Sample records for existing software components

  1. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    NASA Technical Reports Server (NTRS)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to integrate existing mission applications for sequence development, sequence validation, and high level activity planning, and other functions into a component-based environment. For each of these, we used a somewhat different technique based upon the structure and usage of the existing application.

  2. Software packager user's guide

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.

  3. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  4. Software Reuse Within the Earth Science Community

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Olding, Steve; Wolfe, Robert E.; Delnore, Victor E.

    2006-01-01

    Scientific missions in the Earth sciences frequently require cost-effective, highly reliable, and easy-to-use software, which can be a challenge for software developers to provide. The NASA Earth Science Enterprise (ESE) spends a significant amount of resources developing software components and other software development artifacts that may also be of value if reused in other projects requiring similar functionality. In general, software reuse is often defined as utilizing existing software artifacts. Software reuse can improve productivity and quality while decreasing the cost of software development, as documented by case studies in the literature. Since large software systems are often the results of the integration of many smaller and sometimes reusable components, ensuring reusability of such software components becomes a necessity. Indeed, designing software components with reusability as a requirement can increase the software reuse potential within a community such as the NASA ESE community. The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group is chartered to oversee the development of a process that will maximize the reuse potential of existing software components while recommending strategies for maximizing the reusability potential of yet-to-be-designed components. As part of this work, two surveys of the Earth science community were conducted. The first was performed in 2004 and distributed among government employees and contractors. A follow-up survey was performed in 2005 and distributed among a wider community, to include members of industry and academia. The surveys were designed to collect information on subjects such as the current software reuse practices of Earth science software developers, why they choose to reuse software, and what perceived barriers prevent them from reusing software. In this paper, we compare the results of these surveys, summarize the observed trends, and discuss the findings. The results are very similar, with the second, larger survey confirming the basic results of the first, smaller survey. The results suggest that reuse of ESE software can drive down the cost and time of system development, increase flexibility and responsiveness of these systems to new technologies and requirements, and increase effective and accountable community participation.

  5. Automated Software Development Workstation (ASDW)

    NASA Technical Reports Server (NTRS)

    Fridge, Ernie

    1990-01-01

    Software development is a serious bottleneck in the construction of complex automated systems. An increase of the reuse of software designs and components has been viewed as a way to relieve this bottleneck. One approach to achieving software reusability is through the development and use of software parts composition systems. A software parts composition system is a software development environment comprised of a parts description language for modeling parts and their interfaces, a catalog of existing parts, a composition editor that aids a user in the specification of a new application from existing parts, and a code generator that takes a specification and generates an implementation of a new application in a target language. The Automated Software Development Workstation (ASDW) is an expert system shell that provides the capabilities required to develop and manipulate these software parts composition systems. The ASDW is now in Beta testing at the Johnson Space Center. Future work centers on responding to user feedback for capability and usability enhancement, expanding the scope of the software lifecycle that is covered, and in providing solutions to handling very large libraries of reusable components.

  6. Software Productivity of Field Experiments Using the Mobile Agents Open Architecture with Workflow Interoperability

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Lowry, Michael R.; Nado, Robert Allen; Sierhuis, Maarten

    2011-01-01

    We analyzed a series of ten systematically developed surface exploration systems that integrated a variety of hardware and software components. Design, development, and testing data suggest that incremental buildup of an exploration system for long-duration capabilities is facilitated by an open architecture with appropriate-level APIs, specifically designed to facilitate integration of new components. This improves software productivity by reducing changes required for reconfiguring an existing system.

  7. Support for life-cycle product reuse in NASA's SSE

    NASA Technical Reports Server (NTRS)

    Shotton, Charles

    1989-01-01

    The Software Support Environment (SSE) is a software factory for the production of Space Station Freedom Program operational software. The SSE is to be centrally developed and maintained and used to configure software production facilities in the field. The PRC product TTCQF provides for an automated qualification process and analysis of existing code that can be used for software reuse. The interrogation subsystem permits user queries of the reusable data and components which have been identified by an analyzer and qualified with associated metrics. The concept includes reuse of non-code life-cycle components such as requirements and designs. Possible types of reusable life-cycle components include templates, generics, and as-is items. Qualification of reusable elements requires analysis (separation of candidate components into primitives), qualification (evaluation of primitives for reusability according to reusability criteria) and loading (placing qualified elements into appropriate libraries). There can be different qualifications for different installations, methodologies, applications and components. Identifying reusable software and related components is labor-intensive and is best carried out as an integrated function of an SSE.

  8. Shortcomings of existing systems for registration and legal protection of software products and possible ways to overcome them

    NASA Astrophysics Data System (ADS)

    Liapidevskiy, A. V.; Petrov, A. S.; Zhmud, V. A.; Sherubneva, I. G.

    2018-05-01

    The paper reveals the shortcomings of the existing system of registration and legal protection of software products. The system has too many disadvantages and shortcomings. Explanatory examples are given. Possible ways of overcoming these shortcomings are discussed. The paper also gives possible prospects for the use of new digital technologies. Also in the paper, the information is provided about the modern software components for protecting intellectual property rights of State corporations

  9. NEWFIRM Software--System Integration Using OPC

    NASA Astrophysics Data System (ADS)

    Daly, P. N.

    2004-07-01

    The NOAO Extremely Wide-Field Infra-Red Mosaic (NEWFIRM) camera is being built to satisfy the survey science requirements on the KPNO Mayall and CTIO Blanco 4m telescopes in an era of 8m+ aperture telescopes. Rather than re-invent the wheel, the software system to control the instrument has taken existing software packages and re-used what is appropriate. The result is an end-to-end observation control system using technology components from DRAMA, ORAC, observing tools, GWC, existing in-house motor controllers and new developments like the MONSOON pixel server.

  10. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  11. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less

  12. Managing Scientific Software Complexity with Bocca and CCA

    DOE PAGES

    Allan, Benjamin A.; Norris, Boyana; Elwasif, Wael R.; ...

    2008-01-01

    In high-performance scientific software development, the emphasis is often on short time to first solution. Even when the development of new components mostly reuses existing components or libraries and only small amounts of new code must be created, dealing with the component glue code and software build processes to obtain complete applications is still tedious and error-prone. Component-based software meant to reduce complexity at the application level increases complexity to the extent that the user must learn and remember the interfaces and conventions of the component model itself. To address these needs, we introduce Bocca, the first tool to enablemore » application developers to perform rapid component prototyping while maintaining robust software-engineering practices suitable to HPC environments. Bocca provides project management and a comprehensive build environment for creating and managing applications composed of Common Component Architecture components. Of critical importance for high-performance computing (HPC) applications, Bocca is designed to operate in a language-agnostic way, simultaneously handling components written in any of the languages commonly used in scientific applications: C, C++, Fortran, Python and Java. Bocca automates the tasks related to the component glue code, freeing the user to focus on the scientific aspects of the application. Bocca embraces the philosophy pioneered by Ruby on Rails for web applications: start with something that works, and evolve it to the user's purpose.« less

  13. Software Analysis of New Space Gravity Data for Geophysics and Climate Research

    NASA Technical Reports Server (NTRS)

    Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.

    2012-01-01

    Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.

  14. The Dangers of Failure Masking in Fault-Tolerant Software: Aspects of a Recent In-Flight Upset Event

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2007-01-01

    On 1 August 2005, a Boeing Company 777-200 aircraft, operating on an international passenger flight from Australia to Malaysia, was involved in a significant upset event while flying on autopilot. The Australian Transport Safety Bureau's investigation into the event discovered that an anomaly existed in the component software hierarchy that allowed inputs from a known faulty accelerometer to be processed by the air data inertial reference unit (ADIRU) and used by the primary flight computer, autopilot and other aircraft systems. This anomaly had existed in original ADIRU software, and had not been detected in the testing and certification process for the unit. This paper describes the software aspects of the incident in detail, and suggests possible implications concerning complex, safety-critical, fault-tolerant software.

  15. Digital echocardiography 2002: now is the time

    NASA Technical Reports Server (NTRS)

    Thomas, James D.; Greenberg, Neil L.; Garcia, Mario J.

    2002-01-01

    The ability to acquire echocardiographic images digitally, store and transfer these data using the DICOM standard, and routinely analyze examinations exists today and allows the implementation of a digital echocardiography laboratory. The purpose of this review article is to outline the critical components of a digital echocardiography laboratory, discuss general strategies for implementation, and put forth some of the pitfalls that we have encountered in our own implementation. The major components of the digital laboratory include (1) digital echocardiography machines with network output, (2) a switched high-speed network, (3) a high throughput server with abundant local storage, (4) a reliable low-cost archive, (5) software to manage information, and (6) support mechanisms for software and hardware. Implementation strategies can vary from a complete vendor solution providing all components (hardware, software, support), to a strategy similar to our own where standard computer and networking hardware are used with specialized software for management of image and measurement information.

  16. Reuse Metrics for Object Oriented Software

    NASA Technical Reports Server (NTRS)

    Bieman, James M.

    1998-01-01

    One way to increase the quality of software products and the productivity of software development is to reuse existing software components when building new software systems. In order to monitor improvements in reuse, the level of reuse must be measured. In this NASA supported project we (1) derived a suite of metrics which quantify reuse attributes for object oriented, object based, and procedural software, (2) designed prototype tools to take these measurements in Ada, C++, Java, and C software, (3) evaluated the reuse in available software, (4) analyzed the relationship between coupling, cohesion, inheritance, and reuse, (5) collected object oriented software systems for our empirical analyses, and (6) developed quantitative criteria and methods for restructuring software to improve reusability.

  17. Oxygen Generation System Laptop Bus Controller Flight Software

    NASA Technical Reports Server (NTRS)

    Rowe, Chad; Panter, Donna

    2009-01-01

    The Oxygen Generation System Laptop Bus Controller Flight Software was developed to allow the International Space Station (ISS) program to activate specific components of the Oxygen Generation System (OGS) to perform a checkout of key hardware operation in a microgravity environment, as well as to perform preventative maintenance operations of system valves during a long period of what would otherwise be hardware dormancy. The software provides direct connectivity to the OGS Firmware Controller with pre-programmed tasks operated by on-orbit astronauts to exercise OGS valves and motors. The software is used to manipulate the pump, separator, and valves to alleviate the concerns of hardware problems due to long-term inactivity and to allow for operational verification of microgravity-sensitive components early enough so that, if problems are found, they can be addressed before the hardware is required for operation on-orbit. The decision was made to use existing on-orbit IBM ThinkPad A31p laptops and MIL-STD-1553B interface cards as the hardware configuration. The software at the time of this reporting was developed and tested for use under the Windows 2000 Professional operating system to ensure compatibility with the existing on-orbit computer systems.

  18. The South African Astronomical Observatory instrumentation software architecture and the SHOC instruments

    NASA Astrophysics Data System (ADS)

    van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish

    2016-07-01

    Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.

  19. Software system architecture for corporate user support

    NASA Astrophysics Data System (ADS)

    Sukhopluyeva, V. S.; Kuznetsov, D. Y.

    2017-01-01

    In this article, several existing ready-to-use solutions for the HelpDesk are reviewed. Advantages and disadvantages of these systems are identified. Architecture of software solution for a corporate user support system is presented in a form of the use case, state, and component diagrams described by using a unified modeling language (UML).

  20. An expert system based software sizing tool, phase 2

    NASA Technical Reports Server (NTRS)

    Friedlander, David

    1990-01-01

    A software tool was developed for predicting the size of a future computer program at an early stage in its development. The system is intended to enable a user who is not expert in Software Engineering to estimate software size in lines of source code with an accuracy similar to that of an expert, based on the program's functional specifications. The project was planned as a knowledge based system with a field prototype as the goal of Phase 2 and a commercial system planned for Phase 3. The researchers used techniques from Artificial Intelligence and knowledge from human experts and existing software from NASA's COSMIC database. They devised a classification scheme for the software specifications, and a small set of generic software components that represent complexity and apply to large classes of programs. The specifications are converted to generic components by a set of rules and the generic components are input to a nonlinear sizing function which makes the final prediction. The system developed for this project predicted code sizes from the database with a bias factor of 1.06 and a fluctuation factor of 1.77, an accuracy similar to that of human experts but without their significant optimistic bias.

  1. Using a Modular Construction Kit for the Realization of an Interactive Computer Graphics Course.

    ERIC Educational Resources Information Center

    Klein, Reinhard; Hanisch, Frank

    Recently, platform independent software components, like JavaBeans, have appeared that allow writing reusable components and composing them in a visual builder tool into new applications. This paper describes the use of such models to transform an existing course into a modular construction kit consisting of components of teaching text and program…

  2. Framework for End-User Programming of Cross-Smart Space Applications

    PubMed Central

    Palviainen, Marko; Kuusijärvi, Jarkko; Ovaska, Eila

    2012-01-01

    Cross-smart space applications are specific types of software services that enable users to share information, monitor the physical and logical surroundings and control it in a way that is meaningful for the user's situation. For developing cross-smart space applications, this paper makes two main contributions: it introduces (i) a component design and scripting method for end-user programming of cross-smart space applications and (ii) a backend framework of components that interwork to support the brunt of the RDFScript translation, and the use and execution of ontology models. Before end-user programming activities, the software professionals must develop easy-to-apply Driver components for the APIs of existing software systems. Thereafter, end-users are able to create applications from the commands of the Driver components with the help of the provided toolset. The paper also introduces the reference implementation of the framework, tools for the Driver component development and end-user programming of cross-smart space applications and the first evaluation results on their application. PMID:23202169

  3. Instrument control software development process for the multi-star AO system ARGOS

    NASA Astrophysics Data System (ADS)

    Kulas, M.; Barl, L.; Borelli, J. L.; Gässler, W.; Rabien, S.

    2012-09-01

    The ARGOS project (Advanced Rayleigh guided Ground layer adaptive Optics System) will upgrade the Large Binocular Telescope (LBT) with an AO System consisting of six Rayleigh laser guide stars. This adaptive optics system integrates several control loops and many different components like lasers, calibration swing arms and slope computers that are dispersed throughout the telescope. The purpose of the instrument control software (ICS) is running this AO system and providing convenient client interfaces to the instruments and the control loops. The challenges for the ARGOS ICS are the development of a distributed and safety-critical software system with no defects in a short time, the creation of huge and complex software programs with a maintainable code base, the delivery of software components with the desired functionality and the support of geographically distributed project partners. To tackle these difficult tasks, the ARGOS software engineers reuse existing software like the novel middleware from LINC-NIRVANA, an instrument for the LBT, provide many tests at different functional levels like unit tests and regression tests, agree about code and architecture style and deliver software incrementally while closely collaborating with the project partners. Many ARGOS ICS components are already successfully in use in the laboratories for testing ARGOS control loops.

  4. Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.

    2006-01-01

    Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.

  5. Technique for Early Reliability Prediction of Software Components Using Behaviour Models

    PubMed Central

    Ali, Awad; N. A. Jawawi, Dayang; Adham Isa, Mohd; Imran Babar, Muhammad

    2016-01-01

    Behaviour models are the most commonly used input for predicting the reliability of a software system at the early design stage. A component behaviour model reveals the structure and behaviour of the component during the execution of system-level functionalities. There are various challenges related to component reliability prediction at the early design stage based on behaviour models. For example, most of the current reliability techniques do not provide fine-grained sequential behaviour models of individual components and fail to consider the loop entry and exit points in the reliability computation. Moreover, some of the current techniques do not tackle the problem of operational data unavailability and the lack of analysis results that can be valuable for software architects at the early design stage. This paper proposes a reliability prediction technique that, pragmatically, synthesizes system behaviour in the form of a state machine, given a set of scenarios and corresponding constraints as input. The state machine is utilized as a base for generating the component-relevant operational data. The state machine is also used as a source for identifying the nodes and edges of a component probabilistic dependency graph (CPDG). Based on the CPDG, a stack-based algorithm is used to compute the reliability. The proposed technique is evaluated by a comparison with existing techniques and the application of sensitivity analysis to a robotic wheelchair system as a case study. The results indicate that the proposed technique is more relevant at the early design stage compared to existing works, and can provide a more realistic and meaningful prediction. PMID:27668748

  6. Knowledge base methodology: Methodology for first Engineering Script Language (ESL) knowledge base

    NASA Technical Reports Server (NTRS)

    Peeris, Kumar; Izygon, Michel E.

    1992-01-01

    The primary goal of reusing software components is that software can be developed faster, cheaper and with higher quality. Though, reuse is not automatic and can not just happen. It has to be carefully engineered. For example a component needs to be easily understandable in order to be reused, and it has also to be malleable enough to fit into different applications. In fact the software development process is deeply affected when reuse is being applied. During component development, a serious effort has to be directed toward making these components as reusable. This implies defining reuse coding style guidelines and applying then to any new component to create as well as to any old component to modify. These guidelines should point out the favorable reuse features and may apply to naming conventions, module size and cohesion, internal documentation, etc. During application development, effort is shifted from writing new code toward finding and eventually modifying existing pieces of code, then assembling them together. We see here that reuse is not free, and therefore has to be carefully managed.

  7. A theoretical basis for the analysis of redundant software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.

  8. Users guide for STHARVEST: software to estimate the cost of harvesting small timber.

    Treesearch

    Roger D. Fight; Xiaoshan Zhang; Bruce R. Hartsough

    2003-01-01

    The STHARVEST computer application is Windows-based, public-domain software used to estimate costs for harvesting small-diameter stands or the small-diameter component of a mixed-sized stand. The equipment production rates were developed from existing studies. Equipment operating cost rates were based on November 1998 prices for new equipment and wage rates for the...

  9. Models and Frameworks: A Synergistic Association for Developing Component-Based Applications

    PubMed Central

    Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A.; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development. PMID:25147858

  10. Models and frameworks: a synergistic association for developing component-based applications.

    PubMed

    Alonso, Diego; Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development.

  11. Current state of the mass storage system reference model

    NASA Technical Reports Server (NTRS)

    Coyne, Robert

    1993-01-01

    IEEE SSSWG was chartered in May 1990 to abstract the hardware and software components of existing and emerging storage systems and to define the software interfaces between these components. The immediate goal is the decomposition of a storage system into interoperable functional modules which vendors can offer as separate commercial products. The ultimate goal is to develop interoperable standards which define the software interfaces, and in the distributed case, the associated protocols to each of the architectural modules in the model. The topics are presented in viewgraph form and include the following: IEEE SSSWG organization; IEEE SSSWG subcommittees & chairs; IEEE standards activity board; layered view of the reference model; layered access to storage services; IEEE SSSWG emphasis; and features for MSSRM version 5.

  12. System and Software Reliability (C103)

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores

    2003-01-01

    Within the last decade better reliability models (hardware. software, system) than those currently used have been theorized and developed but not implemented in practice. Previous research on software reliability has shown that while some existing software reliability models are practical, they are no accurate enough. New paradigms of development (e.g. OO) have appeared and associated reliability models have been proposed posed but not investigated. Hardware models have been extensively investigated but not integrated into a system framework. System reliability modeling is the weakest of the three. NASA engineers need better methods and tools to demonstrate that the products meet NASA requirements for reliability measurement. For the new models for the software component of the last decade, there is a great need to bring them into a form that they can be used on software intensive systems. The Statistical Modeling and Estimation of Reliability Functions for Systems (SMERFS'3) tool is an existing vehicle that may be used to incorporate these new modeling advances. Adapting some existing software reliability modeling changes to accommodate major changes in software development technology may also show substantial improvement in prediction accuracy. With some additional research, the next step is to identify and investigate system reliability. System reliability models could then be incorporated in a tool such as SMERFS'3. This tool with better models would greatly add value in assess in GSFC projects.

  13. What Not To Do: Anti-patterns for Developing Scientific Workflow Software Components

    NASA Astrophysics Data System (ADS)

    Futrelle, J.; Maffei, A. R.; Sosik, H. M.; Gallager, S. M.; York, A.

    2013-12-01

    Scientific workflows promise to enable efficient scaling-up of researcher code to handle large datasets and workloads, as well as documentation of scientific processing via standardized provenance records, etc. Workflow systems and related frameworks for coordinating the execution of otherwise separate components are limited, however, in their ability to overcome software engineering design problems commonly encountered in pre-existing components, such as scripts developed externally by scientists in their laboratories. In practice, this often means that components must be rewritten or replaced in a time-consuming, expensive process. In the course of an extensive workflow development project involving large-scale oceanographic image processing, we have begun to identify and codify 'anti-patterns'--problematic design characteristics of software--that make components fit poorly into complex automated workflows. We have gone on to develop and document low-effort solutions and best practices that efficiently address the anti-patterns we have identified. The issues, solutions, and best practices can be used to evaluate and improve existing code, as well as guiding the development of new components. For example, we have identified a common anti-pattern we call 'batch-itis' in which a script fails and then cannot perform more work, even if that work is not precluded by the failure. The solution we have identified--removing unnecessary looping over independent units of work--is often easier to code than the anti-pattern, as it eliminates the need for complex control flow logic in the component. Other anti-patterns we have identified are similarly easy to identify and often easy to fix. We have drawn upon experience working with three science teams at Woods Hole Oceanographic Institution, each of which has designed novel imaging instruments and associated image analysis code. By developing use cases and prototypes within these teams, we have undertaken formal evaluations of software components developed by programmers with widely varying levels of expertise, and have been able to discover and characterize a number of anti-patterns. Our evaluation methodology and testbed have also enabled us to assess the efficacy of strategies to address these anti-patterns according to scientifically relevant metrics, such as ability of algorithms to perform faster than the rate of data acquisition and the accuracy of workflow component output relative to ground truth. The set of anti-patterns and solutions we have identified augments of the body of more well-known software engineering anti-patterns by addressing additional concerns that obtain when a software component has to function as part of a workflow assembled out of independently-developed codebases. Our experience shows that identifying and resolving these anti-patterns reduces development time and improves performance without reducing component reusability.

  14. Megasite Management Tool (mmt): a Decision Support System Built Using Mapwindow Activex Control

    NASA Astrophysics Data System (ADS)

    Pulsani, B. R.

    2017-11-01

    Megasite Management Tool (MMT) is planning and evaluation software for contaminated sites. Using different statistical modules, MMT produces maps which help decision makers in rehabilitating contaminated sites. The input data used by MMT is of geographic nature and exists as shapefile and raster format. As MMT is built using simple windows forms application, the objective of the study was to find a way to visualize geographic data and to allow the user to edit its attribute information. Therefore, the application requirement was to find GIS libraries which offer capabilities such as (1) map viewer with navigation tools (2) library to read/write geographic data and (3) software which allows free distribution of the developed components. A research on these requirements led to the discovery of MapWindow ActiveX components which not only offered these capabilities but also provided free and open source licensing options for redistribution. Although considerable amount of reports and publications exist on MMT, the major contribution provided by MapWindow libraries have been under played. The current study emphasises upon the contribution and advantages MapWindow ActiveX provides for incorporating GIS functionality to an already existing application. Similar components for other languages have also been reviewed.

  15. Sustainable Software Decisions for Long-term Projects (Invited)

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Groman, R. C.; Chandler, C. L.; Gaylord, D.; Sun, M.

    2013-12-01

    Adopting new, emerging technologies can be difficult for established projects that are positioned to exist for years to come. In some cases the challenge lies in the pre-existing software architecture. In others, the challenge lies in the fluctuation of resources like people, time and funding. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created in late 2006 by combining the data management offices for the U.S. GLOBEC and U.S. JGOFS programs to publish data for researchers funded by the National Science Foundation (NSF). Since its inception, BCO-DMO has been supporting access and discovery of these data through web-accessible software systems, and the office has worked through many of the challenges of incorporating new technologies into its software systems. From migrating human readable, flat file metadata storage into a relational database, and now, into a content management system (Drupal) to incorporating controlled vocabularies, new technologies can radically affect the existing software architecture. However, through the use of science-driven use cases, effective resource management, and loosely coupled software components, BCO-DMO has been able to adapt its existing software architecture to adopt new technologies. One of the latest efforts at BCO-DMO revolves around applying metadata semantics for publishing linked data in support of data discovery. This effort primarily affects the metadata web interface software at http://bco-dmo.org and the geospatial interface software at http://mapservice.bco-dmo.org/. With guidance from science-driven use cases and consideration of our resources, implementation decisions are made using a strategy to loosely couple the existing software systems to the new technologies. The results of this process led to the use of REST web services and a combination of contributed and custom Drupal modules for publishing BCO-DMO's content using the Resource Description Framework (RDF) via an instance of the Virtuoso Open-Source triplestore.

  16. DOIDB: Reusing DataCite's search software as metadata portal for GFZ Data Services

    NASA Astrophysics Data System (ADS)

    Elger, K.; Ulbricht, D.; Bertelmann, R.

    2016-12-01

    GFZ Data Services is the central service point for the publication of research data at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ). It provides data publishing services to scientists of GFZ, associated projects, and associated institutions. The publishing services aim to make research data and physical samples visible and citable, by assigning persistent identifiers (DOI, IGSN) and by complementing existing IT infrastructure. To integrate several research domains a modular software stack that is made of free software components has been created to manage data and metadata as well as register persistent identifiers [1]. Pivotal component for the registration of DOIs is the DOIDB. It has been derived from three software components provided by DataCite [2] that moderate the registration of DOIs and the deposition of metadata, allow the dissemination of metadata, and provide a user interface to navigate and discover datasets. The DOIDB acts as a proxy to the DataCite infrastructure and in addition to the DataCite metadata schema, it allows to deposit and disseminate metadata following the schemas ISO19139 and NASA GCMD DIF. The search component has been modified to meet the requirements of a geosciences metadata portal. In particular, the search component has been altered to make use of Apache SOLRs capability to index and query spatial coordinates. Furthermore, the user interface has been adjusted to provide a first impression of the data by showing a map, summary information and subjects. DOIDB and its components are available on GitHub [3].We present a software solution for registration of DOIs that allows to integrate existing data systems, keeps track of registered DOIs, and provides a metadata portal to discover datasets [4]. [1] Ulbricht, D.; Elger, K.; Bertelmann, R.; Klump, J. panMetaDocs, eSciDoc, and DOIDB—An Infrastructure for the Curation and Publication of File-Based Datasets for GFZ Data Services. ISPRS Int. J. Geo-Inf. 2016, 5, 25. http://doi.org/10.3390/ijgi5030025[2] https://github.com/datacite[3] https://github.com/ulbricht/search/tree/doidb , https://github.com/ulbricht/mds/tree/doidb , https://github.com/ulbricht/oaip/tree/doidb[4] http://doidb.wdc-terra.org

  17. Dependency visualization for complex system understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, J. Allison Cory

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impairedmore » as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.« less

  18. Observing System Simulation Experiment (OSSE) for the HyspIRI Spectrometer Mission

    NASA Technical Reports Server (NTRS)

    Turmon, Michael J.; Block, Gary L.; Green, Robert O.; Hua, Hook; Jacob, Joseph C.; Sobel, Harold R.; Springer, Paul L.; Zhang, Qingyuan

    2010-01-01

    The OSSE software provides an integrated end-to-end environment to simulate an Earth observing system by iteratively running a distributed modeling workflow based on the HyspIRI Mission, including atmospheric radiative transfer, surface albedo effects, detection, and retrieval for agile exploration of the mission design space. The software enables an Observing System Simulation Experiment (OSSE) and can be used for design trade space exploration of science return for proposed instruments by modeling the whole ground truth, sensing, and retrieval chain and to assess retrieval accuracy for a particular instrument and algorithm design. The OSSE in fra struc ture is extensible to future National Research Council (NRC) Decadal Survey concept missions where integrated modeling can improve the fidelity of coupled science and engineering analyses for systematic analysis and science return studies. This software has a distributed architecture that gives it a distinct advantage over other similar efforts. The workflow modeling components are typically legacy computer programs implemented in a variety of programming languages, including MATLAB, Excel, and FORTRAN. Integration of these diverse components is difficult and time-consuming. In order to hide this complexity, each modeling component is wrapped as a Web Service, and each component is able to pass analysis parameterizations, such as reflectance or radiance spectra, on to the next component downstream in the service workflow chain. In this way, the interface to each modeling component becomes uniform and the entire end-to-end workflow can be run using any existing or custom workflow processing engine. The architecture lets users extend workflows as new modeling components become available, chain together the components using any existing or custom workflow processing engine, and distribute them across any Internet-accessible Web Service endpoints. The workflow components can be hosted on any Internet-accessible machine. This has the advantages that the computations can be distributed to make best use of the available computing resources, and each workflow component can be hosted and maintained by their respective domain experts.

  19. Advanced software development workstation project: Engineering scripting language. Graphical editor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  20. An efficient approach to the deployment of complex open source information systems

    PubMed Central

    Cong, Truong Van Chi; Groeneveld, Eildert

    2011-01-01

    Complex open source information systems are usually implemented as component-based software to inherit the available functionality of existing software packages developed by third parties. Consequently, the deployment of these systems not only requires the installation of operating system, application framework and the configuration of services but also needs to resolve the dependencies among components. The problem becomes more challenging when the application must be installed and used on different platforms such as Linux and Windows. To address this, an efficient approach using the virtualization technology is suggested and discussed in this paper. The approach has been applied in our project to deploy a web-based integrated information system in molecular genetics labs. It is a low-cost solution to benefit both software developers and end-users. PMID:22102770

  1. A federated design for a neurobiological simulation engine: the CBI federated software architecture.

    PubMed

    Cornelis, Hugo; Coop, Allan D; Bower, James M

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.

  2. A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture

    PubMed Central

    Cornelis, Hugo; Coop, Allan D.; Bower, James M.

    2012-01-01

    Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components. PMID:22242154

  3. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.« less

  4. Universal distribution of component frequencies in biological and technological systems

    PubMed Central

    Pang, Tin Yau; Maslov, Sergei

    2013-01-01

    Bacterial genomes and large-scale computer software projects both consist of a large number of components (genes or software packages) connected via a network of mutual dependencies. Components can be easily added or removed from individual systems, and their use frequencies vary over many orders of magnitude. We study this frequency distribution in genomes of ∼500 bacterial species and in over 2 million Linux computers and find that in both cases it is described by the same scale-free power-law distribution with an additional peak near the tail of the distribution corresponding to nearly universal components. We argue that the existence of a power law distribution of frequencies of components is a general property of any modular system with a multilayered dependency network. We demonstrate that the frequency of a component is positively correlated with its dependency degree given by the total number of upstream components whose operation directly or indirectly depends on the selected component. The observed frequency/dependency degree distributions are reproduced in a simple mathematically tractable model introduced and analyzed in this study. PMID:23530195

  5. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  6. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  7. Experiences integrating autonomous components and legacy systems into tsunami early warning systems

    NASA Astrophysics Data System (ADS)

    Reißland, S.; Herrnkind, S.; Guenther, M.; Babeyko, A.; Comoglu, M.; Hammitzsch, M.

    2012-04-01

    Fostered by and embedded in the general development of Information and Communication Technology (ICT) the evolution of Tsunami Early Warning Systems (TEWS) shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors, e.g. sea level stations for the detection of tsunami waves and GPS stations for the detection of ground displacements. Furthermore, the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources serving near real-time data not only includes sensors but also other components and systems offering services such as the delivery of feasible simulations used for forecasting in an imminent tsunami threat. In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the project Distant Early Warning System (DEWS) a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC) and the Organization for the Advancement of Structured Information Standards (OASIS) have been successfully incorporated. In the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) new developments are used to extend the existing platform to realise a component-based technology framework for building distributed TEWS. This talk will describe experiences made in GITEWS, DEWS and TRIDEC while integrating legacy stand-alone systems and newly developed special-purpose software components into TEWS using different software adapters and communication strategies to make the systems work together in a corporate infrastructure. The talk will also cover task management and data conversion between the different systems. Practical approaches and software solutions for the integration of sensors, e.g. providing seismic and sea level data, and utilisation of special-purpose components, such as simulation systems, in TEWS will be presented.

  8. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    PubMed

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  9. RESEARCH AND DESIGN ABOUT VERSATILE 3D-CAD ENGINE FOR CONSTRUCTION

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigenori; Kubota, Satoshi; Kitagawa, Etsuji; Monobe, Kantaro; Nakamura, Kenji

    In the construction field of Japan, it is an important subject to build the environment where 3D-CAD data is used for CALS/EC, information construction, and an improvement in productivity. However, in the construction field, 3D-CAD software does not exist under the present circumstances. Then, in order to support development of domestic 3D-CAD software, it is required to develop a 3D-CAD engine. In this research, in order to familiarize the 3D-CAD software at low cost and quickly and build the environment where the 3D-CAD software is utilizable, investigation for designing a 3D-CAD engine is proposed. The target for investigation are the use scene of 3D-CAD, the seeds which accompany 3D-CAD, a standardization trend, existing products, IT component engineering. Based on results of the investigation, the functional requirements for the 3D-CAD engine for the construction field were concluded.

  10. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA)

    PubMed Central

    Lee, Yong-Gu; Lyons, Kevin W.; Feng, Shaw C.

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design. PMID:27366610

  11. Issues in Defining Software Architectures in a GIS Environment

    NASA Technical Reports Server (NTRS)

    Acosta, Jesus; Alvorado, Lori

    1997-01-01

    The primary mission of the Pan-American Center for Earth and Environmental Studies (PACES) is to advance the research areas that are relevant to NASA's Mission to Planet Earth program. One of the activities at PACES is the establishment of a repository for geographical, geological and environmental information that covers various regions of Mexico and the southwest region of the U.S. and that is acquired from NASA and other sources through remote sensing, ground studies or paper-based maps. The center will be providing access of this information to other government entities in the U.S. and Mexico, and research groups from universities, national laboratories and industry. Geographical Information Systems(GIS) provide the means to manage, manipulate, analyze and display geographically referenced information that will be managed by PACES. Excellent off-the-shelf software exists for a complete GIS as well as software for storing and managing spatial databases, processing images, networking and viewing maps with layered information. This allows the user flexibility in combining systems to create a GIS or to mix these software packages with custom-built application programs. Software architectural languages provide the ability to specify the computational components and interactions among these components, an important topic in the domain of GIS because of the need to integrate numerous software packages. This paper discusses the characteristics that architectural languages address with respect to the issues relating to the data that must be communicated between software systems and components when systems interact. The paper presents a background on GIS in section 2. Section 3 gives an overview of software architecture and architectural languages. Section 4 suggests issues that may be of concern when defining the software architecture of a GIS. The last section discusses the future research effort and finishes with a summary.

  12. Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2003-01-01

    This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.

  13. Model-Drive Architecture for Agent-Based Systems

    NASA Technical Reports Server (NTRS)

    Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.

    2004-01-01

    The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.

