Science.gov

Sample records for existing tandem accelerator

  1. Argonne Tandem-Linac Accelerator System

    SciTech Connect

    Bollinger, L.M.

    1983-01-01

    Design considerations and operational experience for the existing heavy-ion accelerator consisting of a tandem injecting into a superconducting linac are summarized, with emphasis on the general features of the system. This introduction provides the basis for a discussion of the objectives and design of ATLAS, a larger tandem-linac system being formed by expanding the existing superconducting linac.

  2. Recent Activities at Tokai Tandem Accelerator

    NASA Astrophysics Data System (ADS)

    Ishii, Tetsuro

    2010-05-01

    Recent activities at the JAEA-Tokai tandem accelerator facility are presented. The terminal voltage of the tandem accelerator reached 19.1 MV by replacing acceleration tubes. The multi-charged positive-ion injector was installed in the terminal of the tandem accelerator, supplying high-current noble-gas ions. A superconducting cavity for low-velocity ions was developed. Radioactive nuclear beams of 8,9Li and fission products, produced by the tandem accelerator and separated by the ISOL, were supplied with experiment. Recent results of nuclear physics experiments are reported.

  3. The IAE Peking HI-13 tandem accelerator

    NASA Astrophysics Data System (ADS)

    Ju-xian, Yu

    1981-05-01

    A new tandem accelerator laboratory is under construction at the Institute of Atomic Energy in Peking. This institute was built in 1958 and equipped with a reactor, cyclotron, electrostatic accelerator and some other facilities to meet the increasing interest in nuclear study and its application in China. The project of this tandem laboratory was approved in 1978. A 13 MV tandem accelerator will be provided by the High Voltage Engineering Corporation of Burlington, Massachusetts, USA, and a Q3D magnetic spectrometer by AB Scanditronix, Sweden. Some auxiliary systems, experimental equipment and the tank of the tandem are being designed and manufactured in China.

  4. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    NASA Astrophysics Data System (ADS)

    Juras, R. C.; Blankenship, J. L.

    1999-06-01

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in each area at points of maximum dose rate and the resulting signals are integrated by redundant circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several years at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  5. The Naples University 3 MV tandem accelerator

    SciTech Connect

    Campajola, L.; Brondi, A.

    2013-07-18

    The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.

  6. Tritium measurements with a tandem accelerator

    NASA Astrophysics Data System (ADS)

    Middleton, R.; Klein, J.; Fink, D.

    1990-06-01

    Tritium concentrations ( 3H: 2H) of less than 10 -15 are readily measurable with almost any tandem accelerator and with an overall detection efficiency as high as 4.5%. The isobar, 3He, and other potential sources of interference (mainly 6Li, 2H and 1H) can all be removed by an absorber in front of the triton detector, so there is little need for analyzing elements other than the negative-and positive-ion magnets found on most tandems. The technique is particularly well suited for detecting tritium in deuterium absorbed in a metal and testing for cold fusion. We caution that tritium can occur in commercial deuterium and heavy water from sources other than cold fusion; one sample was observed to have a tritium-to-deuterium ratio of 10 -10.

  7. High-sensitivity mass spectrometry with a tandem accelerator

    SciTech Connect

    Henning, W.

    1983-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems.

  8. The Tandem-ALPI-PIAVE accelerator complex of LNL

    SciTech Connect

    Ur, C. A.

    2013-07-18

    Heavy ion beams are delivered at the Laboratori Nazionali di Legnaro by the accelerator complex Tandem-ALPI-PIAVE. The Tandem XTU is a Van de Graaff accelerator normally operated at terminal voltages of up to about 15 MV. The Tandem accelerator can be operated in stand-alone mode or as an injector for the linac booster ALPI. The linear accelerator ALPI is built of superconducting resonant cavities and consists of a low-beta branch, particularly important for the acceleration of the heavier mass ions, a medium-beta branch, and a high-beta branch. ALPI can be operated also with the PIAVE injector that consists of a superconducting linac and an ECR source. The PIAVE source was mainly used for the acceleration of intense noble gas beams but most recently also a first metallic beam was delivered to the users. The accelerator complex delivers beams of ions from protons to gold in three experimental areas on 11 different beam lines. A rich scientific activity is ongoing at the Tandem-ALPI-PIAVE accelerator complex, beam time being shared between nuclear physics research and applied and interdisciplinary physics research. An overview of the present status and perspectives of the Tandem-ALPI-PIAVE complex and its physics program is given in the present paper.

  9. Modification of the argon stripping target of the tandem accelerator.

    PubMed

    Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P

    2015-12-01

    The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator.

  10. Modification of the argon stripping target of the tandem accelerator.

    PubMed

    Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P

    2015-12-01

    The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator. PMID:26242555

  11. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier.

  12. Testing and commissioning of the HI-13 tandem accelerator

    NASA Astrophysics Data System (ADS)

    Qin, Jiuchang; Yu, Juexian; Yang, Suichun; Du, Xueren; Liu, Zhengying; Wang, Haipeng; Chen, Wenkui; Hu, Yaoming; Zhang, Guilian; Yang, Bingfan; Yu, Yunfeng; Guan, Xialing; Ning, Shulan; Yang, Weimin; Ge, Jiyun; Bi, Decai; Zheng, Zhanyi

    1988-05-01

    In this paper we report the results of the commissioning and the acceptance tests of the HI-13 tandem accelerator in IAE. We have achieved up to now a terminal voltage of 13.4 MV, a proton beam current of 10 μA at 7.5 MV, and we have had a pulsed proton beam on target with a pulse width of 1 ns and a peak current of 1.05 mA at a terminal voltage of 13 MV.

  13. Activities of the Tandem Accelerator Center, University of Tsukuba

    NASA Astrophysics Data System (ADS)

    1993-10-01

    This annual report includes the research activities and the technical developments carried out at the Tandem Accelerator Center in University of Tsukuba for the period from April 1992 to March 1993. New experimental investigations were made on (1) nuclear spectroscopy was initiated by a new (gamma) ray spectrometer; (2) polarization phenomena in nuclear reactions; (3) the application of energetic heavy ions to solid state physics; (4) the behavior of self interstitial atoms and its migration mechanism in Mo metal; (5) the studies on electronic conduction of metal oxides and bronzes by NMR; (6) Moessbauer studies on Fe-Cr alloy and the RBS analysis of YBCO superconductor films; and (7) a new field was challenged on the micro cluster physics. Nuclear collective motion and the relativistic mean-field theory is also included in this report.

  14. 60Fe measurements with an EN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Gartenmann, P.; Schnabel, C.; Suter, M.; Synal, H.-A.

    1997-03-01

    The long-lived radionuclide 60Fe has been detected at the low energies of an EN tandem accelerator. At an energy of 60 MeV, the suppression of the stable isobar 60Ni is the main problem. Spraying hydrogen gas onto the ion source target and extracting the metal single hydrides the nickel contamination in the beam can be reduced more than 500 fold. In the gas ionization detector another five orders of magnitude of suppression are obtained. The resulting background {60Fe}/{Fe} ratio of about 10-11 has enabled first measurements with the standard samples used earlier at Argonne National Laboratory. The results of the two facilities are in agreement.

  15. Progress in radiocarbon dating with the Chalk River MP tandem accelerator

    SciTech Connect

    Andrews, H.R.; Ball, G.C.; Brown, R.M.; Davies, W.G.; Imahori, Y.; Milton, J.C.D.

    1980-01-01

    The evolution of a tandem accelerator /sup 14/C dating system at Chalk River is recounted. Background problems and sources of instability are discussed and solutions are described. Details of sample chemistry and source preparation are presented.

  16. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  17. Oak Ridge 25URC Tandem Accelerator 2008 SNEAP Lab Report

    SciTech Connect

    Meigs, Martha J; Juras, Raymond C

    2011-01-01

    radiological survey found no contamination outside the shielded vaults. No decontamination was required. No individual received any detectable radiological dose as a result of this event. The 25URC tandem accelerator was given permission to resume operation with stable beams in early September, but radioactive ion production is still not allowed. Subsequent analysis indicated a release that consisted entirely of noble gasses (Xe and Kr isotopes). We believe we have identified two unrelated failures, one associated with the HVAC system and the other with the roughing system exhaust which accounts for both the escape of noble gasses into the IRIS1 vault and their migration outside the vault. An investigation team report is expected by October 24. At that time, corrective actions will be determined and the path to future radioactive ion beam production will be known. The break from operations allowed a few upgrades to be implemented. The most notable was the installation and commissioning of a SNICS ion source purchased from National Electrostatics Corporation (NEC). The SNICS replaced the old Alton/Aarhus source that we have used for many years. An ANU style gas cathode holder was purchased also but has not yet been implemented. The first beams have been produced by the source and the biggest problem encountered was reducing the beam for very low current experiments. A new power supply for the injection magnet was installed during this period also. Radioactive ion beam (RIB) development at the High Power Target Laboratory (HPTL) has been delayed this year while installing the platforms, conduits and equipment for the second Injector for Radioactive Ion Species (IRIS2) which is co-located with the HPTL facility. Therefore, the majority of development activities have been performed at the two off-line ion source test facilities (ISTF1 and ISTF2) and the On-Line Test Facility (OLTF). Both test facilities have been developing systems which will eventually be used with IRIS2. Two new

  18. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  19. Accelerator mass spectrometry at the 4 MV Dynamitron Tandem in Bochum

    NASA Astrophysics Data System (ADS)

    Lubritto, C.; Rogalla, D.; Rubino, M.; Marzaioli, F.; Passariello, I.; Romano, M.; Spadaccini, G.; Casa, G.; Di Leva, A.; De Cesare, N.; D'Onofrio, A.; Gialanella, L.; Imbriani, G.; Palmieri, A.; Roca, V.; Rolfs, C.; Sabbarese, C.; Strieder, F.; Schüermann, D.; Terrasi, F.

