensor networks: A survey
NASA Astrophysics Data System (ADS)
Wang, Yu; Liu, Yingjian; Guo, Zhongwen
2012-12-01
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research, oceanography, ocean monitoring, offshore exploration, and defense or homeland security. Ocean sensor networks are generally formed with various ocean sensors, autonomous underwater vehicles, surface stations, and research vessels. To make ocean sensor network applications viable, efficient communication among all devices and components is crucial. Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional (3D) ocean spaces, new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks. In this paper, we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks, with focuses on deployment, localization, topology design, and position-based routing in 3D ocean spaces.
Availability Issues in Wireless Visual Sensor Networks
Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2014-01-01
Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301
A comparative study of wireless sensor networks and their routing protocols.
Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit
2010-01-01
Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.
Underwater Sensor Nodes and Networks
Lloret, Jaime
2013-01-01
Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489
Development and Implementation of Low-Cost Mobile Sensor Platforms Within a Wireless Sensor Network
2010-09-01
WIRELESS SENSOR NETWORK by Michael Jay Tozzi September 2010 Thesis Advisor: Rachel Goshorn Second Reader: Duane Davis Approved for...Platforms Within a Wireless Sensor Network 6. AUTHOR(S) Tozzi, Michael Jay 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...IMPLEMENTATION OF LOW-COST MOBILE SENSOR PLATFORMS WITHIN A WIRELESS SENSOR NETWORK Michael Jay Tozzi Lieutenant, United States Navy B.S., United
The Quake Catcher Network: Cyberinfrastructure Bringing Seismology into Schools and Homes
NASA Astrophysics Data System (ADS)
Lawrence, J. F.; Cochran, E. S.
2007-12-01
We propose to implement a high density, low cost strong-motion network for rapid response and early warning by placing sensors in schools, homes, and offices. The Quake Catcher Network (QCN) will employ existing networked laptops and desktops to form the world's largest high-density, distributed computing seismic network. Costs for this network will be minimal because the QCN will use 1) strong motion sensors (accelerometers) already internal to many laptops and 2) nearly identical low-cost universal serial bus (USB) accelerometers for use with desktops. The Berkeley Open Infrastructure for Network Computing (BOINC!) provides a free, proven paradigm for involving the public in large-scale computational research projects. As evidenced by the SETI@home program and others, individuals are especially willing to donate their unused computing power to projects that they deem relevant, worthwhile, and educational. The client- and server-side software will rapidly monitor incoming seismic signals, detect the magnitudes and locations of significant earthquakes, and may even provide early warnings to other computers and users before they can feel the earthquake. The software will provide the client-user with a screen-saver displaying seismic data recorded on their laptop, recently detected earthquakes, and general information about earthquakes and the geosciences. Furthermore, this project will install USB sensors in K-12 classrooms as an educational tool for teaching science. Through a variety of interactive experiments students will learn about earthquakes and the hazards earthquakes pose. For example, students can learn how the vibrations of an earthquake decrease with distance by jumping up and down at increasing distances from the sensor and plotting the decreased amplitude of the seismic signal measured on their computer. We hope to include an audio component so that students can hear and better understand the difference between low and high frequency seismic signals. The QCN will provide a natural way to engage students and the public in earthquake detection and research.
RUASN: A Robust User Authentication Framework for Wireless Sensor Networks
Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae
2011-01-01
In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888
Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong
2017-06-02
Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.
R2NA: Received Signal Strength (RSS) Ratio-Based Node Authentication for Body Area Network
Wu, Yang; Wang, Kai; Sun, Yongmei; Ji, Yuefeng
2013-01-01
The body area network (BAN) is an emerging branch of wireless sensor networks for personalized applications. The services in BAN usually have a high requirement on security, especially for the medical diagnosis. One of the fundamental directions to ensure security in BAN is how to provide node authentication. Traditional research using cryptography relies on prior secrets shared among nodes, which leads to high resource cost. In addition, most existing non-cryptographic solutions exploit out-of-band (OOB) channels, but they need the help of additional hardware support or significant modifications to the system software. To avoid the above problems, this paper presents a proximity-based node authentication scheme, which only uses wireless modules equipped on sensors. With only one sensor and one control unit (CU) in BAN, we could detect a unique physical layer characteristic, namely, the difference between the received signal strength (RSS) measured on different devices in BAN. Through the above-mentioned particular difference, we can tell whether the sender is close enough to be legitimate. We validate our scheme through both theoretical analysis and experiments, which are conducted on the real Shimmer nodes. The results demonstrate that our proposed scheme has a good security performance.
Secure Multicast Tree Structure Generation Method for Directed Diffusion Using A* Algorithms
NASA Astrophysics Data System (ADS)
Kim, Jin Myoung; Lee, Hae Young; Cho, Tae Ho
The application of wireless sensor networks to areas such as combat field surveillance, terrorist tracking, and highway traffic monitoring requires secure communication among the sensor nodes within the networks. Logical key hierarchy (LKH) is a tree based key management model which provides secure group communication. When a sensor node is added or evicted from the communication group, LKH updates the group key in order to ensure the security of the communications. In order to efficiently update the group key in directed diffusion, we propose a method for secure multicast tree structure generation, an extension to LKH that reduces the number of re-keying messages by considering the addition and eviction ratios of the history data. For the generation of the proposed key tree structure the A* algorithm is applied, in which the branching factor at each level can take on different value. The experiment results demonstrate the efficiency of the proposed key tree structure against the existing key tree structures of fixed branching factors.
Statistical analysis of the pulse-coupled synchronization strategy for wireless sensor networks
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Pulse-coupled synchronization is attracting increased attention in the sensor network community. Yet its properties have not been fully investigated. Using statistical analysis, we prove analytically that by controlling the number of connections at each node, synchronization can be guaranteed for generally pulse-coupled oscillators even in the presence of a refractory period. The approach does not require the initial phases to reside in half an oscillation cycle, which improves existing results. We also find that a refractory period can be strategically included to reduce idle listening at nearly no sacrifice to the synchronization probability. Given that reduced idle listening leads to higher energy efficiency in the synchronization process, the strategically added refractory period makes the synchronization scheme appealing to cheap sensor nodes, where energy is a precious system resource. We also analyzed the pulse-coupled synchronization in the presence of unreliable communication links and obtained similar results. QualNet experimental results are given to confirm the effectiveness of the theoretical predictions. PMID:24324322
NASA Astrophysics Data System (ADS)
Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun
The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.