  14. Web accessibility and open source software.

    PubMed

    Obrenović, Zeljko

    2009-07-01

    A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.

  15. An off-the-shelf guider for the Palomar 200-inch telescope: interfacing amateur astronomy software with professional telescopes for an easy life

    NASA Astrophysics Data System (ADS)

    Clarke, Fraser; Lynn, James; Thatte, Niranjan; Tecza, Matthias

    2014-08-01

    We have developed a simple but effective guider for use with the Oxford-SWIFT integral field spectrograph on the Palomar 200-inch telescope. The guider uses mainly off-the-shelf components, including commercial amateur astronomy software to interface with the CCD camera, calculating guiding corrections, and send guide commands to the telescope. The only custom piece of software is an driver to provide an interface between the Palomar telescope control system and the industry standard 'ASCOM' system. Using existing commercial software provided a very cheap guider (<$5000) with minimal (<15 minutes) commissioning time. The final system provides sub-arcsecond guiding, and could easily be adapted to any other professional telescope

  16. Software engineering techniques and CASE tools in RD13

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  17. Software Health Management: A Short Review of Challenges and Existing Techniques

    NASA Technical Reports Server (NTRS)

    Pipatsrisawat, Knot; Darwiche, Adnan; Mengshoel, Ole J.; Schumann, Johann

    2009-01-01

    Modern spacecraft (as well as most other complex mechanisms like aircraft, automobiles, and chemical plants) rely more and more on software, to a point where software failures have caused severe accidents and loss of missions. Software failures during a manned mission can cause loss of life, so there are severe requirements to make the software as safe and reliable as possible. Typically, verification and validation (V&V) has the task of making sure that all software errors are found before the software is deployed and that it always conforms to the requirements. Experience, however, shows that this gold standard of error-free software cannot be reached in practice. Even if the software alone is free of glitches, its interoperation with the hardware (e.g., with sensors or actuators) can cause problems. Unexpected operational conditions or changes in the environment may ultimately cause a software system to fail. Is there a way to surmount this problem? In most modern aircraft and many automobiles, hardware such as central electrical, mechanical, and hydraulic components are monitored by IVHM (Integrated Vehicle Health Management) systems. These systems can recognize, isolate, and identify faults and failures, both those that already occurred as well as imminent ones. With the help of diagnostics and prognostics, appropriate mitigation strategies can be selected (replacement or repair, switch to redundant systems, etc.). In this short paper, we discuss some challenges and promising techniques for software health management (SWHM). In particular, we identify unique challenges for preventing software failure in systems which involve both software and hardware components. We then present our classifications of techniques related to SWHM. These classifications are performed based on dimensions of interest to both developers and users of the techniques, and hopefully provide a map for dealing with software faults and failures.

  18. HSE12 implementation in libxc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussa, Jonathan E.

    2013-05-13

    This piece of software is a new feature implemented inside an existing open-source library. Specifically, it is a new implementation of a density functional (HSE, short for Heyd-Scuseria-Ernzerhof) for a repository of density functionals, the libxc library. It fixes some numerical problems with existing implementations, as outlined in a scientific paper recently submitted for publication. Density functionals are components of electronic structure simulations, which model properties of electrons inside molecules and crystals.

  19. Evaluating Usability of Radiology Information Systems in Hospitals of Tabriz University of Medical Sciences.

    PubMed

    Rezaei-Hachesu, Peyman; Pesianian, Esmaeil; Mohammadian, Mohsen

    2016-02-01

    Radiology information system (RIS) in order to reduce workload and improve the quality of services must be well-designed. Heuristic evaluation is one of the methods that understand usability problems with the least time, cost and resources. The aim of present study is to evaluate the usability of RISs in hospitals. This is a cross-sectional descriptive study (2015) that uses heuristic evaluation method to evaluate the usability of RIS used in 3 hospitals of Tabriz city. The data are collected using a standard checklist based on 13 principles of Nielsen Heuristic evaluation method. Usability of RISs was investigated based on the number of components observed from Nielsen principles and problems of usability based on the number of non-observed components as well as non-existent or unrecognizable components. by evaluation of RISs in each of the hospitals 1, 2 and 3, total numbers of observed components were obtained as 173, 202 and 196, respectively. It was concluded that the usability of RISs in the studied population, on average and with observing 190 components of the 291 components related to the 13 principles of Nielsen is 65.41 %. Furthermore, problems of usability were obtained as 26.35%. The established and visible nature of some components such as response time of application, visual feedbacks, colors, view and design and arrangement of software objects cause more attention to these components as principal components in designing UI software. Also, incorrect analysis before system design leads to a lack of attention to secondary needs like Help software and security issues.

  20. Judicious use of custom development in an open source component architecture

    NASA Astrophysics Data System (ADS)

    Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.

    2014-12-01

    Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.

  1. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas

    2003-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  2. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.

    2000-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  3. A research review of quality assessment for software

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Measures were recommended to assess the quality of software submitted to the AdaNet program. The quality factors that are important to software reuse are explored and methods of evaluating those factors are discussed. Quality factors important to software reuse are: correctness, reliability, verifiability, understandability, modifiability, and certifiability. Certifiability is included because the documentation of many factors about a software component such as its efficiency, portability, and development history, constitute a class for factors important to some users, not important at all to other, and impossible for AdaNet to distinguish between a priori. The quality factors may be assessed in different ways. There are a few quantitative measures which have been shown to indicate software quality. However, it is believed that there exists many factors that indicate quality and have not been empirically validated due to their subjective nature. These subjective factors are characterized by the way in which they support the software engineering principles of abstraction, information hiding, modularity, localization, confirmability, uniformity, and completeness.

  4. A Generic Software Architecture For Prognostics

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason

    2017-01-01

    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.

  5. Evaluating geographic information systems technology

    USGS Publications Warehouse

    Guptill, Stephen C.

    1989-01-01

    Computerized geographic information systems (GISs) are emerging as the spatial data handling tools of choice for solving complex geographical problems. However, few guidelines exist for assisting potential users in identifying suitable hardware and software. A process to be followed in evaluating the merits of GIS technology is presented. Related standards and guidelines, software functions, hardware components, and benchmarking are discussed. By making users aware of all aspects of adopting GIS technology, they can decide if GIS is an appropriate tool for their application and, if so, which GIS should be used.

  6. Empirical Estimates of 0Day Vulnerabilities in Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles A. McQueen; Wayne F. Boyer; Sean M. McBride

    2009-01-01

    We define a 0Day vulnerability to be any vulnerability, in deployed software, which has been discovered by at least one person but has not yet been publicly announced or patched. These 0Day vulnerabilities are of particular interest when assessing the risk to well managed control systems which have already effectively mitigated the publicly known vulnerabilities. In these well managed systems the risk contribution from 0Days will have proportionally increased. To aid understanding of how great a risk 0Days may pose to control systems, an estimate of how many are in existence is needed. Consequently, using the 0Day definition given above,more » we developed and applied a method for estimating how many 0Day vulnerabilities are in existence on any given day. The estimate is made by: empirically characterizing the distribution of the lifespans, measured in days, of 0Day vulnerabilities; determining the number of vulnerabilities publicly announced each day; and applying a novel method for estimating the number of 0Day vulnerabilities in existence on any given day using the number of vulnerabilities publicly announced each day and the previously derived distribution of 0Day lifespans. The method was first applied to a general set of software applications by analyzing the 0Day lifespans of 491 software vulnerabilities and using the daily rate of vulnerability announcements in the National Vulnerability Database. This led to a conservative estimate that in the worst year there were, on average, 2500 0Day software related vulnerabilities in existence on any given day. Using a smaller but intriguing set of 15 0Day software vulnerability lifespans representing the actual time from discovery to public disclosure, we then made a more aggressive estimate. In this case, we estimated that in the worst year there were, on average, 4500 0Day software vulnerabilities in existence on any given day. We then proceeded to identify the subset of software applications likely to be used in some control systems, analyzed the associated subset of vulnerabilities, and characterized their lifespans. Using the previously developed method of analysis, we very conservatively estimated 250 control system related 0Day vulnerabilities in existence on any given day. While reasonable, this first order estimate for control systems is probably far more conservative than those made for general software systems since the estimate did not include vulnerabilities unique to control system specific components. These control system specific vulnerabilities were unable to be included in the estimate for a variety of reasons with the most problematic being that the public announcement of unique control system vulnerabilities is very sparse. Consequently, with the intent to improve the above 0Day estimate for control systems, we first identified the additional, unique to control systems, vulnerability estimation constraints and then investigated new mechanisms which may be useful for estimating the number of unique 0Day software vulnerabilities found in control system components. We proceeded to identify a number of new mechanisms and approaches for estimating and incorporating control system specific vulnerabilities into an improved 0Day estimation method. These new mechanisms and approaches appear promising and will be more rigorously evaluated during the course of the next year.« less

  7. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  8. What Is An Expert System? ERIC Digest.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    This digest describes and defines the various components of an expert system, e.g., a computerized tool designed to enhance the quality and availability of knowledge required by decision makers. It is noted that expert systems differ from conventional applications software in the following areas: (1) the existence of the expert systems shell, or…

  9. An investigation of modelling and design for software service applications.

    PubMed

    Anjum, Maria; Budgen, David

    2017-01-01

    Software services offer the opportunity to use a component-based approach for the design of applications. However, this needs a deeper understanding of how to develop service-based applications in a systematic manner, and of the set of properties that need to be included in the 'design model'. We have used a realistic application to explore systematically how service-based designs can be created and described. We first identified the key properties of an SOA (service oriented architecture) and then undertook a single-case case study to explore its use in the development of a design for a large-scale application in energy engineering, modelling this with existing notations wherever possible. We evaluated the resulting design model using two walkthroughs with both domain and application experts. We were able to successfully develop a design model around the ten properties identified, and to describe it by adapting existing design notations. A component-based approach to designing such systems does appear to be feasible. However, it needs the assistance of a more integrated set of notations for describing the resulting design model.

  10. Trusted Computing Technologies, Intel Trusted Execution Technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorizedmore » users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.« less

  11. An investigation of modelling and design for software service applications

    PubMed Central

    2017-01-01

    Software services offer the opportunity to use a component-based approach for the design of applications. However, this needs a deeper understanding of how to develop service-based applications in a systematic manner, and of the set of properties that need to be included in the ‘design model’. We have used a realistic application to explore systematically how service-based designs can be created and described. We first identified the key properties of an SOA (service oriented architecture) and then undertook a single-case case study to explore its use in the development of a design for a large-scale application in energy engineering, modelling this with existing notations wherever possible. We evaluated the resulting design model using two walkthroughs with both domain and application experts. We were able to successfully develop a design model around the ten properties identified, and to describe it by adapting existing design notations. A component-based approach to designing such systems does appear to be feasible. However, it needs the assistance of a more integrated set of notations for describing the resulting design model. PMID:28489905

  12. caGrid 1.0: a Grid enterprise architecture for cancer research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  13. Case for Deploying Complex Systems Utilizing Commodity Components

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Pitts, R. Lee; Ritter, George

    2003-01-01

    This viewgraph representation presents a study of the transition of computer networks and software engineering at the Huntsville Operations Support Center (HOSC) from a client/server UNIX based system to a client/server system based on commodity priced and open system components. Topics covered include: an overview of HOSC ground support systems, an analysis for changes to the existing ground support system, an analysis of options considered for the transition to a new system, and a consideration of goals for a new system.

  14. Software component quality evaluation

    NASA Technical Reports Server (NTRS)

    Clough, A. J.

    1991-01-01

    The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.

  15. Integration, acceptance testing, and clinical operation of the Medical Information, Communication and Archive System, phase II.

    PubMed

    Smith, E M; Wandtke, J; Robinson, A

    1999-05-01

    The Medical Information, Communication and Archive System (MICAS) is a multivendor incremental approach to picture archiving and communications system (PACS). It is a multimodality integrated image management system that is seamlessly integrated with the radiology information system (RIS). Phase II enhancements of MICAS include a permanent archive, automated workflow, study caches, Microsoft (Redmond, WA) Windows NT diagnostic workstations with all components adhering to Digital Information Communications in Medicine (DICOM) standards. MICAS is designed as an enterprise-wide PACS to provide images and reports throughout the Strong Health healthcare network. Phase II includes the addition of a Cemax-Icon (Fremont, CA) archive, PACS broker (Mitra, Waterloo, Canada), an interface (IDX PACSlink, Burlington, VT) to the RIS (IDXrad) plus the conversion of the UNIX-based redundant array of inexpensive disks (RAID) 5 temporary archives in phase I to NT-based RAID 0 DICOM modality-specific study caches (ImageLabs, Bedford, MA). The phase I acquisition engines and workflow management software was uninstalled and the Cemax archive manager (AM) assumed these functions. The existing ImageLabs UNIX-based viewing software was enhanced and converted to an NT-based DICOM viewer. Installation of phase II hardware and software and integration with existing components began in July 1998. Phase II of MICAS demonstrates that a multivendor open-system incremental approach to PACS is feasible, cost-effective, and has significant advantages over a single-vendor implementation.

  16. Real-Time Extended Interface Automata for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  17. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  18. The Five 'R's' for Developing Trusted Software Frameworks to increase confidence in, and maximise reuse of, Open Source Software.

    NASA Astrophysics Data System (ADS)

    Fraser, Ryan; Gross, Lutz; Wyborn, Lesley; Evans, Ben; Klump, Jens

    2015-04-01

    Recent investments in HPC, cloud and Petascale data stores, have dramatically increased the scale and resolution that earth science challenges can now be tackled. These new infrastructures are highly parallelised and to fully utilise them and access the large volumes of earth science data now available, a new approach to software stack engineering needs to be developed. The size, complexity and cost of the new infrastructures mean any software deployed has to be reliable, trusted and reusable. Increasingly software is available via open source repositories, but these usually only enable code to be discovered and downloaded. As a user it is hard for a scientist to judge the suitability and quality of individual codes: rarely is there information on how and where codes can be run, what the critical dependencies are, and in particular, on the version requirements and licensing of the underlying software stack. A trusted software framework is proposed to enable reliable software to be discovered, accessed and then deployed on multiple hardware environments. More specifically, this framework will enable those who generate the software, and those who fund the development of software, to gain credit for the effort, IP, time and dollars spent, and facilitate quantification of the impact of individual codes. For scientific users, the framework delivers reviewed and benchmarked scientific software with mechanisms to reproduce results. The trusted framework will have five separate, but connected components: Register, Review, Reference, Run, and Repeat. 1) The Register component will facilitate discovery of relevant software from multiple open source code repositories. The registration process of the code should include information about licensing, hardware environments it can be run on, define appropriate validation (testing) procedures and list the critical dependencies. 2) The Review component is targeting on the verification of the software typically against a set of benchmark cases. This will be achieved by linking the code in the software framework to peer review forums such as Mozilla Science or appropriate Journals (e.g. Geoscientific Model Development Journal) to assist users to know which codes to trust. 3) Referencing will be accomplished by linking the Software Framework to groups such as Figshare or ImpactStory that help disseminate and measure the impact of scientific research, including program code. 4) The Run component will draw on information supplied in the registration process, benchmark cases described in the review and relevant information to instantiate the scientific code on the selected environment. 5) The Repeat component will tap into existing Provenance Workflow engines that will automatically capture information that relate to a particular run of that software, including identification of all input and output artefacts, and all elements and transactions within that workflow. The proposed trusted software framework will enable users to rapidly discover and access reliable code, reduce the time to deploy it and greatly facilitate sharing, reuse and reinstallation of code. Properly designed it could enable an ability to scale out to massively parallel systems and be accessed nationally/ internationally for multiple use cases, including Supercomputer centres, cloud facilities, and local computers.

  19. Software for evaluating greenhouse gas emissions and the carbon footprint of dairy production systems

    USDA-ARS?s Scientific Manuscript database

    Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...

  20. Scientific Software - the role of best practices and recommendations

    NASA Astrophysics Data System (ADS)

    Fritzsch, Bernadette; Bernstein, Erik; Castell, Wolfgang zu; Diesmann, Markus; Haas, Holger; Hammitzsch, Martin; Konrad, Uwe; Lähnemann, David; McHardy, Alice; Pampel, Heinz; Scheliga, Kaja; Schreiber, Andreas; Steglich, Dirk

    2017-04-01

    In Geosciences - like in most other communities - scientific work strongly depends on software. For big data analysis, existing (closed or open source) program packages are often mixed with newly developed codes. Different versions of software components and varying configurations can influence the result of data analysis. This often makes reproducibility of results and reuse of codes very difficult. Policies for publication and documentation of used and newly developed software, along with best practices, can help tackle this problem. Within the Helmholtz Association a Task Group "Access to and Re-use of scientific software" was implemented by the Open Science Working Group in 2016. The aim of the Task Group is to foster the discussion about scientific software in the Open Science context and to formulate recommendations for the production and publication of scientific software, ensuring open access to it. As a first step, a workshop gathered interested scientists from institutions across Germany. The workshop brought together various existing initiatives from different scientific communities to analyse current problems, share established best practices and come up with possible solutions. The subjects in the working groups covered a broad range of themes, including technical infrastructures, standards and quality assurance, citation of software and reproducibility. Initial recommendations are presented and discussed in the talk. They are the foundation for further discussions in the Helmholtz Association and the Priority Initiative "Digital Information" of the Alliance of Science Organisations in Germany. The talk aims to inform about the activities and to link with other initiatives on the national or international level.

  1. How can the English-language scientific literature be made more accessible to non-native speakers? Journals should allow greater use of referenced direct quotations in 'component-oriented' scientific writing.

    PubMed

    Charlton, Bruce G

    2007-01-01

    In scientific writing, although clarity and precision of language are vital to effective communication, it seems undeniable that content is more important than form. Potentially valuable knowledge should not be excluded from the scientific literature merely because the researchers lack advanced language skills. Given that global scientific literature is overwhelmingly in the English-language, this presents a problem for non-native speakers. My proposal is that scientists should be permitted to construct papers using a substantial number of direct quotations from the already-published scientific literature. Quotations would need to be explicitly referenced so that the original author and publication should be given full credit for creating such a useful and valid description. At the extreme, this might result in a paper consisting mainly of a 'mosaic' of quotations from the already existing scientific literature, which are linked and extended by relatively few sentences comprising new data or ideas. This model bears some conceptual relationship to the recent trend in computing science for component-based or component-oriented software engineering - in which new programs are constructed by reusing programme components, which may be available in libraries. A new functionality is constructed by linking-together many pre-existing chunks of software. I suggest that journal editors should, in their instructions to authors, explicitly allow this 'component-oriented' method of constructing scientific articles; and carefully describe how it can be accomplished in such a way that proper referencing is enforced, and full credit is allocated to the authors of the reused linguistic components.

  2. A Facility and Architecture for Autonomy Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

  3. 78 FR 17940 - Certain Computerized Orthopedic Surgical Devices, Software, Implants, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ..., Software, Implants, and Components Thereof; Notice of Receipt of Complaint; Solicitation of Comments... Certain Computerized Orthopedic Surgical Devices, Software, Implants, and Components Thereof, DN 2945; the... importation of certain computerized orthopedic surgical devices, software, implants, and components thereof...

  4. Understanding software faults and their role in software reliability modeling

    NASA Technical Reports Server (NTRS)

    Munson, John C.

    1994-01-01

    This study is a direct result of an on-going project to model the reliability of a large real-time control avionics system. In previous modeling efforts with this system, hardware reliability models were applied in modeling the reliability behavior of this system. In an attempt to enhance the performance of the adapted reliability models, certain software attributes were introduced in these models to control for differences between programs and also sequential executions of the same program. As the basic nature of the software attributes that affect software reliability become better understood in the modeling process, this information begins to have important implications on the software development process. A significant problem arises when raw attribute measures are to be used in statistical models as predictors, for example, of measures of software quality. This is because many of the metrics are highly correlated. Consider the two attributes: lines of code, LOC, and number of program statements, Stmts. In this case, it is quite obvious that a program with a high value of LOC probably will also have a relatively high value of Stmts. In the case of low level languages, such as assembly language programs, there might be a one-to-one relationship between the statement count and the lines of code. When there is a complete absence of linear relationship among the metrics, they are said to be orthogonal or uncorrelated. Usually the lack of orthogonality is not serious enough to affect a statistical analysis. However, for the purposes of some statistical analysis such as multiple regression, the software metrics are so strongly interrelated that the regression results may be ambiguous and possibly even misleading. Typically, it is difficult to estimate the unique effects of individual software metrics in the regression equation. The estimated values of the coefficients are very sensitive to slight changes in the data and to the addition or deletion of variables in the regression equation. Since most of the existing metrics have common elements and are linear combinations of these common elements, it seems reasonable to investigate the structure of the underlying common factors or components that make up the raw metrics. The technique we have chosen to use to explore this structure is a procedure called principal components analysis. Principal components analysis is a decomposition technique that may be used to detect and analyze collinearity in software metrics. When confronted with a large number of metrics measuring a single construct, it may be desirable to represent the set by some smaller number of variables that convey all, or most, of the information in the original set. Principal components are linear transformations of a set of random variables that summarize the information contained in the variables. The transformations are chosen so that the first component accounts for the maximal amount of variation of the measures of any possible linear transform; the second component accounts for the maximal amount of residual variation; and so on. The principal components are constructed so that they represent transformed scores on dimensions that are orthogonal. Through the use of principal components analysis, it is possible to have a set of highly related software attributes mapped into a small number of uncorrelated attribute domains. This definitively solves the problem of multi-collinearity in subsequent regression analysis. There are many software metrics in the literature, but principal component analysis reveals that there are few distinct sources of variation, i.e. dimensions, in this set of metrics. It would appear perfectly reasonable to characterize the measurable attributes of a program with a simple function of a small number of orthogonal metrics each of which represents a distinct software attribute domain.

  5. 75 FR 34482 - Certain Biometric Scanning Devices, Components Thereof, Associated Software, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ..., Components Thereof, Associated Software, and Products Containing the Same; Notice of Investigation AGENCY: U... scanning devices, components thereof, associated software, and products containing the same by reason of... after importation of certain biometric scanning devices, components thereof, associated software, or...

  6. Reinventing User Applications for Mission Control

    NASA Technical Reports Server (NTRS)

    Trimble, Jay Phillip; Crocker, Alan R.

    2010-01-01

    In 2006, NASA Ames Research Center's (ARC) Intelligent Systems Division, and NASA Johnson Space Centers (JSC) Mission Operations Directorate (MOD) began a collaboration to move user applications for JSC's mission control center to a new software architecture, intended to replace the existing user applications being used for the Space Shuttle and the International Space Station. It must also carry NASA/JSC mission operations forward to the future, meeting the needs for NASA's exploration programs beyond low Earth orbit. Key requirements for the new architecture, called Mission Control Technologies (MCT) are that end users must be able to compose and build their own software displays without the need for programming, or direct support and approval from a platform services organization. Developers must be able to build MCT components using industry standard languages and tools. Each component of MCT must be interoperable with other components, regardless of what organization develops them. For platform service providers and MOD management, MCT must be cost effective, maintainable and evolvable. MCT software is built from components that are presented to users as composable user objects. A user object is an entity that represents a domain object such as a telemetry point, a command, a timeline, an activity, or a step in a procedure. User objects may be composed and reused, for example a telemetry point may be used in a traditional monitoring display, and that same telemetry user object may be composed into a procedure step. In either display, that same telemetry point may be shown in different views, such as a plot, an alpha numeric, or a meta-data view and those views may be changed live and in place. MCT presents users with a single unified user environment that contains all the objects required to perform applicable flight controller tasks, thus users do not have to use multiple applications, the traditional boundaries that exist between multiple heterogeneous applications disappear, leaving open the possibility of new operations concepts that are not constrained by the traditional applications paradigm.

  7. caGrid 1.0: A Grid Enterprise Architecture for Cancer Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-01-01

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIGTM) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIGTM. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5. PMID:18693901

  8. 77 FR 26041 - Certain Cameras and Mobile Devices, Related Software and Firmware, and Components Thereof and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Software and Firmware, and Components Thereof and Products Containing the Same; Institution of..., related software and firmware, and components thereof and products containing the same by reason of... after importation of certain cameras and mobile devices, related software and firmware, and components...

  9. 76 FR 39896 - In the Matter of Certain GPS Navigation Products, Components Thereof, and Related Software...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Products, Components Thereof, and Related Software; Notice of Institution of Investigation; Institution of... importation of certain GPS navigation products, components thereof, and related software by reason of... importation of certain GPS navigation products, components thereof, and related software that infringe one or...

  10. 77 FR 35427 - Certain Mobile Devices, Associated Software, and Components Thereof Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Software, and Components Thereof Final Determination of Violation; Issuance of a Limited Exclusion Order... importation of certain mobile devices, associated software, and components thereof by reason of infringement... importation of certain mobile devices, associated software, and components thereof containing same by reason...

  11. Minimus: a fast, lightweight genome assembler.

    PubMed

    Sommer, Daniel D; Delcher, Arthur L; Salzberg, Steven L; Pop, Mihai

    2007-02-26

    Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  12. 75 FR 80843 - In the Matter of Certain Gaming and Entertainment Consoles, Related Software, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Entertainment Consoles, Related Software, and Components Thereof; Notice of Investigation AGENCY: U.S..., related software, and components thereof by reason of infringement of certain claims of U.S. Patent No. 5... gaming and entertainment consoles, related software, and components thereof that infringe one or more of...

  13. Towards a mature measurement environment: Creating a software engineering research environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  14. Demonstration of a Safety Analysis on a Complex System

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey; hide

    1997-01-01

    For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.

  15. Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Brugel, Edward W.; Domik, Gitta O.; Ayres, Thomas R.

    1993-01-01

    The goal of this project was to support the scientific analysis of multi-spectral astrophysical data by means of scientific visualization. Scientific visualization offers its greatest value if it is not used as a method separate or alternative to other data analysis methods but rather in addition to these methods. Together with quantitative analysis of data, such as offered by statistical analysis, image or signal processing, visualization attempts to explore all information inherent in astrophysical data in the most effective way. Data visualization is one aspect of data analysis. Our taxonomy as developed in Section 2 includes identification and access to existing information, preprocessing and quantitative analysis of data, visual representation and the user interface as major components to the software environment of astrophysical data analysis. In pursuing our goal to provide methods and tools for scientific visualization of multi-spectral astrophysical data, we therefore looked at scientific data analysis as one whole process, adding visualization tools to an already existing environment and integrating the various components that define a scientific data analysis environment. As long as the software development process of each component is separate from all other components, users of data analysis software are constantly interrupted in their scientific work in order to convert from one data format to another, or to move from one storage medium to another, or to switch from one user interface to another. We also took an in-depth look at scientific visualization and its underlying concepts, current visualization systems, their contributions, and their shortcomings. The role of data visualization is to stimulate mental processes different from quantitative data analysis, such as the perception of spatial relationships or the discovery of patterns or anomalies while browsing through large data sets. Visualization often leads to an intuitive understanding of the meaning of data values and their relationships by sacrificing accuracy in interpreting the data values. In order to be accurate in the interpretation, data values need to be measured, computed on, and compared to theoretical or empirical models (quantitative analysis). If visualization software hampers quantitative analysis (which happens with some commercial visualization products), its use is greatly diminished for astrophysical data analysis. The software system STAR (Scientific Toolkit for Astrophysical Research) was developed as a prototype during the course of the project to better understand the pragmatic concerns raised in the project. STAR led to a better understanding on the importance of collaboration between astrophysicists and computer scientists.

  16. A database for TMT interface control documents

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Roberts, Scott; Brighton, Allan; Rogers, John

    2016-08-01

    The TMT Software System consists of software components that interact with one another through a software infrastructure called TMT Common Software (CSW). CSW consists of software services and library code that is used by developers to create the subsystems and components that participate in the software system. CSW also defines the types of components that can be constructed and their roles. The use of common component types and shared middleware services allows standardized software interfaces for the components. A software system called the TMT Interface Database System was constructed to support the documentation of the interfaces for components based on CSW. The programmer describes a subsystem and each of its components using JSON-style text files. A command interface file describes each command a component can receive and any commands a component sends. The event interface files describe status, alarms, and events a component publishes and status and events subscribed to by a component. A web application was created to provide a user interface for the required features. Files are ingested into the software system's database. The user interface allows browsing subsystem interfaces, publishing versions of subsystem interfaces, and constructing and publishing interface control documents that consist of the intersection of two subsystem interfaces. All published subsystem interfaces and interface control documents are versioned for configuration control and follow the standard TMT change control processes. Subsystem interfaces and interface control documents can be visualized in the browser or exported as PDF files.

  17. 76 FR 22918 - In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Computing Devices, Related Software, and Components Thereof; Notice of Investigation AGENCY: U.S... devices, related software, and components thereof by reason of infringement of certain claims of U.S... devices, related software, and components thereof that infringe one or more of claims 1 and 5 of the '372...

  18. 76 FR 11511 - In the Matter of Certain Set-Top Boxes, and Hardware and Software Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Hardware and Software Components Thereof; Notice of Investigation AGENCY: U.S. International Trade... boxes, and hardware and software components thereof by reason of infringement of certain claims of U.S... after importation of certain set-top boxes, and hardware and software components thereof that infringe...

  19. Telepathology: design of a modular system.

    PubMed

    Brauchli, K; Christen, H; Meyer, P; Haroske, G; Meyer, W; Kunze, K D; Otto, R; Oberholzer, M

    2000-01-01

    Although telepathology systems have been developed for more than a decade, they are still not a widespread tool for routine diagnostic applications. Lacking interoperability, software that is not satisfying user needs as well as high costs have been identified as reasons. In this paper we would like to demonstrate that with a clear separation of the tasks required for a telepathology application, telepathology systems can be built in a modular way, where many modules can be implemented using standard software components. With such a modular design, systems can be easily adapted to changing user needs and new technological developments and it is easier to integrate modular systems into existing environments.

  20. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems. Volume 2 Understanding Open Architecture Software Systems: Licensing and Security Research and Recommendations

    DTIC Science & Technology

    2016-01-06

    of- breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The... commercially priced closed source software components, to be used in the design, implementation, deployment, and evolution of open architecture (OA... breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The Department

  1. Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna

    2017-06-01

    Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.

  2. Availability of software services for a hospital information system.

    PubMed

    Sakamoto, N

    1998-03-01

    Hospital information systems (HISs) are becoming more important and covering more parts in daily hospital operations as order-entry systems become popular and electronic charts are introduced. Thus, HISs today need to be able to provide necessary services for hospital operations for a 24-h day, 365 days a year. The provision of services discussed here does not simply mean the availability of computers, in which all that matters is that the computer is functioning. It means the provision of necessary information for hospital operations by the computer software, and we will call it the availability of software services. HISs these days are mostly client-server systems. To increase availability of software services in these systems, it is not enough to just use system structures that are highly reliable in existing host-centred systems. Four main components which support availability of software services are network systems, client computers, server computers, and application software. In this paper, we suggest how to structure these four components to provide the minimum requested software services even if a part of the system stops to function. The network system should be double-protected in stratus using Asynchronous Transfer Mode (ATM) as its base network. Client computers should be fat clients with as much application logic as possible, and reference information which do not require frequent updates (master files, for example) should be replicated in clients. It would be best if all server computers could be double-protected. However, if that is physically impossible, one database file should be made accessible by several server computers. Still, at least the basic patients' information and the latest clinical records should be double-protected physically. Application software should be tested carefully before introduction. Different versions of the application software should always be kept and managed in case the new version has problems. If a hospital information system is designed and developed with these points in mind, it's availability of software services should increase greatly.

  3. 75 FR 68379 - In the Matter of: Certain Mobile Devices, Associated Software, and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ..., Associated Software, and Components Thereof; Notice of Investigation AGENCY: U.S. International Trade..., associated software, and components thereof by reason of infringement of certain claims of U.S. Patent No. 5..., associated software, and components thereof that infringe one or more of claims 1-4, 22, 26, 31, and 36 of...

  4. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  5. Development and use of mathematical models and software frameworks for integrated analysis of agricultural systems and associated water use impacts

    USGS Publications Warehouse

    Fowler, K. R.; Jenkins, E.W.; Parno, M.; Chrispell, J.C.; Colón, A. I.; Hanson, Randall T.

    2016-01-01

    The development of appropriate water management strategies requires, in part, a methodology for quantifying and evaluating the impact of water policy decisions on regional stakeholders. In this work, we describe the framework we are developing to enhance the body of resources available to policy makers, farmers, and other community members in their e orts to understand, quantify, and assess the often competing objectives water consumers have with respect to usage. The foundation for the framework is the construction of a simulation-based optimization software tool using two existing software packages. In particular, we couple a robust optimization software suite (DAKOTA) with the USGS MF-OWHM water management simulation tool to provide a flexible software environment that will enable the evaluation of one or multiple (possibly competing) user-defined (or stakeholder) objectives. We introduce the individual software components and outline the communication strategy we defined for the coupled development. We present numerical results for case studies related to crop portfolio management with several defined objectives. The objectives are not optimally satisfied for any single user class, demonstrating the capability of the software tool to aid in the evaluation of a variety of competing interests.

  6. NASA JPL Distributed Systems Technology (DST) Object-Oriented Component Approach for Software Inter-Operability and Reuse

    NASA Technical Reports Server (NTRS)

    Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin

    2000-01-01

    The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.

  7. CRAX/Cassandra Reliability Analysis Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.

    1999-02-10

    Over the past few years Sandia National Laboratories has been moving toward an increased dependence on model- or physics-based analyses as a means to assess the impact of long-term storage on the nuclear weapons stockpile. These deterministic models have also been used to evaluate replacements for aging systems, often involving commercial off-the-shelf components (COTS). In addition, the models have been used to assess the performance of replacement components manufactured via unique, small-lot production runs. In either case, the limited amount of available test data dictates that the only logical course of action to characterize the reliability of these components ismore » to specifically consider the uncertainties in material properties, operating environment etc. within the physics-based (deterministic) model. This not only provides the ability to statistically characterize the expected performance of the component or system, but also provides direction regarding the benefits of additional testing on specific components within the system. An effort was therefore initiated to evaluate the capabilities of existing probabilistic methods and, if required, to develop new analysis methods to support the inclusion of uncertainty in the classical design tools used by analysts and design engineers at Sandia. The primary result of this effort is the CMX (Cassandra Exoskeleton) reliability analysis software.« less

  8. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  9. An enhanced trend surface analysis equation for regional-residual separation of gravity data

    NASA Astrophysics Data System (ADS)

    Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.

    2016-12-01

    Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.