    2004-07-01

    A feasibility test for Accelerator Mass Spectrometry has been carried out successfully at the 4 MV Dynamitron Tandem Laboratory in Bochum in conjunction with a new recoil separator. We describe the facility as well as results concerning the reproducibility and accuracy of 14C content measurements of several standard samples.

  20. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  1. System for producing high-resolution polarized and unpolarized beams with a tandem accelerator

    SciTech Connect

    Westerfeldt, C.R.; Bilpuch, E.G.; Bleck, M.E.; Outlaw, D.A.; Wells, W.K.; Wilkerson, J.F.; Clegg, T.B.

    1983-01-01

    A tandem accelerator beam energy stabilizer, which utilizes an optically coupled fast feedback loop to the accelerator terminal stripper, is described. Emphasis is placed on the components of the feedback system and on the application of this system to production of high energy-resolution beams. This system produces beam energy spreads ranging from 450 to 600 eV FWHM for 2 to 16 MeV unpolarized protons. Polarized beam energy spreads range from 550 to 700 eV FWHM, for the same beam energy range.

  2. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  3. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  4. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days.

  5. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  6. Performance enhancement of existing two-stage sounding rocket vehicles through the use of tandem booster systems

    NASA Technical Reports Server (NTRS)

    Flores, C. C.; Gurkin, L. W.

    1982-01-01

    The three-stage Taurus-Nike-Tomahawk launch vehicle is being considered for performance enhancement of the existing Taurus-Tomahawk flight system. In addition, performance enhancement of other existing two-stage launch vehicles is being considered through the use of tandem booster systems. Aeroballistic characteristics of the proposed Taurus-Nike-Tomahawk vehicle are presented, as are overall performance capabilities of other potential three-stage flight systems.

  7. Gamma-resonance Contraband Detection using a high current tandem accelerator

    SciTech Connect

    Milton, B. F.; Beis, J.; Dale, D.; Rogers, J.; Ruegg, R.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Sredniawski, J.

    1999-04-26

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by {sup 14}N of gammas produced using {sup 13}C(p,{gamma}){sup 14}N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H{sup -} tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  8. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy.

  9. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy. PMID:26900650

  10. Investigation of beam transmission in A 9SDH-2 3.0 MV NEC pelletron tandem accelerator

    SciTech Connect

    Deoli, Naresh T.; Kummari, Venkata C.; Pacheco, Jose L.; Duggan, Jerome L.; Glass, Gary A.; McDaniel, Floyd D.; Reinert, Tilo; Rout, Bibhudutta; Weathers, Duncan L.

    2013-04-19

    Electrostatic tandem accelerators are widely used to accelerate ions for experiments in materials science such as high energy ion implantation, materials modification, and analyses. Many applications require high beam current as well as high beam brightness at the target; thus, maximizing the beam transmission through such electrostatic accelerators becomes important. The Ion Beam Modification and Analysis Laboratory (IBMAL) at University of North Texas is equipped with four accelerators, one of which is a 9SDH-2 3.0 MV National Electrostatic Corporation (NEC) Pelletron Registered-Sign tandem accelerator. The tandem accelerator is equipped with three ion sources: one radio frequency-He ion source (Alphatross) and two ion sources of Cs-sputter type, the SNICS II (Source of Negative Ions by Cesium Sputtering) and a Cs-sputter source for trace-element accelerator based mass spectrometry. This work presents a detailed study of the beam transmission of hydrogen, silicon, and silver ions through the accelerator using the SNICS ion source with injection energies ranging from 20 keV to 70 keV. The beam transmission is quantified for three different terminal voltages: 1.5 MV, 2.0 MV and 2.5 MV. For a given terminal voltage, it has been found that beam transmission is strongly dependent on the ion source injector potential. Details of experiments and data analysis are presented.

  11. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  12. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  13. A dedicated AMS setup for 53Mn/60Fe at the Cologne FN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Dewald, A.; Feuerstein, C.; Altenkirch, R.; Stolz, A.; Heinze, S.

    2015-10-01

    Following demands for AMS measurements of medium mass isotopes, especially for 53Mn and 60Fe, we started to build a dedicated AMS setup at the Cologne FN tandem accelerator. This accelerator with a maximum terminal voltage of 10 MV can be reliably operated at a terminal voltage of 9.5 MV which corresponds to energies of 93-102 MeV for 60Fe or 53Mn beams using the 9+ or 10+ charge state. These charge states can be obtained by foil stripping with efficiencies of 30% and 20%, respectively. Energies around 100 MeV are sufficient to effectively suppress the stable isobars 60Ni and 53Cr by (dE/dx) techniques using combinations of energy degrader foils and dispersive elements like electrostatic analyzers and time of flight (TOF) systems as well as (dE/dx)E ion detectors. In this contribution we report on the actual status of the AMS setup and discuss details and expected features.

  14. Determination of cosmogenic Ca-41 in a meteorite with tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Kubik, P. W.; Elmore, D.; Conard, N. J.; Nishiizumi, K.; Arnold, J. R.

    1986-01-01

    The first use of tandem accelerator mass spectrometry (TAMS) to measure the content of Ca-41 in a natural sample, the iron Bogou meteorite, is reported. Ca in the samples was extracted by hydroxide precipitation and purified by means of a caution exchange resin (AG 50W-X8). After adding 4 percent ammonium oxide, the precipitate was ignited to CaO in a quartz vial at about 1100 C. The Ca-41/Ca ratios were determined following acceleration by alternate measurements of the Ca-40 beam current in an image Faraday cup. Ca-41 particles were also measured using a gas counter. The measured Ca-41/Ca ratio was 3.8 + or -0.6 x 10 to the 12th, which corresponds to a Ca-41 activity of 6.9 + or -1.1 d.p.m. per kg. Calculation of the half-life of Ca-41 in the Bogou meteorite yielded an age of 103,000 years.

  15. Ion Beam Transport Simulations for the 1.7 MV Tandem Accelerator at the Michigan Ion Beam Laboratory

    NASA Astrophysics Data System (ADS)

    Naab, F. U.; Toader, O. F.; Was, G. S.

    The Michigan Ion Beam Laboratory houses a 1.7 MV tandem accelerator. For many years this accelerator was configured to run with three ion sources: a TORoidal Volume Ion Source (TORVIS), a Duoplasmatron source and a Sputter source. In this article we describe an application we have created using the SIMION® code to simulate the trajectories of ion beams produced with these sources through the accelerator. The goal of this work is to have an analytical tool to understand the effect of each electromagnetic component on the ion trajectories. This effect is shown in detailed drawings. Each ion trajectory simulation starts at the aperture of the ion source and ends at the position of the target. Using these simulations, new accelerator operators or users quickly understand how the accelerator system works. Furthermore, these simulations allow analysis of modifications in the ion beam optics of the accelerator by adding, removing or replacing components or changing their relative positions.

  16. Development of a GVM-based ion beam energy stabilization system at the Bucharest Van de Graaff FN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Mosu, D. V.; Ghit, D. G.; Dobrescu, S.; Sava, T.; Savu, B.; Naghel, G.; Moisa, D.; Calinescu, I. C.; Dumitru, G.; Mitu, I. O.; Petcu, M.; Cata-Danil, Gh.

    2013-04-01

    This paper presents a new, home-made, GVM (Generating Voltmeter) ion beam energy stabilization system, currently in operation at the Bucharest Tandem Van de Graaff accelerator. The new design combines the signal from the GVM preamplifier with the signal of an original digital reference, in order to obtain an error signal needed by the high-voltage stabilization loop. It is shown that the structure of the employed algorithm provides a high efficiency operation mode for the slow variation of accelerating voltage, with the exception of discharges in the high voltage system. The block structure design, construction features, and tests of this new stabilization system are reported in detail.

  17. A new slit stabilization system for the beam energy at the Bucharest tandem Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Moşu, D. V.; Ghiţă, D. G.; Dobrescu, S.; Sava, T.; Mitu, I. O.; Călinescu, I. C.; Naghel, G.; Dumitru, G.; Căta-Danil, Gh.

    2012-11-01

    Recent work has been undertaken to renew the stabilization system for the beam energy at the Bucharest Tandem Accelerator. In the present paper the mechatronic design of the new system is presented and the running consistency of the new electronic circuits is shown. The experimental tests have shown that the new system has improved the quality of the accelerated beams in terms of stability and energy resolution, especially at lower accelerating voltages. As a result of the present development we show an improvement with 20% for the peak to peak medium value of the high voltage ripple on the terminal. This improvement also allowed to lower the minimum stable voltage on the terminal from 1.5 MV to 0.8 MV.

  18. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  19. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  20. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    PubMed

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  1. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    NASA Astrophysics Data System (ADS)

    Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  2. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring.

    PubMed

    Mello, S L A; Codeço, C F S; Magnani, B F; Sant'Anna, M M

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  3. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  4. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.