A smart checkpointing scheme for improving the reliability of clustering routing protocols.
Min, Hong; Jung, Jinman; Kim, Bongjae; Cho, Yookun; Heo, Junyoung; Yi, Sangho; Hong, Jiman
2010-01-01
In wireless sensor networks, system architectures and applications are designed to consider both resource constraints and scalability, because such networks are composed of numerous sensor nodes with various sensors and actuators, small memories, low-power microprocessors, radio modules, and batteries. Clustering routing protocols based on data aggregation schemes aimed at minimizing packet numbers have been proposed to meet these requirements. In clustering routing protocols, the cluster head plays an important role. The cluster head collects data from its member nodes and aggregates the collected data. To improve reliability and reduce recovery latency, we propose a checkpointing scheme for the cluster head. In the proposed scheme, backup nodes monitor and checkpoint the current state of the cluster head periodically. We also derive the checkpointing interval that maximizes reliability while using the same amount of energy consumed by clustering routing protocols that operate without checkpointing. Experimental comparisons with existing non-checkpointing schemes show that our scheme reduces both energy consumption and recovery latency.
Enhancing source location protection in wireless sensor networks
NASA Astrophysics Data System (ADS)
Chen, Juan; Lin, Zhengkui; Wu, Di; Wang, Bailing
2015-12-01
Wireless sensor networks are widely deployed in the internet of things to monitor valuable objects. Once the object is monitored, the sensor nearest to the object which is known as the source informs the base station about the object's information periodically. It is obvious that attackers can capture the object successfully by localizing the source. Thus, many protocols have been proposed to secure the source location. However, in this paper, we examine that typical source location protection protocols generate not only near but also highly localized phantom locations. As a result, attackers can trace the source easily from these phantom locations. To address these limitations, we propose a protocol to enhance the source location protection (SLE). With phantom locations far away from the source and widely distributed, SLE improves source location anonymity significantly. Theory analysis and simulation results show that our SLE provides strong source location privacy preservation and the average safety period increases by nearly one order of magnitude compared with existing work with low communication cost.
A Smart Checkpointing Scheme for Improving the Reliability of Clustering Routing Protocols
Min, Hong; Jung, Jinman; Kim, Bongjae; Cho, Yookun; Heo, Junyoung; Yi, Sangho; Hong, Jiman
2010-01-01
In wireless sensor networks, system architectures and applications are designed to consider both resource constraints and scalability, because such networks are composed of numerous sensor nodes with various sensors and actuators, small memories, low-power microprocessors, radio modules, and batteries. Clustering routing protocols based on data aggregation schemes aimed at minimizing packet numbers have been proposed to meet these requirements. In clustering routing protocols, the cluster head plays an important role. The cluster head collects data from its member nodes and aggregates the collected data. To improve reliability and reduce recovery latency, we propose a checkpointing scheme for the cluster head. In the proposed scheme, backup nodes monitor and checkpoint the current state of the cluster head periodically. We also derive the checkpointing interval that maximizes reliability while using the same amount of energy consumed by clustering routing protocols that operate without checkpointing. Experimental comparisons with existing non-checkpointing schemes show that our scheme reduces both energy consumption and recovery latency. PMID:22163389
2017-01-01
Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker–Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency. PMID:29036924
Lee, Chan-Jae; Jung, Ji-Young; Lee, Jung-Ryun
2017-10-14
Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker-Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency.
Bindings and RESTlets: A Novel Set of CoAP-Based Application Enablers to Build IoT Applications.
Teklemariam, Girum Ketema; Van Den Abeele, Floris; Moerman, Ingrid; Demeester, Piet; Hoebeke, Jeroen
2016-08-02
Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN.
Bindings and RESTlets: A Novel Set of CoAP-Based Application Enablers to Build IoT Applications
Teklemariam, Girum Ketema; Van Den Abeele, Floris; Moerman, Ingrid; Demeester, Piet; Hoebeke, Jeroen
2016-01-01
Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN. PMID:27490554
Engineering of Sensor Network Structure for Dependable Fusion
2014-08-15
Lossy Wireless Sensor Networks , IEEE/ACM Transactions on Networking , (04 2013): 0. doi: 10.1109/TNET.2013.2256795 Soumik Sarkar, Kushal Mukherjee...Phoha, Bharat B. Madan, Asok Ray. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks , Journal of Parallel and Distributed...Deadline Constraints, IEEE Transactions on Automatic Control special issue on Wireless Sensor and Actuator Networks , (01 2011): 1. doi: Eric Keller
Distributed sensor coordination for advanced energy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumer, Kagan
Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less
Remote detection of riverine traffic using an ad hoc wireless sensor network
NASA Astrophysics Data System (ADS)
Athan, Stephan P.
2005-05-01
Trafficking of illegal drugs on riverine and inland waterways continues to proliferate in South America. While there has been a successful joint effort to cut off overland and air trafficking routes, there exists a vast river network and Amazon region consisting of over 13,000 water miles that remains difficult to adequately monitor, increasing the likelihood of narcotics moving along this extensive river system. Hence, an effort is underway to provide remote unattended riverine detection in lieu of manned or attended detection measures.
A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks
Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole. PMID:28121992
A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks.
Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad
2017-01-01
Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.
NASA Astrophysics Data System (ADS)
Huber, Robert; Beranzoli, Laura; Fiebig, Markus; Gilbert, Olivier; Laj, Paolo; Mazzola, Mauro; Paris, Jean-Daniel; Pedersen, Helle; Stocker, Markus; Vitale, Vito; Waldmann, Christoph
2017-04-01
European Environmental Research Infrastructures (RI) frequently comprise in situ observatories from large-scale networks of platforms or sites to local networks of various sensors. Network operation is usually a cumbersome aspect of these RIs facing specific technological problems related to operations in remote areas, maintenance of the network, transmission of observation values, etc.. Robust inter-connection within and across these networks is still at infancy level and the burden increases with remoteness of the station, harshness of environmental conditions, and unavailability of classic communication systems, which is a common feature here. Despite existing RIs having developed ad-hoc solutions to overcome specific problems and innovative technologies becoming available, no common approach yet exists. Within the European project ENVRIplus, a dedicated work package aims to stimulate common network operation technologies and approaches in terms of power supply and storage, robustness, and data transmission. Major objectives of this task are to review existing technologies and RI requirements, propose innovative solutions and evaluate the standardization potential prior to wider deployment across networks. Focus areas within these efforts are: improving energy production and storage units, testing robustness of RI equipment towards extreme conditions as well as methodologies for robust data transmission. We will introduce current project activities which are coordinated at various levels including the engineering as well as the data management perspective, and explain how environmental RIs can benefit from the developments.