  10. Toward Reusable Graphics Components in Ada

    DTIC Science & Technology

    1993-03-01

    Then alternatives for obtaining well- engineered reusable software components were examined. Finally, the alternatives were analyzed, and the most...reusable software components. Chapter 4 describes detailed design and implementation strategies in building a well- engineered reusable set of components in...study. 2.2 The Object-Oriented Paradigm 2.2.1 The Need for Object-Oriented Techniques. Among software engineers the software crisis is a well known

  11. 77 FR 20417 - Certain Cameras and Mobile Devices, Related Software and Firmware, and Components Thereof and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... INTERNATIONAL TRADE COMMISSION [DN 2891] Certain Cameras and Mobile Devices, Related Software and... complaint entitled Certain Cameras and Mobile Devices, Related Software and Firmware, and Components Thereof... cameras and mobile devices, related software and firmware, and components thereof and products containing...

  12. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The

  13. Use of Field Programmable Gate Array Technology in Future Space Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Tate, Robert

    2005-01-01

    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.

  14. Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle.

    PubMed

    Rönnegård, L; Felleki, M; Fikse, W F; Mulder, H A; Strandberg, E

    2013-04-01

    Trait uniformity, or micro-environmental sensitivity, may be studied through individual differences in residual variance. These differences appear to be heritable, and the need exists, therefore, to fit models to predict breeding values explaining differences in residual variance. The aim of this paper is to estimate breeding values for micro-environmental sensitivity (vEBV) in milk yield and somatic cell score, and their associated variance components, on a large dairy cattle data set having more than 1.6 million records. Estimation of variance components, ordinary breeding values, and vEBV was performed using standard variance component estimation software (ASReml), applying the methodology for double hierarchical generalized linear models. Estimation using ASReml took less than 7 d on a Linux server. The genetic standard deviations for residual variance were 0.21 and 0.22 for somatic cell score and milk yield, respectively, which indicate moderate genetic variance for residual variance and imply that a standard deviation change in vEBV for one of these traits would alter the residual variance by 20%. This study shows that estimation of variance components, estimated breeding values and vEBV, is feasible for large dairy cattle data sets using standard variance component estimation software. The possibility to select for uniformity in Holstein dairy cattle based on these estimates is discussed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Using an architectural approach to integrate heterogeneous, distributed software components

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Purtilo, James M.

    1995-01-01

    Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.

  16. 77 FR 14043 - Certain Mobile Devices, Associated Software, and Components Thereof; Determination To Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Software, and Components Thereof; Determination To Review Final Initial Determination AGENCY: U.S..., and the sale within the United States after importation of certain mobile devices, associated software... software, and components thereof containing same by reason of infringement of one or more of claims 1, 2, 5...

  17. Open architectures for formal reasoning and deductive technologies for software development

    NASA Technical Reports Server (NTRS)

    Mccarthy, John; Manna, Zohar; Mason, Ian; Pnueli, Amir; Talcott, Carolyn; Waldinger, Richard

    1994-01-01

    The objective of this project is to develop an open architecture for formal reasoning systems. One goal is to provide a framework with a clear semantic basis for specification and instantiation of generic components; construction of complex systems by interconnecting components; and for making incremental improvements and tailoring to specific applications. Another goal is to develop methods for specifying component interfaces and interactions to facilitate use of existing and newly built systems as 'off the shelf' components, thus helping bridge the gap between producers and consumers of reasoning systems. In this report we summarize results in several areas: our data base of reasoning systems; a theory of binding structures; a theory of components of open systems; a framework for specifying components of open reasoning system; and an analysis of the integration of rewriting and linear arithmetic modules in Boyer-Moore using the above framework.

  18. Test plan for 32-bit microcomputers for the Water Resources Division; Chapter A, Test plan for acquisition of prototype 32-bit microcomputers

    USGS Publications Warehouse

    Hutchison, N.E.; Harbaugh, A.W.; Holloway, R.A.; Merk, C.F.

    1987-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey is evaluating 32-bit microcomputers to determine how they can complement, and perhaps later replace, the existing network of minicomputers. The WRD is also designing a National Water Information System (NWIS) that will combine and integrate the existing National Water Data Storage and Retrieval System (WATSTORE), National Water Data Exchange (NAWDEX), and components of several other existing systems. The procedures and testing done in a market evaluation of 32-bit microcomputers are documented. The results of the testing are documented in the NWIS Project Office. The market evaluation was done to identify commercially available hardware and software that could be used for implementing early NWIS prototypes to determine the applicability of 32-bit microcomputers for data base and general computing applications. Three microcomputers will be used for these prototype studies. The results of the prototype studies will be used to compile requirements for a Request for Procurement (RFP) for hardware and software to meet the WRD 's needs in the early 1990's. The identification of qualified vendors to provide the prototype hardware and software included reviewing industry literature, and making telephone calls and personal visits to prospective vendors. Those vendors that appeared to meet general requirements were required to run benchmark tests. (Author 's abstract)

  19. ADA and C++ Business Case Analysis

    DTIC Science & Technology

    1991-07-01

    executable mini-specs, to support import of existing code. Automated database population/change propagation. 9. Documentation generation: via FrameMaker ...Backplane. ii. 4GLS H-20 I I IDE/Software through Pictures (StP) 12 June 1991 iii. Interleaf and FrameMaker publishing. 13. Output formats: PostScript... FrameMaker , WordPerfect. 12. User interface: Menu and mouse, windowing, color, on-line help, undo. Database browser via forms/tables component later

  20. High-Surety Telemedicine in a Distributed, 'Plug-andPlan' Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, Richard L.; Funkhouser, Donald R.; Gallagher, Linda K.

    1999-05-17

    Commercial telemedicine systems are increasingly functional, incorporating video-conferencing capabilities, diagnostic peripherals, medication reminders, and patient education services. However, these systems (1) rarely utilize information architectures which allow them to be easily integrated with existing health information networks and (2) do not always protect patient confidentiality with adequate security mechanisms. Using object-oriented methods and software wrappers, we illustrate the transformation of an existing stand-alone telemedicine system into `plug-and-play' components that function in a distributed medical information environment. We show, through the use of open standards and published component interfaces, that commercial telemedicine offerings which were once incompatible with electronic patient recordmore » systems can now share relevant data with clinical information repositories while at the same time hiding the proprietary implementations of the respective systems. Additionally, we illustrate how leading-edge technology can secure this distributed telemedicine environment, maintaining patient confidentiality and the integrity of the associated electronic medical data. Information surety technology also encourages the development of telemedicine systems that have both read and write access to electronic medical records containing patient-identifiable information. The win-win approach to telemedicine information system development preserves investments in legacy software and hardware while promoting security and interoperability in a distributed environment.« less

  1. STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Post-Translational Modifications.

    PubMed

    Spencer, Jean L; Bhatia, Vivek N; Whelan, Stephen A; Costello, Catherine E; McComb, Mark E

    2013-12-01

    The identification of protein post-translational modifications (PTMs) is an increasingly important component of proteomics and biomarker discovery, but very few tools exist for performing fast and easy characterization of global PTM changes and differential comparison of PTMs across groups of data obtained from liquid chromatography-tandem mass spectrometry experiments. STRAP PTM (Software Tool for Rapid Annotation of Proteins: Post-Translational Modification edition) is a program that was developed to facilitate the characterization of PTMs using spectral counting and a novel scoring algorithm to accelerate the identification of differential PTMs from complex data sets. The software facilitates multi-sample comparison by collating, scoring, and ranking PTMs and by summarizing data visually. The freely available software (beta release) installs on a PC and processes data in protXML format obtained from files parsed through the Trans-Proteomic Pipeline. The easy-to-use interface allows examination of results at protein, peptide, and PTM levels, and the overall design offers tremendous flexibility that provides proteomics insight beyond simple assignment and counting.

  2. NIRP Core Software Suite v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitener, Dustin Heath; Folz, Wesley; Vo, Duong

    The NIRP Core Software Suite is a core set of code that supports multiple applications. It includes miscellaneous base code for data objects, mathematic equations, and user interface components; and the framework includes several fully-developed software applications that exist as stand-alone tools to compliment other applications. The stand-alone tools are described below. Analyst Manager: An application to manage contact information for people (analysts) that use the software products. This information is often included in generated reports and may be used to identify the owners of calculations. Radionuclide Viewer: An application for viewing the DCFPAK radiological data. Compliments the Mixture Managermore » tool. Mixture Manager: An application to create and manage radionuclides mixtures that are commonly used in other applications. High Explosive Manager: An application to manage explosives and their properties. Chart Viewer: An application to view charts of data (e.g. meteorology charts). Other applications may use this framework to create charts specific to their data needs.« less

  3. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    NASA Astrophysics Data System (ADS)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.

  4. Envision: An interactive system for the management and visualization of large geophysical data sets

    NASA Technical Reports Server (NTRS)

    Searight, K. R.; Wojtowicz, D. P.; Walsh, J. E.; Pathi, S.; Bowman, K. P.; Wilhelmson, R. B.

    1995-01-01

    Envision is a software project at the University of Illinois and Texas A&M, funded by NASA's Applied Information Systems Research Project. It provides researchers in the geophysical sciences convenient ways to manage, browse, and visualize large observed or model data sets. Envision integrates data management, analysis, and visualization of geophysical data in an interactive environment. It employs commonly used standards in data formats, operating systems, networking, and graphics. It also attempts, wherever possible, to integrate with existing scientific visualization and analysis software. Envision has an easy-to-use graphical interface, distributed process components, and an extensible design. It is a public domain package, freely available to the scientific community.

  5. 76 FR 68209 - Certain Navigation Products, Components Thereof, and Related Software; Institution of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ..., Components Thereof, and Related Software; Institution of Investigation AGENCY: U.S. International Trade... navigation products, components thereof, and related software by reason of infringement of certain claims of... related software that infringe one or more of claims 1, 2, 11, and 16 of the '565 patent; claim 1 of the...

  6. Engineering intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Warren, Kimberly C.; Goodman, Bradley A.

    1993-01-01

    We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

  7. Real-time computing platform for spiking neurons (RT-spike).

    PubMed

    Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael

    2006-07-01

    A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.

  8. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics

    NASA Astrophysics Data System (ADS)

    Hobley, Daniel E. J.; Adams, Jordan M.; Nudurupati, Sai Siddhartha; Hutton, Eric W. H.; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Tucker, Gregory E.

    2017-01-01

    The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large investment of time, and modifying an existing model to address a new problem typically means the new work is constrained to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly designed to accelerate the development of new process models by providing (1) a set of tools and existing grid structures - including both regular and irregular grids - to make it faster and easier to develop new process components, or numerical implementations of physical processes; (2) a suite of stable, modular, and interoperable process components that can be combined to create an integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example models built with these components is also provided. Landlab's structure makes it ideal not only for fully developed modelling applications but also for model prototyping and classroom use. Because of its modular nature, it can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized model interoperability interface, and is able to couple to third-party models and software. Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave routing model.

  9. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

    PubMed Central

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-01-01

    Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367

  10. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.

    PubMed

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-06-15

    The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.

  11. Low-Cost Telemetry System for Small/Micro Satellites

    NASA Technical Reports Server (NTRS)

    Sims, William; Varnavas, Kosta

    2012-01-01

    A Software Defined Radio (SDR) concept uses a minimum amount of analog/radio frequency components to up/downconvert the RF signal to/from a digital format. Once in the digital domain, all other processing (filtering, modulation, demodulation, etc.) is done in software. The project will leverage existing designs and enhance capabilities in the commercial sector to provide a path to a radiation-hardened SDR transponder. The SDR transponder would incorporate baseline technologies dealing with improved Forward Error Correcting (FEC) codes to be deployed to all Near Earth Network (NEN) ground stations. By incorporating this FEC, at least a tenfold increase in data throughput can be achieved. A family of transponder products can be implemented using common platform architecture, allowing new products to be more quickly introduced into the market. Software can be reused across products, reducing software/hardware costs dramatically. New features and capabilities, such as encoding and decoding algorithms, filters, and bit synchronizers, can be added to the existing infrastructure without requiring major new capital expenditures, allowing implementation of advanced features in the communication systems. As new telecommunication technologies emerge, incorporating them into the SDR fabric will be easily accomplished with little or no requirements for new hardware. There are no preferred flight platforms for the SDR technology, so it can be used on any type of orbital or sub-orbital platform, all within a fully radiation hardened design.

  12. Knowledge-based reusable software synthesis system

    NASA Technical Reports Server (NTRS)

    Donaldson, Cammie

    1989-01-01

    The Eli system, a knowledge-based reusable software synthesis system, is being developed for NASA Langley under a Phase 2 SBIR contract. Named after Eli Whitney, the inventor of interchangeable parts, Eli assists engineers of large-scale software systems in reusing components while they are composing their software specifications or designs. Eli will identify reuse potential, search for components, select component variants, and synthesize components into the developer's specifications. The Eli project began as a Phase 1 SBIR to define a reusable software synthesis methodology that integrates reusabilityinto the top-down development process and to develop an approach for an expert system to promote and accomplish reuse. The objectives of the Eli Phase 2 work are to integrate advanced technologies to automate the development of reusable components within the context of large system developments, to integrate with user development methodologies without significant changes in method or learning of special languages, and to make reuse the easiest operation to perform. Eli will try to address a number of reuse problems including developing software with reusable components, managing reusable components, identifying reusable components, and transitioning reuse technology. Eli is both a library facility for classifying, storing, and retrieving reusable components and a design environment that emphasizes, encourages, and supports reuse.

  13. Visualization techniques to aid in the analysis of multispectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Domik, Gitta O.; Ayres, T. R.

    1993-01-01

    The goal of this project was to support the scientific analysis of multi-spectral astrophysical data by means of scientific visualization. Scientific visualization offers its greatest value if it is not used as a method separate or alternative to other data analysis methods but rather in addition to these methods. Together with quantitative analysis of data, such as offered by statistical analysis, image or signal processing, visualization attempts to explore all information inherent in astrophysical data in the most effective way. Data visualization is one aspect of data analysis. Our taxonomy as developed in Section 2 includes identification and access to existing information, preprocessing and quantitative analysis of data, visual representation and the user interface as major components to the software environment of astrophysical data analysis. In pursuing our goal to provide methods and tools for scientific visualization of multi-spectral astrophysical data, we therefore looked at scientific data analysis as one whole process, adding visualization tools to an already existing environment and integrating the various components that define a scientific data analysis environment. As long as the software development process of each component is separate from all other components, users of data analysis software are constantly interrupted in their scientific work in order to convert from one data format to another, or to move from one storage medium to another, or to switch from one user interface to another. We also took an in-depth look at scientific visualization and its underlying concepts, current visualization systems, their contributions and their shortcomings. The role of data visualization is to stimulate mental processes different from quantitative data analysis, such as the perception of spatial relationships or the discovery of patterns or anomalies while browsing through large data sets. Visualization often leads to an intuitive understanding of the meaning of data values and their relationships by sacrificing accuracy in interpreting the data values. In order to be accurate in the interpretation, data values need to be measured, computed on, and compared to theoretical or empirical models (quantitative analysis). If visualization software hampers quantitative analysis (which happens with some commercial visualization products), its use is greatly diminished for astrophysical data analysis. The software system STAR (Scientific Toolkit for Astrophysical Research) was developed as a prototype during the course of the project to better understand the pragmatic concerns raised in the project. STAR led to a better understanding on the importance of collaboration between astrophysicists and computer scientists. Twenty-one examples of the use of visualization for astrophysical data are included with this report. Sixteen publications related to efforts performed during or initiated through work on this project are listed at the end of this report.

  14. Encyclopedia of software components

    NASA Technical Reports Server (NTRS)

    Vanwarren, Lloyd (Inventor); Beckman, Brian C. (Inventor)

    1991-01-01

    Intelligent browsing through a collection of reusable software components is facilitated with a computer having a video monitor and a user input interface such as a keyboard or a mouse for transmitting user selections, by presenting a picture of encyclopedia volumes with respective visible labels referring to types of software, in accordance with a metaphor in which each volume includes a page having a list of general topics under the software type of the volume and pages having lists of software components for each one of the generic topics, altering the picture to open one of the volumes in response to an initial user selection specifying the one volume to display on the monitor a picture of the page thereof having the list of general topics and altering the picture to display the page thereof having a list of software components under one of the general topics in response to a next user selection specifying the one general topic, and then presenting a picture of a set of different informative plates depicting different types of information about one of the software components in response to a further user selection specifying the one component.

  15. Encyclopedia of Software Components

    NASA Technical Reports Server (NTRS)

    Warren, Lloyd V. (Inventor); Beckman, Brian C. (Inventor)

    1997-01-01

    Intelligent browsing through a collection of reusable software components is facilitated with a computer having a video monitor and a user input interface such as a keyboard or a mouse for transmitting user selections, by presenting a picture of encyclopedia volumes with respective visible labels referring to types of software, in accordance with a metaphor in which each volume includes a page having a list of general topics under the software type of the volume and pages having lists of software components for each one of the generic topics, altering the picture to open one of the volumes in response to an initial user selection specifying the one volume to display on the monitor a picture of the page thereof having the list of general topics and altering the picture to display the page thereof having a list of software components under one of the general topics in response to a next user selection specifying the one general topic, and then presenting a picture of a set of different informative plates depicting different types of information about one of the software components in response to a further user selection specifying the one component.

  16. VIDANA: Data Management System for Nano Satellites

    NASA Astrophysics Data System (ADS)

    Montenegro, Sergio; Walter, Thomas; Dilger, Erik

    2013-08-01

    A Vidana data management system is a network of software and hardware components. This implies a software network, a hardware network and a smooth connection between both of them. Our strategy is based on our innovative middleware. A reliable interconnection network (SW & HW) which can interconnect many unreliable redundant components such as sensors, actuators, communication devices, computers, and storage elements,... and software components! Component failures are detected, the affected device is disabled and its function is taken over by a redundant component. Our middleware doesn't connect only software, but also devices and software together. Software and hardware communicate with each other without having to distinguish which functions are in software and which are implemented in hardware. Components may be turned on and off at any time, and the whole system will autonomously adapt to its new configuration in order to continue fulfilling its task. In VIDANA we aim dynamic adaptability (run tine), static adaptability (tailoring), and unified HW/SW communication protocols. For many of these aspects we use "learn from the nature" where we can find astonishing reference implementations.

  17. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  18. 77 FR 32996 - Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-769] Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof; Termination of the Investigation Based on... electronic computing devices, related software, and components thereof by reason of infringement of certain...

  19. 22 CFR 121.8 - End-items, components, accessories, attachments, parts, firmware, software, and systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., parts, firmware, software, and systems. 121.8 Section 121.8 Foreign Relations DEPARTMENT OF STATE...-items, components, accessories, attachments, parts, firmware, software, and systems. (a) An end-item is.... Firmware includes but is not limited to circuits into which software has been programmed. (f) Software...

  20. 22 CFR 121.8 - End-items, components, accessories, attachments, parts, firmware, software and systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., parts, firmware, software and systems. 121.8 Section 121.8 Foreign Relations DEPARTMENT OF STATE...-items, components, accessories, attachments, parts, firmware, software and systems. (a) An end-item is.... Firmware includes but is not limited to circuits into which software has been programmed. (f) Software...

  1. 22 CFR 121.8 - End-items, components, accessories, attachments, parts, firmware, software and systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., parts, firmware, software and systems. 121.8 Section 121.8 Foreign Relations DEPARTMENT OF STATE...-items, components, accessories, attachments, parts, firmware, software and systems. (a) An end-item is.... Firmware includes but is not limited to circuits into which software has been programmed. (f) Software...

  2. 22 CFR 121.8 - End-items, components, accessories, attachments, parts, firmware, software and systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., parts, firmware, software and systems. 121.8 Section 121.8 Foreign Relations DEPARTMENT OF STATE...-items, components, accessories, attachments, parts, firmware, software and systems. (a) An end-item is.... Firmware includes but is not limited to circuits into which software has been programmed. (f) Software...

  3. 22 CFR 121.8 - End-items, components, accessories, attachments, parts, firmware, software and systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., parts, firmware, software and systems. 121.8 Section 121.8 Foreign Relations DEPARTMENT OF STATE...-items, components, accessories, attachments, parts, firmware, software and systems. (a) An end-item is.... Firmware includes but is not limited to circuits into which software has been programmed. (f) Software...

  4. A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-Based format, an API, and a validation method

    PubMed Central

    2011-01-01

    Background The Molecular Interaction Map (MIM) notation offers a standard set of symbols and rules on their usage for the depiction of cellular signaling network diagrams. Such diagrams are essential for disseminating biological information in a concise manner. A lack of software tools for the notation restricts wider usage of the notation. Development of software is facilitated by a more detailed specification regarding software requirements than has previously existed for the MIM notation. Results A formal implementation of the MIM notation was developed based on a core set of previously defined glyphs. This implementation provides a detailed specification of the properties of the elements of the MIM notation. Building upon this specification, a machine-readable format is provided as a standardized mechanism for the storage and exchange of MIM diagrams. This new format is accompanied by a Java-based application programming interface to help software developers to integrate MIM support into software projects. A validation mechanism is also provided to determine whether MIM datasets are in accordance with syntax rules provided by the new specification. Conclusions The work presented here provides key foundational components to promote software development for the MIM notation. These components will speed up the development of interoperable tools supporting the MIM notation and will aid in the translation of data stored in MIM diagrams to other standardized formats. Several projects utilizing this implementation of the notation are outlined herein. The MIM specification is available as an additional file to this publication. Source code, libraries, documentation, and examples are available at http://discover.nci.nih.gov/mim. PMID:21586134

  5. A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-Based format, an API, and a validation method.

    PubMed

    Luna, Augustin; Karac, Evrim I; Sunshine, Margot; Chang, Lucas; Nussinov, Ruth; Aladjem, Mirit I; Kohn, Kurt W

    2011-05-17

    The Molecular Interaction Map (MIM) notation offers a standard set of symbols and rules on their usage for the depiction of cellular signaling network diagrams. Such diagrams are essential for disseminating biological information in a concise manner. A lack of software tools for the notation restricts wider usage of the notation. Development of software is facilitated by a more detailed specification regarding software requirements than has previously existed for the MIM notation. A formal implementation of the MIM notation was developed based on a core set of previously defined glyphs. This implementation provides a detailed specification of the properties of the elements of the MIM notation. Building upon this specification, a machine-readable format is provided as a standardized mechanism for the storage and exchange of MIM diagrams. This new format is accompanied by a Java-based application programming interface to help software developers to integrate MIM support into software projects. A validation mechanism is also provided to determine whether MIM datasets are in accordance with syntax rules provided by the new specification. The work presented here provides key foundational components to promote software development for the MIM notation. These components will speed up the development of interoperable tools supporting the MIM notation and will aid in the translation of data stored in MIM diagrams to other standardized formats. Several projects utilizing this implementation of the notation are outlined herein. The MIM specification is available as an additional file to this publication. Source code, libraries, documentation, and examples are available at http://discover.nci.nih.gov/mim.

  6. Collision of Physics and Software in the Monte Carlo Application Toolkit (MCATK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, Jeremy Ed

    2016-01-21

    The topic is presented in a series of slides organized as follows: MCATK overview, development strategy, available algorithms, problem modeling (sources, geometry, data, tallies), parallelism, miscellaneous tools/features, example MCATK application, recent areas of research, and summary and future work. MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library with continuous energy neutron and photon transport. Designed to build specialized applications and to provide new functionality in existing general-purpose Monte Carlo codes like MCNP, it reads ACE formatted nuclear data generated by NJOY. The motivation behind MCATK was to reduce costs. MCATK physics involves continuous energy neutron & gammamore » transport with multi-temperature treatment, static eigenvalue (k eff and α) algorithms, time-dependent algorithm, and fission chain algorithms. MCATK geometry includes mesh geometries and solid body geometries. MCATK provides verified, unit-test Monte Carlo components, flexibility in Monte Carlo application development, and numerous tools such as geometry and cross section plotters.« less

  7. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q

    2018-01-01

    This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.

  8. Analyzing and Detecting Problems in Systems of Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally

    2008-01-01

    Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.

  9. Business logic for geoprocessing of distributed geodata

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian

    2006-12-01

    This paper describes the development of a business-logic component for the geoprocessing of distributed geodata. The business logic acts as a mediator between the data and the user, therefore playing a central role in any spatial information system. The component is used in service-oriented architectures to foster the reuse of existing geodata inventories. Based on a geoscientific case study of groundwater vulnerability assessment and mapping, the demands for such architectures are identified with special regard to software engineering tasks. Methods are derived from the field of applied Geosciences (Hydrogeology), Geoinformatics, and Software Engineering. In addition to the development of a business logic component, a forthcoming Open Geospatial Consortium (OGC) specification is introduced: the OGC Web Processing Service (WPS) specification. A sample application is introduced to demonstrate the potential of WPS for future information systems. The sample application Geoservice Groundwater Vulnerability is described in detail to provide insight into the business logic component, and demonstrate how information can be generated out of distributed geodata. This has the potential to significantly accelerate the assessment and mapping of groundwater vulnerability. The presented concept is easily transferable to other geoscientific use cases dealing with distributed data inventories. Potential application fields include web-based geoinformation systems operating on distributed data (e.g. environmental planning systems, cadastral information systems, and others).

  10. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Trujillo, Anna; Pritchett, Amy R.

    2000-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plug-in' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  11. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  12. Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.

    1981-01-01

    The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.

  13. 77 FR 16562 - Certain Navigation Products, Components Thereof, and Related Software; Determination Not To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-810] Certain Navigation Products, Components Thereof, and Related Software; Determination Not To Review an Initial Determination Granting a... United States after importation of certain navigation products, components thereof, and related software...

  14. Teaching Software Componentization: A Bar Chart Java Bean

    ERIC Educational Resources Information Center

    Mitri, Michel

    2010-01-01

    In the current object-oriented paradigm, software construction increasingly involves creating and utilizing "software components". These components can serve a variety of functions, from common algorithmic processes to database connectivity to graphical interfaces. The advantage of component architectures is that programmers can use pre-existing…

  15. Reducing Risk in DoD Software-Intensive Systems Development

    DTIC Science & Technology

    2016-03-01

    intensive systems development risk. This research addresses the use of the Technical Readiness Assessment (TRA) using the nine-level software Technology...The software TRLs are ineffective in reducing technical risk for the software component development. • Without the software TRLs, there is no...effective method to perform software TRA or reduce the technical development risk. The software component will behave as a new, untried technology in nearly

  16. A component-based software environment for visualizing large macromolecular assemblies.

    PubMed

    Sanner, Michel F

    2005-03-01

    The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.

  17. Software Management Environment (SME): Components and algorithms

    NASA Technical Reports Server (NTRS)

    Hendrick, Robert; Kistler, David; Valett, Jon

    1994-01-01

    This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'

  18. Acquisition Handbook - Update. Comprehensive Approach to Reusable Defensive Software (CARDS)

    DTIC Science & Technology

    1994-03-25

    designs, and implementation components (source code, test plans, procedures and results, and system/software documentation). This handbook provides a...activities where software components are acquired, evaluated, tested and sometimes modified. In addition to serving as a facility for the acquisition and...systems from such components [1]. Implementation components are at the lowest level and consist of: specifications; detailed designs; code, test

  19. Software performance in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas.

    PubMed

    Cohen, Julien G; Goo, Jin Mo; Yoo, Roh-Eul; Park, Chang Min; Lee, Chang Hyun; van Ginneken, Bram; Chung, Doo Hyun; Kim, Young Tae

    2016-12-01

    To evaluate the performance of software in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas. Seventy-three pulmonary adenocarcinomas manifesting as subsolid nodules were included. Two radiologists measured the maximal axial diameter of the ground-glass components on lung windows and that of the solid components on lung and mediastinal windows. Nodules were segmented using software by applying five (-850 HU to -650 HU) and nine (-130 HU to -500 HU) attenuation thresholds. We compared the manual and software measurements of ground-glass and solid components with pathology measurements of tumour and invasive components. Segmentation of ground-glass components at a threshold of -750 HU yielded mean differences of +0.06 mm (p = 0.83, 95 % limits of agreement, 4.51 to 4.67) and -2.32 mm (p < 0.001, -8.27 to 3.63) when compared with pathology and manual measurements, respectively. For solid components, mean differences between the software (at -350 HU) and pathology measurements and between the manual (lung and mediastinal windows) and pathology measurements were -0.12 mm (p = 0.74, -5.73 to 5.55]), 0.15 mm (p = 0.73, -6.92 to 7.22), and -1.14 mm (p < 0.001, -7.93 to 5.64), respectively. Software segmentation of ground-glass and solid components in subsolid nodules showed no significant difference with pathology. • Software can effectively segment ground-glass and solid components in subsolid nodules. • Software measurements show no significant difference with pathology measurements. • Manual measurements are more accurate on lung windows than on mediastinal windows.

  20. Analysis of key technologies for virtual instruments metrology

    NASA Astrophysics Data System (ADS)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  1. Software platform for simulation of a prototype proton CT scanner.

    PubMed

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  2. Software reuse example and challenges at NSIDC

    NASA Astrophysics Data System (ADS)

    Billingsley, B. W.; Brodzik, M.; Collins, J. A.

    2009-12-01

    NSIDC has created a new data discovery and access system, Searchlight, to provide users with the data they want in the format they want. NSIDC Searchlight supports discovery and access to disparate data types with on-the-fly reprojection, regridding and reformatting. Architected to both reuse open source systems and be reused itself, Searchlight reuses GDAL and Proj4 for manipulating data and format conversions, the netCDF Java library for creating netCDF output, MapServer and OpenLayers for defining spatial criteria and the JTS Topology Suite (JTS) in conjunction with Hibernate Spatial for database interaction and rich OGC-compliant spatial objects. The application reuses popular Java and Java Script libraries including Struts 2, Spring, JPA (Hibernate), Sitemesh, JFreeChart, JQuery, DOJO and a PostGIS PostgreSQL database. Future reuse of Searchlight components is supported at varying architecture levels, ranging from the database and model components to web services. We present the tools, libraries and programs that Searchlight has reused. We describe the architecture of Searchlight and explain the strategies deployed for reusing existing software and how Searchlight is built for reuse. We will discuss NSIDC reuse of the Searchlight components to support rapid development of new data delivery systems.

  3. 77 FR 22611 - Certain Set-Top Boxes, and Hardware and Software Components Thereof; Determination Not To Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-761] Certain Set-Top Boxes, and Hardware and Software Components Thereof; Determination Not To Review Initial Determination Terminating... certain set-top boxes, and hardware and software components thereof by reason of infringement of various...

  4. 77 FR 16860 - Certain GPS Navigation Products, Components Thereof, and Related Software; Termination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-783] Certain GPS Navigation Products, Components Thereof, and Related Software; Termination of Investigation on the Basis of Settlement AGENCY: U.S... GPS navigation products, components thereof, and related software, by reason of the infringement of...

  5. Pybus -- A Python Software Bus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrijsen, Wim T.L.P.

    2004-10-14

    A software bus, just like its hardware equivalent, allows for the discovery, installation, configuration, loading, unloading, and run-time replacement of software components, as well as channeling of inter-component communication. Python, a popular open-source programming language, encourages a modular design on software written in it, but it offers little or no component functionality. However, the language and its interpreter provide sufficient hooks to implement a thin, integral layer of component support. This functionality can be presented to the developer in the form of a module, making it very easy to use. This paper describes a Pythonmodule, PyBus, with which the conceptmore » of a ''software bus'' can be realized in Python. It demonstrates, within the context of the ATLAS software framework Athena, how PyBus can be used for the installation and (run-time) configuration of software, not necessarily Python modules, from a Python application in a way that is transparent to the end-user.« less

  6. Next Generation System and Software Architectures: Challenges from Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Rouff, Christopher A.; Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt

    2006-01-01

    The four key objective properties of a system that are required of it in order for it to qualify as "autonomic" are now well-accepted-self-configuring, self-healing, self-protecting, and self-optimizing- together with the attribute properties-viz. self-aware, environment-aware, self-monitoring and self- adjusting. This paper describes the need for next generation system software architectures, where components are agents, rather than objects masquerading as agents, and where support is provided for self-* properties (both existing self-chop and emerging self-* properties). These are discussed as exhibited in NASA missions, and in particular with reference to a NASA concept mission, ANTS, which is illustrative of future NASA exploration missions based on the technology of intelligent swarms.

  7. A conceptual model for megaprogramming

    NASA Technical Reports Server (NTRS)

    Tracz, Will

    1990-01-01

    Megaprogramming is component-based software engineering and life-cycle management. Magaprogramming and its relationship to other research initiatives (common prototyping system/common prototyping language, domain specific software architectures, and software understanding) are analyzed. The desirable attributes of megaprogramming software components are identified and a software development model and resulting prototype megaprogramming system (library interconnection language extended by annotated Ada) are described.

  8. Enhancing requirements engineering for patient registry software systems with evidence-based components.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2017-07-01

    Patient registries are instrumental for medical research. Often their structures are complex and their implementations use composite software systems to meet the wide spectrum of challenges. Commercial and open-source systems are available for registry implementation, but many research groups develop their own systems. Methodological approaches in the selection of software as well as the construction of proprietary systems are needed. We propose an evidence-based checklist, summarizing essential items for patient registry software systems (CIPROS), to accelerate the requirements engineering process. Requirements engineering activities for software systems follow traditional software requirements elicitation methods, general software requirements specification (SRS) templates, and standards. We performed a multistep procedure to develop a specific evidence-based CIPROS checklist: (1) A systematic literature review to build a comprehensive collection of technical concepts, (2) a qualitative content analysis to define a catalogue of relevant criteria, and (3) a checklist to construct a minimal appraisal standard. CIPROS is based on 64 publications and covers twelve sections with a total of 72 items. CIPROS also defines software requirements. Comparing CIPROS with traditional software requirements elicitation methods, SRS templates and standards show a broad consensus but differences in issues regarding registry-specific aspects. Using an evidence-based approach to requirements engineering for registry software adds aspects to the traditional methods and accelerates the software engineering process for registry software. The method we used to construct CIPROS serves as a potential template for creating evidence-based checklists in other fields. The CIPROS list supports developers in assessing requirements for existing systems and formulating requirements for their own systems, while strengthening the reporting of patient registry software system descriptions. It may be a first step to create standards for patient registry software system assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... With Image Processing Systems, Components Thereof, and Associated Software; Notice of Investigation..., and associated software by reason of infringement of certain claims of U.S. Patent Nos. 7,043,087... processing systems, components thereof, and associated software that infringe one or more of claims 1, 6, and...