    PubMed

    Lagares, J I; Araque, J E Guerrero; Méndez-Villafañe, R; Arce, P; Sansaloni, F; Vela, O; Díaz, C; Campo, Xandra; Pérez, J M

    2016-08-01

    A Bonner sphere spectrometer was used to measure the neutron spectra produced at the collision of protons with an H2(18)O target at different angles. A unique H2(18)O target to produce (18)F was designed and placed in a Tandem linear particle accelerator which produces 8.5MeV protons. The neutron count rates measured with the Bonner spheres were unfolded with the MAXED code. With the GEANT4 Monte Carlo code the neutron spectrum induced in the (p, n) reaction was estimated, this spectrum was used as initial guess during unfolding. Although the cross section of the reaction (18)O(p,n)(18)F is well known, the neutron energy spectra is not correctly defined and it is necessary to verify the simulation with measurements. For this reason, the sensitivity of the unfolding method to the initial spectrum was analyzed applying small variation to the fast neutron peak. PMID:27235889

  5. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.

    PubMed

    Lagares, J I; Araque, J E Guerrero; Méndez-Villafañe, R; Arce, P; Sansaloni, F; Vela, O; Díaz, C; Campo, Xandra; Pérez, J M

    2016-08-01

    A Bonner sphere spectrometer was used to measure the neutron spectra produced at the collision of protons with an H2(18)O target at different angles. A unique H2(18)O target to produce (18)F was designed and placed in a Tandem linear particle accelerator which produces 8.5MeV protons. The neutron count rates measured with the Bonner spheres were unfolded with the MAXED code. With the GEANT4 Monte Carlo code the neutron spectrum induced in the (p, n) reaction was estimated, this spectrum was used as initial guess during unfolding. Although the cross section of the reaction (18)O(p,n)(18)F is well known, the neutron energy spectra is not correctly defined and it is necessary to verify the simulation with measurements. For this reason, the sensitivity of the unfolding method to the initial spectrum was analyzed applying small variation to the fast neutron peak.

  6. Status report of a 1.7 MV tandem accelerator for solid state research

    NASA Astrophysics Data System (ADS)

    Berger, S.; Dworschak, F.

    1986-02-01

    An accelerator system is described which is in use for radiation damage studies, analytical (RBS) and structural (channeling) measurements, and high energy ion implantation. An important feature of the system is its high current capability for radiation damage. The injector is equipped with three ion sources and is operated at 80 kV to permit high intensity ion beam currents to be accelerated. A parallel fed voltage multiplier located within SF 6 gas of 8.3 bar pressure produces stable voltages in the range of 0.400 to 1.700 MV. The beam is transported by a switching magnet to four target stations.

  7. C-14 content of ten meteorites measured by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Andrews, H. R.; Ball, G. C.; Burn, N.; Imahori, Y.; Milton, J. C. D.; Fireman, E. L.

    1984-01-01

    Measurements of C-14 in three North American and seven Antarctic meteorites show in most cases that this cosmogenic isotope, which is tightly bound, was separated from absorbed atmospheric radiocarbon by stepwise heating extractions. The present upper limit to age determination by the accelerator method varies from 50,000 to 70,000 years, depending on the mass and carbon content of the sample. The natural limit caused by cosmic ray production of C-14 in silicate rocks at 2000 m elevation is estimated to be 55,000 + or - 5000 years. An estimation is also made of the 'weathering ages' of the Antarctic meteorites from the specific activity of loosely bound CO2 which is thought to be absorbed from the terrestrial atmosphere. Accelerator measurements are found to agree with previous low level counting measurements, but are more sensitive and precise.

  8. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  9. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    PubMed Central

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  10. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-11-23

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.

  11. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  12. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  13. The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage

    NASA Astrophysics Data System (ADS)

    Sokaras, Dimosthenis; Bistekos, Euthimios; Georgiou, Lambros; Salomon, Joseph; Bogovac, Mladen; Aloupi-Siotis, Eleni; Paschalis, Vasilis; Aslani, Ioanna; Karabagia, Sofia; Lagoyannis, Anastasios; Harissopulos, Sotirios; Kantarelou, Vasiliki; Karydas, Andreas-Germanos

    2011-03-01

    At the 5.5 MV Tandem VdG accelerator of the Institute of Nuclear Physics of N.C.S.R. "Demokritos", Athens, Greece, an external ion-beam set-up has been recently developed and installed. The aim of this development was to integrate the analytical capabilities of the PIXE, RBS and PIGE ion beam techniques in one experimental set-up, so that to attain a complete elemental and near surface structural characterization of samples in an almost non-destructive way and without any limitation concerning their size or conductive state. A careful 3D mechanical drawing optimized the set-up experimental parameters achieving probe dimensions at the millimeter range (1 mm 2) and fulfilling the special requirements imposed for optimum performance of the aforementioned techniques, including the possibility to use heavier, than protons, ion beams. For the digital pulse processing of the X-ray, γ-ray and charged particle detector signals, novel hardware and software tools were developed based on a custom FPGA configuration. The first applications were focused in the quality control of materials that have been intentionally contaminated with a particular tracer-element ("tagged" materials). The tagged materials which were developed and tested are technologically authentic replicas of ancient attic ceramics with black glazed decoration. Analytical diagnostic studies were carried out for a few representative paintings of contemporary Greek painters in order to identify and document materials/pigments and techniques and eventually to prevent trade of fakes. Finally, ancient glass beads were also examined with respect to the sodium concentration and its in-depth homogeneity.

  14. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  15. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-01-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  16. Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Sadiq, Muhammad Waqas; Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran; Hammarlund-Udenaes, Margareta

    2011-02-01

    Morphine has been predicted to show nonlinear blood-brain barrier transport at lower concentrations. In this study, we investigated the possibility of separating active influx of morphine from its efflux by using very low morphine concentrations and compared accelerator mass spectrometry (AMS) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a method for analyzing microdialysis samples. A 10-min bolus infusion of morphine, followed by a constant-rate infusion, was given to male rats (n = 6) to achieve high (250 ng/ml), medium (50 ng/ml), and low (10 ng/ml) steady-state plasma concentrations. An additional rat received infusions to achieve low (10 ng/ml), very low (2 ng/ml), and ultralow (0.4 ng/ml) concentrations. Unbound morphine concentrations from brain extracellular fluid and blood were sampled by microdialysis and analyzed by LC-MS/MS and AMS. The average partition coefficient for unbound drug (K(p,uu)) values for the low and medium steady-state levels were 0.22 ± 0.08 and 0.21 ± 0.05, respectively, when measured by AMS [not significant (NS); p = 0.5]. For the medium and high steady-state levels, K(p,uu) values were 0.24 ± 0.05 and 0.26 ± 0.05, respectively, when measured by LC-MS/MS (NS; p = 0.2). For the low, very low, and ultralow steady-state levels, K(p,uu) values were 0.16 ± 0.01, 0.16 ± 0.02, and 0.18 ± 0.03, respectively, when measured by AMS. The medium-concentration K(p,uu) values were, on average, 16% lower when measured by AMS than by LC-MS/MS. There were no significant changes in K(p,uu) over a 625-fold concentration range (0.4-250 ng/ml). It was not possible to separate active uptake transport from active efflux using these low concentrations. The two analytical methods provided indistinguishable results for plasma concentrations but differed by up to 38% for microdialysis samples; however, this difference did not affect our conclusions.

  17. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting.

    PubMed

    Ettema, Gertjan; McGhie, David; Danielsen, Jørgen; Sandbakk, Øyvind; Haugen, Thomas

    2016-01-01

    Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitions) with linear piecewise fitting (indicating breakpoint). We recorded the kinematics of 24 well trained sprinters during a 25 m sprint run with start from competition starting blocks. Kinematic data were collected for 24 anatomical landmarks in 3D, and the location of centre of mass (CoM) was calculated from this data set. The step-to-step development of seven variables (four related to CoM position, and ground contact time, aerial time and step length) were analysed by curve fitting. In most individual sprints (in total, 41 sprints were successfully recorded) no breakpoints were identified for the variables investigated. However, for the mean results (i.e., the mean curve for all athletes) breakpoints were identified for the development of vertical CoM position, angle of acceleration and distance between support surface and CoM. It must be noted that for these variables the exponential fit showed high correlations (r2>0.99). No relationship was found between the occurrences of breakpoints for different variables as investigated using odds ratios (Mantel-Haenszel Chi-square statistic). It is concluded that although breakpoints regularly appear during accelerated running, these are not the rule and thereby unlikely a fundamental characteristic, but more likely an expression of imperfection of performance.

  18. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting

    PubMed Central

    McGhie, David; Danielsen, Jørgen; Sandbakk, Øyvind; Haugen, Thomas

    2016-01-01

    Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitions) with linear piecewise fitting (indicating breakpoint). We recorded the kinematics of 24 well trained sprinters during a 25 m sprint run with start from competition starting blocks. Kinematic data were collected for 24 anatomical landmarks in 3D, and the location of centre of mass (CoM) was calculated from this data set. The step-to-step development of seven variables (four related to CoM position, and ground contact time, aerial time and step length) were analysed by curve fitting. In most individual sprints (in total, 41 sprints were successfully recorded) no breakpoints were identified for the variables investigated. However, for the mean results (i.e., the mean curve for all athletes) breakpoints were identified for the development of vertical CoM position, angle of acceleration and distance between support surface and CoM. It must be noted that for these variables the exponential fit showed high correlations (r2>0.99). No relationship was found between the occurrences of breakpoints for different variables as investigated using odds ratios (Mantel-Haenszel Chi-square statistic). It is concluded that although breakpoints regularly appear during accelerated running, these are not the rule and thereby unlikely a fundamental characteristic, but more likely an expression of imperfection of performance. PMID:27467387

  19. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  20. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  1. Screening and identification of unknown contaminants in water with liquid chromatography and quadrupole-orthogonal acceleration-time-of-flight tandem mass spectrometry.