Strategy of thunderstorm measurement with super dense ground-based observation network
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Sato, M.
2014-12-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
Industrial Internet of Things: (IIoT) applications in underground coal mines.
Zhou, C; Damiano, N; Whisner, B; Reyes, M
2017-12-01
The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.
Zhou, C.; Damiano, N.; Whisner, B.; Reyes, M.
2017-01-01
The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure. PMID:29348699
Linking Simulation with Formal Verification and Modeling of Wireless Sensor Network in TLA+
NASA Astrophysics Data System (ADS)
Martyna, Jerzy
In this paper, we present the results of the simulation of a wireless sensor network based on the flooding technique and SPIN protocols. The wireless sensor network was specified and verified by means of the TLA+ specification language [1]. For a model of wireless sensor network built this way simulation was carried with the help of specially constructed software tools. The obtained results allow us to predict the behaviour of the wireless sensor network in various topologies and spatial densities. Visualization of the output data enable precise examination of some phenomenas in wireless sensor networks, such as a hidden terminal, etc.
Microsensors for border patrol applications
NASA Astrophysics Data System (ADS)
Falkofske, Dwight; Krantz, Brian; Shimazu, Ron; Berglund, Victor
2005-05-01
A top concern in homeland security efforts is the lack of ability to monitor the thousands of miles of open border with our neighbors. It is not currently feasible to continually monitor the borders for illegal intrusions. The MicroSensor System (MSS) seeks to achieve a low-cost monitoring solution that can be efficiently deployed for border patrol applications. The modifications and issues regarding the unique requirements of this application will be discussed and presented. The MicroSensor System was developed by the Defense Microelectronics Activity (DMEA) for military applications, but border patrol applications, with their unique sensor requirements, demand careful adaptation and modification from the military application. Adaptation of the existing sensor design for border applications has been initiated. Coverage issues, communications needs, and other requirements need to be explored for the border patrol application. Currently, border patrol has a number of deficiencies that can be addressed with a microsensor network. First, a distributed networked sensor field could mitigate the porous border intruder detection problem. Second, a unified database needs to be available to identify aliens attempting to cross into the United States. This database needs to take unique characteristics (e.g. biometrics, fingerprints) recovered from a specialized field unit to reliably identify intruders. Finally, this sensor network needs to provide a communication ability to allow border patrol officers to have quick access to intrusion information as well as equipment tracking and voice communication. MSS already addresses the sensing portion of the solution, including detection of acoustic, infrared, magnetic, and seismic events. MSS also includes a low-power networking protocol to lengthen the battery life. In addition to current military requirements, MSS needs a solar panel solution to extend its battery life to 5 years, and an additional backbone communication link. Expanding the capabilities of MSS will go a long way to improving the security of the nation's porous borders.
On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.
Amanowicz, Marek; Krygier, Jaroslaw
2018-05-26
In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.
NASA Astrophysics Data System (ADS)
Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai
2017-07-01
Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.
Network Computing for Distributed Underwater Acoustic Sensors
2014-03-31
underwater sensor network with mobility. In preparation. [3] EvoLogics (2013), Underwater Acoustic Modems, (Product Information Guide... Wireless Communications, 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks ... Network Computing for Distributed Underwater Acoustic Sensors M. Barbeau E. Kranakis
NASA Astrophysics Data System (ADS)
Kautz, M. A.; Keefer, T.; Demaria, E. M.; Goodrich, D. C.; Hazenberg, P.; Petersen, W. A.; Wingo, M. T.; Smith, J.
2017-12-01
The USDA - Agricultural Research Service (USDA-ARS) Long-Term Agroecosystem Research network (LTAR) is a partnership between 18 long-term research sites across the United States. As part of the program, LTAR aims to assemble a network of common sensors and measurements of hydrological, meteorological, and biophysical variables to accompany the legacy datasets of individual LTAR sites. Uncertainty remains as to how the common sensor-based measurements will compare to those measured with existing sensors at each site. The USDA-ARS Southwest Watershed Research Center (SWRC) operated Walnut Gulch Experimental Watershed (WGEW) represents the semiarid grazing lands located in southeastern Arizona in the LTAR network. The bimodal precipitation regime of this region is characterized by large-scale frontal precipitation in the winter and isolated, high-intensity, convective thunderstorms in the summer during the North American Monsoon (NAM). SWRC maintains a network of 90 rain gauges across the 150 km2 WGEW and surrounding area, with measurements dating back to the 1950's. The high intensity and isolated nature of the summer storms has historically made it difficult to quantify compared to other regimes in the US. This study assesses the uncertainty of measurement between the common LTAR Belfort All Weather Precipitation Gauge (AEPG 600) and the legacy WGEW weighing-type raingage. Additionally, in a collaboration with NASA Global Precipitation Measurement mission (GPM) and the University of Arizona a dense array of precipitation measuring sensors was installed at WGEW within a 10 meter radius for observation during the NAM, July through October 2017. In addition to two WGEW weighing-type gauges, the array includes: an AEPG 600, a tipping bucket, a weighing-bucket installed with orifice at ground level, an OTT Pluvio2 rain gauge, a Two-Dimensional Video Disdrometer (2DVD), and three OTT Parsivel2 disdrometers. An event-based comparison was made between precipitation sensors using metrics including total depth, peak intensity (1, 15, 30, and 60 minute), event duration, time to peak intensity, and start time of event. These results provide further insight into the uncertainties of measuring point-based precipitation in this unique precipitation regime and representation in large-scale observation networks.
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto
2016-08-01
SpaceFibre is a new generation of SpaceWire technology which is able to support the very high data- rates required by sensors like SAR and multi-spectral imagers. Data rates of between 1 and 16 Gbits/s are required to support several sensors currently being planned. In addition a mass-memory unit requires high performance networking to interconnect many memory modules. SpaceFibre runs over both electrical and fibre-optic media and provides and adds quality of service and fault detection, isolation and recovery technology to the network. SpaceFibre is compatible with the widely used SpaceWire protocol at the network level allowing existing SpaceWire devices to be readily incorporated into a SpaceFibre network. SpaceFibre provides 2 to 5 Gbits/s links (2.5 to 6.25 Gbits/s data signalling rate) which can be operated in parallel (multi-laning) to give higher data rates. STAR- Dundee with University of Dundee has designed and tested several SpaceFibre interface devices.The SUNRISE project is a UK Space Agency, Centre for Earth Observation and Space Technology (CEOI- ST) project in which STAR-Dundee and University of Dundee will design and prototype critical SpaceFibre router technology necessary for future on-board data- handling systems. This will lay a vital foundation for future very high data-rate sensor and telecommunications systems.This paper give a brief introduction to SpaceFibre, explains the operation of a SpaceFibre network, and then describes the SUNRISE SpaceFibre Router. The initial results of the SUNRISE project are described.