  10. Experimental Modal Analysis and Dynamic Component Synthesis. Volume 6. Software User’s Guide.

    DTIC Science & Technology

    1987-12-01

    generate a Complex Mode Indication Function ( CMIF ) from the measurement directory, including modifications from the measurement selection option. This...reference measurements are - included in the data set to be analyzed. The peaks in the CMIF chart indicate existing modes. Thus, the order of the the...polynomials is determined by the number of peaks found in the CMIF chart. Then, the order of the polynomials can be determined before the estimation process

  11. Sensor Open System Architecture (SOSA) evolution for collaborative standards development

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick; Lipkin, Ilya; Davidson, Steven A.; Baldwin, Rusty; Orlovsky, Michael C.; Ibrahim, Tim

    2017-04-01

    The Sensor Open System Architecture (SOSA) is a C4ISR-focused technical and economic collaborative effort between the Air Force, Navy, Army, the Department of Defense (DoD), Industry, and other Governmental agencies to develop (and incorporate) a technical Open Systems Architecture standard in order to maximize C4ISR sub-system, system, and platform affordability, re-configurability, and hardware/software/firmware re-use. The SOSA effort will effectively create an operational and technical framework for the integration of disparate payloads into C4ISR systems; with a focus on the development of a modular decomposition (defining functions and behaviors) and associated key interfaces (physical and logical) for common multi-purpose architecture for radar, EO/IR, SIGINT, EW, and Communications. SOSA addresses hardware, software, and mechanical/electrical interfaces. The modular decomposition will produce a set of re-useable components, interfaces, and sub-systems that engender reusable capabilities. This, in effect, creates a realistic and affordable ecosystem enabling mission effectiveness through systematic re-use of all available re-composed hardware, software, and electrical/mechanical base components and interfaces. To this end, SOSA will leverage existing standards as much as possible and evolve the SOSA architecture through modification, reuse, and enhancements to achieve C4ISR goals. This paper will present accomplishments over the first year of SOSA initiative.

  12. An Assessment of Integrated Health Management (IHM) Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lybeck; M. Tawfik; L. Bond

    In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging nuclear power plants presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to the better understanding and management of the challenges posed by aging nuclear power plants. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced onlinemore » surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of a NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of a NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.« less

  13. The software-cycle model for re-engineering and reuse

    NASA Technical Reports Server (NTRS)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  14. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    PubMed

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  15. Component Technology for High-Performance Scientific Simulation Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epperly, T; Kohn, S; Kumfert, G

    2000-11-09

    We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less

  16. Software Component Technologies and Space Applications

    NASA Technical Reports Server (NTRS)

    Batory, Don

    1995-01-01

    In the near future, software systems will be more reconfigurable than hardware. This will be possible through the advent of software component technologies which have been prototyped in universities and research labs. In this paper, we outline the foundations for those technologies and suggest how they might impact software for space applications.

  17. Challenges of the Open Source Component Marketplace in the Industry

    NASA Astrophysics Data System (ADS)

    Ayala, Claudia; Hauge, Øyvind; Conradi, Reidar; Franch, Xavier; Li, Jingyue; Velle, Ketil Sandanger

    The reuse of Open Source Software components available on the Internet is playing a major role in the development of Component Based Software Systems. Nevertheless, the special nature of the OSS marketplace has taken the “classical” concept of software reuse based on centralized repositories to a completely different arena based on massive reuse over Internet. In this paper we provide an overview of the actual state of the OSS marketplace, and report preliminary findings about how companies interact with this marketplace to reuse OSS components. Such data was gathered from interviews in software companies in Spain and Norway. Based on these results we identify some challenges aimed to improve the industrial reuse of OSS components.

  18. Genoviz Software Development Kit: Java tool kit for building genomics visualization applications.

    PubMed

    Helt, Gregg A; Nicol, John W; Erwin, Ed; Blossom, Eric; Blanchard, Steven G; Chervitz, Stephen A; Harmon, Cyrus; Loraine, Ann E

    2009-08-25

    Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.

  19. Assessing ergonomic risks of software: Development of the SEAT.

    PubMed

    Peres, S Camille; Mehta, Ranjana K; Ritchey, Paul

    2017-03-01

    Software utilizing interaction designs that require extensive dragging or clicking of icons may increase users' risks for upper extremity cumulative trauma disorders. The purpose of this research is to develop a Self-report Ergonomic Assessment Tool (SEAT) for assessing the risks of software interaction designs and facilitate mitigation of those risks. A 28-item self-report measure was developed by combining and modifying items from existing industrial ergonomic tools. Data were collected from 166 participants after they completed four different tasks that varied by method of input (touch or keyboard and mouse) and type of task (selecting or typing). Principal component analysis found distinct factors associated with stress (i.e., demands) and strain (i.e., response). Repeated measures analyses of variance showed that participants could discriminate the different strain induced by the input methods and tasks. However, participants' ability to discriminate between the stressors associated with that strain was mixed. Further validation of the SEAT is necessary but these results indicate that the SEAT may be a viable method of assessing ergonomics risks presented by software design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Designing software for operational decision support through coloured Petri nets

    NASA Astrophysics Data System (ADS)

    Maggi, F. M.; Westergaard, M.

    2017-05-01

    Operational support provides, during the execution of a business process, replies to questions such as 'how do I end the execution of the process in the cheapest way?' and 'is my execution compliant with some expected behaviour?' These questions may be asked several times during a single execution and, to answer them, dedicated software components (the so-called operational support providers) need to be invoked. Therefore, an infrastructure is needed to handle multiple providers, maintain data between queries about the same execution and discard information when it is no longer needed. In this paper, we use coloured Petri nets (CPNs) to model and analyse software implementing such an infrastructure. This analysis is needed to clarify the requirements before implementation and to guarantee that the resulting software is correct. To this aim, we present techniques to represent and analyse state spaces with 250 million states on a normal PC. We show how the specified requirements have been implemented as a plug-in of the process mining tool ProM and how the operational support in ProM can be used in combination with an existing operational support provider.

  1. AVE-SESAME program for the REEDA System

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1981-01-01

    The REEDA system software was modified and improved to process the AVE-SESAME severe storm data. A random access file system for the AVE storm data was designed, tested, and implemented. The AVE/SESAME software was modified to incorporate the random access file input and to interface with new graphics hardware/software now available on the REEDA system. Software was developed to graphically display the AVE/SESAME data in the convention normally used by severe storm researchers. Software was converted to AVE/SESAME software systems and interfaced with existing graphics hardware/software available on the REEDA System. Software documentation was provided for existing AVE/SESAME programs underlining functional flow charts and interacting questions. All AVE/SESAME data sets in random access format was processed to allow developed software to access the entire AVE/SESAME data base. The existing software was modified to allow for processing of different AVE/SESAME data set types including satellite surface and radar data.

  2. ResidPlots-2: Computer Software for IRT Graphical Residual Analyses

    ERIC Educational Resources Information Center

    Liang, Tie; Han, Kyung T.; Hambleton, Ronald K.

    2009-01-01

    This article discusses the ResidPlots-2, a computer software that provides a powerful tool for IRT graphical residual analyses. ResidPlots-2 consists of two components: a component for computing residual statistics and another component for communicating with users and for plotting the residual graphs. The features of the ResidPlots-2 software are…

  3. A new TRNSYS component for parabolic trough collector simulation

    NASA Astrophysics Data System (ADS)

    Drosou, Vassiliki; Valenzuela, Loreto; Dimoudi, Argiro

    2018-03-01

    This study describes and evaluates a new simulation component for parabolic trough collectors (PTCs). The new simulation component is implemented in the TRNSYS software environment by means of new Type that is suitable for integration into the calculation of a whole concentrating solar thermal plant, in order to evaluate the energy production of a PTC. The main advantage of the new Type is that is derived from experimental data available on efficiency Test Reports, according to the current European and International standards, rather than the theoretical approach considered in the existing parabolic trough component of TRNSYS library. The performance of the new Type has been validated with real experimental data obtained from the DISS solar test loop in Plataforma Solar de Almería, Spain. The paper describes the modelling approach, presents the comparison of simulation results with measurements taken at the DISS facility and evaluates the results.

  4. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.

  5. Abstracted Workow Framework with a Structure from Motion Application

    NASA Astrophysics Data System (ADS)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense point cloud through patch based techniques or densification algorithms such as Semi-Global Matching (SGM). The point cloud can be visualized or exploited by both humans and automated techniques. In some cases the point cloud is "draped" with original imagery in order to enhance the 3D model for a human viewer. The SfM workflow can be implemented in the abstracted framework, making it easily leverageable and extensible by multiple users. Like many processes in scientific and engineering domains, the workflow described for SfM is complex and requires many disparate components to form a functional system, often utilizing algorithms implemented by many users in different languages / environments and without knowledge of how the component fits into the larger system. In practice, this generally leads to issues interfacing the components, building the software for desired platforms, understanding its concept of operations, and how it can be manipulated in order to fit the desired function for a particular application. In addition, other scientists and engineers instinctively wish to analyze the performance of the system, establish new algorithms, optimize existing processes, and establish new functionality based on current research. This requires a framework whereby new components can be easily plugged in without affecting the current implemented functionality. The need for a universal programming environment establishes the motivation for the development of the abstracted workflow framework. This software implementation, named Catena, provides base classes from which new components must derive in order to operate within the framework. The derivation mandates requirements be satisfied in order to provide a complete implementation. Additionally, the developer must provide documentation of the component in terms of its overall function and inputs. The interface input and output values corresponding to the component must be defined in terms of their respective data types, and the implementation uses mechanisms within the framework to retrieve and send the values. This process requires the developer to componentize their algorithm rather than implement it monolithically. Although the requirements of the developer are slightly greater, the benefits realized from using Catena far outweigh the overhead, and results in extensible software. This thesis provides a basis for the abstracted workflow framework concept and the Catena software implementation. The benefits are also illustrated using a detailed examination of the SfM process as an example application.

  6. Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian

    2011-01-01

    Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.

  7. C-CAT: a computer software used to analyze and select Chinese characters and character components for psychological research.

    PubMed

    Lo, Ming; Hue, Chih-Wei

    2008-11-01

    The Character-Component Analysis Toolkit (C-CAT) software was designed to assist researchers in constructing experimental materials using traditional Chinese characters. The software package contains two sets of character stocks: one suitable for research using literate adults as subjects and one suitable for research using schoolchildren as subjects. The software can identify linguistic properties, such as the number of strokes contained, the character-component pronunciation regularity, and the arrangement of character components within a character. Moreover, it can compute a character's linguistic frequency, neighborhood size, and phonetic validity with respect to a user-selected character stock. It can also search the selected character stock for similar characters or for character components with user-specified linguistic properties.

  8. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  9. COTS-based OO-component approach for software inter-operability and reuse (software systems engineering methodology)

    NASA Technical Reports Server (NTRS)

    Yin, J.; Oyaki, A.; Hwang, C.; Hung, C.

    2000-01-01

    The purpose of this research and study paper is to provide a summary description and results of rapid development accomplishments at NASA/JPL in the area of advanced distributed computing technology using a Commercial-Off--The-Shelf (COTS)-based object oriented component approach to open inter-operable software development and software reuse.

  10. The COLA Collision Avoidance Method

    NASA Astrophysics Data System (ADS)

    Assmann, K.; Berger, J.; Grothkopp, S.

    2009-03-01

    In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.

  11. Method for distributed object communications based on dynamically acquired and assembled software components

    NASA Technical Reports Server (NTRS)

    Sundermier, Amy (Inventor)

    2002-01-01

    A method for acquiring and assembling software components at execution time into a client program, where the components may be acquired from remote networked servers is disclosed. The acquired components are assembled according to knowledge represented within one or more acquired mediating components. A mediating component implements knowledge of an object model. A mediating component uses its implemented object model knowledge, acquired component class information and polymorphism to assemble components into an interacting program at execution time. The interactions or abstract relationships between components in the object model may be implemented by the mediating component as direct invocations or indirect events or software bus exchanges. The acquired components may establish communications with remote servers. The acquired components may also present a user interface representing data to be exchanged with the remote servers. The mediating components may be assembled into layers, allowing arbitrarily complex programs to be constructed at execution time.

  12. AdaNET Dynamic Software Inventory (DSI) prototype component acquisition plan

    NASA Technical Reports Server (NTRS)

    Hanley, Lionel

    1989-01-01

    A component acquisition plan contains the information needed to evaluate, select, and acquire software and hardware components necessary for successful completion of the AdaNET Dynamic Software Inventory (DSI) Management System Prototype. This plan will evolve and be applicable to all phases of the DSI prototype development. Resources, budgets, schedules, and organizations related to component acquisition activities are provided. A purpose and description of a software or hardware component which is to be acquired are presented. Since this is a plan for acquisition of all components, this section is not applicable. The procurement activities and events conducted by the acquirer are described and who is responsible is identified, where the activity will be performed, and when the activities will occur for each planned procurement. Acquisition requirements describe the specific requirements and standards to be followed during component acquisition. The activities which will take place during component acquisition are described. A list of abbreviations and acronyms, and a glossary are contained.

  13. Service-oriented architecture for the ARGOS instrument control software

    NASA Astrophysics Data System (ADS)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  14. The Apache OODT Project: An Introduction

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Crichton, D. J.; Hughes, J. S.; Ramirez, P.; Goodale, C. E.; Hart, A. F.

    2012-12-01

    Apache OODT is a science data system framework, borne over the past decade, with 100s of FTEs of investment, tens of sponsoring agencies (NASA, NIH/NCI, DoD, NSF, universities, etc.), and hundreds of projects and science missions that it powers everyday to their success. At its core, Apache OODT carries with it two fundamental classes of software services and components: those that deal with information integration from existing science data repositories and archives, that themselves have already-in-use business processes and models for populating those archives. Information integration allows search, retrieval, and dissemination across these heterogeneous systems, and ultimately rapid, interactive data access, and retrieval. The other suite of services and components within Apache OODT handle population and processing of those data repositories and archives. Workflows, resource management, crawling, remote data retrieval, curation and ingestion, along with science data algorithm integration all are part of these Apache OODT software elements. In this talk, I will provide an overview of the use of Apache OODT to unlock and populate information from science data repositories and archives. We'll cover the basics, along with some advanced use cases and success stories.

  15. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging

    PubMed Central

    Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.

    2017-01-01

    Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800

  16. Crossing the chasm: how to develop weather and climate models for next generation computers?

    NASA Astrophysics Data System (ADS)

    Lawrence, Bryan N.; Rezny, Michael; Budich, Reinhard; Bauer, Peter; Behrens, Jörg; Carter, Mick; Deconinck, Willem; Ford, Rupert; Maynard, Christopher; Mullerworth, Steven; Osuna, Carlos; Porter, Andrew; Serradell, Kim; Valcke, Sophie; Wedi, Nils; Wilson, Simon

    2018-05-01

    Weather and climate models are complex pieces of software which include many individual components, each of which is evolving under pressure to exploit advances in computing to enhance some combination of a range of possible improvements (higher spatio-temporal resolution, increased fidelity in terms of resolved processes, more quantification of uncertainty, etc.). However, after many years of a relatively stable computing environment with little choice in processing architecture or programming paradigm (basically X86 processors using MPI for parallelism), the existing menu of processor choices includes significant diversity, and more is on the horizon. This computational diversity, coupled with ever increasing software complexity, leads to the very real possibility that weather and climate modelling will arrive at a chasm which will separate scientific aspiration from our ability to develop and/or rapidly adapt codes to the available hardware. In this paper we review the hardware and software trends which are leading us towards this chasm, before describing current progress in addressing some of the tools which we may be able to use to bridge the chasm. This brief introduction to current tools and plans is followed by a discussion outlining the scientific requirements for quality model codes which have satisfactory performance and portability, while simultaneously supporting productive scientific evolution. We assert that the existing method of incremental model improvements employing small steps which adjust to the changing hardware environment is likely to be inadequate for crossing the chasm between aspiration and hardware at a satisfactory pace, in part because institutions cannot have all the relevant expertise in house. Instead, we outline a methodology based on large community efforts in engineering and standardisation, which will depend on identifying a taxonomy of key activities - perhaps based on existing efforts to develop domain-specific languages, identify common patterns in weather and climate codes, and develop community approaches to commonly needed tools and libraries - and then collaboratively building up those key components. Such a collaborative approach will depend on institutions, projects, and individuals adopting new interdependencies and ways of working.

  17. Monitoring Crack Propagation in Turbine Blades Caused by Thermosonics

    NASA Astrophysics Data System (ADS)

    Bolu, G.; Gachagan, A.; Pierce, G.; Harvey, G.; Choong, L.

    2010-02-01

    High-power acoustic excitation of components during a thermosonic (or Sonic IR) inspection may degrade the structural integrity of the component by propagating existing cracks. Process Compensated Resonance Testing (PCRT) technology can be used to detect changes in material properties by comparing a components resonant spectra to a reference spectra at regular intervals after systematic exposure to high-power excitation associated with thermosonic inspection. The objective of this work is to determine whether a typical thermosonic inspection degrades the structural integrity of a turbine blade. In this work, the resonant spectra of six cracked and six uncracked turbine blades are captured before and after a series of thermosonic inspections. Next, these spectra are analyzed using proprietary software for changes in resonant behavior. Results from this work indicate no change in blade resonant behavior for a typical thermosonic inspection.

  18. Using WNTR to Model Water Distribution System Resilience ...

    EPA Pesticide Factsheets

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of disruptive events, including earthquakes, contamination incidents, floods, climate change, and fires. The software includes the EPANET solver as well as a WNTR solver with the ability to model pressure-driven demand hydraulics, pipe breaks, component degradation and failure, changes to supply and demand, and cascading failure. Damage to individual components in the network (i.e. pipes, tanks) can be selected probabilistically using fragility curves. WNTR can also simulate different types of resilience-enhancing actions, including scheduled pipe repair or replacement, water conservation efforts, addition of back-up power, and use of contamination warning systems. The software can be used to estimate potential damage in a network, evaluate preparedness, prioritize repair strategies, and identify worse case scenarios. As a Python package, WNTR takes advantage of many existing python capabilities, including parallel processing of scenarios and graphics capabilities. This presentation will outline the modeling components in WNTR, demonstrate their use, give the audience information on how to get started using the code, and invite others to participate in this open source project. This pres

  19. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission success by focusing effort on more critical activities.

  20. Critical Design Decisions of The Planck LFI Level 1 Software

    NASA Astrophysics Data System (ADS)

    Morisset, N.; Rohlfs, R.; Türler, M.; Meharga, M.; Binko, P.; Beck, M.; Frailis, M.; Zacchei, A.

    2010-12-01

    The PLANCK satellite with two on-board instruments, a Low Frequency Instrument (LFI) and a High Frequency Instrument (HFI) has been launched on May 14th with Ariane 5. The ISDC Data Centre for Astrophysics in Versoix, Switzerland has developed and maintains the Planck LFI Level 1 software for the Data Processing Centre (DPC) in Trieste, Italy. The main tasks of the Level 1 processing are to retrieve the daily available scientific and housekeeping (HK) data of the LFI instrument, the Sorption Cooler and the 4k Cooler data from Mission Operation Centre (MOC) in Darmstadt; to sort them by time and by type (detector, observing mode, etc...); to extract the spacecraft attitude information from auxiliary files; to flag the data according to several criteria; and to archive the resulting Time Ordered Information (TOI), which will then be used to produce maps of the sky in different spectral bands. The output of the Level 1 software are the TOI files in FITS format, later ingested into the Data Management Component (DMC) database. This software has been used during different phases of the LFI instrument development. We started to reuse some ISDC components for the LFI Qualification Model (QM) and we completely rework the software for the Flight Model (FM). This was motivated by critical design decisions taken jointly with the DPC. The main questions were: a) the choice of the data format: FITS or DMC? b) the design of the pipelines: use of the Planck Process Coordinator (ProC) or a simple Perl script? c) do we adapt the existing QM software or do we restart from scratch? The timeline and available manpower are also important issues to be taken into account. We present here the orientation of our choices and discuss their pertinence based on the experience of the final pre-launch tests and the start of real Planck LFI operations.

  1. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.

    PubMed

    Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel

    2018-02-20

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.

  2. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints

    PubMed Central

    Navet, Nicolas; Havet, Lionel

    2018-01-01

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489

  3. Towards integration of clinical decision support in commercial hospital information systems using distributed, reusable software and knowledge components.

    PubMed

    Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U

    2001-12-01

    Clinicians' acceptance of clinical decision support depends on its workflow-oriented, context-sensitive accessibility and availability at the point of care, integrated into the Electronic Patient Record (EPR). Commercially available Hospital Information Systems (HIS) often focus on administrative tasks and mostly do not provide additional knowledge based functionality. Their traditionally monolithic and closed software architecture encumbers integration of and interaction with external software modules. Our aim was to develop methods and interfaces to integrate knowledge sources into two different commercial hospital information systems to provide the best decision support possible within the context of available patient data. An existing, proven standalone scoring system for acute abdominal pain was supplemented by a communication interface. In both HIS we defined data entry forms and developed individual and reusable mechanisms for data exchange with external software modules. We designed an additional knowledge support frontend which controls data exchange between HIS and the knowledge modules. Finally, we added guidelines and algorithms to the knowledge library. Despite some major drawbacks which resulted mainly from the HIS' closed software architectures we showed exemplary, how external knowledge support can be integrated almost seamlessly into different commercial HIS. This paper describes the prototypical design and current implementation and discusses our experiences.

  4. Component Prioritization Schema for Achieving Maximum Time and Cost Benefits from Software Testing

    NASA Astrophysics Data System (ADS)

    Srivastava, Praveen Ranjan; Pareek, Deepak

    Software testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. Defining the end of software testing represents crucial features of any software development project. A premature release will involve risks like undetected bugs, cost of fixing faults later, and discontented customers. Any software organization would want to achieve maximum possible benefits from software testing with minimum resources. Testing time and cost need to be optimized for achieving a competitive edge in the market. In this paper, we propose a schema, called the Component Prioritization Schema (CPS), to achieve an effective and uniform prioritization of the software components. This schema serves as an extension to the Non Homogenous Poisson Process based Cumulative Priority Model. We also introduce an approach for handling time-intensive versus cost-intensive projects.

  5. DeviceEditor visual biological CAD canvas

    PubMed Central

    2012-01-01

    Background Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs. PMID:22373390

  6. Advances in model-based software for simulating ultrasonic immersion inspections of metal components

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; Taylor, Jared L.; Engle, Brady J.; Roberts, Ronald A.

    2018-04-01

    Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was initiated in 2015 to repackage existing research-grade software into user-friendly tools for the rapid estimation of signal-to-noise ratio (SNR) for ultrasonic inspections of metals. The software combines: (1) a Python-based graphical user interface for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signals and backscattered grain noise characteristics. The later makes use the Thompson-Gray measurement model for the response from an internal defect, and the Thompson-Margetan independent scatterer model for backscattered grain noise. This paper, the third in the series [1-2], provides an overview of the ongoing modeling effort with emphasis on recent developments. These include the ability to: (1) treat microstructures where grain size, shape and tilt relative to the incident sound direction can all vary with depth; and (2) simulate C-scans of defect signals in the presence of backscattered grain noise. The simulation software can now treat both normal and oblique-incidence immersion inspections of curved metal components. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required and is used to deduce the measurement system efficiency function. This can be "invented" by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, root-mean-square values of grain noise amplitudes, and SNR as functions of the depth of the defect within the metal component. At any particular depth, the user can view a simulated A-, B-, and C-scans displaying the superimposed defect and grain-noise waveforms. The realistic grain noise signals used in the A-scans are generated from a set of measured "universal" noise signals whose strengths and spectral characteristics are altered to match predicted noise characteristics for the simulation at hand.

  7. Model-based software for simulating ultrasonic pulse/echo inspections of metal components

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; Taylor, Jared L.; McKillip, Matthew; Engle, Brady J.; Roberts, Ronald A.; Barnard, Daniel J.

    2017-02-01

    Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at Iowa State University, an effort was initiated in 2015 to repackage existing research-grade software into user friendly tools for the rapid estimation of signal-to-noise ratio (S/N) for ultrasonic inspections of metals. The software combines: (1) a Python-based graphical user interface for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signals and backscattered grain noise characteristics. The later makes use the Thompson-Gray Model for the response from an internal defect and the Independent Scatterer Model for backscattered grain noise. This paper provides an overview of the ongoing modeling effort with emphasis on recent developments. These include: treatment of angle-beam inspections, implementation of distance-amplitude corrections, changes in the generation of "invented" calibration signals, efforts to simulate ultrasonic C-scans; and experimental testing of model predictions. The simulation software can now treat both normal and oblique-incidence immersion inspections of curved metal components having equiaxed microstructures in which the grain size varies with depth. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required and is used to deduce the measurement system efficiency function. This can be "invented" by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, root-mean-squared grain noise amplitudes, and S/N as functions of the depth of the defect within the metal component. At any particular depth, the user can view a simulated A-scan displaying the superimposed defect and grain-noise waveforms. The realistic grain noise signals used in the A-scans are generated from a set of measured "universal" noise signals whose strengths and spectral characteristics are altered to match predicted noise characteristics for the simulation at hand. We present simulation examples demonstrating recent developments, and discuss plans to improve simulator capabilities.

  8. 15 CFR Supplement No. 6 to Part 742 - Technical Questionnaire for Encryption Items

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... software, provide the following information: (1) Description of all the symmetric and asymmetric encryption... third-party hardware or software encryption components (if any). Identify the manufacturers of the hardware or software components, including specific part numbers and version information as needed to...

  9. 15 CFR Supplement No. 6 to Part 742 - Technical Questionnaire for Encryption Items

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... software, provide the following information: (1) Description of all the symmetric and asymmetric encryption... third-party hardware or software encryption components (if any). Identify the manufacturers of the hardware or software components, including specific part numbers and version information as needed to...

  10. 15 CFR Supplement No. 6 to Part 742 - Technical Questionnaire for Encryption Items

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... software, provide the following information: (1) Description of all the symmetric and asymmetric encryption... third-party hardware or software encryption components (if any). Identify the manufacturers of the hardware or software components, including specific part numbers and version information as needed to...

  11. System Testing of Ground Cooling System Components

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler Steven

    2014-01-01

    This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.

  12. A graphical simulation software for instruction in cardiovascular mechanics physiology.

    PubMed

    Wildhaber, Reto A; Verrey, François; Wenger, Roland H

    2011-01-25

    Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG). Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.

  13. The ALMA common software: dispatch from the trenches

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Sommer, H.; Jeram, B.; Sekoranja, M.; Chiozzi, G.; Grimstrup, A.; Caproni, A.; Paredes, C.; Allaert, E.; Harrington, S.; Turolla, S.; Cirami, R.

    2008-07-01

    The ALMA Common Software (ACS) provides both an application framework and CORBA-based middleware for the distributed software system of the Atacama Large Millimeter Array. Building upon open-source tools such as the JacORB, TAO and OmniORB ORBs, ACS supports the development of component-based software in any of three languages: Java, C++ and Python. Now in its seventh major release, ACS has matured, both in its feature set as well as in its reliability and performance. However, it is only recently that the ALMA observatory's hardware and application software has reached a level at which it can exploit and challenge the infrastructure that ACS provides. In particular, the availability of an Antenna Test Facility(ATF) at the site of the Very Large Array in New Mexico has enabled us to exercise and test the still evolving end-to-end ALMA software under realistic conditions. The major focus of ACS, consequently, has shifted from the development of new features to consideration of how best to use those that already exist. Configuration details which could be neglected for the purpose of running unit tests or skeletal end-to-end simulations have turned out to be sensitive levers for achieving satisfactory performance in a real-world environment. Surprising behavior in some open-source tools has required us to choose between patching code that we did not write or addressing its deficiencies by implementing workarounds in our own software. We will discuss these and other aspects of our recent experience at the ATF and in simulation.

  14. Existing Fortran interfaces to Trilinos in preparation for exascale ForTrilinos development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Katherine J.; Young, Mitchell T.; Collins, Benjamin S.

    This report summarizes the current state of Fortran interfaces to the Trilinos library within several key applications of the Exascale Computing Program (ECP), with the aim of informing developers about strategies to develop ForTrilinos, an exascale-ready, Fortran interface software package within Trilinos. The two software projects assessed within are the DOE Office of Science's Accelerated Climate Model for Energy (ACME) atmosphere component, CAM, and the DOE Office of Nuclear Energy's core-simulator portion of VERA, a nuclear reactor simulation code. Trilinos is an object-oriented, C++ based software project, and spans a collection of algorithms and other enabling technologies such as uncertaintymore » quantification and mesh generation. To date, Trilinos has enabled these codes to achieve large-scale simulation results, however the simulation needs of CAM and VERA-CS will approach exascale over the next five years. A Fortran interface to Trilinos that enables efficient use of programming models and more advanced algorithms is necessary. Where appropriate, the needs of the CAM and VERA-CS software to achieve their simulation goals are called out specifically. With this report, a design document and execution plan for ForTrilinos development can proceed.« less

  15. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  16. 76 FR 69762 - Limited Exclusion and Cease and Desist Orders; Terminations of Investigations: Certain Biometric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ..., Associated Software, and Products Containing the Same AGENCY: U.S. International Trade Commission. ACTION..., components thereof, associated software, and products containing the same by reason of infringement of..., components thereof, associated software, and products containing the same that infringe one or more of claims...

  17. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems: Volume 1

    DTIC Science & Technology

    2016-01-06

    supporting “Bring Your Own Devices” (BYOD)? 22 New business models for OA software components ● Franchising ● Enterprise licensing ● Metered usage...paths IP and cybersecurity requirements will need continuous attention! 35 New business models for OA software components ● Franchising ● Enterprise

  18. 77 FR 808 - Certain Video Analytics Software, Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-795] Certain Video Analytics Software... filed by ObjectVideo, Inc. of Reston, Virginia. 76 FR 45859 (Aug. 1, 2011). The complaint, as amended... certain video analytics software, systems, components thereof, and products containing same by reason of...

  19. 77 FR 75659 - Certain Video Analytics Software, Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-852] Certain Video Analytics Software..., 2012, based on a complaint filed by ObjectVideo, Inc. (``ObjectVideo'') of Reston, Virginia. 77 FR... United States after importation of certain video analytics software systems, components thereof, and...

  20. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  1. Development of a software safety process and a case study of its use

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1993-01-01

    The goal of this research is to continue the development of a comprehensive approach to software safety and to evaluate the approach with a case study. The case study is a major part of the project, and it involves the analysis of a specific safety-critical system from the medical equipment domain. The particular application being used was selected because of the availability of a suitable candidate system. We consider the results to be generally applicable and in no way particularly limited by the domain. The research is concentrating on issues raised by the specification and verification phases of the software lifecycle since they are central to our previously-developed rigorous definitions of software safety. The theoretical research is based on our framework of definitions for software safety. In the area of specification, the main topics being investigated are the development of techniques for building system fault trees that correctly incorporate software issues and the development of rigorous techniques for the preparation of software safety specifications. The research results are documented. Another area of theoretical investigation is the development of verification methods tailored to the characteristics of safety requirements. Verification of the correct implementation of the safety specification is central to the goal of establishing safe software. The empirical component of this research is focusing on a case study in order to provide detailed characterizations of the issues as they appear in practice, and to provide a testbed for the evaluation of various existing and new theoretical results, tools, and techniques. The Magnetic Stereotaxis System is summarized.

  2. UML Profiles for Design Decisions and Non-Functional Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liming; Gorton, Ian

    2007-06-30

    A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements asmore » first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as« less

  3. Towards a flexible middleware for context-aware pervasive and wearable systems.

    PubMed

    Muro, Marco; Amoretti, Michele; Zanichelli, Francesco; Conte, Gianni

    2012-11-01

    Ambient intelligence and wearable computing call for innovative hardware and software technologies, including a highly capable, flexible and efficient middleware, allowing for the reuse of existing pervasive applications when developing new ones. In the considered application domain, middleware should also support self-management, interoperability among different platforms, efficient communications, and context awareness. In the on-going "everything is networked" scenario scalability appears as a very important issue, for which the peer-to-peer (P2P) paradigm emerges as an appealing solution for connecting software components in an overlay network, allowing for efficient and balanced data distribution mechanisms. In this paper, we illustrate how all these concepts can be placed into a theoretical tool, called networked autonomic machine (NAM), implemented into a NAM-based middleware, and evaluated against practical problems of pervasive computing.

  4. DigiSeis—A software component for digitizing seismic signals using the PC sound card

    NASA Astrophysics Data System (ADS)

    Amin Khan, Khalid; Akhter, Gulraiz; Ahmad, Zulfiqar

    2012-06-01

    An innovative software-based approach to develop an inexpensive experimental seismic recorder is presented. This approach requires no hardware as the built-in PC sound card is used for digitization of seismic signals. DigiSeis, an ActiveX component is developed to capture the digitized seismic signals from the sound card and deliver them to applications for processing and display. A seismic recorder application software SeisWave is developed over this component, which provides real-time monitoring and display of seismic events picked by a pair of external geophones. This recorder can be used as an educational aid for conducting seismic experiments. It can also be connected with suitable seismic sensors to record earthquakes. The software application and the ActiveX component are available for download. This component can be used to develop seismic recording applications according to user specific requirements.

  5. Software reliability models for critical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, H.; Pham, M.

    This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the secondmore » place. 407 refs., 4 figs., 2 tabs.« less

  6. Software reliability models for critical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, H.; Pham, M.

    This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place.more » 407 refs., 4 figs., 2 tabs.« less

  7. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groeneboom, N. E.; Dahle, H., E-mail: nicolaag@astro.uio.no

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images thatmore » can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.« less

  8. Introducing GAMER: A Fast and Accurate Method for Ray-tracing Galaxies Using Procedural Noise

    NASA Astrophysics Data System (ADS)

    Groeneboom, N. E.; Dahle, H.

    2014-03-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  9. Design and Implementation of Scientific Software Components to Enable Multiscale Modeling: The Effective Fragment Potential (QM/EFP) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha

    2012-10-19

    The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecularmore » systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.« less

  10. Building Your Own Web Course: The Case for Off-the-Shelf Component Software.

    ERIC Educational Resources Information Center

    Kaplan, Howard

    1998-01-01

    Compares the features, advantages, and disadvantages of two major software options available for designing web courses: (1) component, off-the shelf software that allows for creation of audio slide lectures, course materials, discussion forums, animations, synchronous chat groups, quiz creators, and electronic mail, and (2) integrated packages…

  11. Neural network-based retrieval from software reuse repositories

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.; Srinivas, Kankanahalli

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline an approach to this problem based upon neural networks which avoids requiring the repository administrators to define a conceptual closeness graph for the classification vocabulary.

  12. A thermal sensation prediction tool for use by the profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fountain, M.E.; Huizenga, C.