    PubMed

    Bobeldijk, I; Vissers, J P; Kearney, G; Major, H; Van Leerdam, J A

    2001-09-21

    In order to assess and maintain the quality of surface waters, target compound monitoring is often not sufficient. Many unknown micro-contaminants are present in water, originating in municipal, industrial or agricultural effluents. Some of these might pose a risk to drinking water production and consequently to human health. The possibilities of screening surface water and identification of these non-target water pollutants with modern data acquisition possibilities of hybrid quadrupole-orthogonal acceleration time of flight mass spectrometers (Q-TOF), such as data-dependent MS to MS/MS switching were investigated. Using model compounds, a procedure for the liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening of water extracts was developed, enabling the detection and identification of compounds at levels < or = 0.25 microg/l in surface water. Based on the accurate mass the elemental compositions for the precursor and product ions are calculated. The calculated chemical formulae are searched against the Merck index, the NIST library, an own database containing about 2,500 water pollutants (pesticides and other contaminants) as well as a CI-CID library containing tandem MS spectra of about 100 water contaminants. The developed approach was applied for the identification of unknown compounds, present in native surface water extract. For three of these compounds, structures were proposed. Confirmation of the proposed structures with standards was beyond the scope of this study.

  2. Integrating knowledge-based systems into operations at the McMaster University FN tandem accelerator laboratory

    SciTech Connect

    Poehlman, W.F.S. ); Stark, J.W. . Tandem Accelerator Lab.)

    1989-10-01

    The introduction of computer-based expertise in accelerator operations has resulted in the development of an Accelerator Operators' Companion which incorporates a knowledge-based front-end that is tuned to user operational expertise. The front-end also provides connections to traditional software packages such as database and spreadsheet programs. During work on the back-end, that is, real-time expert system control development, the knowledge engineering phase has revealed the importance of modifying expert procedures when a multitasking environment is involved.

  3. [Determination of eight defoliant residues in cotton by accelerated solvent extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Wu, Gang; Dong, Suozhuai; Pan, Lulu; Zhao, Shanhong; Wang, Lijun; Guo, Fanglong; Li, Dan

    2013-07-01

    A novel method has been developed for the rapid extraction and determination of eight defoliants including thidiazuron, butiphos, methabenzthiazuron, abscisic acid, carfentra-zone-ethyl, diuron, paraquat, and pyrithiobac-sodium in cotton by accelerated solvent extraction (ASE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The defoliants in cotton were extracted by ASE and the extracts were dried by a rotavapor, then redissolved in the solvents of acetonitrile and water (1:9, v/v). The chromatographic analysis was performed on an Acquity UPLC HSS T3 column (50 mmx 2. 1 mm, 1. 8 microm) by a gradient elution employing of acetonitrile and 0.05% (v/v) formic acid as mobile phases. The analytes were detected by electrospray ionization (ESI) tandem mass spectrometry with multiple reaction monitoring (MRM) in positive ion mode. Good linearities (r >0.99) were observed between 0. 01 and 0. 3 mg/L for all the compounds. The recoveries and relative standard deviations (RSDs) were obtained by spiking untreated samples with the eight defoliants at 0. 1, 0. 5 and 1.0 mg/kg. The average recoveries of the eight defoliants were from (84. 18 +/- 8.04)% to (95.99 +/- 6.76)%. The precision values expressed as RSDs were from 7. 04% to 10. 60% (n = 6). The limits of detection were 0. 8 - 29 microg/kg and the limits of quantification were 2.5 - 96 1/4g/kg for the analytes. The results ahowed that the method is simple, rapid, sensitive and accurate, and is suitable for the quantitative determination and confirmation of the eight defoliants in cotton. PMID:24164041

  4. [Determination of eight defoliant residues in cotton by accelerated solvent extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Wu, Gang; Dong, Suozhuai; Pan, Lulu; Zhao, Shanhong; Wang, Lijun; Guo, Fanglong; Li, Dan

    2013-07-01

    A novel method has been developed for the rapid extraction and determination of eight defoliants including thidiazuron, butiphos, methabenzthiazuron, abscisic acid, carfentra-zone-ethyl, diuron, paraquat, and pyrithiobac-sodium in cotton by accelerated solvent extraction (ASE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The defoliants in cotton were extracted by ASE and the extracts were dried by a rotavapor, then redissolved in the solvents of acetonitrile and water (1:9, v/v). The chromatographic analysis was performed on an Acquity UPLC HSS T3 column (50 mmx 2. 1 mm, 1. 8 microm) by a gradient elution employing of acetonitrile and 0.05% (v/v) formic acid as mobile phases. The analytes were detected by electrospray ionization (ESI) tandem mass spectrometry with multiple reaction monitoring (MRM) in positive ion mode. Good linearities (r >0.99) were observed between 0. 01 and 0. 3 mg/L for all the compounds. The recoveries and relative standard deviations (RSDs) were obtained by spiking untreated samples with the eight defoliants at 0. 1, 0. 5 and 1.0 mg/kg. The average recoveries of the eight defoliants were from (84. 18 +/- 8.04)% to (95.99 +/- 6.76)%. The precision values expressed as RSDs were from 7. 04% to 10. 60% (n = 6). The limits of detection were 0. 8 - 29 microg/kg and the limits of quantification were 2.5 - 96 1/4g/kg for the analytes. The results ahowed that the method is simple, rapid, sensitive and accurate, and is suitable for the quantitative determination and confirmation of the eight defoliants in cotton.

  5. Determination of CA-41, I-129 and OS-187 in the Rochester tandem accelerator and some applications of these isotopes

    NASA Technical Reports Server (NTRS)

    Fehn, U.; Elmore, D.; Gove, H. E.; Kubik, P.; Teng, R.; Tubbs, L.

    1986-01-01

    The measurement of Ca-41 and I-129 utilizing the Rochester Tanden Accelerator Mass Spectrometer (TAMS) is discussed. Ca-41, having a half-life of 100,000 yrs., is of potential use for the dating of ground water as well as of bones in the age range between 50,000 and 1 million yrs. A major problem for the measurement of Ca-41 with TAMS is the fact that calcium does not readily form negative atomic ions. It does, however, form negative molecular ions. The production of CaO ions from compounds such as CaO and CaCO3 and from free Ca molecules sprayed with oxygen gas was studied. A project to utilize I-129 as a tracer for hydrothermal convection in sediment-covered oceanic crust is also briefly described. Finally, plans to use the Os-187/Os-186 ratio for the determination of extraterrestrial material in the Ries crater in Germany are summarized.

  6. Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-02-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot. The repeatability was 5.2% and the internal reproducibility was 6.2%. Recovery was in the range 90-120%. No significant difference was observed between the results obtained by the present method and by a method using the same principle as the CEN-standard i.e. liquid-liquid extraction and post-column zinc reduction with fluorescence detection. Limit of quantification was estimated to 0.05 μg/100g fresh weight.

  7. Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-02-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot. The repeatability was 5.2% and the internal reproducibility was 6.2%. Recovery was in the range 90-120%. No significant difference was observed between the results obtained by the present method and by a method using the same principle as the CEN-standard i.e. liquid-liquid extraction and post-column zinc reduction with fluorescence detection. Limit of quantification was estimated to 0.05 μg/100g fresh weight. PMID:26304366

  8. Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction.

    PubMed

    Yu, Huan; Tao, Yanfei; Chen, Dongmei; Pan, Yuanhu; Liu, Zhenli; Wang, Yulian; Huang, Lingli; Dai, Menghong; Peng, Dapeng; Wang, Xu; Yuan, Zonghui

    2012-02-15

    A confirmatory and quantitative method based on a high performance liquid chromatography UV detector (HPLC-UV) and a liquid chromatography tandem mass spectrometry (LC-MS/MS) with an extraction procedure of accelerated solvent extraction (ASE) has been developed for simultaneous determination of 15 kinds of fluoroquinolones in various animal origin food samples. The sample preparation procedures consist of an extraction step with acetonitrile and a cleaning-up step with Oasis HLB cartridge. Parameters for extraction pressure and temperature, cycle of ASE, clean-up, and analysis procedure have been optimized systematically. The recoveries of FQNs spiked in the tissues as the muscle, liver, kidney of swine, bovine, chicken and fish at a concentration range of 10-800μg/kg were found between 70.6% and 111.1% with relative standard deviations (RSD) less than 15% in HPLC. The LOD and LOQ of the HPLC for the 15 FQNs were 3μg/kg and 10μg/kg, respectively, and those of the LC-MS/MS were 0.3 and 1μg/kg, respectively. These rapid and reliable methods can be used to efficiently separate, characterize and quantify the residues of 15 FQNs (Marbofloxacin, Enoxacin, Fleroxacin, Ofloxacin, Pefloxacin, Lomefloxacin, Danofloxacin, Enrofloxacin, Orbifloxacin, Cinoxacin, Gatifloxacin, Sarafloxacin, Difloxacin, Nalidixic Acid, Flumequine) in food of animal origin.

  9. On the high-resolution mass analysis of the product ions in tandem time-of-flight (TOF/TOF) mass spectrometers using a time-dependent re-acceleration technique.