NASA Astrophysics Data System (ADS)
Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.
2009-05-01
Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.
SNE Industrial Fieldbus Interface
NASA Technical Reports Server (NTRS)
Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos
2011-01-01
Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.
Capacity Building for Research and Education in GIS/GPS Technology and Systems
2015-05-20
In multi- sensor area Wireless Sensor Networking (WSN) fields will be explored. As a step forward the research to be conducted in WSN field is to...Agriculture Using Technology for Crops Scouting in Agriculture Application of Technology in Precision Agriculture Wireless Sensor Network (WSN) in...Cooperative Engagement Capability Range based algorithms for Wireless Sensor Network Self-configurable Wireless Sensor Network Energy Efficient Wireless
Lee, Kwan Woo; Yoon, Hyo Sik; Song, Jong Min; Park, Kang Ryoung
2018-03-23
Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
Standards-based sensor interoperability and networking SensorWeb: an overview
NASA Astrophysics Data System (ADS)
Bolling, Sam
2012-06-01
The War fighter lacks a unified Intelligence, Surveillance, and Reconnaissance (ISR) environment to conduct mission planning, command and control (C2), tasking, collection, exploitation, processing, and data discovery of disparate sensor data across the ISR Enterprise. Legacy sensors and applications are not standardized or integrated for assured, universal access. Existing tasking and collection capabilities are not unified across the enterprise, inhibiting robust C2 of ISR including near-real time, cross-cueing operations. To address these critical needs, the National Measurement and Signature Intelligence (MASINT) Office (NMO), and partnering Combatant Commands and Intelligence Agencies are developing SensorWeb, an architecture that harmonizes heterogeneous sensor data to a common standard for users to discover, access, observe, subscribe to and task sensors. The SensorWeb initiative long term goal is to establish an open commercial standards-based, service-oriented framework to facilitate plug and play sensors. The current development effort will produce non-proprietary deliverables, intended as a Government off the Shelf (GOTS) solution to address the U.S. and Coalition nations' inability to quickly and reliably detect, identify, map, track, and fully understand security threats and operational activities.
Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon
2009-01-01
Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.
A Hybrid Memetic Framework for Coverage Optimization in Wireless Sensor Networks.
Chen, Chia-Pang; Mukhopadhyay, Subhas Chandra; Chuang, Cheng-Long; Lin, Tzu-Shiang; Liao, Min-Sheng; Wang, Yung-Chung; Jiang, Joe-Air
2015-10-01
One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that the network lifetime can be maximized while maintaining full coverage through organizing sensor nodes into a maximum number of disjoint sets and alternately turning them on. Since the power of sensor nodes is unevenly consumed over time, and early failure of sensor nodes leads to coverage loss, WSNs require dynamic coverage maintenance. Thus, the task of permanently sustaining full coverage is particularly formulated as a hybrid of disjoint set covers and dynamic-coverage-maintenance problems, and both have been proven to be nondeterministic polynomial-complete. In this paper, a hybrid memetic framework for coverage optimization (Hy-MFCO) is presented to cope with the hybrid problem using two major components: 1) a memetic algorithm (MA)-based scheduling strategy and 2) a heuristic recursive algorithm (HRA). First, the MA-based scheduling strategy adopts a dynamic chromosome structure to create disjoint sets, and then the HRA is utilized to compensate the loss of coverage by awaking some of the hibernated nodes in local regions when a disjoint set fails to maintain full coverage. The results obtained from real-world experiments using a WSN test-bed and computer simulations indicate that the proposed Hy-MFCO is able to maximize sensing coverage while achieving energy efficiency at the same time. Moreover, the results also show that the Hy-MFCO significantly outperforms the existing methods with respect to coverage preservation and energy efficiency.
Color sensor and neural processor on one chip
NASA Astrophysics Data System (ADS)
Fiesler, Emile; Campbell, Shannon R.; Kempem, Lother; Duong, Tuan A.
1998-10-01
Low-cost, compact, and robust color sensor that can operate in real-time under various environmental conditions can benefit many applications, including quality control, chemical sensing, food production, medical diagnostics, energy conservation, monitoring of hazardous waste, and recycling. Unfortunately, existing color sensor are either bulky and expensive or do not provide the required speed and accuracy. In this publication we describe the design of an accurate real-time color classification sensor, together with preprocessing and a subsequent neural network processor integrated on a single complementary metal oxide semiconductor (CMOS) integrated circuit. This one-chip sensor and information processor will be low in cost, robust, and mass-producible using standard commercial CMOS processes. The performance of the chip and the feasibility of its manufacturing is proven through computer simulations based on CMOS hardware parameters. Comparisons with competing methodologies show a significantly higher performance for our device.
Le, Duc Van; Oh, Hoon; Yoon, Seokhoon
2013-07-05
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.
The NSF Earthscope USArray Instrumentation Network
NASA Astrophysics Data System (ADS)
Davis, G. A.; Vernon, F.
2012-12-01
Since 2004, the Transportable Array component of the USArray Instrumentation Network has collected high resolution seismic data in near real-time from over 400 geographically distributed seismic stations. The deployed footprint of the array has steadily migrated across the continental United States, starting on the west coast and gradually moving eastward. As the network footprint shifts, stations from various regional seismic networks have been incorporated into the dataset. In 2009, an infrasound and barometric sensor component was added to existing core stations and to all new deployments. The ongoing success of the project can be attributed to a number of factors, including reliable communications to each site, on-site data buffering, largely homogenous data logging hardware, and a common phase-locked time reference between all stations. Continuous data quality is ensured by thorough human and automated review of data from the primary sensors and over 24 state-of-health parameters from each station. The staff at the Array Network Facility have developed a number of tools to visualize data and troubleshoot problematic stations remotely. In the event of an emergency or maintenance on the server hardware, data acquisition can be shifted to alternate data centers through the use of virtualization technologies.