    1997-12-31

    As part of a recent ASHRAE research project (781-RP), a thermal sensation prediction tool has been developed. This paper introduces the tool, describes the component thermal sensation models, and presents examples of how the tool can be used in practice. Since the main end product of the HVAC industry is the comfort of occupants indoors, tools for predicting occupant thermal response can be an important asset to designers of indoor climate control systems. The software tool presented in this paper incorporates several existing models for predicting occupant comfort.

  13. Visualising biological data: a semantic approach to tool and database integration

    PubMed Central

    Pettifer, Steve; Thorne, David; McDermott, Philip; Marsh, James; Villéger, Alice; Kell, Douglas B; Attwood, Teresa K

    2009-01-01

    Motivation In the biological sciences, the need to analyse vast amounts of information has become commonplace. Such large-scale analyses often involve drawing together data from a variety of different databases, held remotely on the internet or locally on in-house servers. Supporting these tasks are ad hoc collections of data-manipulation tools, scripting languages and visualisation software, which are often combined in arcane ways to create cumbersome systems that have been customised for a particular purpose, and are consequently not readily adaptable to other uses. For many day-to-day bioinformatics tasks, the sizes of current databases, and the scale of the analyses necessary, now demand increasing levels of automation; nevertheless, the unique experience and intuition of human researchers is still required to interpret the end results in any meaningful biological way. Putting humans in the loop requires tools to support real-time interaction with these vast and complex data-sets. Numerous tools do exist for this purpose, but many do not have optimal interfaces, most are effectively isolated from other tools and databases owing to incompatible data formats, and many have limited real-time performance when applied to realistically large data-sets: much of the user's cognitive capacity is therefore focused on controlling the software and manipulating esoteric file formats rather than on performing the research. Methods To confront these issues, harnessing expertise in human-computer interaction (HCI), high-performance rendering and distributed systems, and guided by bioinformaticians and end-user biologists, we are building reusable software components that, together, create a toolkit that is both architecturally sound from a computing point of view, and addresses both user and developer requirements. Key to the system's usability is its direct exploitation of semantics, which, crucially, gives individual components knowledge of their own functionality and allows them to interoperate seamlessly, removing many of the existing barriers and bottlenecks from standard bioinformatics tasks. Results The toolkit, named Utopia, is freely available from . PMID:19534744

  14. Visualising biological data: a semantic approach to tool and database integration.

    PubMed

    Pettifer, Steve; Thorne, David; McDermott, Philip; Marsh, James; Villéger, Alice; Kell, Douglas B; Attwood, Teresa K

    2009-06-16

    In the biological sciences, the need to analyse vast amounts of information has become commonplace. Such large-scale analyses often involve drawing together data from a variety of different databases, held remotely on the internet or locally on in-house servers. Supporting these tasks are ad hoc collections of data-manipulation tools, scripting languages and visualisation software, which are often combined in arcane ways to create cumbersome systems that have been customized for a particular purpose, and are consequently not readily adaptable to other uses. For many day-to-day bioinformatics tasks, the sizes of current databases, and the scale of the analyses necessary, now demand increasing levels of automation; nevertheless, the unique experience and intuition of human researchers is still required to interpret the end results in any meaningful biological way. Putting humans in the loop requires tools to support real-time interaction with these vast and complex data-sets. Numerous tools do exist for this purpose, but many do not have optimal interfaces, most are effectively isolated from other tools and databases owing to incompatible data formats, and many have limited real-time performance when applied to realistically large data-sets: much of the user's cognitive capacity is therefore focused on controlling the software and manipulating esoteric file formats rather than on performing the research. To confront these issues, harnessing expertise in human-computer interaction (HCI), high-performance rendering and distributed systems, and guided by bioinformaticians and end-user biologists, we are building reusable software components that, together, create a toolkit that is both architecturally sound from a computing point of view, and addresses both user and developer requirements. Key to the system's usability is its direct exploitation of semantics, which, crucially, gives individual components knowledge of their own functionality and allows them to interoperate seamlessly, removing many of the existing barriers and bottlenecks from standard bioinformatics tasks. The toolkit, named Utopia, is freely available from http://utopia.cs.man.ac.uk/.

  15. A Component-Based Extension Framework for Large-Scale Parallel Simulations in NEURON

    PubMed Central

    King, James G.; Hines, Michael; Hill, Sean; Goodman, Philip H.; Markram, Henry; Schürmann, Felix

    2008-01-01

    As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator software represents only a part of a chain of tools ranging from setup, simulation, interaction with virtual environments to analysis and visualizations. Previously published approaches to abstracting simulator engines have not received wide-spread acceptance, which in part may be to the fact that they tried to address the challenge of solving the model specification problem. Here, we present an approach that uses a neurosimulator, in this case NEURON, to describe and instantiate the network model in the simulator's native model language but then replaces the main integration loop with its own. Existing parallel network models are easily adopted to run in the presented framework. The presented approach is thus an extension to NEURON but uses a component-based architecture to allow for replaceable spike exchange components and pluggable components for monitoring, analysis, or control that can run in this framework alongside with the simulation. PMID:19430597

  16. Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) user's guide and system description

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Card, D.

    1983-01-01

    The Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) is explained. The various software facilities of the SEL, DBAM operating procedures, and DBAM system information are described. The relationships among DBAM components (baseline diagrams), component descriptions, overlay descriptions, indirect command file listings, file definitions, and sample data collection forms are provided.

  17. Application of Design Patterns in Refactoring Software Design

    NASA Technical Reports Server (NTRS)

    Baggs. Rjpda; Shaykhian, Gholam Ali

    2007-01-01

    Refactoring software design is a method of changing software design while explicitly preserving its unique design functionalities. Presented approach is to utilize design patterns as the basis for refactoring software design. Comparison of a design solution will be made through C++ programming language examples to exploit this approach. Developing reusable component will be discussed, the paper presents that the construction of such components can diminish the added burden of both refactoring and the use of design patterns.

  18. Apply Design Patterns to Refactor Software Design

    NASA Technical Reports Server (NTRS)

    Baggs, Rhoda; Shaykhian, Gholam Ali

    2007-01-01

    Refactoring software design is a method of changing software design while explicitly preserving its unique design functionalities. Presented approach is to utilize design patterns as the basis for refactoring software design. Comparison of a design solution will be made through C++ programming language examples to exploit this approach. Developing reusable component will be discussed, the paper presents that the construction of such components can diminish the added burden of both refactoring and the use of design patterns.

  19. Cloud-Based Computational Tools for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Fatland, R.; Howe, B.

    2015-12-01

    Earth scientists are increasingly required to think across disciplines and utilize a wide range of datasets in order to solve complex environmental challenges. Although significant progress has been made in distributing data, researchers must still invest heavily in developing computational tools to accommodate their specific domain. Here we document our development of lightweight computational data systems aimed at enabling rapid data distribution, analytics and problem solving tools for Earth science applications. Our goal is for these systems to be easily deployable, scalable and flexible to accommodate new research directions. As an example we describe "Ice2Ocean", a software system aimed at predicting runoff from snow and ice in the Gulf of Alaska region. Our backend components include relational database software to handle tabular and vector datasets, Python tools (NumPy, pandas and xray) for rapid querying of gridded climate data, and an energy and mass balance hydrological simulation model (SnowModel). These components are hosted in a cloud environment for direct access across research teams, and can also be accessed via API web services using a REST interface. This API is a vital component of our system architecture, as it enables quick integration of our analytical tools across disciplines, and can be accessed by any existing data distribution centers. We will showcase several data integration and visualization examples to illustrate how our system has expanded our ability to conduct cross-disciplinary research.

  20. Reusable Software and Open Data Incorporate Ecological Understanding To Optimize Agriculture and Improveme Crops.

    NASA Astrophysics Data System (ADS)

    LeBauer, D.

    2015-12-01

    Humans need a secure and sustainable food supply, and science can help. We have an opportunity to transform agriculture by combining knowledge of organisms and ecosystems to engineer ecosystems that sustainably produce food, fuel, and other services. The challenge is that the information we have. Measurements, theories, and laws found in publications, notebooks, measurements, software, and human brains are difficult to combine. We homogenize, encode, and automate the synthesis of data and mechanistic understanding in a way that links understanding at different scales and across domains. This allows extrapolation, prediction, and assessment. Reusable components allow automated construction of new knowledge that can be used to assess, predict, and optimize agro-ecosystems. Developing reusable software and open-access databases is hard, and examples will illustrate how we use the Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), the Biofuel Ecophysiological Traits and Yields database (BETYdb, betydb.org), and ecophysiological crop models to predict crop yield, decide which crops to plant, and which traits can be selected for the next generation of data driven crop improvement. A next step is to automate the use of sensors mounted on robots, drones, and tractors to assess plants in the field. The TERRA Reference Phenotyping Platform (TERRA-Ref, terraref.github.io) will provide an open access database and computing platform on which researchers can use and develop tools that use sensor data to assess and manage agricultural and other terrestrial ecosystems. TERRA-Ref will adopt existing standards and develop modular software components and common interfaces, in collaboration with researchers from iPlant, NEON, AgMIP, USDA, rOpenSci, ARPA-E, many scientists and industry partners. Our goal is to advance science by enabling efficient use, reuse, exchange, and creation of knowledge.

  1. A model for the electronic support of practice-based research networks.

    PubMed

    Peterson, Kevin A; Delaney, Brendan C; Arvanitis, Theodoros N; Taweel, Adel; Sandberg, Elisabeth A; Speedie, Stuart; Richard Hobbs, F D

    2012-01-01

    The principal goal of the electronic Primary Care Research Network (ePCRN) is to enable the development of an electronic infrastructure to support clinical research activities in primary care practice-based research networks (PBRNs). We describe the model that the ePCRN developed to enhance the growth and to expand the reach of PBRN research. Use cases and activity diagrams were developed from interviews with key informants from 11 PBRNs from the United States and United Kingdom. Discrete functions were identified and aggregated into logical components. Interaction diagrams were created, and an overall composite diagram was constructed describing the proposed software behavior. Software for each component was written and aggregated, and the resulting prototype application was pilot tested for feasibility. A practical model was then created by separating application activities into distinct software packages based on existing PBRN business rules, hardware requirements, network requirements, and security concerns. We present an information architecture that provides for essential interactions, activities, data flows, and structural elements necessary for providing support for PBRN translational research activities. The model describes research information exchange between investigators and clusters of independent data sites supported by a contracted research director. The model was designed to support recruitment for clinical trials, collection of aggregated anonymous data, and retrieval of identifiable data from previously consented patients across hundreds of practices. The proposed model advances our understanding of the fundamental roles and activities of PBRNs and defines the information exchange commonly used by PBRNs to successfully engage community health care clinicians in translational research activities. By describing the network architecture in a language familiar to that used by software developers, the model provides an important foundation for the development of electronic support for essential PBRN research activities.

  2. Technical aspects of telepathology with emphasis on future development.

    PubMed

    Schwarzmann, P; Binder, B; Klose, R

    2000-01-01

    Pathology undergoes presently changes due to new developments in diagnostic opportunities and cost saving efforts in health care. Out of the wide field of telepathology the paper selects three prototype applications: telepathology in teleeducation, expert advice for preselected details of a slide and finally telepathology for remote diagnosis. The most challenging field for remote diagnosis is the application in the frozen section scenario. The paper starts with the mental experiment to map conventional procedures to counterparts in telepathology. Technical opportunities and economical restrictions of telepathology equipment are discussed with respect to the components: electronic camera, display devices, haptic sensors and displays, available telecommunication channels and telepathology software. As an example and for illustration of the state of the art for an advanced telemicroscopy system able to perform remote frozen section diagnosis, the HISTKOM equipment is presented in more details. The section concerning future developments regards the aspects of the acceptance by tentative users, legal aspects, costs and affordability of equipment, the market for equipment components and the adequate telecommunication services. Further is regarded the mutual influence of properties of existing systems and application experiences gained with them on the next generation of equipment and application software. Conclusions and references close the paper.

  3. A Generic Evaluation Model for Semantic Web Services

    NASA Astrophysics Data System (ADS)

    Shafiq, Omair

    Semantic Web Services research has gained momentum over the last few Years and by now several realizations exist. They are being used in a number of industrial use-cases. Soon software developers will be expected to use this infrastructure to build their B2B applications requiring dynamic integration. However, there is still a lack of guidelines for the evaluation of tools developed to realize Semantic Web Services and applications built on top of them. In normal software engineering practice such guidelines can already be found for traditional component-based systems. Also some efforts are being made to build performance models for servicebased systems. Drawing on these related efforts in component-oriented and servicebased systems, we identified the need for a generic evaluation model for Semantic Web Services applicable to any realization. The generic evaluation model will help users and customers to orient their systems and solutions towards using Semantic Web Services. In this chapter, we have presented the requirements for the generic evaluation model for Semantic Web Services and further discussed the initial steps that we took to sketch such a model. Finally, we discuss related activities for evaluating semantic technologies.

  4. An overview of the model integration process: From pre ...

    EPA Pesticide Factsheets

    Integration of models requires linking models which can be developed using different tools, methodologies, and assumptions. We performed a literature review with the aim of improving our understanding of model integration process, and also presenting better strategies for building integrated modeling systems. We identified five different phases to characterize integration process: pre-integration assessment, preparation of models for integration, orchestration of models during simulation, data interoperability, and testing. Commonly, there is little reuse of existing frameworks beyond the development teams and not much sharing of science components across frameworks. We believe this must change to enable researchers and assessors to form complex workflows that leverage the current environmental science available. In this paper, we characterize the model integration process and compare integration practices of different groups. We highlight key strategies, features, standards, and practices that can be employed by developers to increase reuse and interoperability of science software components and systems. The paper provides a review of the literature regarding techniques and methods employed by various modeling system developers to facilitate science software interoperability. The intent of the paper is to illustrate the wide variation in methods and the limiting effect the variation has on inter-framework reuse and interoperability. A series of recommendation

  5. Development of Low-cost plotter for educational purposes using Arduino

    NASA Astrophysics Data System (ADS)

    Karthik, Siriparapu; Thirumal Reddy, Palwai; Marimuthu, K. Prakash

    2017-08-01

    With the development of CAD/CAM/CAE concept to product realization time has reduced drastically. Most of the activities such as design, drafting, and visualizations are carried out using high-end computers and commercial software. This has reduced the overall lead-time to market. It is important in the current scenario to equip the students with knowledge of advanced technological developments in order to use them effectively. However, the cost associated with the systems are very high which is not affordable to students. The present work is an attempt to build a low-cost plotter integrating some of the software that are available and components got from scrapped electronic devices. Here the authors are introducing G-code plotter with 3-axis which can implement the given g-code in 2D plane (X-Y). Lifting pen and adjusting to the base component is in the Z-axis. All conventional plotting devices existing until date are costly and need basic knowledge before operating. Our aim is to make students understand the working of plotter and the usage of G-code, achieving this at a much affordable cost. Arduino Uno controls the stepper motors, which can accurately plot the given dimensions.

  6. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    NASA Technical Reports Server (NTRS)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  7. Capricorn-A Web-Based Automatic Case Log and Volume Analytics for Diagnostic Radiology Residents.

    PubMed

    Chen, Po-Hao; Chen, Yin Jie; Cook, Tessa S

    2015-10-01

    On-service clinical learning is a mainstay of radiology education. However, an accurate and timely case log is difficult to keep, especially in the absence of software tools tailored to resident education. Furthermore, volume-related feedback from the residency program sometimes occurs months after a rotation ends, limiting the opportunity for meaningful intervention. We surveyed the residents of a single academic institution to evaluate the current state of and the existing need for tracking interpretation volume. Using the results of the survey, we created an open-source automated case log software. Finally, we evaluated the effect of the software tool on the residency in a 1-month, postimplementation survey. Before implementation of the system, 89% of respondents stated that volume is an important component of training, but 71% stated that volume data was inconvenient to obtain. Although the residency program provides semiannual reviews, 90% preferred reviewing interpretation volumes at least once monthly. After implementation, 95% of the respondents stated that the software is convenient to access, 75% found it useful, and 88% stated they would use the software at least once a month. The included analytics module, which benchmarks the user using historical aggregate average volumes, is the most often used feature of the software. Server log demonstrates that, on average, residents use the system approximately twice a week. An automated case log software system may fulfill a previously unmet need in diagnostic radiology training, making accurate and timely review of volume-related performance analytics a convenient process. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  8. The Impact of Software Culture on the Management of Community Data

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; Pulsifer, P. L.; Sheffield, E.; Lewis, S.; Oldenburg, J.

    2013-12-01

    The Exchange for Local Observations and Knowledge of the Arctic (ELOKA), a program hosted at the National Snow and Ice Data Center (NSIDC), supports the collection, curation, and distribution of Local and Traditional Knowledge (LTK) data, as well as some quantitative data products. Investigations involving LTK data often involve community participation, and therefore require flexible and robust user interfaces to support a reliable process of data collection and management. Often, investigators focused on LTK and community-based monitoring choose to use ELOKA's data services based on our ability to provide rapid proof-of-concepts and economical delivery of a usable product. To satisfy these two overarching criteria, ELOKA is experimenting with modifications to its software development culture both in terms of how the software applications are developed as well as the kind of software applications (or components) being developed. Over the past several years, NSIDC has shifted its software development culture from one of assigning individual scientific programmers to support particular principal investigators or projects, to an Agile Software Methodology implementation using Scrum practices. ELOKA has participated in this process by working with other product owners to schedule and prioritize development work which is then implemented by a team of application developers. Scrum, along with practices such as Test Driven Development (TDD) and paired programming, improves the quality of the software product delivered to the user community. To meet the need for rapid prototyping and to maximize product development and support with limited developer input, our software development efforts are now focused on creating a platform of application modules that can be quickly customized to suit the needs of a variety of LTK projects. This approach is in contrast to the strategy of delivering custom applications for individual projects. To date, we have integrated components of the Nunaliit Atlas framework (a Java/JavaScript client-server web-based application) with an existing Ruby on Rails application. This approach requires transitioning individual applications to expose a service layer, thus allowing interapplication communication via RESTful services. In this presentation we will report on our experiences using Agile Scrum practices, our efforts to move from custom solutions to a platform of customizable modules, and the impact of each on our ability to support researchers and Arctic residents in the domain of community-based observations and knowledge.

  9. RHCV Telescope System Operations Manual

    DTIC Science & Technology

    2018-01-05

    hardware and software components. Several of the components are closely coupled and rely on one-another, while others are largely independent. This...of hardware and software components. Several of the components are closely coupled and rely on one-another, while others are largely independent. This...attendant training The use cases are briefly described in separate sections, and step-by-step instructions are presented. Each section begins on a new

  10. GERICOS: A Generic Framework for the Development of On-Board Software

    NASA Astrophysics Data System (ADS)

    Plasson, P.; Cuomo, C.; Gabriel, G.; Gauthier, N.; Gueguen, L.; Malac-Allain, L.

    2016-08-01

    This paper presents an overview of the GERICOS framework (GEneRIC Onboard Software), its architecture, its various layers and its future evolutions. The GERICOS framework, developed and qualified by LESIA, offers a set of generic, reusable and customizable software components for the rapid development of payload flight software. The GERICOS framework has a layered structure. The first layer (GERICOS::CORE) implements the concept of active objects and forms an abstraction layer over the top of real-time kernels. The second layer (GERICOS::BLOCKS) offers a set of reusable software components for building flight software based on generic solutions to recurrent functionalities. The third layer (GERICOS::DRIVERS) implements software drivers for several COTS IP cores of the LEON processor ecosystem.

  11. An implementation of the programming structural synthesis system (PROSSS)

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.; Bhat, R. B.

    1981-01-01

    A particular implementation of the programming structural synthesis system (PROSSS) is described. This software system combines a state of the art optimization program, a production level structural analysis program, and user supplied, problem dependent interface programs. These programs are combined using standard command language features existing in modern computer operating systems. PROSSS is explained in general with respect to this implementation along with the steps for the preparation of the programs and input data. Each component of the system is described in detail with annotated listings for clarification. The components include options, procedures, programs and subroutines, and data files as they pertain to this implementation. An example exercising each option in this implementation to allow the user to anticipate the type of results that might be expected is presented.

  12. 76 FR 70490 - Certain Electronic Devices With Graphics Data Processing Systems, Components Thereof, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Graphics Data Processing Systems, Components Thereof, and Associated Software; Institution of Investigation... associated software by reason of infringement of certain claims of U.S. Patent No. 5,945,997 (``the `997... software that infringe one or more of claims 1, 3-5, 9, and 16 of the `997 patent; claims 1, 5, and 9 of...

  13. ValWorkBench: an open source Java library for cluster validation, with applications to microarray data analysis.

    PubMed

    Giancarlo, R; Scaturro, D; Utro, F

    2015-02-01

    The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.

  15. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  16. [Intranet applications in radiology].

    PubMed

    Knopp, M V; von Hippel, G M; Koch, T; Knopp, M A

    2000-01-01

    The aim of the paper is to present the conceptual basis and capabilities of intranet applications in radiology. The intranet, which is the local brother of the internet can be readily realized using existing computer components and a network. All current computer operating systems support intranet applications which allow hard and software independent communication of text, images, video and sound with the use of browser software without dedicated programs on the individual personal computers. Radiological applications for text communication e.g. department specific bulletin boards and access to examination protocols; use of image communication for viewing and limited processing and documentation of radiological images can be achieved on decentralized PCs as well as speech communication for dictation, distribution of dictation and speech recognition. The intranet helps to optimize the organizational efficiency and cost effectiveness in the daily work of radiological departments in outpatients and hospital settings. The general interest in internet and intranet technology will guarantee its continuous development.

  17. Software feedback for monochromator tuning at UNICAT (abstract)

    NASA Astrophysics Data System (ADS)

    Jemian, Pete R.

    2002-03-01

    Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as detectors. The software provides significant cost savings over hardware feedback methods. Presently implemented in EPICS, the software is sufficiently general to any automated instrument control system.

  18. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  19. Validation of X1 motorcycle model in industrial plant layout by using WITNESSTM simulation software

    NASA Astrophysics Data System (ADS)

    Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Tan, W. J.; Zairi, S.

    2017-09-01

    This paper demonstrates a case study on simulation, modelling and analysis for X1 Motorcycles Model. In this research, a motorcycle assembly plant has been selected as a main place of research study. Simulation techniques by using Witness software were applied to evaluate the performance of the existing manufacturing system. The main objective is to validate the data and find out the significant impact on the overall performance of the system for future improvement. The process of validation starts when the layout of the assembly line was identified. All components are evaluated to validate whether the data is significance for future improvement. Machine and labor statistics are among the parameters that were evaluated for process improvement. Average total cycle time for given workstations is used as criterion for comparison of possible variants. From the simulation process, the data used are appropriate and meet the criteria for two-sided assembly line problems.

  20. Identifying Contingency Requirements using Obstacle Analysis on an Unpiloted Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Nelson, Stacy; Patterson-Hine, Ann; Frost, Chad R.; Tal, Doron

    2005-01-01

    This paper describes experience using Obstacle Analysis to identify contingency requirements on an unpiloted aerial vehicle. A contingency is an operational anomaly, and may or may not involve component failure. The challenges to this effort were: ( I ) rapid evolution of the system while operational, (2) incremental autonomy as capabilities were transferred from ground control to software control and (3) the eventual safety-criticality of such systems as they begin to fly over populated areas. The results reported here are preliminary but show that Obstacle Analysis helped (1) identify new contingencies that appeared as autonomy increased; (2) identify new alternatives for handling both previously known and new contingencies; and (3) investigate the continued validity of existing software requirements for contingency handling. Since many mobile, intelligent systems are built using a development process that poses the same challenges, the results appear to have applicability to other similar systems.

  1. NA-42 TI Shared Software Component Library FY2011 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudson, Christa K.; Rutz, Frederick C.; Dorow, Kevin E.

    The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the long term goal of migrating toward a software management approach that will allow for the sharing and reuse of code developed within the TI program, improve integration, ensure a level of software documentation, and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with two activities that support this mission. PNNL has been tasked with the identification, selection, and implementation of a Shared Software Component Library. The intent of the library is to provide a common repository that is accessiblemore » by all authorized NA-42 software development teams. The repository facilitates software reuse through a searchable and easy to use web based interface. As software is submitted to the repository, the component registration process captures meta-data and provides version control for compiled libraries, documentation, and source code. This meta-data is then available for retrieval and review as part of library search results. In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software application with the goal of replacing the aging Aerial Measuring System (AMS). The application under development includes an Advanced Visualization and Integration of Data (AVID) framework and associated AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project development team, is accessed via two different geographic locations and continues to be used. The knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software development and systems engineering capabilities were used in the selection of a package to be used in the implementation of the software component library on behalf of NA-42 TI. The second task managed by PNNL is the development and continued maintenance of the NA-42 TI Software Development Questionnaire. This questionnaire is intended to help software development teams working under NA-42 TI in documenting their development activities. When sufficiently completed, the questionnaire illustrates that the software development activities recorded incorporate significant aspects of the software engineering lifecycle. The questionnaire template is updated as comments are received from NA-42 and/or its development teams and revised versions distributed to those using the questionnaire. PNNL also maintains a list of questionnaire recipients. The blank questionnaire template, the AVID and AMS software being developed, and the completed AVID AMS specific questionnaire are being used as the initial content to be established in the TI Component Library. This report summarizes the approach taken to identify requirements, search for and evaluate technologies, and the approach taken for installation of the software needed to host the component library. Additionally, it defines the process by which users request access for the contribution and retrieval of library content.« less

  2. RICIS research

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.

    1987-01-01

    The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.

  3. Software development environments: Status and trends

    NASA Technical Reports Server (NTRS)

    Duffel, Larry E.

    1988-01-01

    Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.

  4. Component Models for Semantic Web Languages

    NASA Astrophysics Data System (ADS)

    Henriksson, Jakob; Aßmann, Uwe

    Intelligent applications and agents on the Semantic Web typically need to be specified with, or interact with specifications written in, many different kinds of formal languages. Such languages include ontology languages, data and metadata query languages, as well as transformation languages. As learnt from years of experience in development of complex software systems, languages need to support some form of component-based development. Components enable higher software quality, better understanding and reusability of already developed artifacts. Any component approach contains an underlying component model, a description detailing what valid components are and how components can interact. With the multitude of languages developed for the Semantic Web, what are their underlying component models? Do we need to develop one for each language, or is a more general and reusable approach achievable? We present a language-driven component model specification approach. This means that a component model can be (automatically) generated from a given base language (actually, its specification, e.g. its grammar). As a consequence, we can provide components for different languages and simplify the development of software artifacts used on the Semantic Web.

  5. [Human resource planning in operative anaesthesia : Structured interviews with 23 supervising senior physicians].

    PubMed

    Bent, F; Ahlbrandt, J; Wagner, A; Weigand, M A; Hofer, S; Lichtenstern, C

    2016-05-01

    In the hospital, human resource planning has to consider the needs and preferences of personnel and planners as well as the financial interest of the hospital. Additionally, staff planning has become more complex due to a growing number of part-time doctors as well as a variety of working shifts. The aim of the study was to describe existing human resource planning in German anesthesiology departments. Furthermore, we evaluated existing software solutions supporting human resource planning. Anesthesiology departments of German university hospitals were enrolled in the study. The aspects covered were tools and time needed for planning, amount of conflicts while planning, components of the software solutions and the efficiency and satisfaction according to the users. This was evaluated for short-, intermediate- and long-term planning. Two groups were compared: departments with and without software exchanging information among the three planning periods. Out of 35 university anesthesiology departments, 23 took part in the survey. On average they employed 105.8 ± 27.8 doctors who had to cover 13.5 ± 6.3 different shifts during a weekday. Personnel planning is mostly done by senior physicians. In some departments, other staff, such as residents and junior doctors, were involved as well. Software that exchanged information between short-, intermediate- and long-term planning was used in 53 % of the departments (12 out of 23). Five departments used commercially available planning software: Polypoint Deutschland (PolypointDeutschland), Atoss (Atoss AG) and SP Expert (Interflex Datensysteme). The time needed for short-term planning was slightly reduced in the exchanging software group. No difference was shown for the intermediate planning period. The use of this software led to a slight reduction in planning conflicts and increased the self-estimated efficiency of the users (p = 0.02). Throughout all groups, the major complaint was missing interfaces, for example between the software and human resources department. The ideal planning software should reduce time needed for planning and prevent planning conflicts according to the interviewed physicians. Furthermore it should be flexible and transparent for all involved staff. This study analyzed structures established in human resource planning in the anesthesiology departments for the first time. Time for planning varies significantly in comparable departments indicating suboptimal processes. Throughout Germany, the requirements for human resources planning are similar; for example, the software should integrate all aspects of HR planning. Different approaches are under evaluation but so far no software solution has prevailed. The used solutions vary substantially and therefore a comparison is difficult. There is no software solution with wide adoption.

  6. Integrated Software Health Management for Aircraft GN and C

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole

    2011-01-01

    Modern aircraft rely heavily on dependable operation of many safety-critical software components. Despite careful design, verification and validation (V&V), on-board software can fail with disastrous consequences if it encounters problematic software/hardware interaction or must operate in an unexpected environment. We are using a Bayesian approach to monitor the software and its behavior during operation and provide up-to-date information about the health of the software and its components. The powerful reasoning mechanism provided by our model-based Bayesian approach makes reliable diagnosis of the root causes possible and minimizes the number of false alarms. Compilation of the Bayesian model into compact arithmetic circuits makes SWHM feasible even on platforms with limited CPU power. We show initial results of SWHM on a small simulator of an embedded aircraft software system, where software and sensor faults can be injected.

  7. 76 FR 34100 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... Certain GPS Navigation Products, Components Thereof, and Related Software, DN 2814; the Commission is... importation of certain GPS navigation products, components thereof, and related software. The complaint names...

  8. Developing interpretable models with optimized set reduction for identifying high risk software components

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.

    1993-01-01

    Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault frequency components so that testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents the Optimized Set Reduction approach for constructing such models, intended to fulfill specific software engineering needs. Our approach to classification is to measure the software system and build multivariate stochastic models for predicting high risk system components. We present experimental results obtained by classifying Ada components into two classes: is or is not likely to generate faults during system and acceptance test. Also, we evaluate the accuracy of the model and the insights it provides into the error making process.

  9. The software for automatic creation of the formal grammars used by speech recognition, computer vision, editable text conversion systems, and some new functions

    NASA Astrophysics Data System (ADS)

    Kardava, Irakli; Tadyszak, Krzysztof; Gulua, Nana; Jurga, Stefan

    2017-02-01

    For more flexibility of environmental perception by artificial intelligence it is needed to exist the supporting software modules, which will be able to automate the creation of specific language syntax and to make a further analysis for relevant decisions based on semantic functions. According of our proposed approach, of which implementation it is possible to create the couples of formal rules of given sentences (in case of natural languages) or statements (in case of special languages) by helping of computer vision, speech recognition or editable text conversion system for further automatic improvement. In other words, we have developed an approach, by which it can be achieved to significantly improve the training process automation of artificial intelligence, which as a result will give us a higher level of self-developing skills independently from us (from users). At the base of our approach we have developed a software demo version, which includes the algorithm and software code for the entire above mentioned component's implementation (computer vision, speech recognition and editable text conversion system). The program has the ability to work in a multi - stream mode and simultaneously create a syntax based on receiving information from several sources.

  10. Contingency theoretic methodology for agent-based web-oriented manufacturing systems

    NASA Astrophysics Data System (ADS)

    Durrett, John R.; Burnell, Lisa J.; Priest, John W.

    2000-12-01

    The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.

  11. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    PubMed

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing techniques and assessment of soft computing techniques to predict reliability. The parameter considered while estimating and prediction of reliability are also discussed. This study can be used in estimation and prediction of the reliability of various instruments used in the medical system, software engineering, computer engineering and mechanical engineering also. These concepts can be applied to both software and hardware, to predict the reliability using CBSE.

  12. Plant Habitat Telemetry / Command Interface and E-MIST

    NASA Technical Reports Server (NTRS)

    Walker, Uriae M.

    2013-01-01

    Plant Habitat (PH) is an experiment to be taken to the International Space Station (ISS) in 2016. It is critical that ground support computers have the ability to uplink commands to control PH, and that ISS computers have the ability to downlink PH telemetry data to ground support. This necessitates communication software that can send, receive, and process, PH specific commands and telemetry. The objective of the Plant Habitat Telemetry/ Command Interface is to provide this communication software, and to couple it with an intuitive Graphical User Interface (GUI). Initial investigation of the project objective led to the decision that code be written in C++ because of its compatibility with existing source code infrastructures and robustness. Further investigation led to a determination that multiple Ethernet packet structures would need to be created to effectively transmit data. Setting a standard for packet structures would allow us to distinguish these packets that would range from command type packets to sub categories of telemetry packets. In order to handle this range of packet types, the conclusion was made to take an object-oriented programming approach which complemented our decision to use the C++ programming language. In addition, extensive utilization of port programming concepts was required to implement the core functionality of the communication software. Also, a concrete understanding of a packet processing software was required in order to put aU the components of ISS-to-Ground Support Equipment (GSE) communication together and complete the objective. A second project discussed in this paper is Exposing Microbes to the Stratosphere (EMIST). This project exposes microbes into the stratosphere to observe how they are impacted by atmospheric effects. This paper focuses on the electrical and software expectations of the project, specifically drafting the printed circuit board, and programming the on-board sensors. The Eagle Computer-Aided Drafting (CAD) software was used to draft the E-MIST circuit. This required several component libraries to be created. Coding the sensors and obtaining sensor data involved using the Arduino Uno developmental board and coding language, and properly wiring peripheral sensors to the microcontroller (the central control unit of the experiment).

  13. AdaNET phase 0 support for the AdaNET Dynamic Software Inventory (DSI) management system prototype. Catalog of available reusable software components

    NASA Technical Reports Server (NTRS)

    Hanley, Lionel

    1989-01-01

    The Ada Software Repository is a public-domain collection of Ada software and information. The Ada Software Repository is one of several repositories located on the SIMTEL20 Defense Data Network host computer at White Sands Missile Range, and available to any host computer on the network since 26 November 1984. This repository provides a free source for Ada programs and information. The Ada Software Repository is divided into several subdirectories. These directories are organized by topic, and their names and a brief overview of their topics are contained. The Ada Software Repository on SIMTEL20 serves two basic roles: to promote the exchange and use (reusability) of Ada programs and tools (including components) and to promote Ada education.

  14. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  15. 78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... safety and electromagnetic compatibility; For devices containing software, software verification... electromagnetic compatibility; For devices containing software, software verification, validation, and hazard... electrical components, appropriate analysis and testing must validate electrical safety and electromagnetic...