    PubMed

    Kurnosenko, Sergey; Moskovets, Eugene

    2010-01-01

    The time-dependent reacceleration of product ions produced as a result of dissociation of a single precursor ion in a tandem time-of-flight mass spectrometer is considered for the first time. Analytical expressions for the shapes of electric pulses bringing all the kinetic energies of the product ions to the same value are derived for two cases: forward acceleration mode and deceleration, followed by re-acceleration in the reversed direction (reversed mode). Secondary time-of-flight focusing resulting from the re-acceleration in the reversed mode is shown to be mass-dependent and, when averaged over a wide mass range, the focusing is tight enough to provide mass resolution exceeding 10,000. After time-dependent re-acceleration, additional compression of the ion packet width leading to better mass resolution can be obtained by decelerating the ions in a constant field.

  10. Validation of an accelerated solvent extraction liquid chromatography-tandem mass spectrometry method for Pacific ciguatoxin-1 in fish flesh and comparison with the mouse neuroblastoma assay.

    PubMed

    Wu, Jia Jun; Mak, Yim Ling; Murphy, Margaret B; Lam, James C W; Chan, Wing Hei; Wang, Mingfu; Chan, Leo L; Lam, Paul K S

    2011-07-01

    Ciguatera fish poisoning (CFP) is a global foodborne illness caused by consumption of seafood containing ciguatoxins (CTXs) originating from dinoflagellates such as Gambierdiscus toxicus. P-CTX-1 has been suggested to be the most toxic CTX, causing ciguatera at 0.1 μg/kg in the flesh of carnivorous fish. CTXs are structurally complex and difficult to quantify, but there is a need for analytical methods for CFP toxins in coral reef fishes to protect human health. In this paper, we describe a sensitive and rapid extraction method using accelerated solvent extraction combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the detection and quantification of P-CTX-1 in fish flesh. By the use of a more sensitive MS system (5500 QTRAP), the validated method has a limit of quantification (LOQ) of 0.01 μg/kg, linearity correlation coefficients above 0.99 for both solvent- and matrix-based standard solutions as well as matrix spike recoveries ranging from 49% to 85% in 17 coral reef fish species. Compared with previous methods, this method has better overall recovery, extraction efficiency and LOQ. Fish flesh from 12 blue-spotted groupers (Cephalopholis argus) was assessed for the presence of CTXs using HPLC-MS/MS analysis and the commonly used mouse neuroblastoma assay, and the results of the two methods were strongly correlated. This method is capable of detecting low concentrations of P-CTX-1 in fish at levels that are relevant to human health, making it suitable for monitoring of suspected ciguateric fish both in the environment and in the marketplace. PMID:21505950

  11. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from

  12. Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Miyaji, Yoshihiro; Ishizuka, Tomoko; Kawai, Kenji; Hamabe, Yoshimi; Miyaoka, Teiji; Oh-hara, Toshinari; Ikeda, Toshihiko; Kurihara, Atsushi

    2009-01-01

    A technique utilizing simultaneous intravenous microdosing of (14)C-labeled drug with oral dosing of non-labeled drug for measurement of absolute bioavailability was evaluated using R-142086 in male dogs. Plasma concentrations of R-142086 were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and those of (14)C-R-142086 were measured by accelerator mass spectrometry (AMS). The absence of metabolites in the plasma and urine was confirmed by a single radioactive peak of the parent compound in the chromatogram after intravenous microdosing of (14)C-R-142086 (1.5 microg/kg). Although plasma concentrations of R-142086 determined by LC-MS/MS were approximately 20% higher than those of (14)C-R-142086 as determined by AMS, there was excellent correlation (r=0.994) between both concentrations after intravenous dosing of (14)C-R-142086 (0.3 mg/kg). The oral bioavailability of R-142086 at 1 mg/kg obtained by simultaneous intravenous microdosing of (14)C-R-142086 was 16.1%, this being slightly higher than the value (12.5%) obtained by separate intravenous dosing of R-142086 (0.3 mg/kg). In conclusion, on utilizing simultaneous intravenous microdosing of (14)C-labeled drug in conjunction with AMS analysis, absolute bioavailability could be approximately measured in dogs, but without total accuracy. Bioavailability in humans may possibly be approximately measured at an earlier stage and at a lower cost. PMID:19430168

  13. Linear Accelerator and Gamma Knife-Based Stereotactic Cranial Radiosurgery: Challenges and Successes of Existing Quality Assurance Guidelines and Paradigms

    SciTech Connect

    Goetsch, Steven J.

    2008-05-01

    Intracranial stereotactic radiosurgery has been practiced since 1951. The technique has expanded from a single dedicated unit in Stockholm in 1968 to hundreds of centers performing an estimated 100,000 Gamma Knife and linear accelerator cases in 2005. The radiation dosimetry of small photon fields used in this technique has been well explored in the past 15 years. Quality assurance recommendations have been promulgated in refereed reports and by several national and international professional societies since 1991. The field has survived several reported treatment errors and incidents, generally reacting by strengthening standards and precautions. An increasing number of computer-controlled and robotic-dedicated treatment units are expanding the field and putting patients at risk of unforeseen errors. Revisions and updates to previously published quality assurance documents, and especially to radiation dosimetry protocols, are now needed to ensure continued successful procedures that minimize the risk of serious errors.

  14. A critical shock mach number for particle acceleration in the absence of pre-existing cosmic rays: M=√5

    SciTech Connect

    Vink, Jacco

    2014-01-10

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M>√5. The reason is that for M≤√5 the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the unshocked medium, i.e., for low plasma beta, the resistivity of the magnetic field makes it even more difficult to fulfill the energetic requirements for the formation of shock with an accelerated particle precursor and associated compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a purely perpendicular magnetic field configuration with plasma beta β = 0, which gives a minimum Mach number of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays, indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks, and shocks in clusters of galaxies.

  15. Modern tandem control systems

    NASA Astrophysics Data System (ADS)

    Lutz, J. R.; Marsaudon, J. C.

    1993-04-01

    Nowadays, tandem electrostatic accelerators can benefit greatly from the growing possibilities provided by modern control facilities. Controlling an electrostatic accelerator first requires the solution of technological problems raised by the necessity of fitting inside the tank equipment which is highly stressed by the physical environment. Then, these controls can take advantage of new techniques which appear on the market. Present computer technology provides cheap powerful workstations for efficient operator interfacing, and new modular and distributed control concepts have been developed for general use in experimental physics, in data acquisition and in control systems. The general trend towards standardization is now accepted for both hardware and software and this brings benefits to the designer and the user.

  16. Detecting long tandem duplications in genomic sequences

    PubMed Central

    2012-01-01

    Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations. PMID:22568762

  17. [Determination of 19 antibiotic and 2 sulfonamide metabolite residues in wild fish muscle in mariculture areas of Laizhou Bay using accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Liu, Sisi; Du, Juan; Chen, Jingwen; Zhao, Hongxia

    2014-12-01

    A sample preparation and analytical method with accelerated solvent extraction (ASE) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/ MS) was developed to detect 19 antibiotic (9 sulfonamides, 4 quinolones, 3 macrolides and 3 others) and 2 sulfonamide metabolite residues in fish muscle. The target compounds were extracted using ASE and purified simultaneously by a C18 resin in the extraction cell. The extracts were evaporated to dryness, and redissolved with the initial mobile phase for HPLC-MS/MS analysis after freezing centrifugation (10,000 r/min, -4 °C) to remove the fat and other matrix compounds further. The separation of the analytes was carried out on an Xterra MS C18 column with methanol-acetonitrile (1:1, v/v) as mobile phase A and 0. 1% formic acid (containing 0. 1% ammonium formate) as mobile phase B. The spiked recoveries of the method were 55. 2%-113. 3%, with the relative standard deviations of 0. 1% - 17. 6% (n = 6). The limits of detection ranged from 0. 003 to 0. 6 ng/g. The method was applied to two fish (Synechogobius hasta and Liza haematocheilus) collected in mariculture areas of Laizhou Bay and six antibiotics were detected, in which the mass concentrations of norfloxacin were highest with mean values of 67. 01 and 27. 58 ng/g, respectively. The method is simple, rapid, highly sensitive, and useful in the study on exposure levels and environmental behavior of the antibiotics.

  18. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  19. A tandem-based compact dual-energy gamma generator

    SciTech Connect

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  20. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming. PMID:26932053

  1. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  2. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    NASA Astrophysics Data System (ADS)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  3. ORIC stripping foil positioner for tandem beam injection

    SciTech Connect

    Ludemann, C.A.; Lord, R.S.; Hudson, E.D.; Irwin, F.; Beckers, R.M.; Haynes, D.L.; Casstevens, B.J.; Mosko, S.W.

    1981-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) is used as an energy booster for heavy ions from a 25 MV tandem accelerator. This operation requires precise placement of a stripping foil in the cyclotron for capture of the injected ions into an acceleration orbit. The mechanical design and control of the foil positioning device are described.

  4. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  5. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  6. A new LabVIEW-based control system for the Naval Research Laboratory Trace Element Accelerator Mass Spectrometer

    SciTech Connect

    DeTurck, T. M.; Treacy, D. J. Jr.; Knies, D. L.; Grabowski, K. S.; Knoll, C.; Kennedy, C. A.; Hubler, G. K.