A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.
Zhang, Yu; Zhang, Bing; Zhang, Shi
2017-06-02
Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.
Van Le, Duc; Oh, Hoon; Yoon, Seokhoon
2013-01-01
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134
High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring
NASA Astrophysics Data System (ADS)
Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.
2012-12-01
Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM, temperature, relative humidity, wind speed and direction. The network incorporates existing GPRS infrastructures for real time sending of data with low overheads in terms of cost, effort and installation. In this paper we present data from the SNAQ Heathrow project as well as previous deployments showing measurement capability at the ppb level for NO, NO2 and CO. We show that variability can be observed and measured quantitatively using these sensor networks over widely differing time scales from individual emission events, diurnal variability associated with traffic and meteorological conditions, through to longer term synoptic weather conditions and seasonal behaviour. This work demonstrates a widely applicable generic capability to urban areas, airports as well as other complex emissions environments making this sensor system methodology valuable for scientific, policy and regulatory issues. We conclude that the low-cost high-density network philosophy has the potential to provide a more complete assessment of the high-granularity air quality structure generally observed in the environment. Further, when appropriately deployed, has the potential to offer a new paradigm in air quality quantification and monitoring.
NASA Astrophysics Data System (ADS)
Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles
2008-03-01
A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
Bio-Inspired Stretchable Absolute Pressure Sensor Network
Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.
2016-01-01
A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco
2017-11-07
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
ERIC Educational Resources Information Center
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks
Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.
2010-01-01
Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less
Wireless Sensor Network Applications for the Combat Air Forces
2006-06-13
WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT...Government. AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT Presented to the...Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS
Smart border: ad-hoc wireless sensor networks for border surveillance
NASA Astrophysics Data System (ADS)
He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser
2011-06-01
Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.
Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678
Automated construction of node software using attributes in a ubiquitous sensor network environment.
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.
IJA: an efficient algorithm for query processing in sensor networks.
Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa
2011-01-01
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.
IJA: An Efficient Algorithm for Query Processing in Sensor Networks
Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa
2011-01-01
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375
Zone-Based Routing Protocol for Wireless Sensor Networks
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455
Zone-Based Routing Protocol for Wireless Sensor Networks.
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.
Sensor Webs as Virtual Data Systems for Earth Science
NASA Astrophysics Data System (ADS)
Moe, K. L.; Sherwood, R.
2008-05-01
The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing improved science predictions. Still other projects are maturing technology to support autonomous operations, communications and system interoperability. This paper will highlight lessons learned by various projects during the first half of the AIST program. Several sensor web demonstrations have been implemented and resulting experience with evolving standards, such as the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) among others, will be featured. The role of sensor webs in support of the intergovernmental Group on Earth Observations' Global Earth Observation System of Systems (GEOSS) will also be discussed. The GEOSS vision is a distributed system of systems that builds on international components to supply observing and processing systems that are, in the whole, comprehensive, coordinated and sustained. Sensor web prototypes are under development to demonstrate how remote sensing satellite data, in situ sensor networks and decision support systems collaborate in applications of interest to GEO, such as flood monitoring. Furthermore, the international Committee on Earth Observation Satellites (CEOS) has stepped up to the challenge to provide the space-based systems component for GEOSS. CEOS has proposed "virtual constellations" to address emerging data gaps in environmental monitoring, avoid overlap among observing systems, and make maximum use of existing space and ground assets. Exploratory applications that support the objectives of virtual constellations will also be discussed as a future role for sensor webs.
SOA approach to battle command: simulation interoperability
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.
2010-04-01
NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.
Neural Network-Based Sensor Validation for Turboshaft Engines
NASA Technical Reports Server (NTRS)
Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei
1998-01-01
Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.
Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.
Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.
A Mobile Sensor Network System for Monitoring of Unfriendly Environments.
Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo
2008-11-14
Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.
Xu, Lina; O'Hare, Gregory M P; Collier, Rem
2017-07-05
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.
O’Hare, Gregory M. P.; Collier, Rem
2017-01-01
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity. PMID:28678164
LinkMind: link optimization in swarming mobile sensor networks.
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070
NASA Astrophysics Data System (ADS)
Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.
2017-12-01
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
Using Neural Networks for Sensor Validation
NASA Technical Reports Server (NTRS)
Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William
1998-01-01
This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.
Open-WiSe: a solar powered wireless sensor network platform.
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.
Bluetooth-based wireless sensor networks
NASA Astrophysics Data System (ADS)
You, Ke; Liu, Rui Qiang
2007-11-01
In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.
Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343
Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.
Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks
2013-12-01
writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...thesis writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE TACTICAL NETWORK LOAD BALANCING IN MULTI-GATEWAY WIRELESS SENSOR NETWORKS 5
Integrating wireless sensor network for monitoring subsidence phenomena
NASA Astrophysics Data System (ADS)
Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro
2016-04-01
An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing and evaluation. The knowledge gained in the subsidence process, complemented by the huge availability of data from existing networks constitutes a solid foundation for achieving those objectives. New monitoring points have been identified, constructed, prepared to integrate the conventional monitoring system with Wi-GIM system to build a robust system compatible with WI-GIM requirements.
Novel method for fog monitoring using cellular networks infrastructures
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2012-08-01
A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick
We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less
Web-Based Interface for Command and Control of Network Sensors
NASA Technical Reports Server (NTRS)
Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.
2010-01-01
This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events
Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku
2009-01-01
Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050
Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985
NASA Technical Reports Server (NTRS)
Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)
1986-01-01
The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.
Sensor Data Qualification Technique Applied to Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Simon, Donald L.
2013-01-01
This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.
Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks
2007-06-01
sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless
Friend or foe: exploiting sensor failures for transparent object localization and classification
NASA Astrophysics Data System (ADS)
Seib, Viktor; Barthen, Andreas; Marohn, Philipp; Paulus, Dietrich
2017-02-01
In this work we address the problem of detecting and recognizing transparent objects using depth images from an RGB-D camera. Using this type of sensor usually prohibits the localization of transparent objects since the structured light pattern of these cameras is not reflected by transparent surfaces. Instead, transparent surfaces often appear as undefined values in the resulting images. However, these erroneous sensor readings form characteristic patterns that we exploit in the presented approach. The sensor data is fed into a deep convolutional neural network that is trained to classify and localize drinking glasses. We evaluate our approach with four different types of transparent objects. To our best knowledge, no datasets offering depth images of transparent objects exist so far. With this work we aim at closing this gap by providing our data to the public.