  16. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  17. Organizational management practices for achieving software process improvement

    NASA Technical Reports Server (NTRS)

    Kandt, Ronald Kirk

    2004-01-01

    The crisis in developing software has been known for over thirty years. Problems that existed in developing software in the early days of computing still exist today. These problems include the delivery of low-quality products, actual development costs that exceed expected development costs, and actual development time that exceeds expected development time. Several solutions have been offered to overcome out inability to deliver high-quality software, on-time and within budget. One of these solutions involves software process improvement. However, such efforts often fail because of organizational management issues. This paper discusses business practices that organizations should follow to improve their chances of initiating and sustaining successful software process improvement efforts.

  18. 77 FR 40082 - Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Commission remands for the ALJ to (1) apply the Commission's opinion in Certain Electronic Devices With Image Processing Systems, Components Thereof, and Associated Software, Inv. No. 337-TA-724, Comm'n Op. (Dec. 21...

  19. SEPAC flight software detailed design specifications, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.

  20. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences

    NASA Astrophysics Data System (ADS)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.

    2008-12-01

    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network (www.geoinformatics.info/gin) a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI. OneGeology-Europe and GIN have agreed to integrate their networks, effectively adopting global standards among geological surveys that are available across the entire field. ESRI is creating a Geology Data Model for ArcGIS software to be compatible with GIN, and other companies are expressing interest in adapting their services, applications, and clients to take advantage of the large data resources planned to become available through GIN.

  1. Simplified Virtualization in a HEP/NP Environment with Condor

    NASA Astrophysics Data System (ADS)

    Strecker-Kellogg, W.; Caramarcu, C.; Hollowell, C.; Wong, T.

    2012-12-01

    In this work we will address the development of a simple prototype virtualized worker node cluster, using Scientific Linux 6.x as a base OS, KVM and the libvirt API for virtualization, and the Condor batch software to manage virtual machines. The discussion in this paper provides details on our experience with building, configuring, and deploying the various components from bare metal, including the base OS, creation and distribution of the virtualized OS images and the integration of batch services with the virtual machines. Our focus was on simplicity and interoperability with our existing architecture.

  2. A data analysis expert system for large established distributed databases

    NASA Technical Reports Server (NTRS)

    Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick

    1987-01-01

    A design for a natural language database interface system, called the Deductively Augmented NASA Management Decision support System (DANMDS), is presented. The DANMDS system components have been chosen on the basis of the following considerations: maximal employment of the existing NASA IBM-PC computers and supporting software; local structuring and storing of external data via the entity-relationship model; a natural easy-to-use error-free database query language; user ability to alter query language vocabulary and data analysis heuristic; and significant artificial intelligence data analysis heuristic techniques that allow the system to become progressively and automatically more useful.

  3. Telescope Automation and Remote Observing System (TAROS)

    NASA Astrophysics Data System (ADS)

    Wilson, G.; Czezowski, A.; Hovey, G. R.; Jarnyk, M. A.; Nielsen, J.; Roberts, B.; Sebo, K.; Smith, D.; Vaccarella, A.; Young, P.

    2005-12-01

    TAROS is a system that will allow for the Australian National University telescopes at a remote location to be operated automatically or interactively with authenticated control via the internet. TAROS is operated by a Java front-end GUI and employs the use of several Java technologies - such as Java Message Service (JMS) for communication between the telescope and the remote observer, Java Native Interface to integrate existing data acquisition software written in C++ (CICADA) with new Java programs and the JSky collection of Java GUI components for parts of the remote observer client. In this poster the design and implementation of TAROS is described.

  4. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  5. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    DOE PAGES

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett; ...

    2017-01-01

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  6. A TTC upgrade proposal using bidirectional 10G-PON FTTH technology

    NASA Astrophysics Data System (ADS)

    Kolotouros, D. M.; Baron, S.; Soos, C.; Vasey, F.

    2015-04-01

    A new generation FPGA-based Timing-Trigger and Control (TTC) system based on emerging Passive Optical Network (PON) technology is being proposed to replace the existing off-detector TTC system used by the LHC experiments. High split ratio, dynamic software partitioning, low and deterministic latency, as well as low jitter are required. Exploiting the latest available technologies allows delivering higher capacity together with bidirectionality, a feature absent from the legacy TTC system. This article focuses on the features and capabilities of the latest TTC-PON prototype based on 10G-PON FTTH components along with some metrics characterizing its performance.

  7. Logical optimization for database uniformization

    NASA Technical Reports Server (NTRS)

    Grant, J.

    1984-01-01

    Data base uniformization refers to the building of a common user interface facility to support uniform access to any or all of a collection of distributed heterogeneous data bases. Such a system should enable a user, situated anywhere along a set of distributed data bases, to access all of the information in the data bases without having to learn the various data manipulation languages. Furthermore, such a system should leave intact the component data bases, and in particular, their already existing software. A survey of various aspects of the data bases uniformization problem and a proposed solution are presented.

  8. Computer software.

    PubMed

    Rosenthal, L E

    1986-10-01

    Software is the component in a computer system that permits the hardware to perform the various functions that a computer system is capable of doing. The history of software and its development can be traced to the early nineteenth century. All computer systems are designed to utilize the "stored program concept" as first developed by Charles Babbage in the 1850s. The concept was lost until the mid-1940s, when modern computers made their appearance. Today, because of the complex and myriad tasks that a computer system can perform, there has been a differentiation of types of software. There is software designed to perform specific business applications. There is software that controls the overall operation of a computer system. And there is software that is designed to carry out specialized tasks. Regardless of types, software is the most critical component of any computer system. Without it, all one has is a collection of circuits, transistors, and silicone chips.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetlana Shasharina

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  10. Quadratic Blind Linear Unmixing: A Graphical User Interface for Tissue Characterization

    PubMed Central

    Gutierrez-Navarro, O.; Campos-Delgado, D.U.; Arce-Santana, E. R.; Jo, Javier A.

    2016-01-01

    Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. PMID:26589467

  11. Quadratic blind linear unmixing: A graphical user interface for tissue characterization.

    PubMed

    Gutierrez-Navarro, O; Campos-Delgado, D U; Arce-Santana, E R; Jo, Javier A

    2016-02-01

    Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A Study of Clinically Related Open Source Software Projects

    PubMed Central

    Hogarth, Michael A.; Turner, Stuart

    2005-01-01

    Open source software development has recently gained significant interest due to several successful mainstream open source projects. This methodology has been proposed as being similarly viable and beneficial in the clinical application domain as well. However, the clinical software development venue differs significantly from the mainstream software venue. Existing clinical open source projects have not been well characterized nor formally studied so the ‘fit’ of open source in this domain is largely unknown. In order to better understand the open source movement in the clinical application domain, we undertook a study of existing open source clinical projects. In this study we sought to characterize and classify existing clinical open source projects and to determine metrics for their viability. This study revealed several findings which we believe could guide the healthcare community in its quest for successful open source clinical software projects. PMID:16779056

  13. The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.

    PubMed

    Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin

    2007-11-01

    This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences.

  14. Documenting Models for Interoperability and Reusability ...

    EPA Pesticide Factsheets

    Many modeling frameworks compartmentalize science via individual models that link sets of small components to create larger modeling workflows. Developing integrated watershed models increasingly requires coupling multidisciplinary, independent models, as well as collaboration between scientific communities, since component-based modeling can integrate models from different disciplines. Integrated Environmental Modeling (IEM) systems focus on transferring information between components by capturing a conceptual site model; establishing local metadata standards for input/output of models and databases; managing data flow between models and throughout the system; facilitating quality control of data exchanges (e.g., checking units, unit conversions, transfers between software languages); warning and error handling; and coordinating sensitivity/uncertainty analyses. Although many computational software systems facilitate communication between, and execution of, components, there are no common approaches, protocols, or standards for turn-key linkages between software systems and models, especially if modifying components is not the intent. Using a standard ontology, this paper reviews how models can be described for discovery, understanding, evaluation, access, and implementation to facilitate interoperability and reusability. In the proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Mod

  15. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    PubMed

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  16. Implications of Responsive Space on the Flight Software Architecture

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.

  17. HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility.

    PubMed

    Langer, Dominik; van 't Hoff, Marcel; Keller, Andreas J; Nagaraja, Chetan; Pfäffli, Oliver A; Göldi, Maurice; Kasper, Hansjörg; Helmchen, Fritjof

    2013-04-30

    Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Software Engineering Laboratory (SEL) programmer workbench phase 1 evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Phase 1 of the SEL programmer workbench consists of the design of the following three components: communications link, command language processor, and collection of software aids. A brief description, and evaluation, and recommendations are presented for each of these three components.

  19. From Bridges and Rockets, Lessons for Software Systems

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    2004-01-01

    Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.

  20. A perspective on future directions in aerospace propulsion system simulation

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Szuch, John R.; Gaugler, Raymond E.; Wood, Jerry R.

    1989-01-01

    The design and development of aircraft engines is a lengthy and costly process using today's methodology. This is due, in large measure, to the fact that present methods rely heavily on experimental testing to verify the operability, performance, and structural integrity of components and systems. The potential exists for achieving significant speedups in the propulsion development process through increased use of computational techniques for simulation, analysis, and optimization. This paper outlines the concept and technology requirements for a Numerical Propulsion Simulation System (NPSS) that would provide capabilities to do interactive, multidisciplinary simulations of complete propulsion systems. By combining high performance computing hardware and software with state-of-the-art propulsion system models, the NPSS will permit the rapid calculation, assessment, and optimization of subcomponent, component, and system performance, durability, reliability and weight-before committing to building hardware.

  1. MARXS: A Modular Software to Ray-trace X-Ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam

    2017-12-01

    To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.

  2. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    NASA Astrophysics Data System (ADS)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  3. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  4. Towards a high performance geometry library for particle-detector simulations

    DOE PAGES

    Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...

    2015-05-22

    Thread-parallelization and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, asmore » well as in applying new C++ template based optimizations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimized code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. As a result, the experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimization of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.« less

  5. Towards a high performance geometry library for particle-detector simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolakis, J.; Bandieramonte, M.; Bitzes, G.

    Thread-parallelization and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, asmore » well as in applying new C++ template based optimizations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimized code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. As a result, the experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimization of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.« less

  6. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology.

    PubMed

    Adams, Richard; Clark, Allan; Yamaguchi, Azusa; Hanlon, Neil; Tsorman, Nikos; Ali, Shakir; Lebedeva, Galina; Goltsov, Alexey; Sorokin, Anatoly; Akman, Ozgur E; Troein, Carl; Millar, Andrew J; Goryanin, Igor; Gilmore, Stephen

    2013-03-01

    Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI's use of standard data formats. All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials.

  7. Component Verification and Certification in NASA Missions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)

    2001-01-01

    Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.

  8. Automated Reuse of Scientific Subroutine Libraries through Deductive Synthesis

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.; Pressburger, Thomas; VanBaalen, Jeffrey; Roach, Steven

    1997-01-01

    Systematic software construction offers the potential of elevating software engineering from an art-form to an engineering discipline. The desired result is more predictable software development leading to better quality and more maintainable software. However, the overhead costs associated with the formalisms, mathematics, and methods of systematic software construction have largely precluded their adoption in real-world software development. In fact, many mainstream software development organizations, such as Microsoft, still maintain a predominantly oral culture for software development projects; which is far removed from a formalism-based culture for software development. An exception is the limited domain of safety-critical software, where the high-assuiance inherent in systematic software construction justifies the additional cost. We believe that systematic software construction will only be adopted by mainstream software development organization when the overhead costs have been greatly reduced. Two approaches to cost mitigation are reuse (amortizing costs over many applications) and automation. For the last four years, NASA Ames has funded the Amphion project, whose objective is to automate software reuse through techniques from systematic software construction. In particular, deductive program synthesis (i.e., program extraction from proofs) is used to derive a composition of software components (e.g., subroutines) that correctly implements a specification. The construction of reuse libraries of software components is the standard software engineering solution for improving software development productivity and quality.

  9. A system for automatic evaluation of simulation software

    NASA Technical Reports Server (NTRS)

    Ryan, J. P.; Hodges, B. C.

    1976-01-01

    Within the field of computer software, simulation and verification are complementary processes. Simulation methods can be used to verify software by performing variable range analysis. More general verification procedures, such as those described in this paper, can be implicitly, viewed as attempts at modeling the end-product software. From software requirement methodology, each component of the verification system has some element of simulation to it. Conversely, general verification procedures can be used to analyze simulation software. A dynamic analyzer is described which can be used to obtain properly scaled variables for an analog simulation, which is first digitally simulated. In a similar way, it is thought that the other system components and indeed the whole system itself have the potential of being effectively used in a simulation environment.

  10. NDARC NASA Design and Analysis of Rotorcraft. Appendix 5; Theory

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2017-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  11. NDARC: NASA Design and Analysis of Rotorcraft. Appendix 3; Theory

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet speci?ed requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft con?gurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates con?guration ?exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-?delity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy speci?ed design conditions and missions. The analysis tasks can include off-design mission performance calculation, ?ight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft con?gurations is facilitated, while retaining the capability to model novel and advanced concepts. Speci?c rotorcraft con?gurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-?delity attribute models for a component, as well as addition of new components.

  12. NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 2

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tilt-rotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  13. NDARC NASA Design and Analysis of Rotorcraft. Appendix 6; Input

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2017-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  14. NDARC NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne R.

    2009-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  15. NDARC - NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2015-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  16. NDARC NASA Design and Analysis of Rotorcraft Theory Appendix 1

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  17. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  18. Interface Generation and Compositional Verification in JavaPathfinder

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina

    2009-01-01

    We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.

  19. An overview of the mathematical and statistical analysis component of RICIS

    NASA Technical Reports Server (NTRS)

    Hallum, Cecil R.

    1987-01-01

    Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.

  20. Investigation into the development of computer aided design software for space based sensors

    NASA Technical Reports Server (NTRS)

    Pender, C. W.; Clark, W. L.

    1987-01-01

    The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.

  1. PICNIC Architecture.

    PubMed

    Saranummi, Niilo

    2005-01-01

    The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.

  2. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  3. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  4. Mass storage system reference model, Version 4

    NASA Technical Reports Server (NTRS)

    Coleman, Sam (Editor); Miller, Steve (Editor)

    1993-01-01

    The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.

  5. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  6. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  7. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  8. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  9. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  10. Effectiveness of back-to-back testing

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.; Eckhardt, David E.; Caglayan, Alper; Kelly, John P. J.

    1987-01-01

    Three models of back-to-back testing processes are described. Two models treat the case where there is no intercomponent failure dependence. The third model describes the more realistic case where there is correlation among the failure probabilities of the functionally equivalent components. The theory indicates that back-to-back testing can, under the right conditions, provide a considerable gain in software reliability. The models are used to analyze the data obtained in a fault-tolerant software experiment. It is shown that the expected gain is indeed achieved, and exceeded, provided the intercomponent failure dependence is sufficiently small. However, even with the relatively high correlation the use of several functionally equivalent components coupled with back-to-back testing may provide a considerable reliability gain. Implications of this finding are that the multiversion software development is a feasible and cost effective approach to providing highly reliable software components intended for fault-tolerant software systems, on condition that special attention is directed at early detection and elimination of correlated faults.

  11. PSAMM: A Portable System for the Analysis of Metabolic Models

    PubMed Central

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2016-01-01

    The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591

  12. Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective☆

    PubMed Central

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23467006

  13. An object-oriented class library for medical software development.

    PubMed

    O'Kane, K C; McColligan, E E

    1996-12-01

    The objective of this research is the development of a Medical Object Library (MOL) consisting of reusable, inheritable, portable, extendable C++ classes that facilitate rapid development of medical software at reduced cost and increased functionality. The result of this research is a library of class objects that range in function from string and hierarchical file handling entities to high level, procedural agents that perform increasingly complex, integrated tasks. A system built upon these classes is compatible with any other system similarly constructed with respect to data definitions, semantics, data organization and storage. As new objects are built, they can be added to the class library for subsequent use. The MOL is a toolkit of software objects intended to support a common file access methodology, a unified medical record structure, consistent message processing, standard graphical display facilities and uniform data collection procedures. This work emphasizes the relationship that potentially exists between the structure of a hierarchical medical record and procedural language components by means of a hierarchical class library and tree structured file access facility. In doing so, it attempts to establish interest in and demonstrate the practicality of the hierarchical medical record model in the modern context of object oriented programming.

  14. Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective.

    PubMed

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Design notes for the next generation persistent object manager for CAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isely, M.; Fischler, M.; Galli, M.

    1995-05-01

    The CAP query system software at Fermilab has several major components, including SQS (for managing the query), the retrieval system (for fetching auxiliary data), and the query software itself. The central query software in particular is essentially a modified version of the `ptool` product created at UIC (University of Illinois at Chicago) as part of the PASS project under Bob Grossman. The original UIC version was designed for use in a single-user non-distributed Unix environment. The Fermi modifications were an attempt to permit multi-user access to a data set distributed over a set of storage nodes. (The hardware is anmore » IBM SP-x system - a cluster of AIX POWER2 nodes with an IBM-proprietary high speed switch interconnect). Since the implementation work of the Fermi-ized ptool, the CAP members have learned quite a bit about the nature of queries and where the current performance bottlenecks exist. This has lead them to design a persistent object manager that will overcome these problems. For backwards compatibility with ptool, the ptool persistent object API will largely be retained, but the implementation will be entirely different.« less

  16. Mass spectrometer output file format mzML.

    PubMed

    Deutsch, Eric W

    2010-01-01

    Mass spectrometry is an important technique for analyzing proteins and other biomolecular compounds in biological samples. Each of the vendors of these mass spectrometers uses a different proprietary binary output file format, which has hindered data sharing and the development of open source software for downstream analysis. The solution has been to develop, with the full participation of academic researchers as well as software and hardware vendors, an open XML-based format for encoding mass spectrometer output files, and then to write software to use this format for archiving, sharing, and processing. This chapter presents the various components and information available for this format, mzML. In addition to the XML schema that defines the file structure, a controlled vocabulary provides clear terms and definitions for the spectral metadata, and a semantic validation rules mapping file allows the mzML semantic validator to insure that an mzML document complies with one of several levels of requirements. Complete documentation and example files insure that the format may be uniformly implemented. At the time of release, there already existed several implementations of the format and vendors have committed to supporting the format in their products.

  17. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  18. An ontology-based semantic configuration approach to constructing Data as a Service for enterprises

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi

    2016-03-01

    To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.

  19. 77 FR 43118 - Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-752] Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof; Notice of Commission Determination To Review a Final Initial Determination Finding a Violation of Section 337; Remand of the Investigation to the...

  20. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines

    PubMed Central

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W.; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods. PMID:29271779

  1. Toward modular biological models: defining analog modules based on referent physiological mechanisms

    PubMed Central

    2014-01-01

    Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169

  2. Toward modular biological models: defining analog modules based on referent physiological mechanisms.

    PubMed

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2014-08-16

    Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.

  3. USGS Imagery Applications During Disaster Response After Recent Earthquakes

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Brooks, B. A.; Glennie, C. L.; Finnegan, D. C.

    2015-12-01

    It is not only important to rapidly characterize surface fault rupture and related ground deformation after an earthquake, but also to repeatedly make observations following an event to forecast fault afterslip. These data may also be used by other agencies to monitor progress on damage repairs and restoration efforts by emergency responders and the public. Related requirements include repeatedly obtaining reference or baseline imagery before a major disaster occurs, as well as maintaining careful geodetic control on all imagery in a time series so that absolute georeferencing may be applied to the image stack through time. In addition, repeated post-event imagery acquisition is required, generally at a higher repetition rate soon after the event, then scaled back to less frequent acquisitions with time, to capture phenomena (such as fault afterslip) that are known to have rates that decrease rapidly with time. For example, lidar observations acquired before and after the South Napa earthquake of 2014, used in our extensive post-processing work that was funded primarily by FEMA, aided in the accurate forecasting of fault afterslip. Lidar was used to independently validate and verify the official USGS afterslip forecast. In order to keep pace with rapidly evolving technology, a development pipeline must be established and maintained to continually test and incorporate new sensors, while adapting these new components to the existing platform and linking them to the existing base software system, and then sequentially testing the system as it evolves. Improvements in system performance by incremental upgrades of system components and software are essential. Improving calibration parameters and thereby progressively eliminating artifacts requires ongoing testing, research and development. To improve the system, we have formed an interdisciplinary team with common interests and diverse sources of support. We share expertise and leverage funding while effectively and rapidly improving our system, which includes the sensor package and software for all steps in acquiring, processing and differencing repeat-pass lidar and electro-optical imagery, and the GRiD metadata and point cloud database standard, already used during disaster response surge events by other agencies (e.g., during Hurricane Sandy in 2012).

  4. Weaves as an Interconnection Fabric for ASIM's and Nanosatellites

    NASA Technical Reports Server (NTRS)

    Gorlick, Michael M.

    1995-01-01

    Many of the micromachines under consideration require computer support, indeed, one of the appeals of this technology is the ability to intermix mechanical, optical, analog, and digital devices on the same substrate. The amount of computer power is rarely an issue, the sticking point is the complexity of the software required to make effective use of these devices. Micromachines are the nano-technologist's equivalent of 'golden screws'. In other words, they will be piece parts in larger assemblages. For example, a nano-satellite may be composed of stacked silicon wafers where each wafer contains hundreds to thousands of micromachines, digital controllers, general purpose computers, memories, and high-speed bus interconnects. Comparatively few of these devices will be custom designed, most will be stock parts selected from libraries and catalogs. The novelty will lie in the interconnections. For example, a digital accelerometer may be a component part in an adaptive suspension, a monitoring element embedded in the wrapper of a package, or a portion of the smart skin of a launch vehicle. In each case, this device must inter-operate with other devices and probes for the purposes of command, control, and communication. We propose a software technology called 'weaves' that will permit large collections of micromachines and their attendant computers to freely intercommunicate while preserving modularity, transparency, and flexibility. Weaves are composed of networks of communicating software components. The network, and the components comprising it, may be changed even while the software, and the devices it controls, are executing. This unusual degree of software plasticity permits micromachines to dynamically adapt the software to changing conditions and allows system engineers to rapidly and inexpensively develop special purpose software by assembling stock software components in custom configurations.

  5. Robotics On-Board Trainer (ROBoT)

    NASA Technical Reports Server (NTRS)

    Johnson, Genevieve; Alexander, Greg

    2013-01-01

    ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.

  6. Models for Deploying Open Source and Commercial Software to Support Earth Science Data Processing and Distribution

    NASA Astrophysics Data System (ADS)

    Yetman, G.; Downs, R. R.

    2011-12-01

    Software deployment is needed to process and distribute scientific data throughout the data lifecycle. Developing software in-house can take software development teams away from other software development projects and can require efforts to maintain the software over time. Adopting and reusing software and system modules that have been previously developed by others can reduce in-house software development and maintenance costs and can contribute to the quality of the system being developed. A variety of models are available for reusing and deploying software and systems that have been developed by others. These deployment models include open source software, vendor-supported open source software, commercial software, and combinations of these approaches. Deployment in Earth science data processing and distribution has demonstrated the advantages and drawbacks of each model. Deploying open source software offers advantages for developing and maintaining scientific data processing systems and applications. By joining an open source community that is developing a particular system module or application, a scientific data processing team can contribute to aspects of the software development without having to commit to developing the software alone. Communities of interested developers can share the work while focusing on activities that utilize in-house expertise and addresses internal requirements. Maintenance is also shared by members of the community. Deploying vendor-supported open source software offers similar advantages to open source software. However, by procuring the services of a vendor, the in-house team can rely on the vendor to provide, install, and maintain the software over time. Vendor-supported open source software may be ideal for teams that recognize the value of an open source software component or application and would like to contribute to the effort, but do not have the time or expertise to contribute extensively. Vendor-supported software may also have the additional benefits of guaranteed up-time, bug fixes, and vendor-added enhancements. Deploying commercial software can be advantageous for obtaining system or software components offered by a vendor that meet in-house requirements. The vendor can be contracted to provide installation, support and maintenance services as needed. Combining these options offers a menu of choices, enabling selection of system components or software modules that meet the evolving requirements encountered throughout the scientific data lifecycle.

  7. U.S. Tsunami Information technology (TIM) Modernization:Developing a Maintainable and Extensible Open Source Earthquake and Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Lisowski, S.; Baker, B.; Hagerty, M.; Lomax, A.; Leifer, J. M.; Thies, D. A.; Schnackenberg, A.; Barrows, J.

    2015-12-01

    Tsunami Information technology Modernization (TIM) is a National Oceanic and Atmospheric Administration (NOAA) project to update and standardize the earthquake and tsunami monitoring systems currently employed at the U.S. Tsunami Warning Centers in Ewa Beach, Hawaii (PTWC) and Palmer, Alaska (NTWC). While this project was funded by NOAA to solve a specific problem, the requirements that the delivered system be both open source and easily maintainable have resulted in the creation of a variety of open source (OS) software packages. The open source software is now complete and this is a presentation of the OS Software that has been funded by NOAA for benefit of the entire seismic community. The design architecture comprises three distinct components: (1) The user interface, (2) The real-time data acquisition and processing system and (3) The scientific algorithm library. The system follows a modular design with loose coupling between components. We now identify the major project constituents. The user interface, CAVE, is written in Java and is compatible with the existing National Weather Service (NWS) open source graphical system AWIPS. The selected real-time seismic acquisition and processing system is open source SeisComp3 (sc3). The seismic library (libseismic) contains numerous custom written and wrapped open source seismic algorithms (e.g., ML/mb/Ms/Mwp, mantle magnitude (Mm), w-phase moment tensor, bodywave moment tensor, finite-fault inversion, array processing). The seismic library is organized in a way (function naming and usage) that will be familiar to users of Matlab. The seismic library extends sc3 so that it can be called by the real-time system, but it can also be driven and tested outside of sc3, for example, by ObsPy or Earthworm. To unify the three principal components we have developed a flexible and lightweight communication layer called SeismoEdex.

  8. Meeting the challenges of the digital medical enterprise of the future by reusing enterprise software components

    NASA Astrophysics Data System (ADS)

    Shani, Uri; Kol, Tomer; Shachor, Gal

    2004-04-01

    Managing medical digital information objects, and in particular medical images is an enterprise-grade problem. Firstly, there is the sheer amount of digital data that is generated in the proliferation of digital (and film-free) medical imaging. Secondly, the managing software ought to enjoy high availability, recoverability and manageability that are found only in the most business-critical systems. Indeed, such requirements are borrowed from the business enterprise world. Moreover, the solution for the medical information management problem should too employ the same software tools, middlewares and architectures. It is safe to say that all first-line medical PACS products strive to provide a solution for all these challenging requirements. The DICOM standard has been a prime enabler of such solutions. DICOM created the interconnectivity, which made it possible for a PACS service to manage millions of exams consisting of trillions of images. With the more comprehensive IHE architecture, the enterprise is expanded into a multi-facility regional conglomerate, which presents extreme demands from the data management system. HIPPA legislations add considerable challenges per security, privacy and other legal issues, which aggravate the situation. In this paper, we firstly present what in our view should be the general requirements for a first-line medical PACS, taken from an enterprise medical imaging storage and management solution perspective. While these requirements can be met by homegrown implementations, we suggest looking at the existing technologies, which have emerged in the recent years to meet exactly these challenges in the business world. We present an evolutionary process, which led to the design and implementation of a medical object management subsystem. This is indeed an enterprise medical imaging solution that is built upon respective technological components. The system answers all these challenges simply by not reinventing wheels, but rather reusing the best "wheels" for the job. Relying on such middleware components allowed us to concentrate on added value for this specific problem domain.

  9. Development of a Unix/VME data acquisition system

    NASA Astrophysics Data System (ADS)

    Miller, M. C.; Ahern, S.; Clark, S. M.

    1992-01-01

    The current status of a Unix-based VME data acquisition development project is described. It is planned to use existing Fortran data collection software to drive the existing CAMAC electronics via a VME CAMAC branch driver card and associated Daresbury Unix driving software. The first usable Unix driver has been written and produces single-action CAMAC cycles from test software. The data acquisition code has been implemented in test mode under Unix with few problems and effort is now being directed toward finalizing calls to the CAMAC-driving software and ultimate evaluation of the complete system.

  10. Observatory software for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick

    2016-07-01

    The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.

  11. 77 FR 28622 - Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-752] Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the...

  12. 76 FR 52970 - In the Matter of Certain Biometric Scanning Devices, Components Thereof, Associated Software, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-720] In the Matter of Certain Biometric... accessing its Internet server at http://www.usitc.gov . The public record for this investigation may be... certain biometric scanning devices, components thereof, associated software, and products containing the...

  13. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a fluid component, a discrete pressure switch. The switch takes a fluid pressure input, and if the pressure is greater than a designated cutoff pressure, the switch would stop fluid flow.

  14. GCS component development cycle

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos; Pi, Marti

    2012-09-01

    The GTC1 is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). First light was at 13/07/2007 and since them it is in the operation phase. The GTC control system (GCS) is a distributed object & component oriented system based on RT-CORBA8 and it is responsible for the management and operation of the telescope, including its instrumentation. GCS has used the Rational Unified process (RUP9) in its development. RUP is an iterative software development process framework. After analysing (use cases) and designing (UML10) any of GCS subsystems, an initial component description of its interface is obtained and from that information a component specification is written. In order to improve the code productivity, GCS has adopted the code generation to transform this component specification into the skeleton of component classes based on a software framework, called Device Component Framework. Using the GCS development tools, based on javadoc and gcc, in only one step, the component is generated, compiled and deployed to be tested for the first time through our GUI inspector. The main advantages of this approach are the following: It reduces the learning curve of new developers and the development error rate, allows a systematic use of design patterns in the development and software reuse, speeds up the deliverables of the software product and massively increase the timescale, design consistency and design quality, and eliminates the future refactoring process required for the code.

  15. A Core Plug and Play Architecture for Reusable Flight Software Systems

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.

  16. NASA software specification and evaluation system design, part 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A survey and analysis of the existing methods, tools and techniques employed in the development of software are presented along with recommendations for the construction of reliable software. Functional designs for software specification language, and the data base verifier are presented.

  17. The EMIR experience in the use of software control simulators to speed up the time to telescope

    NASA Astrophysics Data System (ADS)

    Lopez Ramos, Pablo; López-Ruiz, J. C.; Moreno Arce, Heidy; Rosich, Josefina; Perez Menor, José Maria

    2012-09-01

    One of the main problems facing development teams working on instrument control systems consists on the need to access mechanisms which are not available until well into the integration phase. The need to work with real hardware creates additional problems like, among others: certain faults cannot be tested due to the possibility of hardware damage, taking the system to the limit may shorten its operational lifespan and the full system may not be available during some periods due to maintenance and/or testing of individual components. These problems can be treated with the use of simulators and by applying software/hardware standards. Since information on the construction and performance of electro-mechanical systems is available at relatively early stages of the project, simulators are developed in advance (before the existence of the mechanism) or, if conventions and standards have been correctly followed, a previously developed simulator might be used. This article describes our experience in building software simulators and the main advantages we have identified, which are: the control software can be developed even in the absence of real hardware, critical tests can be prepared using the simulated systems, test system behavior for hardware failure situations that represent a risk of the real system, and the speed up of in house integration of the entire instrument. The use of simulators allows us to reduce development, testing and integration time.

  18. Experience with case tools in the design of process-oriented software

    NASA Astrophysics Data System (ADS)

    Novakov, Ognian; Sicard, Claude-Henri

    1994-12-01

    In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.

  19. Tethys: A Platform for Water Resources Modeling and Decision Support Apps

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Christensen, S. D.; Jones, N.; Nelson, E. J.

    2014-12-01

    Cloud-based applications or apps are a promising medium through which water resources models and data can be conveyed in a user-friendly environment—making them more accessible to decision-makers and stakeholders. In the context of this work, a water resources web app is a web application that exposes limited modeling functionality for a scenario exploration activity in a structured workflow (e.g.: land use change runoff analysis, snowmelt runoff prediction, and flood potential analysis). The technical expertise required to develop water resources web apps can be a barrier to many potential developers of water resources apps. One challenge that developers face is in providing spatial storage, analysis, and visualization for the spatial data that is inherent to water resources models. The software projects that provide this functionality are non-standard to web development and there are a large number of free and open source software (FOSS) projects to choose from. In addition, it is often required to synthesize several software projects to provide all of the needed functionality. Another challenge for the developer will be orchestrating the use of several software components. Consequently, the initial software development investment required to deploy an effective water resources cloud-based application can be substantial. The Tethys Platform has been developed to lower the technical barrier and minimize the initial development investment that prohibits many scientists and engineers from making use of the web app medium. Tethys synthesizes several software projects including PostGIS for spatial storage, 52°North WPS for spatial analysis, GeoServer for spatial publishing, Google Earth™, Google Maps™ and OpenLayers for spatial visualization, and Highcharts for plotting tabular data. The software selection came after a literature review of software projects being used to create existing earth sciences web apps. All of the software is linked via a Python-powered software development kit (SDK). Tethys developers use the SDK to build their apps and incorporate the needed functionality from the software suite. The presentation will include several apps that have been developed using Tethys to demonstrate its capabilities. Based upon work supported by the National Science Foundation under Grant No. 1135483.

  20. A Role-Playing Game for a Software Engineering Lab: Developing a Product Line

    ERIC Educational Resources Information Center

    Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio

    2012-01-01

    Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…

  1. Application-Program-Installer Builder

    NASA Technical Reports Server (NTRS)

    Wolgast, Paul; Demore, Martha; Lowik, Paul

    2007-01-01

    A computer program builds application programming interfaces (APIs) and related software components for installing and uninstalling application programs in any of a variety of computers and operating systems that support the Java programming language in its binary form. This program is partly similar in function to commercial (e.g., Install-Shield) software. This program is intended to enable satisfaction of a quasi-industry-standard set of requirements for a set of APIs that would enable such installation and uninstallation and that would avoid the pitfalls that are commonly encountered during installation of software. The requirements include the following: 1) Properly detecting prerequisites to an application program before performing the installation; 2) Properly registering component requirements; 3) Correctly measuring the required hard-disk space, including accounting for prerequisite components that have already been installed; and 4) Correctly uninstalling an application program. Correct uninstallation includes (1) detecting whether any component of the program to be removed is required by another program, (2) not removing that component, and (3) deleting references to requirements of the to-be-removed program for components of other programs so that those components can be properly removed at a later time.

  2. PcapDB: Search Optimized Packet Capture, Version 0.1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Paul; Steinfadt, Shannon

    PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less

  3. Thermodynamic Modelling of Phase Transformation in a Multi-Component System

    NASA Astrophysics Data System (ADS)

    Vala, J.