    1999-06-10

    A new LabVIEW-based control system for the existing tandem accelerator and new AMS components has been implemented at the Trace Element Accelerator Mass Spectrometry (TEAMS) facility at the Naval Research Laboratory. Through the use of Device Interfaces (DIs) distributed along a fiber optic network, virtually every component of the accelerator system can be controlled from any networked computer terminal as well as remotely via modem or the internet. This paper discusses the LabVIEW-based control software, including remote operation, automatic calculation of ion optical component parameters, beam optimization, and data logging and retrieval.

  7. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  8. Orthogonal tandem catalysis

    NASA Astrophysics Data System (ADS)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-06-01

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, with particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.

  9. The Impact of Genome Triplication on Tandem Gene Evolution in Brassica rapa.

    PubMed

    Fang, Lu; Cheng, Feng; Wu, Jian; Wang, Xiaowu

    2012-01-01

    Whole genome duplication (WGD) and tandem duplication (TD) are both important modes of gene expansion. However, how WGD influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT) and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata, and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751, and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata, and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the three species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit) in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole genome polyploidization event.

  10. The Impact of Genome Triplication on Tandem Gene Evolution in Brassica rapa

    PubMed Central

    Fang, Lu; Cheng, Feng; Wu, Jian; Wang, Xiaowu

    2012-01-01

    Whole genome duplication (WGD) and tandem duplication (TD) are both important modes of gene expansion. However, how WGD influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT) and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata, and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751, and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata, and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the three species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit) in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole genome polyploidization event. PMID:23226149

  11. Test of the Tandem transmission at low terminal voltages

    SciTech Connect

    Rehm, K.E.; Blumenthal, D.; Gehring, J.

    1995-08-01

    For a planned experiment with {sup 18}F beams at energies below 1 MeV/u the transmission of the Tandem-Linac system was investigated. The energies required in the experiment are typically around 600 keV/u, which for the most abundant charge states for F(4{sup +}) corresponds to terminal voltages between 2-3 MV. We studied the transmission from the source to the tandem accelerator and to the spectrograph in area II with {sup 18}O and {sup 19}F beams using two different approaches. In the first method only the tandem accelerator was used producing a 14-MeV DC {sup 18}O beam. In the second method a pulsed beam was accelerated to 33 MeV with the tandem accelerator followed by deceleration to 14 MeV with the first 9 resonators of ATLAS. The total transmission from ion source to target was in both cases about 10%. Because of the smaller complexity we used the first method for the {sup 18}F experiment. In future runs we are planning to use the electrostatic lens in the terminal of the tandem to improve the overall transmission.

  12. Tandem mirror thermal barrier experimental program plan

    SciTech Connect

    Coensgen, F.H.; Drake, R.P.; Simonen, T.C.

    1980-01-02

    This report describes an experimental plan for the development of the Tandem Mirror Thermal Barrier. Included is: (1) a description of thermal barrier related physics experiments; (2) thermal barrier related experiments in the existing TMX and Phaedrus experiments; (3) a thermal barrier TMX upgrade; and (4) initiation of investigations of axisymmetric magnetic geometry. Experimental studies of the first two items are presently underway. Results are expected from the TMX upgrade by the close of 1981 and from axisymmetric tandem mirror experiments at the end of 1983. Plans for Phaedrus upgrades are developing for the same period.

  13. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  14. Non-existence of isometry-invariant Hadamard states for a Kruskal black hole in a box and for massless fields on 1+1 Minkowski spacetime with a uniformly accelerating mirror

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Lupo, Umberto

    2016-11-01

    We conjecture that (when the notion of Hadamard state is suitably adapted to spacetimes with timelike boundaries) there is no isometry-invariant Hadamard state for the massive or massless covariant Klein–Gordon equation defined on the region of the Kruskal spacetime to the left of a surface of constant Schwarzschild radius in the right Schwarzschild wedge when Dirichlet boundary conditions are put on that surface. We also prove that, with a suitable definition for ‘boost-invariant Hadamard state’ (which we call ‘strongly boost-invariant globally Hadamard’) which takes into account both the existence of the timelike boundary and the special infra-red pathology of massless fields in 1+1 dimensions, there is no such state for the massless wave equation on the region of 1+1 Minkowski space to the left of an eternally uniformly accelerating mirror—with Dirichlet boundary conditions at the mirror. We argue that this result is significant because, as we point out, such a state does exist if there is also a symmetrically placed decelerating mirror in the left wedge (and the region to the left of this mirror is excluded from the spacetime). We expect a similar existence result to hold for Kruskal when there are symmetrically placed spherical boxes in both right and left Schwarzschild wedges. Our Kruskal no-go conjecture raises basic questions about the nature of the black holes in boxes considered in black hole thermodynamics. If true, it would lend further support to the conclusion of Kay (2015 Gen. Relativ. Gravit. 47 1–27) that the nearest thing to a description of a black hole in equilibrium in a box in terms of a classical spacetime with quantum fields propagating on it has, for the classical spacetime, the exterior Schwarzschild solution, with the classical spacetime picture breaking down near the horizon. Appendix B to the paper points out the existence of, and partially fills, a gap in the proofs of the theorems in Kay and Wald (1991 Phys. Rep. 207 49

  15. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  16. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  17. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  18. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  19. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  20. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  1. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  2. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  3. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  4. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  5. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  6. White tandem OLED with carbon nanotube interlayer

    NASA Astrophysics Data System (ADS)

    Papadimitratos, Alexios; Ovalle Robles, Raquel; Baughman, Ray; Zakhidov, Anvar

    2009-03-01

    White organic light emitting diodes (OLEDs) have become well recognized as an important candidate for future lighting and display applications. An existing idea to generate white color places R, G, B pixels in a side-by-side geometry. Also, white tandem OLEDs have been developed by vertically stacking in series multiple electroluminescent layers. However, such structures require a complex interfacial layer which is usually fabricated by strong dopants to form a p+/n+ interface. We have shown earlier that transparent carbon nanotubes (CNT) can be used as effective three dimensional charge injectors in polymer light emitting diodes[1] and OLEDs[2]. Now, we show that CNT can be used as an interlayer in two cell OLEDs with complimentary colors. We show that tandem devices with CNT interlayers, together with selective barriers and PEDOT:PSS coating can control the device color. In addition, the emission intensity can be controlled by independently tuning the driving voltage and current. In the case of overdoped p+/n+ interlayers we do not have this opportunity which is a great advantage of CNT injectors. We also compare the performance of multiwall CNTs vs. that of single wall CNTs in the tandem OLEDS. [1]R.H.Baughman et al.Science, 297,787-792(2002).[2]C.D.Williams et al.Appl. Phys. Lett. 93,183506(2008).

  7. Accelerator mass spectrometry of molecular ions

    NASA Astrophysics Data System (ADS)

    Golser, Robin; Gnaser, Hubert; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof; Wallner, Anton

    2005-10-01

    The use of tandem accelerators for accelerator mass spectrometry (AMS) allows to literally "analyze" molecules. When a molecular ion with mass M and charge Q is injected at the low-energy side, it is efficiently broken up into its atomic constituents during the stripping process in the terminal. At the high-energy side the positively charged atomic ions are again analyzed by their mass-to-charge ratio and by their energy in the detector (and eventually by their nuclear charge, too). We show the usefulness of the AMS method by identifying unambiguously the doubly-charged negative molecule (43Ca19F4)2- for the first time. It considerably eases the task that the total mass M = 119 is odd, so the di-anion is injected at the half-integer mass-to-charge ratio M/Q = 59.5, where no singly charged ions can interfere. The full power of AMS is needed when we try to proof the existence of di-anions with an integer M/Q, e.g. (23Na35Cl3)2-, whose stability is of interest for atomic physics theory.

  8. Present and future prospects of accelerator mass spectrometry

    SciTech Connect

    Kutschera, W.

    1987-04-01

    Accelerator Mass Spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10/sup -10/ to 10/sup -15/ relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10/sup 2/ to 10/sup 8/ years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and man-made (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotope are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, minerals exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS are discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  9. Magnetic alignment of the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Coleman, J.W.; Irby, J.H.; Olmstead, M.M.; Torti, R.P.

    1985-06-01

    Techniques developed for the alignment of high-energy accelerators have been applied to the alignment of the Tara tandem mirror magnetic confinement device. Tools used were: a transit/laser surveyor's system for establishing an invariant reference; optical scattering from ferromagnetic crystallites for establishing magnetic centers in the quadrupole anchor/transition modules; an electron-optical circle-generating wand for alignment of the solenoidal plug and central cell modules; and four differently configured electron emissive probes, including a 40-beam flux mapping e gun, for testing the alignment of the coils under vacuum. Procedures are outlined, and results are given which show that the magnetic axes of the individual coils in the Tara set have been made colinear with each other and with the reference to within +- 1.0 mm over the length of the machine between the anchor midplanes.

  10. A new control system for an old tandem

    SciTech Connect

    Jones, N.L.

    1996-11-01

    In an effort to maintain the most flexible environment for accelerator-based atomic physics research at ORNL EN Tandem facility, a recirculating terminal stripper project has been in development. In the early stages of planning for this upgrade, the necessity for monitoring and control of various parameters in the accelerator terminal was considered. To provide proper flexibility and accuracy, telemetry via computer seemed to be the obvious route. Since the development of a robust system not prone to upset from sparks was necessary, a phased development approach was taken. This involves first converting the accelerator`s ground potential systems, then ion source ({similar_to}100 kV) systems that can be easily accessed by merely running down high voltage supplies, and finally terminal potential systems operating in high pressure gas at potentials over 7 MV. Progress to date, including hardware arrangement and software development, is discussed.