Sinkhole Avoidance Routing in Wireless Sensor Networks
2011-05-09
sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless
Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas
Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.
2010-01-01
In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Huisman, S.; Rosenbaum, U.; Wuethen, A.; Vereecken, H.
2009-04-01
Wireless sensor network technology allows near real-time monitoring of soil properties with a high spatial and temporal resolution for observing hydrological processes in small watersheds. The novel wireless sensor network SoilNet uses the low-cost ZigBee radio network for communication and a hybrid topology with a mixture of underground end devices each wired to several soil sensors and aboveground router devices. The SoilNet sensor network consists of soil water content, salinity and temperature sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. the occurrence of precipitation. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. Simultaneously, we have also developed a data management and visualisation system. Recently, a small forest catchment Wüstebach (27 ha) was instrumented with 50 end devices and more than 400 soil sensors in the frame of the TERENO-RUR hydrological observatory. We will present first results of this large sensor network both in terms of spatial-temporal variations in soil water content and the performance of the sensor network (e.g. network stability and power use).
Jung, Ji-Young; Seo, Dong-Yoon; Lee, Jung-Ryun
2018-01-04
A wireless sensor network (WSN) is emerging as an innovative method for gathering information that will significantly improve the reliability and efficiency of infrastructure systems. Broadcast is a common method to disseminate information in WSNs. A variety of counter-based broadcast schemes have been proposed to mitigate the broadcast-storm problems, using the count threshold value and a random access delay. However, because of the limited propagation of the broadcast-message, there exists a trade-off in a sense that redundant retransmissions of the broadcast-message become low and energy efficiency of a node is enhanced, but reachability become low. Therefore, it is necessary to study an efficient counter-based broadcast scheme that can dynamically adjust the random access delay and count threshold value to ensure high reachability, low redundant of broadcast-messages, and low energy consumption of nodes. Thus, in this paper, we first measure the additional coverage provided by a node that receives the same broadcast-message from two neighbor nodes, in order to achieve high reachability with low redundant retransmissions of broadcast-messages. Second, we propose a new counter-based broadcast scheme considering the size of the additional coverage area, distance between the node and the broadcasting node, remaining battery of the node, and variations of the node density. Finally, we evaluate performance of the proposed scheme compared with the existing counter-based broadcast schemes. Simulation results show that the proposed scheme outperforms the existing schemes in terms of saved rebroadcasts, reachability, and total energy consumption.
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.
Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks
ERIC Educational Resources Information Center
Yang, Yinying
2010-01-01
Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…
Wireless Sensor Network Radio Power Management and Simulation Models
2010-01-01
The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
NASA Astrophysics Data System (ADS)
Gaviña, J. R.; Uy, F. A.; Carreon, J. D.
2017-06-01
There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.
NASA Astrophysics Data System (ADS)
Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming
2013-12-01
Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.
Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization
Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2015-01-01
The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425
Bluetooth Roaming for Sensor Network System in Clinical Environment.
Kuroda, Tomohiro; Noma, Haruo; Takase, Kazuhiko; Sasaki, Shigeto; Takemura, Tadamasa
2015-01-01
A sensor network is key infrastructure for advancing a hospital information system (HIS). The authors proposed a method to provide roaming functionality for Bluetooth to realize a Bluetooth-based sensor network, which is suitable to connect clinical devices. The proposed method makes the average response time of a Bluetooth connection less than one second by making the master device repeat the inquiry process endlessly and modifies parameters of the inquiry process. The authors applied the developed sensor network for daily clinical activities in an university hospital, and confirmed the stabilitya and effectiveness of the sensor network. As Bluetooth becomes a quite common wireless interface for medical devices, the proposed protocol that realizes Bluetooth-based sensor network enables HIS to equip various clinical devices and, consequently, lets information and communication technologies advance clinical services.
Integrating legacy medical data sensors in a wireless network infrastucture.
Dembeyiotis, S; Konnis, G; Koutsouris, D
2005-01-01
In the process of developing a wireless networking solution to provide effective field-deployable communications and telemetry support for rescuers during major natural disasters, we are faced with the task of interfacing the multitude of medical and other legacy data collection sensors to the network grid. In this paper, we detail a number of solutions, with particular attention given to the issue of data security. The chosen implementation allows for sensor control and management from remote network locations, while the sensors can wirelessly transmit their data to nearby network nodes securely, utilizing the latest commercially available cryptography solutions. Initial testing validates the design choices, while the network-enabled sensors are being integrated in the overall wireless network security framework.
Design and Development of Card-Sized Virtual Keyboard Using Permanent Magnets and Hall Sensors
NASA Astrophysics Data System (ADS)
Demachi, Kazuyuki; Ohyama, Makoto; Kanemoto, Yoshiki; Masaie, Issei
This paper proposes a method to distinguish the key-type of human fingers attached with the small permanent magnets. The Hall sensors arrayed in the credit card size area feel the distribution of the magnetic field due to the key-typing movement of the human fingers as if the keyboard exists, and the signal is analyzed using the generic algorithm or the neural network algorism to distinguish the typed keys. By this method, the keyboard can be miniaturized to the credit card size (54mm×85mm). We called this system `The virtual keyboard system'.
Open-WiSe: A Solar Powered Wireless Sensor Network Platform
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396
Low-complex energy-aware image communication in visual sensor networks
NASA Astrophysics Data System (ADS)
Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran
2013-10-01
A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
On-track testing of a power harvesting device for railroad track health monitoring
NASA Astrophysics Data System (ADS)
Hansen, Sean E.; Pourghodrat, Abolfazl; Nelson, Carl A.; Fateh, Mahmood
2010-03-01
A considerable proportion of railroad infrastructure exists in regions which are comparatively remote. With regard to the cost of extending electrical infrastructure into these areas, road crossings in these areas do not have warning light systems or crossing gates and are commonly marked with reflective signage. For railroad track health monitoring purposes, distributed sensor networks can be applicable in remote areas, but the same limitation regarding electrical infrastructure is the hindrance. This motivated the development of an energy harvesting solution for remote railroad deployment. This paper describes on-track experimental testing of a mechanical device for harvesting mechanical power from passing railcar traffic, in view of supplying electrical power to warning light systems at crossings and to remote networks of sensors. The device is mounted to and spans two rail ties and transforms the vertical rail displacement into electrical energy through mechanical amplification and rectification into a PMDC generator. A prototype was tested under loaded and unloaded railcar traffic at low speeds. Stress analysis and speed scaling analysis are presented, results of the on-track tests are compared and contrasted to previous laboratory testing, discrepancies between the two are explained, and conclusions are drawn regarding suitability of the device for illuminating high-efficiency LED lights at railroad crossings and powering track-health sensor networks.