    2007-09-01

    Diffusion in multi-component alloys can be characterized by the vacancy mechanism for substitutional components, by the existence of sources and sinks for vacancies and by the motion of atoms of interstitial components. The description of diffusive and massive phase transformation of a multi-component system is based on the thermodynamic extremal principle by Onsager; the finite thickness of the interface between both phases is respected. The resulting system of partial differential equations of evolution with integral terms for unknown mole fractions (and additional variables in case of non-ideal sources and sinks for vacancies), can be analyzed using the method of lines and the finite difference technique (or, alternatively, the finite element one) together with the semi-analytic and numerical integration formulae and with certain iteration procedure, making use of the spectral properties of linear operators. The original software code for the numerical evaluation of solutions of such systems, written in MATLAB, offers a chance to simulate various real processes of diffusional phase transformation. Some results for the (nearly) steady-state real processes in substitutional alloys have been published yet. The aim of this paper is to demonstrate that the same approach can handle both substitutional and interstitial components even in case of a general system of evolution.

  4. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit inmore » glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.« less

  5. High performance VLSI telemetry data systems

    NASA Technical Reports Server (NTRS)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  6. From Research to Operations: Integrating Components of an Advanced Diagnostic System with an Aspect-Oriented Framework

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Richard L.; Akkawi, Faisal; Duncavage, Daniel P.

    2004-01-01

    This paper presents some of the challenges associated with bringing software projects from the research world into an operationa1 environment. While the core functional components of research-oriented software applications can have great utility in an operational setting, these applications often lack aspects important in an operational environment such as logging and security. Furthermore, these stand-alone applications, sometimes developed in isolation from one another, can produce data products useful to other applications in a software ecosystem.

  7. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  8. Development of the geoCamera, a System for Mapping Ice from a Ship

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Clemente-Colon, P.

    2012-12-01

    The geoCamera produces maps of the ice surrounding an ice-capable ship by combining images from one or more digital cameras with the ship's position and attitude data. Maps are produced along the ship's path with the achievable width and resolution depending on camera mounting height as well as camera resolution and lens parameters. Our system has produced maps up to 2000m wide at 1m resolution. Once installed and calibrated, the system is designed to operate automatically producing maps in near real-time and making them available to on-board users via existing information systems. The resulting small-scale maps complement existing satellite based products as well as on-board observations. Development versions have temporarily been deployed in Antarctica on the RV Nathaniel B. Palmer in 2010 and in the Arctic on the USCGC Healy in 2011. A permanent system has been deployed during the summer of 2012 on the USCGC Healy. To make the system attractive to other ships of opportunity, design goals include using existing ship systems when practical, using low costs commercial-off-the-shelf components if additional hardware is necessary, automating the process to virtually eliminate adding to the workload of ships technicians and making the software components modular and flexible enough to allow more seamless integration with a ships particular IT system.

  9. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...

  10. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...

  11. Specifications for Thesaurus Software.

    ERIC Educational Resources Information Center

    Milstead, Jessica L.

    1991-01-01

    Presents specifications for software that is designed to support manual development and maintenance of information retrieval thesauri. Evaluation of existing software and design of custom software is discussed, requirements for integration with larger systems and for the user interface are described, and relationships among terms are discussed.…

  12. Flexible control techniques for a lunar base

    NASA Technical Reports Server (NTRS)

    Kraus, Thomas W.

    1992-01-01

    The fundamental elements found in every terrestrial control system can be employed in all lunar applications. These elements include sensors which measure physical properties, controllers which acquire sensor data and calculate a control response, and actuators which apply the control output to the process. The unique characteristics of the lunar environment will certainly require the development of new control system technology. However, weightlessness, harsh atmospheric conditions, temperature extremes, and radiation hazards will most significantly impact the design of sensors and actuators. The controller and associated control algorithms, which are the most complex element of any control system, can be derived in their entirety from existing technology. Lunar process control applications -- ranging from small-scale research projects to full-scale processing plants -- will benefit greatly from the controller advances being developed today. In particular, new software technology aimed at commercial process monitoring and control applications will almost completely eliminate the need for custom programs and the lengthy development and testing cycle they require. The applicability of existing industrial software to lunar applications has other significant advantages in addition to cost and quality. This software is designed to run on standard hardware platforms and takes advantage of existing LAN and telecommunications technology. Further, in order to exploit the existing commercial market, the software is being designed to be implemented by users of all skill levels -- typically users who are familiar with their process, but not necessarily with software or control theory. This means that specialized technical support personnel will not need to be on-hand, and the associated costs are eliminated. Finally, the latest industrial software designed for the commercial market is extremely flexible, in order to fit the requirements of many types of processing applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth.

  13. Characterizing and Modeling the Cost of Rework in a Library of Reusable Software Components

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Condon, Steven E.; ElEmam, Khaled; Hendrick, Robert B.; Melo, Walcelio

    1997-01-01

    In this paper we characterize and model the cost of rework in a Component Factory (CF) organization. A CF is responsible for developing and packaging reusable software components. Data was collected on corrective maintenance activities for the Generalized Support Software reuse asset library located at the Flight Dynamics Division of NASA's GSFC. We then constructed a predictive model of the cost of rework using the C4.5 system for generating a logical classification model. The predictor variables for the model are measures of internal software product attributes. The model demonstrates good prediction accuracy, and can be used by managers to allocate resources for corrective maintenance activities. Furthermore, we used the model to generate proscriptive coding guidelines to improve programming, practices so that the cost of rework can be reduced in the future. The general approach we have used is applicable to other environments.

  14. The component-based architecture of the HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C

    1994-12-01

    The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications.

  15. Translator for Optimizing Fluid-Handling Components

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2007-01-01

    A software interface has been devised to facilitate optimization of the shapes of valves, elbows, fittings, and other components used to handle fluids under extreme conditions. This software interface translates data files generated by PLOT3D (a NASA grid-based plotting-and- data-display program) and by computational fluid dynamics (CFD) software into a format in which the files can be read by Sculptor, which is a shape-deformation- and-optimization program. Sculptor enables the user to interactively, smoothly, and arbitrarily deform the surfaces and volumes in two- and three-dimensional CFD models. Sculptor also includes design-optimization algorithms that can be used in conjunction with the arbitrary-shape-deformation components to perform automatic shape optimization. In the optimization process, the output of the CFD software is used as feedback while the optimizer strives to satisfy design criteria that could include, for example, improved values of pressure loss, velocity, flow quality, mass flow, etc.

  16. The Planck Legacy Archive

    NASA Astrophysics Data System (ADS)

    Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.

    2015-12-01

    The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.

  17. Event Display for the Visualization of CMS Events

    NASA Astrophysics Data System (ADS)

    Bauerdick, L. A. T.; Eulisse, G.; Jones, C. D.; Kovalskyi, D.; McCauley, T.; Mrak Tadel, A.; Muelmenstaedt, J.; Osborne, I.; Tadel, M.; Tu, Y.; Yagil, A.

    2011-12-01

    During the last year the CMS experiment engaged in consolidation of its existing event display programs. The core of the new system is based on the Fireworks event display program which was by-design directly integrated with the CMS Event Data Model (EDM) and the light version of the software framework (FWLite). The Event Visualization Environment (EVE) of the ROOT framework is used to manage a consistent set of 3D and 2D views, selection, user-feedback and user-interaction with the graphics windows; several EVE components were developed by CMS in collaboration with the ROOT project. In event display operation simple plugins are registered into the system to perform conversion from EDM collections into their visual representations which are then managed by the application. Full event navigation and filtering as well as collection-level filtering is supported. The same data-extraction principle can also be applied when Fireworks will eventually operate as a service within the full software framework.

  18. Programming methodology for a general purpose automation controller

    NASA Technical Reports Server (NTRS)

    Sturzenbecker, M. C.; Korein, J. U.; Taylor, R. H.

    1987-01-01

    The General Purpose Automation Controller is a multi-processor architecture for automation programming. A methodology has been developed whose aim is to simplify the task of programming distributed real-time systems for users in research or manufacturing. Programs are built by configuring function blocks (low-level computations) into processes using data flow principles. These processes are activated through the verb mechanism. Verbs are divided into two classes: those which support devices, such as robot joint servos, and those which perform actions on devices, such as motion control. This programming methodology was developed in order to achieve the following goals: (1) specifications for real-time programs which are to a high degree independent of hardware considerations such as processor, bus, and interconnect technology; (2) a component approach to software, so that software required to support new devices and technologies can be integrated by reconfiguring existing building blocks; (3) resistance to error and ease of debugging; and (4) a powerful command language interface.

  19. Examining Mars with SPICE

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and all related specifications and software are freely distributed around the world. This poster describes the current state of SPICE system development, with special emphasis on current and planned support for Mars exploration missions.

  20. GOATS - Orbitology Component

    NASA Technical Reports Server (NTRS)

    Haber, Benjamin M.; Green, Joseph J.

    2010-01-01

    The GOATS Orbitology Component software was developed to specifically address the concerns presented by orbit analysis tools that are often written as stand-alone applications. These applications do not easily interface with standard JPL first-principles analysis tools, and have a steep learning curve due to their complicated nature. This toolset is written as a series of MATLAB functions, allowing seamless integration into existing JPL optical systems engineering modeling and analysis modules. The functions are completely open, and allow for advanced users to delve into and modify the underlying physics being modeled. Additionally, this software module fills an analysis gap, allowing for quick, high-level mission analysis trades without the need for detailed and complicated orbit analysis using commercial stand-alone tools. This software consists of a series of MATLAB functions to provide for geometric orbit-related analysis. This includes propagation of orbits to varying levels of generalization. In the simplest case, geosynchronous orbits can be modeled by specifying a subset of three orbit elements. The next case is a circular orbit, which can be specified by a subset of four orbit elements. The most general case is an arbitrary elliptical orbit specified by all six orbit elements. These orbits are all solved geometrically, under the basic problem of an object in circular (or elliptical) orbit around a rotating spheroid. The orbit functions output time series ground tracks, which serve as the basis for more detailed orbit analysis. This software module also includes functions to track the positions of the Sun, Moon, and arbitrary celestial bodies specified by right ascension and declination. Also included are functions to calculate line-of-sight geometries to ground-based targets, angular rotations and decompositions, and other line-of-site calculations. The toolset allows for the rapid execution of orbit trade studies at the level of detail required for the early stage of mission concept development.

  1. Using component technology to facilitate external software reuse in ground-based planning systems

    NASA Technical Reports Server (NTRS)

    Chase, A.

    2003-01-01

    APGEN (Activity Plan GENerator - 314), a multi-mission planning tool, must interface with external software to vest serve its users. AP-GEN's original method for incorporating external software, the User-Defined library mechanism, has been very successful in allowing APGEN users access to external software functionality.

  2. Features of free software packages in flow cytometry: a comparison between four non-commercial software sources.

    PubMed

    Sahraneshin Samani, Fazel; Moore, Jodene K; Khosravani, Pardis; Ebrahimi, Marzieh

    2014-08-01

    Flow cytometers designed to analyze large particles are enabling new applications in biology. Data analysis is a critical component of the process FCM. In this article we compare features of four free software packages including WinMDI, Cyflogic, Flowing software, and Cytobank.

  3. A Linguistic Model in Component Oriented Programming

    NASA Astrophysics Data System (ADS)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2016-12-01

    It is a fact that the component-oriented programming, well organized, can bring a large increase in efficiency in the development of large software systems. This paper proposes a model for building software systems by assembling components that can operate independently of each other. The model is based on a computing environment that runs parallel and distributed applications. This paper introduces concepts as: abstract aggregation scheme and aggregation application. Basically, an aggregation application is an application that is obtained by combining corresponding components. In our model an aggregation application is a word in a language.

  4. Results of student-peer collaboration in the development of the Geoscience Student Data Network

    NASA Astrophysics Data System (ADS)

    Block, K. A.; Snyder, W. S.; Williams, N.; Rudolph, E.

    2012-12-01

    The Geoscience Student Data Network (GSDNet) is an NSF-CCLI project to develop a software application that facilitates student collaboration and data analysis. Cyberinfrastructure development is accompanied by a three-course curriculum that includes a field component implemented jointly at City College of New York (CCNY) and Boise State University (BSU). We report on the challenges of utilizing existing social networking technology for student collaboration and the hurdles of real-time information exchange on heavily taxed networks and facilities. The field component and research project currently underway is engaging eight students from CCNY and their BSU peer-mentors. Students are characterizing a geothermal prospect in Idaho by combining data collected in the field, laboratory studies and cyberinfrastructure outlets using the GSDNet prototype. We will summarize results of student projects from data collection, metadata documentation, online collaboration, and project dissemination.

  5. Satisfying STEM Education Using the Arduino Microprocessor in C Programming

    NASA Astrophysics Data System (ADS)

    Hoffer, Brandyn M.

    There exists a need to promote better Science Technology Engineering and Math (STEM) education at the high school level. To satisfy this need a series of hands-on laboratory assignments were created to be accompanied by 2 educational trainers that contain various electronic components. This project provides an interdisciplinary, hands-on approach to teaching C programming that meets several standards defined by the Tennessee Board of Education. Together the trainers and lab assignments also introduce key concepts in math and science while allowing students hands-on experience with various electronic components. This will allow students to mimic real world applications of using the C programming language while exposing them to technology not currently introduced in many high school classrooms. The developed project is targeted at high school students performing at or above the junior level and uses the Arduino Mega open-source Microprocessor and software as the primary control unit.

  6. 48 CFR 27.409 - Solicitation provisions and contract clauses

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section); (ii) For the acquisition of existing data, commercial computer software, or other existing data... United States (see paragraph (i)(1) of this section); (v) For architect-engineer services or construction... software, use the clause with its Alternate III. Any greater or lesser rights regarding the use...

  7. 48 CFR 27.409 - Solicitation provisions and contract clauses

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section); (ii) For the acquisition of existing data, commercial computer software, or other existing data... United States (see paragraph (i)(1) of this section); (v) For architect-engineer services or construction... software, use the clause with its Alternate III. Any greater or lesser rights regarding the use...

  8. 48 CFR 27.409 - Solicitation provisions and contract clauses

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section); (ii) For the acquisition of existing data, commercial computer software, or other existing data... United States (see paragraph (i)(1) of this section); (v) For architect-engineer services or construction... software, use the clause with its Alternate III. Any greater or lesser rights regarding the use...

  9. 48 CFR 27.409 - Solicitation provisions and contract clauses

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section); (ii) For the acquisition of existing data, commercial computer software, or other existing data... United States (see paragraph (i)(1) of this section); (v) For architect-engineer services or construction... software, use the clause with its Alternate III. Any greater or lesser rights regarding the use...

  10. The software architecture of the camera for the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Pierluca; Capalbi, Milvia; Gimenes, Renato; La Rosa, Giovanni; Russo, Francesco; Segreto, Alberto; Sottile, Giuseppe; Catalano, Osvaldo

    2016-07-01

    The purpose of this contribution is to present the current status of the software architecture of the ASTRI SST-2M Cherenkov Camera. The ASTRI SST-2M telescope is an end-to-end prototype for the Small Size Telescope of the Cherenkov Telescope Array. The ASTRI camera is an innovative instrument based on SiPM detectors and has several internal hardware components. In this contribution we will give a brief description of the hardware components of the camera of the ASTRI SST-2M prototype and of their interconnections. Then we will present the outcome of the software architectural design process that we carried out in order to identify the main structural components of the camera software system and the relationships among them. We will analyze the architectural model that describes how the camera software is organized as a set of communicating blocks. Finally, we will show where these blocks are deployed in the hardware components and how they interact. We will describe in some detail, the physical communication ports and external ancillary devices management, the high precision time-tag management, the fast data collection and the fast data exchange between different camera subsystems, and the interfacing with the external systems.

  11. A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate pieces of this system progress, they will be combined and generalized to form a sort of social network for nationally consistent hydrologic modeling.

  12. 75 FR 62140 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Certain Mobile Devices, Associated Software, and Components Thereof, DN 2757; the Commission is soliciting... into the United States, the sale for importation, and the sale within the United States after importation of certain mobile devices, associated software, and components thereof. The complaint names as...

  13. The large scale microelectronics Computer-Aided Design and Test (CADAT) system

    NASA Technical Reports Server (NTRS)

    Gould, J. M.

    1978-01-01

    The CADAT system consists of a number of computer programs written in FORTRAN that provide the capability to simulate, lay out, analyze, and create the artwork for large scale microelectronics. The function of each software component of the system is described with references to specific documentation for each software component.

  14. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  15. Automated Vectorization of Decision-Based Algorithms

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  16. Software and the future of programming languages.

    PubMed

    Aho, Alfred V

    2004-02-27

    Although software is the key enabler of the global information infrastructure, the amount and extent of software in use in the world today are not widely understood, nor are the programming languages and paradigms that have been used to create the software. The vast size of the embedded base of existing software and the increasing costs of software maintenance, poor security, and limited functionality are posing significant challenges for the software R&D community.

  17. PhysioNet: physiologic signals, time series and related open source software for basic, clinical, and applied research.

    PubMed

    Moody, George B; Mark, Roger G; Goldberger, Ary L

    2011-01-01

    PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.

  18. Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-02-01

    New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less

  19. Python as a federation tool for GENESIS 3.0.

    PubMed

    Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.

  20. Python as a Federation Tool for GENESIS 3.0

    PubMed Central

    Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101

  1. Update on PISCES

    NASA Technical Reports Server (NTRS)

    Pearson, Don; Hamm, Dustin; Kubena, Brian; Weaver, Jonathan K.

    2010-01-01

    An updated version of the Platform Independent Software Components for the Exploration of Space (PISCES) software library is available. A previous version was reported in Library for Developing Spacecraft-Mission-Planning Software (MSC-22983), NASA Tech Briefs, Vol. 25, No. 7 (July 2001), page 52. To recapitulate: This software provides for Web-based, collaborative development of computer programs for planning trajectories and trajectory- related aspects of spacecraft-mission design. The library was built using state-of-the-art object-oriented concepts and software-development methodologies. The components of PISCES include Java-language application programs arranged in a hierarchy of classes that facilitates the reuse of the components. As its full name suggests, the PISCES library affords platform-independence: The Java language makes it possible to use the classes and application programs with a Java virtual machine, which is available in most Web-browser programs. Another advantage is expandability: Object orientation facilitates expansion of the library through creation of a new class. Improvements in the library since the previous version include development of orbital-maneuver- planning and rendezvous-launch-window application programs, enhancement of capabilities for propagation of orbits, and development of a desktop user interface.

  2. Managing configuration software of ground software applications with glueware

    NASA Technical Reports Server (NTRS)

    Larsen, B.; Herrera, R.; Sesplaukis, T.; Cheng, L.; Sarrel, M.

    2003-01-01

    This paper reports on a simple, low-cost effort to streamline the configuration of the uplink software tools. Even though the existing ground system consisted of JPL and custom Cassini software rather than COTS, we chose a glueware approach--reintegrating with wrappers and bridges and adding minimal new functionality.

  3. On Quality and Measures in Software Engineering

    ERIC Educational Resources Information Center

    Bucur, Ion I.

    2006-01-01

    Complexity measures are mainly used to estimate vital information about reliability and maintainability of software systems from regular analysis of the source code. Such measures also provide constant feedback during a software project to assist the control of the development procedure. There exist several models to classify a software product's…

  4. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  5. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  6. The OME Framework for genome-scale systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palsson, Bernhard O.; Ebrahim, Ali; Federowicz, Steve

    The life sciences are undergoing continuous and accelerating integration with computational and engineering sciences. The biology that many in the field have been trained on may be hardly recognizable in ten to twenty years. One of the major drivers for this transformation is the blistering pace of advancements in DNA sequencing and synthesis. These advances have resulted in unprecedented amounts of new data, information, and knowledge. Many software tools have been developed to deal with aspects of this transformation and each is sorely needed [1-3]. However, few of these tools have been forced to deal with the full complexity ofmore » genome-scale models along with high throughput genome- scale data. This particular situation represents a unique challenge, as it is simultaneously necessary to deal with the vast breadth of genome-scale models and the dizzying depth of high-throughput datasets. It has been observed time and again that as the pace of data generation continues to accelerate, the pace of analysis significantly lags behind [4]. It is also evident that, given the plethora of databases and software efforts [5-12], it is still a significant challenge to work with genome-scale metabolic models, let alone next-generation whole cell models [13-15]. We work at the forefront of model creation and systems scale data generation [16-18]. The OME Framework was borne out of a practical need to enable genome-scale modeling and data analysis under a unified framework to drive the next generation of genome-scale biological models. Here we present the OME Framework. It exists as a set of Python classes. However, we want to emphasize the importance of the underlying design as an addition to the discussions on specifications of a digital cell. A great deal of work and valuable progress has been made by a number of communities [13, 19-24] towards interchange formats and implementations designed to achieve similar goals. While many software tools exist for handling genome-scale metabolic models or for genome-scale data analysis, no implementations exist that explicitly handle data and models concurrently. The OME Framework structures data in a connected loop with models and the components those models are composed of. This results in the first full, practical implementation of a framework that can enable genome-scale design-build-test. Over the coming years many more software packages will be developed and tools will necessarily change. However, we hope that the underlying designs shared here can help to inform the design of future software.« less

  7. Implications of Aggregated DoD Information Systems for Information Assurance Certification and Accreditation

    DTIC Science & Technology

    2010-01-01

    offshoring, or producing major software components overseas (Defense Science Board, 2009). These trends raise concerns about the level of trust that...7 Software Complexity...7 Increasing Software Vulnerabilities and Malware Population . . . . . . . . . . . . . . . . 9 Limitations of

  8. Estimating Software Effort Hours for Major Defense Acquisition Programs

    ERIC Educational Resources Information Center

    Wallshein, Corinne C.

    2010-01-01

    Software Cost Estimation (SCE) uses labor hours or effort required to conceptualize, develop, integrate, test, field, or maintain program components. Department of Defense (DoD) SCE can use initial software data parameters to project effort hours for large, software-intensive programs for contractors reporting the top levels of process maturity,…

  9. Usability Considerations in Developing a Graphic Interface for Intra Office Communications

    NASA Astrophysics Data System (ADS)

    Yammiyavar, Pradeep; Jain, Piyush

    This paper outlines the basis of incorporating functional features in a new GUI based software under development for addressing comprehensive communication and interaction needs within an office environment. Bench marking of features in existing communication software products such as Microsoft Outlook, IBM Lotusnotes, Office Communicator, Mozilla Thunderbird etc. was done by asking a set of questions related to the usage of these existing softwares. Usability issues were identified through a user survey involving 30 subjects of varied profiles (domain, designation, age etc.) in a corporate office. It is posited that existing software products that have been developed for a universal market may be highly underutilized or have redundant features especially for use as an intra office (within the same office) communication medium. Simultaneously they may not cater to some very contextual requirements of intra office communications. Based on the findings of the survey of feature preferences & usability of existing products, a simple 'person to person' communicating medium for intra office situations was visualized with a new interactive GUI. Usability issues that need to be considered for a new intra-office product have been brought out.

  10. Measuring software development characteristics in the local environment. [considering project requirements for spacecraft control

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Zelkowitz, M. V.

    1978-01-01

    In a brief evaluation of software-related considerations, it is found that suitable approaches for software development depend to a large degree on the characteristics of the particular project involved. An analysis is conducted of development problems in an environment in which ground support software is produced for spacecraft control. The amount of work involved is in the range from 6 to 10 man-years. Attention is given to a general project summary, a programmer/analyst survey, a component summary, a component status report, a resource summary, a change report, a computer program run analysis, aspects of data collection on a smaller scale, progress forecasting, problems of overhead, and error analysis.

  11. General-Purpose Front End for Real-Time Data Processing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.

  12. NEXT GENERATION ANALYSIS SOFTWARE FOR COMPONENT EVALUATION - Results of Rotational Seismometer Evaluation

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Merchant, B. J.; Abbott, R. E.

    2012-12-01

    The Component Evaluation project at Sandia National Laboratories supports the Ground-based Nuclear Explosion Monitoring program by performing testing and evaluation of the components that are used in seismic and infrasound monitoring systems. In order to perform this work, Component Evaluation maintains a testing facility called the FACT (Facility for Acceptance, Calibration, and Testing) site, a variety of test bed equipment, and a suite of software tools for analyzing test data. Recently, Component Evaluation has successfully integrated several improvements to its software analysis tools and test bed equipment that have substantially improved our ability to test and evaluate components. The software tool that is used to analyze test data is called TALENT: Test and AnaLysis EvaluatioN Tool. TALENT is designed to be a single, standard interface to all test configuration, metadata, parameters, waveforms, and results that are generated in the course of testing monitoring systems. It provides traceability by capturing everything about a test in a relational database that is required to reproduce the results of that test. TALENT provides a simple, yet powerful, user interface to quickly acquire, process, and analyze waveform test data. The software tool has also been expanded recently to handle sensors whose output is proportional to rotation angle, or rotation rate. As an example of this new processing capability, we show results from testing the new ATA ARS-16 rotational seismometer. The test data was collected at the USGS ASL. Four datasets were processed: 1) 1 Hz with increasing amplitude, 2) 4 Hz with increasing amplitude, 3) 16 Hz with increasing amplitude and 4) twenty-six discrete frequencies between 0.353 Hz to 64 Hz. The results are compared to manufacture-supplied data sheets.

  13. Concepts associated with a unified life cycle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.

    There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other,more » the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.« less

  14. Optimal shortening of uniform covering arrays

    PubMed Central

    Rangel-Valdez, Nelson; Avila-George, Himer; Carrizalez-Turrubiates, Oscar

    2017-01-01

    Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v), is an N × k array over Zv={0,…,v-1} with the property that every N × t sub-array covers all t-tuples of Zvt at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR) problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N − δ) × (k − Δ) such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a) to produce smaller covering arrays from larger ones and (b) to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small) to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays. PMID:29267343

  15. Operable Data Management for Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Chavez, F. P.; Graybeal, J. B.; Godin, M. A.

    2004-12-01

    As oceanographic observing systems become more numerous and complex, data management solutions must follow. Most existing oceanographic data management systems fall into one of three categories: they have been developed as dedicated solutions, with limited application to other observing systems; they expect that data will be pre-processed into well-defined formats, such as netCDF; or they are conceived as robust, generic data management solutions, with complexity (high) and maturity and adoption rates (low) to match. Each approach has strengths and weaknesses; no approach yet fully addresses, nor takes advantage of, the sophistication of ocean observing systems as they are now conceived. In this presentation we describe critical data management requirements for advanced ocean observing systems, of the type envisioned by ORION and IOOS. By defining common requirements -- functional, qualitative, and programmatic -- for all such ocean observing systems, the performance and nature of the general data management solution can be characterized. Issues such as scalability, maintaining metadata relationships, data access security, visualization, and operational flexibility suggest baseline architectural characteristics, which may in turn lead to reusable components and approaches. Interoperability with other data management systems, with standards-based solutions in metadata specification and data transport protocols, and with the data management infrastructure envisioned by IOOS and ORION, can also be used to define necessary capabilities. Finally, some requirements for the software infrastructure of ocean observing systems can be inferred. Early operational results and lessons learned, from development and operations of MBARI ocean observing systems, are used to illustrate key requirements, choices, and challenges. Reference systems include the Monterey Ocean Observing System (MOOS), its component software systems (Software Infrastructure and Applications for MOOS, and the Shore Side Data System), and the Autonomous Ocean Sampling Network (AOSN).

  16. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  17. Software For Graphical Representation Of A Network

    NASA Technical Reports Server (NTRS)

    Mcallister, R. William; Mclellan, James P.

    1993-01-01

    System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.

  18. EMMA: a new paradigm in configurable software

    DOE PAGES

    Nogiec, J. M.; Trombly-Freytag, K.

    2017-11-23

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. As a result, it provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  19. EMMA: A New Paradigm in Configurable Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J. M.; Trombly-Freytag, K.

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. It provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  20. EMMA: a new paradigm in configurable software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J. M.; Trombly-Freytag, K.

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. As a result, it provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  1. EMMA: a new paradigm in configurable software

    NASA Astrophysics Data System (ADS)

    Nogiec, J. M.; Trombly-Freytag, K.

    2017-10-01

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. It provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  2. Software for integrated manufacturing systems, part 2

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Naylor, A. W.

    1987-01-01

    Part 1 presented an overview of the unified approach to manufacturing software. The specific characteristics of the approach that allow it to realize the goals of reduced cost, increased reliability and increased flexibility are considered. Why the blending of a components view, distributed languages, generics and formal models is important, why each individual part of this approach is essential, and why each component will typically have each of these parts are examined. An example of a specification for a real material handling system is presented using the approach and compared with the standard interface specification given by the manufacturer. Use of the component in a distributed manufacturing system is then compared with use of the traditional specification with a more traditional approach to designing the system. An overview is also provided of the underlying mechanisms used for implementing distributed manufacturing systems using the unified software/hardware component approach.

  3. An online database for plant image analysis software tools.

    PubMed

    Lobet, Guillaume; Draye, Xavier; Périlleux, Claire

    2013-10-09

    Recent years have seen an increase in methods for plant phenotyping using image analyses. These methods require new software solutions for data extraction and treatment. These solutions are instrumental in supporting various research pipelines, ranging from the localisation of cellular compounds to the quantification of tree canopies. However, due to the variety of existing tools and the lack of central repository, it is challenging for researchers to identify the software that is best suited for their research. We present an online, manually curated, database referencing more than 90 plant image analysis software solutions. The website, plant-image-analysis.org, presents each software in a uniform and concise manner enabling users to identify the available solutions for their experimental needs. The website also enables user feedback, evaluations and new software submissions. The plant-image-analysis.org database provides an overview of existing plant image analysis software. The aim of such a toolbox is to help users to find solutions, and to provide developers a way to exchange and communicate about their work.

  4. The HEP Software and Computing Knowledge Base

    NASA Astrophysics Data System (ADS)

    Wenaus, T.

    2017-10-01

    HEP software today is a rich and diverse domain in itself and exists within the mushrooming world of open source software. As HEP software developers and users we can be more productive and effective if our work and our choices are informed by a good knowledge of what others in our community have created or found useful. The HEP Software and Computing Knowledge Base, hepsoftware.org, was created to facilitate this by serving as a collection point and information exchange on software projects and products, services, training, computing facilities, and relating them to the projects, experiments, organizations and science domains that offer them or use them. It was created as a contribution to the HEP Software Foundation, for which a HEP S&C knowledge base was a much requested early deliverable. This contribution will motivate and describe the system, what it offers, its content and contributions both existing and needed, and its implementation (node.js based web service and javascript client app) which has emphasized ease of use for both users and contributors.

  5. Design automation for integrated nonlinear logic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Van Vaerenbergh, Thomas; Pelc, Jason; Santori, Charles; Bose, Ranojoy; Kielpinski, Dave; Beausoleil, Raymond G.

    2016-05-01

    A key enabler of the IT revolution of the late 20th century was the development of electronic design automation (EDA) tools allowing engineers to manage the complexity of electronic circuits with transistor counts now reaching into the billions. Recently, we have been developing large-scale nonlinear photonic integrated logic circuits for next generation all-optical information processing. At this time a sufficiently powerful EDA-style software tool chain to design this type of complex circuits does not yet exist. Here we describe a hierarchical approach to automating the design and validation of photonic integrated circuits, which can scale to several orders of magnitude higher complexity than the state of the art. Most photonic integrated circuits developed today consist of a small number of components, and only limited hierarchy. For example, a simple photonic transceiver may contain on the order of 10 building-block components, consisting of grating couplers for photonic I/O, modulators, and signal splitters/combiners. Because this is relatively easy to lay out by hand (or simple script) existing photonic design tools have relatively little automation in comparison to electronics tools. But demonstrating all-optical logic will require significantly more complex photonic circuits containing up to 1,000 components, hence becoming infeasible to design manually. Our design framework is based off Python-based software from Luceda Photonics which provides an environment to describe components, simulate their behavior, and export design files (GDS) to foundries for fabrication. At a fundamental level, a photonic component is described as a parametric cell (PCell) similarly to electronics design. PCells are described by geometric characteristics of their layout. A critical part of the design framework is the implementation of PCells as Python objects. PCell objects can then use inheritance to simplify design, and hierarchical designs can be made by creating composite PCells (modules) which consist of primitive building-block PCells (components). To automatically produce layouts, we built on a construct provided by Luceda called a PlaceAndAutoRoute cell: we create a module component by supplying a list of child cells, and a list of the desired connections between the cells (e.g. the out0 port of a microring is connected to a grating coupler). This functionality allowed us to write algorithms to automatically lay out the components: for instance, by laying out the first component and walking through the list of connections to check to see if the next component is already placed or not. The placement and orientation of the new component is determined by minimizing the length of a connecting waveguide. Our photonic circuits also utilize electrical signals to tune the photonic elements (setting propagation phases or microring resonant frequencies via thermo-optical tuning): the algorithm also routes the contacts for the metal heaters to contact pads at the edge of the circuit being designed where it can be contacted by electrical probes. We are currently validating a test run fabricated over the summer, and will use detailed characterization results to prepare our final design cycle in which we aim to demonstrate complex operational logic circuits containing ~50-100 nonlinear resonators.

  6. Certified Binaries for Software Components

    DTIC Science & Technology

    2007-09-01

    is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally funded research and development center sponsored...by the U.S. Department of Defense. Copyright 2007 Carnegie Mellon University. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

  7. The Architecture Based Design Method

    DTIC Science & Technology

    2000-01-01

    implementation of components of different types. The software templates include a description of how components interact with shared services and also include citizenship responsibilities for components.

  8. PT-SAFE: a software tool for development and annunciation of medical audible alarms.

    PubMed

    Bennett, Christopher L; McNeer, Richard R

    2012-03-01

    Recent reports by The Joint Commission as well as the Anesthesia Patient Safety Foundation have indicated that medical audible alarm effectiveness needs to be improved. Several recent studies have explored various approaches to improving the audible alarms, motivating the authors to develop real-time software capable of comparing such alarms. We sought to devise software that would allow for the development of a variety of audible alarm designs that could also integrate into existing operating room equipment configurations. The software is meant to be used as a tool for alarm researchers to quickly evaluate novel alarm designs. A software tool was developed for the purpose of creating and annunciating audible alarms. The alarms consisted of annunciators that were mapped to vital sign data received from a patient monitor. An object-oriented approach to software design was used to create a tool that is flexible and modular at run-time, can annunciate wave-files from disk, and can be programmed with MATLAB by the user to create custom alarm algorithms. The software was tested in a simulated operating room to measure technical performance and to validate the time-to-annunciation against existing equipment alarms. The software tool showed efficacy in a simulated operating room environment by providing alarm annunciation in response to physiologic and ventilator signals generated by a human patient simulator, on average 6.2 seconds faster than existing equipment alarms. Performance analysis showed that the software was capable of supporting up to 15 audible alarms on a mid-grade laptop computer before audio dropouts occurred. These results suggest that this software tool provides a foundation for rapidly staging multiple audible alarm sets from the laboratory to a simulation environment for the purpose of evaluating novel alarm designs, thus producing valuable findings for medical audible alarm standardization.