  11. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  12. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  13. Determination of 129I using tandem accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Elmore, D.; Gove, H. E.; Ferraro, R.; Kilius, L. R.; Lee, H. W.; Chang, K. H.; Beukens, R. P.; Litherland, A. E.; Russo, C. J.; Purser, K. H.; Murrell, M. T.; Finkel, R. C.

    1980-07-01

    Iodine-129, with a half life of 15.7Myr (ref. 1), is one of the longest lived of the cosmogenic radionuclides. Although the primordial supply of 129I is now extinct, 129I is continuously being produced in the atmosphere primarily by cosmic ray reactions on xenon2, in the Earth primarily by spontaneous fission of 238U (ref. 3), and in meteorites and the Moon primarily by proton and neutron induced reactions on Te and Ba (ref. 4). The relatively large quantity of 129I introduced into the environment from the nuclear age may be useful as a tracer in groundwater hydrology5. Fissiogenic 129I in large granite formations (batholiths) could be used to establish the suitability of these sites for long term nuclear waste storage, because groundwater movement would carry away the more soluble iodides and disturb the equilibrium 129I/238U ratio. The concentration of 129I in meteorites can be combined with results for shorter-lived radionuclides to provide information on the constancy of the galactic cosmic ray flux over longer time scales than previously possible and also on the preterrestrial history of meteorites. We have applied the new atom counting technique to 129I analysis with a sensitivity (the minimum number of atoms in the sample required to obtain a quantitative result) of less than 107 atoms of 129I in a 1-mg sample. An AgI standard with a known 129I/127I ratio of 10-11 was determined to +/-10%, and the background contribution from a reagent grade AgI sample gave an upper limit to the ratio of about 3×10-13. We used a time-of-flight measurement to distinguish 129I from the stable 127I ions that were not separated by the mass analysis system. Our results for the meteorites Bruderheim and Dhajala represent the first direct (that is, not inferred6 from radiogenic Xe) determination of 129I in meteorites. A Xe molecular negative ion was discovered but we show that it is not a problem for 129I analysis.

  14. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  15. The Lawrence Livermore National Laboratory (LLNL) multi-user Tandem Laboratory

    SciTech Connect

    Davis, J.C.

    1988-09-01

    An FN tandem laboratory, cofounded by several Lawrence Livermore National Laboratory Divisions, Sandia Livermore, and the University of California Regents, is now operational at Livermore. The accelerator, formerly the University of Washington injector, has been upgraded with SF/sub 6/, Dowlish tubes, and a NEC pelletron charging system. A conventional duoplasmatron, a tritium source, and two Cs sputtering sources will be fielded on the accelerator. Pulsed beams will be available from two source positions. The laboratory has been designed to accommodate up to 19 experimental positions with excellent optics and working vacuum. The facility is unshielded with both accelerator and radiological systems under the control of a distributed microprocessor system. Research activities at the tandem include nuclear physics and astrophysics, materials science and characterization programs, and accelerator mass spectrometry for archaeology, biomedical, environmental and geoscience investigators. 3 refs., 1 fig.

  16. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  17. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  18. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  19. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  20. Plasmonic polymer tandem solar cell.

    PubMed

    Yang, Jun; You, Jingbi; Chen, Chun-Chao; Hsu, Wan-Ching; Tan, Hai-ren; Zhang, Xing Wang; Hong, Ziruo; Yang, Yang

    2011-08-23

    We demonstrated plasmonic effects in an inverted tandem polymer solar cell configuration by blending Au nanoparticles (NPs) into the interconnecting layer (ICL) that connects two subcells. Experimental results showed this plasmonic enhanced ICL improves both the top and bottom subcells' efficiency simultaneously by enhancing optical absorption. The presence of Au NPs did not cause electrical characteristics to degrade within the tandem cell. As a result, a 20% improvement of power conversion efficiency has been attained by the light concentration of Au NPs via plasmonic near-field enhancement. The simulated near-field distribution and experimental Raman scattering investigation support our results of plasmonic induced enhancement in solar cell performance. Our finding shows a great potential of incorporating the plasmonic effect with conventional device structure in achieving highly efficient polymer solar cells. PMID:21749062

  1. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  2. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  3. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  4. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  6. Development of an advanced spacecraft tandem mass spectrometer

    NASA Technical Reports Server (NTRS)

    Drew, Russell C.

    1992-01-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  7. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  8. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  9. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  10. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  11. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge... on the prior year's annual use. Tandem-switched transport transmission charges that are not presumed... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport...

  12. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge... on the prior year's annual use. Tandem-switched transport transmission charges that are not presumed... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport...

  13. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge... on the prior year's annual use. Tandem-switched transport transmission charges that are not presumed... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport...

  14. Bunching in time at the ATLAS (Argonne Tandem-Linac Accelerator System) accelerator

    SciTech Connect

    Pardo, R.

    1986-01-01

    The ability to manipulate the energy spread and time width of the beam from the ATLAS linac is an important feature used by the experimental program at Argonne. The time resolution which can be obtained on target has been shown to be less than 150 ps. for all beams through /sup 58/Ni. The fundamental ideas which apply to the bunching of heavy ion beams are described and the limitations and capabilities of the bunching system are discussed. A sequential guide for obtaining good timing on target is included.

  15. Improved monolithic tandem solar cell

    SciTech Connect

    Wanlass, M.W.

    1991-04-23

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  16. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  17. Detection of 36Cl with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiang, Songsheng; Ma, Tiejung; Jiang, Shan; Yang, Bingfan; Wang, Xun; Huang, Qi

    1989-12-01

    An accelerator mass spectrometry (AMS) system based on the HI-13 tandem accelerator at the Institute of Atomic Energy (IAE) is described, and the first detection of 36Cl with our AMS system is reported. The electrostatic deflector completely rejects isotopic background, 35Cl and 37Cl. The ioinzation chamber distinguishs 36Cl from isobaric background, 36S. The measurement of 36Cl with two samples is presented.

  18. Exploring Existence Value

    NASA Astrophysics Data System (ADS)

    Madariaga, Bruce; McConnell, Kenneth E.

    1987-05-01

    The notion that individuals value the preservation of water resources independent of their own use of these resources is discussed. Issues in defining this value, termed "existence value," are explored. Economic models are employed to assess the role of existence value in benefit-cost analysis. The motives underlying existence value are shown to matter to contingent valuation measurement of existence benefits. A stylized contingent valuation experiment is used to study nonusers' attitudes regarding projects to improve water quality in the Chesapeake Bay. Survey results indicate that altruism is one of the motives underlying existence value and that goods other than environmental and natural resources may provide existence benefits.

  19. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  20. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  1. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  2. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  3. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  4. Robotic tele-existence

    NASA Technical Reports Server (NTRS)

    Tachi, Susumu; Arai, Hirohiko; Maeda, Taro

    1989-01-01

    Tele-existence is an advanced type of teleoperation system that enables a human operator at the controls to perform remote manipulation tasks dexterously with the feeling that he or she exists in the remote anthropomorphic robot in the remote environment. The concept of a tele-existence is presented, the principle of the tele-existence display method is explained, some of the prototype systems are described, and its space application is discussed.

  5. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy

    PubMed Central

    Ruff, Karen M.

    2014-01-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform. PMID:25246650

  6. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  7. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  8. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  9. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  10. Mutational dynamics of short tandem repeats in human genome

    NASA Astrophysics Data System (ADS)

    Borstnik, B.; Pumpernik, D.

    2004-01-01

    The evolutionary dynamics of short tandem repeats of nucleotide sequences of the human genome is studied. It is shown that a model due to which the evolutionary repeat dynamics consists of elongations and shortenings of the repeats, combined with point mutations, is degenerate in the sense that an ambiguity exists regarding the role of point mutations and slippage asymmetry. By introducing a measure of the correlations between the positions of the repeats along the DNA sequences we were able to remove the degeneracy and to show that the slippage events which are the main factor in repeat evolution exhibit more frequent shortenings than elongations.

  11. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  12. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  13. Reutilizing Existing Library Space.

    ERIC Educational Resources Information Center

    Davis, Marlys Cresap

    1987-01-01

    This discussion of the reutilization of existing library space reviews the decision process and considerations for implementation. Two case studies of small public libraries which reassigned space to better use are provided, including floor plans. (1 reference) (MES)

  14. EM Structure Based and Vacuum Acceleration

    SciTech Connect

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  15. A tandem array of 5S ribosomal RNA genes in Pythium irregulare.

    PubMed

    Belkhiri, A; Intengan, H; Klassen, G R

    1997-02-28

    The 5S ribosomal RNA genes of the oomycete Pythium irregulare exist in tandem arrays unlinked to the rDNA repeat unit. A clone with a 9.2-kb insert containing an array of 5S genes was identified in a lambda genomic library and was characterized by restriction mapping and partial sequencing. The array consisted of 9 apparently identical 5S genes and their spacers in tandem, followed by a diverged 5S-like sequence that is likely to be a pseudogene. This gene arrangement, although almost universal in plants and animals, is rare in fungi and protists.

  16. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  17. Stenting for malignant ureteral obstruction: Tandem, metal or metal-mesh stents.