Source Localization Using Wireless Sensor Networks
2006-06-01
performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.
A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks
NASA Astrophysics Data System (ADS)
Datta, A.; Nandakumar, S.
2017-11-01
Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.
Persistent ISR: the social network analysis connection
NASA Astrophysics Data System (ADS)
Bowman, Elizabeth K.
2012-06-01
Persistent surveillance provides decision makers with unprecedented access to multisource data collected from humans and sensor assets around the globe, yet these data exist in the physical world and provide few overt clues to meaning behind actions. In this paper we explore the recent growth in online social networking and ask the questions: 1) can these sites provide value-added information to compliment physical sensing and 2) what are the mechanisms by which these data could inform situational awareness and decision making? In seeking these answers we consider the range of options provided by Social Network Analysis (SNA), and focus especially on the dynamic nature of these networks. In our discussion we focus on the wave of reform experienced by the North African nations in early 2011 known as the Arab Spring. Demonstrators made widespread use of social networking applications to coordinate, document, and publish material to aid their cause. Unlike members of covert social networks who hide their activity and associations, these demonstrators openly posted multimedia information to coordinate activity and stimulate global support. In this paper we provide a review of SNA approaches and consider how one might track network adaptations by capturing temporal and conceptual trends. We identify opportunities and challenges for merging SNA with physical sensor output, and conclude by addressing future challenges in the persistent ISR domain with respect to SNA.
Optimizing fixed observational assets in a coastal observatory
NASA Astrophysics Data System (ADS)
Frolov, Sergey; Baptista, António; Wilkin, Michael
2008-11-01
Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.
A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.
Sundararajan, T V P; Sumithra, M G; Maheswar, R
2014-01-01
In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.
Real-time hydraulic interval state estimation for water transport networks: a case study
NASA Astrophysics Data System (ADS)
Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.
2018-03-01
Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.
Geographically distributed environmental sensor system
French, Patrick; Veatch, Brad; O'Connor, Mike
2006-10-03
The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.
LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network
NASA Astrophysics Data System (ADS)
Cha, Daehyun; Hwang, Chansik
Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.
An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.
Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem
2016-11-04
In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.
Probabilistic QoS Analysis In Wireless Sensor Networks
2012-04-01
and A.O. Fapojuwo. TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks . IEEE Trans. on Mobile...Research Computer Science and Engineering, Department of 5-1-2012 Probabilistic QoS Analysis in Wireless Sensor Networks Yunbo Wang University of...Wang, Yunbo, "Probabilistic QoS Analysis in Wireless Sensor Networks " (2012). Computer Science and Engineering: Theses, Dissertations, and Student
RF Characteristics of Mica-Z Wireless Sensor Network Motes
2006-03-01
MICA-Z WIRELESS SENSOR NETWORK MOTES by Swee Jin Koh March 2006 Thesis Advisor: Gurminder Singh Thesis Co-Advisor: John C...Mica-Z Wireless Sensor Network Motes 6. AUTHOR(S) : Swee Jin Koh 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...ad-hoc deployment. 15. NUMBER OF PAGES 83 14. SUBJECT TERMS: Wireless Sensor Network 16. PRICE CODE 17. SECURITY CLASSIFICATION OF
Path Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks
2006-09-01
AND PACKET TRANSLATION FOR UAV SURVEILLANCE IN SUPPORT OF WIRELESS SENSOR NETWORKS by Stephen Schall September 2006 Thesis Advisor...Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks 6. AUTHOR(S) Stephen Schall 5. FUNDING NUMBERS 7...200 words) Wireless Sensor Networks (WSNs) are a relatively new technology with many potential applications, including military and
Wireless Sensor Network With Geolocation
2006-11-01
WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite
Performance Evaluation of a Routing Protocol in Wireless Sensor Network
2005-12-01
OF A ROUTING PROTOCOL IN WIRELESS SENSOR NETWORKS by Cheng Kiat Amos, Teo December 2005 Thesis Advisors: Gurminder Singh John C...Evaluation of a Routing Protocol in Wireless Sensor Network 6. AUTHOR(S) Cheng Kiat Amos, Teo 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...need to be strategically positioned and have topologies engineered. As such, recent research into wireless sensor networks has attracted great
2009-03-01
IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random
Networked sensors for the combat forces
NASA Astrophysics Data System (ADS)
Klager, Gene
2004-11-01
Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.
PBO Southwest Region: Baja Earthquake Response and Network Operations
NASA Astrophysics Data System (ADS)
Walls, C. P.; Basset, A.; Mann, D.; Lawrence, S.; Jarvis, C.; Feaux, K.; Jackson, M. E.
2011-12-01
The SW region of the Plate Boundary Observatory consists of 455 continuously operating GPS stations located principally along the transform system of the San Andreas fault and Eastern California Shear Zone. In the past year network uptime exceeded an average of 97% with greater than 99% data acquisition. Communications range from CDMA modem (307), radio (92), Vsat (30), DSL/T1/other (25) to manual downloads (1). Sixty-three stations stream 1 Hz data over the VRS3Net typically with <0.5 second latency. Over 620 maintenance activities were performed during 316 onsite visits out of approximately 368 engineer field days. Within the past year there have been 7 incidences of minor (attempted theft) to moderate vandalism (solar panel stolen) with one total loss of receiver and communications gear. Security was enhanced at these sites through fencing and more secure station configurations. In the past 12 months, 4 new stations were installed to replace removed stations or to augment the network at strategic locations. Following the M7.2 El Mayor-Cucapah earthquake CGPS station P796, a deep-drilled braced monument, was constructed in San Luis, AZ along the border within 5 weeks of the event. In addition, UNAVCO participated in a successful University of Arizona-led RAPID proposal for the installation of six continuous GPS stations for post-seismic observations. Six stations are installed and telemetered through a UNAM relay at the Sierra San Pedro Martir. Four of these stations have Vaisala WXT520 meteorological sensors. An additional site in the Sierra Cucapah (PTAX) that was built by CICESE, an Associate UNAVCO Member institution in Mexico, and Caltech has been integrated into PBO dataflow. The stations will be maintained as part of the PBO network in coordination with CICESE. UNAVCO is working with NOAA to upgrade PBO stations with WXT520 meteorological sensors and communications systems capable of streaming real-time GPS and met data. The real-time GPS and meteorological sensor data streaming support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. Currently 19 stations are online and streaming with 7 more in preparation. In 2008 PBO became the steward of 209 existing network stations of which 140 are in the SW region that included SCIGN, BARD, BARGEN stations. Due to the mix of incompatible equipment used between PBO and existing network stations a project was undertaken to standardize existing network GPS stations to PBO specifications by upgrading power systems and enclosures. To date 96 stations have been upgraded. UNAVCO is currently funded through a USGS ARRA grant to construct 8 new GPS stations in the San Francisco Bay Area capable of streaming high rate data. At present 6 stations are built with 2 permits outstanding.