  9. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  10. 49 CFR Appendix C to Part 236 - Safety Assurance Criteria and Processes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system (all its elements including hardware and software) must be designed to assure safe operation with... unsafe errors in the software due to human error in the software specification, design, or coding phases... (hardware or software, or both) are used in combination to ensure safety. If a common mode failure exists...

  11. The optimal community detection of software based on complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Guoyan; Zhang, Peng; Zhang, Bing; Yin, Tengteng; Ren, Jiadong

    2016-02-01

    The community structure is important for software in terms of understanding the design patterns, controlling the development and the maintenance process. In order to detect the optimal community structure in the software network, a method Optimal Partition Software Network (OPSN) is proposed based on the dependency relationship among the software functions. First, by analyzing the information of multiple execution traces of one software, we construct Software Execution Dependency Network (SEDN). Second, based on the relationship among the function nodes in the network, we define Fault Accumulation (FA) to measure the importance of the function node and sort the nodes with measure results. Third, we select the top K(K=1,2,…) nodes as the core of the primal communities (only exist one core node). By comparing the dependency relationships between each node and the K communities, we put the node into the existing community which has the most close relationship. Finally, we calculate the modularity with different initial K to obtain the optimal division. With experiments, the method OPSN is verified to be efficient to detect the optimal community in various softwares.

  12. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been licensed and certified for use in a commercial image guidance system. Conclusions: It is feasible to encapsulate image manipulation and surgical guidance tasks in individual, reusable software modules. These modules allow for faster development of new applications. The strict application of object oriented software design methods allows individual components of such a system to make the transition from the research environment to a commercial one.

  13. Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.

    2011-01-01

    As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc.). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.

  14. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Jeremiah J; Kenny, Joseph P.

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading frameworkmore » allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.« less

  15. Telesurgery With Miniature Robots to Leverage Surgical Expertise in Distributed Expeditionary Environments.

    PubMed

    Reichenbach, Mark; Frederick, Tom; Cubrich, Lou; Bircher, Walter; Bills, Nathan; Morien, Marsha; Farritor, Shane; Oleynikov, Dmitry

    2017-03-01

    This study aimed to evaluate the capability of performing telesurgery via radio transmission for military arenas where wired internet connections may not be practical. Most existing robotic surgery systems are too large to effectively deploy with first responders. The miniature surgical platform in this study consists of a multifunctional robot suite that can fit easily into a briefcase. The focus of this study is to explore the implications of radio control of the robot. The hypothesis is that an in vivo robot and its control boards can be controlled using off-the-shelf wireless components. An experiment was designed with off-the-shelf wireless components to test the capability of our newest generation of miniature surgical robot to become battery-operated and wireless. Wireless transmission of control signals has provided proof of concept and has exposed areas of the software that can be built upon to improve responsiveness. Wireless transmission of the video feed can be adequately performed with basic off-the-shelf components. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  16. Enabler for the agile virtual enterprise

    NASA Astrophysics Data System (ADS)

    Fuerst, Karl; Schmidt, Thomas; Wippel, Gerald

    2001-10-01

    In this presentation, a new approach for a flexible low-cost Internet extended enterprise (project FLoCI-EE) will be presented. FLoCI-EE is a project in the fifth framework program of the European commission with 8 partners from 4 countries, which started in January 2001 and will be finished in December 2003. The main objective of FLoCI-EE is the development of a software prototype, which enables flexible enterprise cooperation with the aim to design, manufacture and sell products commonly, independent of enterprise borderlines. The needed IT-support includes functions of product data management (PDM), enterprise resource planning (ERP), supply chain management (SCM) and customer relationship management (CRM). Especially for small and medium sized enterprises, existing solutions are too expensive and inflexible to be of use under current turbulent market conditions. The second part of this paper covers the item Web Services, because in the role-specific support approach of FLoCI-EE, there are user- interface-components, which are tailored for specific roles in an enterprise. These components integrate automatically the services of the so-called basic-components, and the externally offered Web Services like UDDI.

  17. The Evolution of Software Publication in Astronomy

    NASA Astrophysics Data System (ADS)

    Cantiello, Matteo

    2018-01-01

    Software is a fundamental component of the scientific research process. As astronomical discoveries increasingly rely on complex numerical calculations and the analysis of big data sets, publishing and documenting software is a fundamental step in ensuring transparency and reproducibility of results. I will briefly discuss the recent history of software publication and highlight the challenges and opportunities ahead.

  18. The Chandra X-ray Center data system: supporting the mission of the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Ian; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Hall, Diane; Plummer, David; Zografou, Panagoula

    2006-06-01

    The Chandra X-ray Center Data System provides end-to-end scientific software support for Chandra X-ray Observatory mission operations. The data system includes the following components: (1) observers' science proposal planning tools; (2) science mission planning tools; (3) science data processing, monitoring, and trending pipelines and tools; and (4) data archive and database management. A subset of the science data processing component is ported to multiple platforms and distributed to end-users as a portable data analysis package. Web-based user tools are also available for data archive search and retrieval. We describe the overall architecture of the data system and its component pieces, and consider the design choices and their impacts on maintainability. We discuss the many challenges involved in maintaining a large, mission-critical software system with limited resources. These challenges include managing continually changing software requirements and ensuring the integrity of the data system and resulting data products while being highly responsive to the needs of the project. We describe our use of COTS and OTS software at the subsystem and component levels, our methods for managing multiple release builds, and adapting a large code base to new hardware and software platforms. We review our experiences during the life of the mission so-far, and our approaches for keeping a small, but highly talented, development team engaged during the maintenance phase of a mission.

  19. Component-Based Visualization System

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco

    2005-01-01

    A software system has been developed that gives engineers and operations personnel with no "formal" programming expertise, but who are familiar with the Microsoft Windows operating system, the ability to create visualization displays to monitor the health and performance of aircraft/spacecraft. This software system is currently supporting the X38 V201 spacecraft component/system testing and is intended to give users the ability to create, test, deploy, and certify their subsystem displays in a fraction of the time that it would take to do so using previous software and programming methods. Within the visualization system there are three major components: the developer, the deployer, and the widget set. The developer is a blank canvas with widget menu items that give users the ability to easily create displays. The deployer is an application that allows for the deployment of the displays created using the developer application. The deployer has additional functionality that the developer does not have, such as printing of displays, screen captures to files, windowing of displays, and also serves as the interface into the documentation archive and help system. The third major component is the widget set. The widgets are the visual representation of the items that will make up the display (i.e., meters, dials, buttons, numerical indicators, string indicators, and the like). This software was developed using Visual C++ and uses COTS (commercial off-the-shelf) software where possible.

  20. Computer-based mechanical design of overhead lines

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Bratu, C.; Dinu, R. C.; Manescu, L. G.

    2016-02-01

    Beside the performance, the safety level according to the actual standards is a compulsory condition for distribution grids’ operation. Some of the measures leading to improvement of the overhead lines reliability ask for installations’ modernization. The constraints imposed to the new lines components refer to the technical aspects as thermal stress or voltage drop, and look for economic efficiency, too. The mechanical sizing of the overhead lines is after all an optimization problem. More precisely, the task in designing of the overhead line profile is to size poles, cross-arms and stays and locate poles along a line route so that the total costs of the line's structure to be minimized and the technical and safety constraints to be fulfilled.The authors present in this paper an application for the Computer-Based Mechanical Design of the Overhead Lines and the features of the corresponding Visual Basic program, adjusted to the distribution lines. The constraints of the optimization problem are adjusted to the existing weather and loading conditions of Romania. The outputs of the software application for mechanical design of overhead lines are: the list of components chosen for the line: poles, cross-arms, stays; the list of conductor tension and forces for each pole, cross-arm and stay for different weather conditions; the line profile drawings.The main features of the mechanical overhead lines design software are interactivity, local optimization function and high-level user-interface

  1. Integration of an open interface PC scene generator using COTS DVI converter hardware

    NASA Astrophysics Data System (ADS)

    Nordland, Todd; Lyles, Patrick; Schultz, Bret

    2006-05-01

    Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.

  2. The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)

    2003-01-01

    We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.

  3. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  4. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  5. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  6. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  7. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 1

    DTIC Science & Technology

    2008-01-01

    project manage- ment and the individual components of the software life-cycle model ; it will be awarded for...software professionals that had been formally educated in software project manage- ment. The study indicated that our industry is lacking in program managers...soft- ware developments get bigger, more complicated, and more dependent on senior software pro- fessionals to get the project on the right path

  8. Towards easing the configuration and new team member accommodation for open source software based portals

    NASA Astrophysics Data System (ADS)

    Fu, L.; West, P.; Zednik, S.; Fox, P. A.

    2013-12-01

    For simple portals such as vocabulary based services, which contain small amounts of data and require only hyper-textual representation, it is often an overkill to adopt the whole software stack of database, middleware and front end, or to use a general Web development framework as the starting point of development. Directly combining open source software is a much more favorable approach. However, our experience with the Coastal and Marine Spatial Planning Vocabulary (CMSPV) service portal shows that there are still issues such as system configuration and accommodating a new team member that need to be handled carefully. In this contribution, we share our experience in the context of the CMSPV portal, and focus on the tools and mechanisms we've developed to ease the configuration job and the incorporation process of new project members. We discuss the configuration issues that arise when we don't have complete control over how the software in use is configured and need to follow existing configuration styles that may not be well documented, especially when multiple pieces of such software need to work together as a combined system. As for the CMSPV portal, it is built on two pieces of open source software that are still under rapid development: a Fuseki data server and Epimorphics Linked Data API (ELDA) front end. Both lack mature documentation and tutorials. We developed comparison and labeling tools to ease the problem of system configuration. Another problem that slowed down the project is that project members came and went during the development process, so new members needed to start with a partially configured system and incomplete documentation left by old members. We developed documentation/tutorial maintenance mechanisms based on our comparison and labeling tools to make it easier for the new members to be incorporated into the project. These tools and mechanisms also provided benefit to other projects that reused the software components from the CMSPV system.

  9. CometQuest: A Rosetta Adventure

    NASA Technical Reports Server (NTRS)

    Leon, Nancy J.; Fisher, Diane K.; Novati, Alexander; Chmielewski, Artur B.; Fitzpatrick, Austin J.; Angrum, Andrea

    2012-01-01

    This software is a higher-performance implementation of tiled WMS, with integral support for KML and time-varying data. This software is compliant with the Open Geospatial WMS standard, and supports KML natively as a WMS return type, including support for the time attribute. Regionated KML wrappers are generated that match the existing tiled WMS dataset. Ping and JPG formats are supported, and the software is implemented as an Apache 2.0 module that supports a threading execution model that is capable of supporting very high request rates. The module intercepts and responds to WMS requests that match certain patterns and returns the existing tiles. If a KML format that matches an existing pyramid and tile dataset is requested, regionated KML is generated and returned to the requesting application. In addition, KML requests that do not match the existing tile datasets generate a KML response that includes the corresponding JPG WMS request, effectively adding KML support to a backing WMS server.

  10. Tiled WMS/KML Server V2

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2012-01-01

    This software is a higher-performance implementation of tiled WMS, with integral support for KML and time-varying data. This software is compliant with the Open Geospatial WMS standard, and supports KML natively as a WMS return type, including support for the time attribute. Regionated KML wrappers are generated that match the existing tiled WMS dataset. Ping and JPG formats are supported, and the software is implemented as an Apache 2.0 module that supports a threading execution model that is capable of supporting very high request rates. The module intercepts and responds to WMS requests that match certain patterns and returns the existing tiles. If a KML format that matches an existing pyramid and tile dataset is requested, regionated KML is generated and returned to the requesting application. In addition, KML requests that do not match the existing tile datasets generate a KML response that includes the corresponding JPG WMS request, effectively adding KML support to a backing WMS server.

  11. Butterfly valve in a virtual environment

    NASA Astrophysics Data System (ADS)

    Talekar, Aniruddha; Patil, Saurabh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    Assembly of components is one of the processes involved in product design and development. The present paper deals with the assembly of a simple butterfly valve components in a virtual environment. The assembly has been carried out using virtual reality software by trial and error methods. The parts are modelled using parametric software (SolidWorks), meshed accordingly, and then called into virtual environment for assembly.

  12. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  13. Computational Simulations and the Scientific Method

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  14. Architecture of a framework for providing information services for public transport.

    PubMed

    García, Carmelo R; Pérez, Ricardo; Lorenzo, Alvaro; Quesada-Arencibia, Alexis; Alayón, Francisco; Padrón, Gabino

    2012-01-01

    This paper presents OnRoute, a framework for developing and running ubiquitous software that provides information services to passengers of public transportation, including payment systems and on-route guidance services. To achieve a high level of interoperability, accessibility and context awareness, OnRoute uses the ubiquitous computing paradigm. To guarantee the quality of the software produced, the reliable software principles used in critical contexts, such as automotive systems, are also considered by the framework. The main components of its architecture (run-time, system services, software components and development discipline) and how they are deployed in the transportation network (stations and vehicles) are described in this paper. Finally, to illustrate the use of OnRoute, the development of a guidance service for travellers is explained.

  15. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Badger, W.; Beckman, C. S.; Beshers, G.; Hammerslag, D.; Kimball, J.; Kirslis, P. A.; Render, H.; Richards, P.; Terwilliger, R.

    1984-01-01

    The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described.

  16. Proposal for a New ’Rights in Software’ Clause for Software Acquisitions by the Department of Defense.

    DTIC Science & Technology

    1986-09-01

    point here Is that the capital cost of design and development (including the cost of software tools and/or CAD/CAM programs which aided in the development...and capitalization , software Is in many ways more Ike a hardware component than it is Ike the tech- nical documentation which supports the hardware...Invoked, the owner of intelectual property rights in software may attach appropriate copyright notices to software delivered under this contract. 2.2.2

  17. 45 CFR 307.5 - Mandatory computerized support enforcement systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hardware, operational system software, and electronic linkages with the separate components of an... plans to use and how they will interface with the base system; (3) Provide documentation that the... and for operating costs including hardware, operational software and applications software of a...

  18. 45 CFR 307.5 - Mandatory computerized support enforcement systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hardware, operational system software, and electronic linkages with the separate components of an... plans to use and how they will interface with the base system; (3) Provide documentation that the... and for operating costs including hardware, operational software and applications software of a...

  19. 45 CFR 307.5 - Mandatory computerized support enforcement systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hardware, operational system software, and electronic linkages with the separate components of an... plans to use and how they will interface with the base system; (3) Provide documentation that the... and for operating costs including hardware, operational software and applications software of a...

  20. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  1. Constructing a working taxonomy of functional Ada software components for real-time embedded system applications

    NASA Technical Reports Server (NTRS)

    Wallace, Robert

    1986-01-01

    A major impediment to a systematic attack on Ada software reusability is the lack of an effective taxonomy for software component functions. The scope of all possible applications of Ada software is considered too great to allow the practical development of a working taxonomy. Instead, for the purposes herein, the scope of Ada software application is limited to device and subsystem control in real-time embedded systems. A functional approach is taken in constructing the taxonomy tree for identified Ada domain. The use of modular software functions as a starting point fits well with the object oriented programming philosophy of Ada. Examples of the types of functions represented within the working taxonomy are real time kernels, interrupt service routines, synchronization and message passing, data conversion, digital filtering and signal conditioning, and device control. The constructed taxonomy is proposed as a framework from which a need analysis can be performed to reveal voids in current Ada real-time embedded programming efforts for Space Station.

  2. Large scale database scrubbing using object oriented software components.

    PubMed

    Herting, R L; Barnes, M R

    1998-01-01

    Now that case managers, quality improvement teams, and researchers use medical databases extensively, the ability to share and disseminate such databases while maintaining patient confidentiality is paramount. A process called scrubbing addresses this problem by removing personally identifying information while keeping the integrity of the medical information intact. Scrubbing entire databases, containing multiple tables, requires that the implicit relationships between data elements in different tables of the database be maintained. To address this issue we developed DBScrub, a Java program that interfaces with any JDBC compliant database and scrubs the database while maintaining the implicit relationships within it. DBScrub uses a small number of highly configurable object-oriented software components to carry out the scrubbing. We describe the structure of these software components and how they maintain the implicit relationships within the database.

  3. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    NASA Astrophysics Data System (ADS)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  4. Copyright Protection for Computer Software: Is There a Need for More Protection?

    ERIC Educational Resources Information Center

    Ku, Linlin

    Because the computer industry's expansion has been much faster than has the development of laws protecting computer software and since the practice of software piracy seems to be alive and well, the issue of whether existing laws can provide effective protection for software needs further discussion. Three bodies of law have been used to protect…

  5. Creating, documenting and sharing network models.

    PubMed

    Crook, Sharon M; Bednar, James A; Berger, Sandra; Cannon, Robert; Davison, Andrew P; Djurfeldt, Mikael; Eppler, Jochen; Kriener, Birgit; Furber, Steve; Graham, Bruce; Plesser, Hans E; Schwabe, Lars; Smith, Leslie; Steuber, Volker; van Albada, Sacha

    2012-01-01

    As computational neuroscience matures, many simulation environments are available that are useful for neuronal network modeling. However, methods for successfully documenting models for publication and for exchanging models and model components among these projects are still under development. Here we briefly review existing software and applications for network model creation, documentation and exchange. Then we discuss a few of the larger issues facing the field of computational neuroscience regarding network modeling and suggest solutions to some of these problems, concentrating in particular on standardized network model terminology, notation, and descriptions and explicit documentation of model scaling. We hope this will enable and encourage computational neuroscientists to share their models more systematically in the future.

  6. A Prototype for the Support of Integrated Software Process Development and Improvement

    NASA Astrophysics Data System (ADS)

    Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian

    An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.

  7. ROBNCA: robust network component analysis for recovering transcription factor activities.

    PubMed

    Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem

    2013-10-01

    Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA

  8. Parameterized hardware description as object oriented hardware model implementation

    NASA Astrophysics Data System (ADS)

    Drabik, Pawel K.

    2010-09-01

    The paper introduces novel model for design, visualization and management of complex, highly adaptive hardware systems. The model settles component oriented environment for both hardware modules and software application. It is developed on parameterized hardware description research. Establishment of stable link between hardware and software, as a purpose of designed and realized work, is presented. Novel programming framework model for the environment, named Graphic-Functional-Components is presented. The purpose of the paper is to present object oriented hardware modeling with mentioned features. Possible model implementation in FPGA chips and its management by object oriented software in Java is described.

  9. Evaluating Security Controls Based on Key Performance Indicators and Stakeholder Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Frederick T; Abercrombie, Robert K; Mili, Ali

    2008-01-01

    Good security metrics are required to make good decisions about how to design security countermeasures, to choose between alternative security architectures, and to improve security during operations. Therefore, in essence, measurement can be viewed as a decision aid. The lack of sound practical security metrics is severely hampering progress in the development of secure systems. The Cyberspace Security Econometrics System (CSES) offers the following advantages over traditional measurement systems: (1) CSES reflects the variances that exist amongst different stakeholders of the same system. Different stakeholders will typically attach different stakes to the same requirement or service (e.g., a service maymore » be provided by an information technology system or process control system, etc.). (2) For a given stakeholder, CSES reflects the variance that may exist among the stakes she/he attaches to meeting each requirement. The same stakeholder may attach different stakes to satisfying different requirements within the overall system specification. (3) For a given compound specification (e.g., combination(s) of commercial off the shelf software and/or hardware), CSES reflects the variance that may exist amongst the levels of verification and validation (i.e., certification) performed on components of the specification. The certification activity may produce higher levels of assurance across different components of the specification than others. Consequently, this paper introduces the basis, objectives and capabilities for the CSES including inputs/outputs and the basic structural and mathematical underpinnings.« less

  10. ATM Technology Demonstration-1 Phase II Boeing Configurable Graphical Display (CGD) Software Design Description

    NASA Technical Reports Server (NTRS)

    Wilber, George F.

    2017-01-01

    This Software Description Document (SDD) captures the design for developing the Flight Interval Management (FIM) system Configurable Graphics Display (CGD) software. Specifically this SDD describes aspects of the Boeing CGD software and the surrounding context and interfaces. It does not describe the Honeywell components of the CGD system. The SDD provides the system overview, architectural design, and detailed design with all the necessary information to implement the Boeing components of the CGD software and integrate them into the CGD subsystem within the larger FIM system. Overall system and CGD system-level requirements are derived from the CGD SRS (in turn derived from the Boeing System Requirements Design Document (SRDD)). Display and look-and-feel requirements are derived from Human Machine Interface (HMI) design documents and working group recommendations. This Boeing CGD SDD is required to support the upcoming Critical Design Review (CDR).

  11. Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.

    2010-01-01

    The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.

  12. A theoretical basis for the analysis of multiversion software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques (known as fault-tolerant software) is an understanding of the impact of multiple joint occurrences of errors, referred to here as coincident errors. A theoretical basis for the study of redundant software is developed which: (1) provides a probabilistic framework for empirically evaluating the effectiveness of a general multiversion strategy when component versions are subject to coincident errors, and (2) permits an analytical study of the effects of these errors. An intensity function, called the intensity of coincident errors, has a central role in this analysis. This function describes the propensity of programmers to introduce design faults in such a way that software components fail together when executing in the application environment. A condition under which a multiversion system is a better strategy than relying on a single version is given.

  13. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  14. UAS-NAS Live Virtual Constructive Distributed Environment (LVC): LVC Gateway, Gateway Toolbox, Gateway Data Logger (GDL), SaaProc Software Design Description

    NASA Technical Reports Server (NTRS)

    Jovic, Srboljub

    2015-01-01

    This document provides the software design description for the two core software components, the LVC Gateway, the LVC Gateway Toolbox, and two participants, the LVC Gateway Data Logger and the SAA Processor (SaaProc).

  15. EarthCube as an information resource marketplace; the GEAR Project conceptual design

    NASA Astrophysics Data System (ADS)

    Richard, S. M.; Zaslavsky, I.; Gupta, A.; Valentine, D.

    2015-12-01

    Geoscience Architecture for Research (GEAR) is approaching EarthCube design as a complex and evolving socio-technical federation of systems. EarthCube is intended to support the science research enterprise, for which there is no centralized command and control, requirements are a moving target, the function and behavior of the system must evolve and adapt as new scientific paradigms emerge, and system participants are conducting research that inherently implies seeking new ways of doing things. EarthCube must address evolving user requirements and enable domain and project systems developed under different management and for different purposes to work together. The EC architecture must focus on creating a technical environment that enables new capabilities by combining existing and newly developed resources in various ways, and encourages development of new resource designs intended for re-use and interoperability. In a sense, instead of a single architecture design, GEAR provides a way to accommodate multiple designs tuned to different tasks. This agile, adaptive, evolutionary software development style is based on a continuously updated portfolio of compatible components that enable new sub-system architecture. System users make decisions about which components to use in this marketplace based on performance, satisfaction, and impact metrics collected continuously to evaluate components, determine priorities, and guide resource allocation decisions by the system governance agency. EC is designed as a federation of independent systems, and although the coordinator of the EC system may be named an enterprise architect, the focus of the role needs to be organizing resources, assessing their readiness for interoperability with the existing EC component inventory, managing dependencies between transient subsystems, mechanisms of stakeholder engagement and inclusion, and negotiation of standard interfaces, rather than actual specification of components. Composition of components will be developed by projects that involve both domain scientists and CI experts for specific research problems. We believe an agile, marketplace type approach is an essential architectural strategy for EarthCube.

  16. Use of Kidspiration[C] Software to Enhance the Reading Comprehension of Story Grammar Components for Elementary-Age Students with Specific Learning Disabilities

    ERIC Educational Resources Information Center

    Wade, Erin; Boon, Richard T.; Spencer, Vicky G.

    2010-01-01

    The aim of this research brief was to explore the efficacy of story mapping, with the integration of Kidspiration[C] software, to enhance the reading comprehension skills of story grammar components for elementary-age students. Three students served as the participants, two in third grade and one in fourth, with specific learning disabilities…

  17. [Computer-assisted management of depots for blood products in health establishments].

    PubMed

    Carré, J

    2008-11-01

    To manage the filing of blood components at the hospital of the city of Bayeux, the laboratory uses Cursus, a dedicated software for haemovigilance. Benefits for using this software at different steps of the blood bank management are: simplification, security and harmonization of practices during receipt and issurance of blood components, securing recordings with the use of bar codes for patient identification and blood components listing, implementation of a computerized tracking system for transfusion, traceability, limitation of written documents and availability of statistics on the management of the depot.

  18. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  19. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology

    PubMed Central

    Adams, Richard; Clark, Allan; Yamaguchi, Azusa; Hanlon, Neil; Tsorman, Nikos; Ali, Shakir; Lebedeva, Galina; Goltsov, Alexey; Sorokin, Anatoly; Akman, Ozgur E.; Troein, Carl; Millar, Andrew J.; Goryanin, Igor; Gilmore, Stephen

    2013-01-01

    Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI’s use of standard data formats. Availability and implementation: All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials. Contact: stg@inf.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23329415

  20. An overview of the utility of population simulation software in molecular ecology.

    PubMed

    Hoban, Sean

    2014-05-01

    Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic-genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation-based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox. © 2014 John Wiley & Sons Ltd.

  1. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  2. NASA Tech Briefs, December 1997. Volume 21, No. 12

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics: Design and Analysis Software; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Manufacturing/Fabrication; Mathematics and Information Sciences; Books and Reports.

  3. The Software Design Document: More than a User's Manual.

    ERIC Educational Resources Information Center

    Bowers, Dennis

    1989-01-01

    Discusses the value of creating design documentation for computer software so that it may serve as a model for similar design efforts. Components of the software design document are described, including program flowcharts, graphic representation of screen displays, storyboards, and evaluation procedures. An example is given using HyperCard. (three…

  4. Multidisciplinary and Active/Collaborative Approaches in Teaching Requirements Engineering

    ERIC Educational Resources Information Center

    Rosca, Daniela

    2005-01-01

    The requirements engineering course is a core component of the curriculum for the Master's in Software Engineering programme, at Monmouth University (MU). It covers the process, methods and tools specific to this area, together with the corresponding software quality issues. The need to produce software engineers with strong teamwork and…

  5. 15 CFR Supplement No. 6 to Part 742 - Guidelines for Submitting Review Requests for Encryption Items

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... brochures or other documentation or specifications related to the technology, commodity or software... commodity or software, provide the following information: (1) Description of all the symmetric and... is provided by third-party hardware or software encryption components (if any). Identify the...

  6. The Software Management Environment (SME)

    NASA Technical Reports Server (NTRS)

    Valett, Jon D.; Decker, William; Buell, John

    1988-01-01

    The Software Management Environment (SME) is a research effort designed to utilize the past experiences and results of the Software Engineering Laboratory (SEL) and to incorporate this knowledge into a tool for managing projects. SME provides the software development manager with the ability to observe, compare, predict, analyze, and control key software development parameters such as effort, reliability, and resource utilization. The major components of the SME, the architecture of the system, and examples of the functionality of the tool are discussed.

  7. Reliable High Performance Peta- and Exa-Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G

    2012-04-02

    As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1.6 million core Sequoia system) as well as the wide variety of software and hardware components that a typical system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular faults somewhere in the system or to account for all possible cross-component interactions. The resulting faults and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results. As supercomputers continuemore » to approach Exascale performance and full system reliability becomes prohibitively expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware systems and users unchanging need for consistent performance and reliable results. Previous research on HPC system reliability has developed various techniques for tolerating and detecting various types of faults. However, these techniques have seen very limited real applicability because of our poor understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or performance degradations. Prior work on such techniques has had very limited practical utility because it has generally focused on analyzing the behavior of entire software/hardware systems both during normal operation and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the many different system stacks and applications used in practice, this work has had little real-world impact. My project addresses this problem by developing a modular methodology to analyze the behavior of applications and systems during both normal and faulty operation. By synthesizing models of individual components into a whole-system behavior models my work is making it possible to automatically understand the behavior of arbitrary real-world systems to enable them to tolerate a wide range of system faults. My project is following a multi-pronged research strategy. Section II discusses my work on modeling the behavior of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a system should be designed from the ground up to make resilience natural and easy.« less

  8. Airland Battlefield Environment (ALBE) Tactical Decision Aid (TDA) Demonstration Program,

    DTIC Science & Technology

    1987-11-12

    Management System (DBMS) software, GKS graphics libraries, and user interface software. These components of the ATB system software architecture will be... knowlede base ano auqent the decision mak:n• process by providing infocr-mation useful in the formulation and execution of battlefield strategies...Topographic Laboratories as an Engineer. Ms. Capps is managing the software development of the AirLand Battlefield Environment (ALBE) geographic

  9. A Review of Feature Extraction Software for Microarray Gene Expression Data

    PubMed Central

    Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini

    2014-01-01

    When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315

  10. Simulation Control Graphical User Interface Logging Report

    NASA Technical Reports Server (NTRS)

    Hewling, Karl B., Jr.

    2012-01-01

    One of the many tasks of my project was to revise the code of the Simulation Control Graphical User Interface (SIM GUI) to enable logging functionality to a file. I was also tasked with developing a script that directed the startup and initialization flow of the various LCS software components. This makes sure that a software component will not spin up until all the appropriate dependencies have been configured properly. Also I was able to assist hardware modelers in verifying the configuration of models after they have been upgraded to a new software version. I developed some code that analyzes the MDL files to determine if any error were generated due to the upgrade process. Another one of the projects assigned to me was supporting the End-to-End Hardware/Software Daily Tag-up meeting.

  11. Architecture of a Framework for Providing Information Services for Public Transport

    PubMed Central

    García, Carmelo R.; Pérez, Ricardo; Lorenzo, Álvaro; Quesada-Arencibia, Alexis; Alayón, Francisco; Padrón, Gabino

    2012-01-01

    This paper presents OnRoute, a framework for developing and running ubiquitous software that provides information services to passengers of public transportation, including payment systems and on-route guidance services. To achieve a high level of interoperability, accessibility and context awareness, OnRoute uses the ubiquitous computing paradigm. To guarantee the quality of the software produced, the reliable software principles used in critical contexts, such as automotive systems, are also considered by the framework. The main components of its architecture (run-time, system services, software components and development discipline) and how they are deployed in the transportation network (stations and vehicles) are described in this paper. Finally, to illustrate the use of OnRoute, the development of a guidance service for travellers is explained. PMID:22778585

  12. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  13. Domain specific software architectures: Command and control

    NASA Technical Reports Server (NTRS)

    Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave

    1992-01-01

    GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.

  14. Software archeology: a case study in software quality assurance and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonald, John M; Lloyd, Jane A; Turner, Cameron J

    2009-01-01

    Ideally, quality is designed into software, just as quality is designed into hardware. However, when dealing with legacy systems, demonstrating that the software meets required quality standards may be difficult to achieve. As the need to demonstrate the quality of existing software was recognized at Los Alamos National Laboratory (LANL), an effort was initiated to uncover and demonstrate that legacy software met the required quality standards. This effort led to the development of a reverse engineering approach referred to as software archaeology. This paper documents the software archaeology approaches used at LANL to document legacy software systems. A case studymore » for the Robotic Integrated Packaging System (RIPS) software is included.« less

  15. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  16. CAVEman: Standardized anatomical context for biomedical data mapping.

    PubMed

    Turinsky, Andrei L; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrímsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N; Hill, Jonathan W; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W

    2008-01-01

    The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to the nomenclature of Terminologia Anatomica. The underlying data-indexing mechanism uses standard ontologies to map a range of biomedical data types onto the atlas. The CAVEman system is now used to visualize genetic processes in the context of the human anatomy and to facilitate visual exploration of the data. Through the use of Javatrade mark software, the atlas-based system is portable to virtually any computer environment, including personal computers and workstations. Existing Java tools for biomedical data analysis have been incorporated into the system. The affordability of virtual-reality installations has increased dramatically over the last several years. This creates new opportunities for educational scenarios that model important processes in a patient's body, including gene expression patterns, metabolic activity, the effects of interventions such as drug treatments, and eventually surgical simulations.

  17. Enhanced, Partially Redundant Emergency Notification System

    NASA Technical Reports Server (NTRS)

    Pounds, Clark D.

    2005-01-01

    The Johnson Space Center Emergency Notification System (JENS) software utilizes pre-existing computation and communication infrastructure to augment a prior variable-tone, siren-based, outdoor alarm system, in order to enhance the ability to give notice of emergencies to employees working in multiple buildings. The JENS software includes a component that implements an administrative Web site. Administrators can grant and deny access to the administrative site and to an originator Web site that enables authorized individuals to quickly compose and issue alarms. The originator site also facilitates maintenance and review of alarms already issued. A custom client/server application program enables an originator to notify every user who is logged in on a Microsoft Windows-based desktop computer by means of a pop-up message that interrupts, but does not disrupt, the user s work. Alternatively or in addition, the originator can send an alarm message to recipients on an e-mail distribution list and/or can post the notice on an internal Web site. An alarm message can consist of (1) text describing the emergency and suggesting a course of action and (2) a replica of the corresponding audible outdoor alarm.

  18. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  19. ExAtlas: An interactive online tool for meta-analysis of gene expression data.

    PubMed

    Sharov, Alexei A; Schlessinger, David; Ko, Minoru S H

    2015-12-01

    We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users' own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher's methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein-protein interaction) are pre-loaded and can be used for functional annotations.

  20. Infrastructure and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dowler, P.; Gaudet, S.; Schade, D.

    2011-07-01

    The modern data center is faced with architectural and software engineering challenges that grow along with the challenges facing observatories: massive data flow, distributed computing environments, and distributed teams collaborating on large and small projects. By using VO standards as key components of the infrastructure, projects can take advantage of a decade of intellectual investment by the IVOA community. By their nature, these standards are proven and tested designs that already exist. Adopting VO standards saves considerable design effort, allows projects to take advantage of open-source software and test suites to speed development, and enables the use of third party tools that understand the VO protocols. The evolving CADC architecture now makes heavy use of VO standards. We show examples of how these standards may be used directly, coupled with non-VO standards, or extended with custom capabilities to solve real problems and provide value to our users. In the end, we use VO services as major parts of the core infrastructure to reduce cost rather than as an extra layer with additional cost and we can deliver more general purpose and robust services to our user community.

Top