Performance benefits and limitations of a camera network
NASA Astrophysics Data System (ADS)
Carr, Peter; Thomas, Paul J.; Hornsey, Richard
2005-06-01
Visual information is of vital significance to both animals and artificial systems. The majority of mammals rely on two images, each with a resolution of 107-108 'pixels' per image. At the other extreme are insect eyes where the field of view is segmented into 103-105 images, each comprising effectively one pixel/image. The great majority of artificial imaging systems lie nearer to the mammalian characteristics in this parameter space, although electronic compound eyes have been developed in this laboratory and elsewhere. If the definition of a vision system is expanded to include networks or swarms of sensor elements, then schools of fish, flocks of birds and ant or termite colonies occupy a region where the number of images and the pixels/image may be comparable. A useful system might then have 105 imagers, each with about 104-105 pixels. Artificial analogs to these situations include sensor webs, smart dust and co-ordinated robot clusters. As an extreme example, we might consider the collective vision system represented by the imminent existence of ~109 cellular telephones, each with a one-megapixel camera. Unoccupied regions in this resolution-segmentation parameter space suggest opportunities for innovative artificial sensor network systems. Essential for the full exploitation of these opportunities is the availability of custom CMOS image sensor chips whose characteristics can be tailored to the application. Key attributes of such a chip set might include integrated image processing and control, low cost, and low power. This paper compares selected experimentally determined system specifications for an inward-looking array of 12 cameras with the aid of a camera-network model developed to explore the tradeoff between camera resolution and the number of cameras.
Internetting tactical security sensor systems
NASA Astrophysics Data System (ADS)
Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.
1998-08-01
The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control stations.
Adaptive Connectivity Restoration from Node Failure(s) in Wireless Sensor Networks
Wang, Huaiyuan; Ding, Xu; Huang, Cheng; Wu, Xiaobei
2016-01-01
Recently, there is a growing interest in the applications of wireless sensor networks (WSNs). A set of sensor nodes is deployed in order to collectively survey an area of interest and/or perform specific surveillance tasks in some of the applications, such as battlefield reconnaissance. Due to the harsh deployment environments and limited energy supply, nodes may fail, which impacts the connectivity of the whole network. Since a single node failure (cut-vertex) will destroy the connectivity and divide the network into disjoint blocks, most of the existing studies focus on the problem of single node failure. However, the failure of multiple nodes would be a disaster to the whole network and must be repaired effectively. Only few studies are proposed to handle the problem of multiple cut-vertex failures, which is a special case of multiple node failures. Therefore, this paper proposes a comprehensive solution to address the problems of node failure (single and multiple). Collaborative Single Node Failure Restoration algorithm (CSFR) is presented to solve the problem of single node failure only with cooperative communication, but CSFR-M, which is the extension of CSFR, handles the single node failure problem more effectively with node motion. Moreover, Collaborative Connectivity Restoration Algorithm (CCRA) is proposed on the basis of cooperative communication and node maneuverability to restore network connectivity after multiple nodes fail. CSFR-M and CCRA are reactive methods that initiate the connectivity restoration after detecting the node failure(s). In order to further minimize the energy dissipation, CCRA opts to simplify the recovery process by gridding. Moreover, the distance that an individual node needs to travel during recovery is reduced by choosing the nearest suitable candidates. Finally, extensive simulations validate the performance of CSFR, CSFR-M and CCRA. PMID:27690030
Prototyping and Testing a Wireless Sensor Network to Retrieve SWE at High Spatial Resolution
NASA Astrophysics Data System (ADS)
Kang, D.; Barros, A. P.
2007-12-01
A critical challenge in snow research from space is the ability to obtain measurements at the spatial and temporal resolution to characterize the statistical structure of the space-time variability of the physical properties of the snowpack within an area consistent with the pixel resolution in snow hydrology models or that expected from a future NASA mission dedicated to cold region processes. That is, observations of relevant snow dielectric properties are necessary at high spatial and temporal resolution during the accumulation and melt seasons. We present a new wireless sensor network prototype consisting of multiple antennas and buried low-power, multi- channel transmitters operating in L-band that communicate to a central pod equipped with a Vector Signal Analyzer (VSA) that receives, processes and manages the data. Only commercial off-the-shelf hard-ware parts were used to build the sensors. Because the sensors are very low cost and run autonomously, one envisions that self-organizing networks of large numbers of such sensors might be distributed over very large areas, therefore proving much needed data sets for scaling studies. The measurement strategy consists of placing the transmitters the land surface in the beginning of the snow season which are then run autonomously till the end of the spring and waken at pre-determined time-intervals to emit radio frequency signals and thus sample the snowpack. Along with the sensors, an important component of this work entails the development of an estimation algorithm to estimate snow dielectric properties, snow density, and volume fraction of snow (VF) from the time-of-travel, amplitude and phase modification of the multi-channel RF signals as they propagate through the snow-pack. Here, we present results from full system testing and evaluation of the sensors that were conducted at Duke University using ¢®¡Æsynthetic¢®¡¾ limited-area snowpacks (0.5 by 0.5 m2 and 1 by 2 m2) constructed of various combinations of foam layers of different porosities to simulate heterogeneous distributions of water. The existing sensors are currently being primed for field deployment. Discussion is also presented regarding further technology development including power usage, networking, and distribution and operations in remote regions.
Optimal waveforms design for ultra-wideband impulse radio sensors.
Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong
2010-01-01
Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations.
A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.
Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela
2017-09-02
Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.
Lightweight monitoring and control system for coal mine safety using REST style.
Cheng, Bo; Cheng, Xin; Chen, Junliang
2015-01-01
The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.