    PubMed

    Elsamra, Sammy E; Leavitt, David A; Motato, Hector A; Friedlander, Justin I; Siev, Michael; Keheila, Mohamed; Hoenig, David M; Smith, Arthur D; Okeke, Zeph

    2015-07-01

    Extrinsic malignant compression of the ureter is not uncommon, often refractory to decompression with conventional polymeric ureteral stents, and frequently associated with limited survival. Alternative options for decompression include tandem ureteral stents, metallic stents and metal-mesh stents, though the preferred method remains controversial. We reviewed and updated our outcomes with tandem ureteral stents for malignant ureteral obstruction, and carried out a PubMed search using the terms "malignant ureteral obstruction," "tandem ureteral stents," "ipsilateral ureteral stents," "metal ureteral stent," "resonance stent," "silhouette stent" and "metal mesh stent." A comprehensive review of the literature and summary of outcomes is provided. The majority of studies encountered were retrospective with small sample sizes. The evidence is most robust for metal stents, whereas only limited data exists for tandem or metal-mesh stents. Metal and metal-mesh stents are considerably more expensive than tandem stenting, but the potential for less frequent stent exchanges makes them possibly cost-effective over time. Urinary tract infections have been associated with all stent types. A wide range of failure rates has been published for all types of stents, limiting direct comparison. Metal and metal-mesh stents show a high incidence of stent colic, migration and encrustation, whereas tandem stents appear to produce symptoms equivalent to single stents. Comparison is difficult given the limited evidence and heterogeneity of patients with malignant ureteral obstruction. It is clear that prospective, randomized studies are necessary to effectively scrutinize conventional, tandem, metallic ureteral and metal-mesh stents for their use in malignant ureteral obstruction.

  18. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  19. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (ii) A non-distance-sensitive component shall be assessed for use of the circuit equipment at the ends... circuits used in the tandem to end office links (or a surrogate based on the proportion of copper and fiber... the relative number of DS1 and DS3 circuits used in the tandem to end office links (or a...

  20. Does Unconscious Racism Exist?

    ERIC Educational Resources Information Center

    Quillian, Lincoln

    2008-01-01

    This essay argues for the existence of a form of unconscious racism. Research on implicit prejudice provides good evidence that most persons have deeply held negative associations with minority groups that can lead to subtle discrimination without conscious awareness. The evidence for implicit attitudes is briefly reviewed. Criticisms of the…

  1. Understanding existing exposure situations.

    PubMed

    Lecomte, J-F

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 removed the distinction between practices and interventions, and introduced three types of exposure situation: existing, planned, and emergency. It also emphasised the optimisation principle in connection with individual dose restrictions for all controllable exposure situations. Existing exposure situations are those resulting from sources, natural or man-made, that already exist when a decision on control has to be taken. They have common features to be taken into account when implementing general recommendations, such as: the source may be difficult to control; all exposures cannot be anticipated; protective actions can only be implemented after characterisation of the exposure situation; time may be needed to reduce exposure below the reference level; levels of exposure are highly dependent on individual behaviour and present a wide spread of individual dose distribution; exposures at work may be adventitious and not considered as occupational exposure; there is generally no potential for accident; many stakeholders have to be involved; and many factors need to be considered. ICRP is currently developing a series of reports related to the practical implementation of Publication 103 to various existing exposure situations, including exposure from radon, exposure from cosmic radiation in aviation, exposure from processes using naturally occurring radioactive material, and exposure from contaminated sites due to past activities. PMID:26975365

  2. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia

    PubMed Central

    2012-01-01

    Background Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group tightly on the basis of existing gene marker systems, including Multiple Locus Sequence Typing (MLST). There is an urgent need for higher resolution fingerprinting markers of Wolbachia for studies of population genetics, horizontal transmission and experimental evolution. Results The genome of the wMel Wolbachia strain that infects Drosophila melanogaster contains inter- and intragenic tandem repeats that may evolve through expansion or contraction. We identified hypervariable regions in wMel, including intergenic Variable Number Tandem Repeats (VNTRs), and genes encoding ankyrin (ANK) repeat domains. We amplified these markers from 14 related Wolbachia strains belonging to supergroup A and were successful in differentiating size polymorphic alleles. Because of their tandemly repeated structure and length polymorphism, the markers can be used in a PCR-diagnostic multilocus typing approach, analogous to the Multiple Locus VNTR Analysis (MLVA) established for many other bacteria and organisms. The isolated markers are highly specific for supergroup A and not informative for other supergroups. However, in silico analysis of completed genomes from other supergroups revealed the presence of tandem repeats that are variable and could therefore be useful for typing target strains. Conclusions Wolbachia genomes contain inter- and intragenic tandem repeats that evolve through expansion or contraction. A selection of polymorphic tandem repeats is a novel and useful PCR diagnostic extension to the existing MLST typing system of Wolbachia, as it allows rapid and inexpensive high-throughput fingerprinting of closely related strains for

  3. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  4. Tandem repeats derived from centromeric retrotransposons

    PubMed Central

    2013-01-01

    Background Tandem repeats are ubiquitous and abundant in higher eukaryotic genomes and constitute, along with transposable elements, much of DNA underlying centromeres and other heterochromatic domains. In maize, centromeric satellite repeat (CentC) and centromeric retrotransposons (CR), a class of Ty3/gypsy retrotransposons, are enriched at centromeres. Some satellite repeats have homology to retrotransposons and several mechanisms have been proposed to explain the expansion, contraction as well as homogenization of tandem repeats. However, the origin and evolution of tandem repeat loci remain largely unknown. Results CRM1TR and CRM4TR are novel tandem repeats that we show to be entirely derived from CR elements belonging to two different subfamilies, CRM1 and CRM4. Although these tandem repeats clearly originated in at least two separate events, they are derived from similar regions of their respective parent element, namely the long terminal repeat (LTR) and untranslated region (UTR). The 5′ ends of the monomer repeat units of CRM1TR and CRM4TR map to different locations within their respective LTRs, while their 3′ ends map to the same relative position within a conserved region of their UTRs. Based on the insertion times of heterologous retrotransposons that have inserted into these tandem repeats, amplification of the repeats is estimated to have begun at least ~4 (CRM1TR) and ~1 (CRM4TR) million years ago. Distinct CRM1TR sequence variants occupy the two CRM1TR loci, indicating that there is little or no movement of repeats between loci, even though they are separated by only ~1.4 Mb. Conclusions The discovery of two novel retrotransposon derived tandem repeats supports the conclusions from earlier studies that retrotransposons can give rise to tandem repeats in eukaryotic genomes. Analysis of monomers from two different CRM1TR loci shows that gene conversion is the major cause of sequence variation. We propose that successive intrastrand deletions

  5. The combinatorics of tandem duplication trees.

    PubMed

    Gascuel, Olivier; Hendy, Michael D; Jean-Marie, Alain; McLachlan, Robert

    2003-02-01

    We developed a recurrence relation that counts the number of tandem duplication trees (either rooted or unrooted) that are consistent with a set of n tandemly repeated sequences generated under the standard unequal recombination (or crossover) model of tandem duplications. The number of rooted duplication trees is exactly twice the number of unrooted trees, which means that on average only two positions for a root on a duplication tree are possible. Using the recurrence, we tabulated these numbers for small values of n. We also developed an asymptotic formula that for large n provides estimates for these numbers. These numbers give a priori probabilities for phylogenies of the repeated sequences to be duplication trees. This work extends earlier studies where exhaustive counts of the numbers for small n were obtained. One application showed the significance of finding that most maximum-parsimony trees constructed from repeat sequences from human immunoglobins and T-cell receptors were tandem duplication trees. Those findings provided strong support to the proposed mechanisms of tandem gene duplication. The recurrence relation also suggests efficient algorithms to recognize duplication trees and to generate random duplication trees for simulation. We present a linear-time recognition algorithm.

  6. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  7. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Carnes, K. D.; Cocke, C. L.; Chang, Z.; Ben-Itzhak, I.; Needham, H. V.; Rankin, A.

    2007-08-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined.

  8. Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification.

    PubMed

    Chow, Eve W L; Morrow, Carl A; Djordjevic, Julianne T; Wood, Ian A; Fraser, James A

    2012-08-01

    The subtelomeric regions of organisms ranging from protists to fungi undergo a much higher rate of rearrangement than is observed in the rest of the genome. While characterizing these ~40-kb regions of the human fungal pathogen Cryptococcus neoformans, we have identified a recent gene amplification event near the right telomere of chromosome 3 that involves a gene encoding an arsenite efflux transporter (ARR3). The 3,177-bp amplicon exists in a tandem array of 2-15 copies and is present exclusively in strains with the C. neoformans var. grubii subclade VNI A5 MLST profile. Strains bearing the amplification display dramatically enhanced resistance to arsenite that correlates with the copy number of the repeat; the origin of increased resistance was verified as transport-related by functional complementation of an arsenite transporter mutant of Saccharomyces cerevisiae. Subsequent experimental evolution in the presence of increasing concentrations of arsenite yielded highly resistant strains with the ARR3 amplicon further amplified to over 50 copies, accounting for up to ~1% of the whole genome and making the copy number of this repeat as high as that seen for the ribosomal DNA. The example described here therefore represents a rare evolutionary intermediate-an array that is currently in a state of dynamic flux, in dramatic contrast to relatively common, static relics of past tandem duplications that are unable to further amplify due to nucleotide divergence. Beyond identifying and engineering fungal isolates that are highly resistant to arsenite and describing the first reported instance of microevolution via massive gene amplification in C. neoformans, these results suggest that adaptation through gene amplification may be an important mechanism that C. neoformans employs in response to environmental stresses, perhaps including those encountered during infection. More importantly, the ARR3 array will serve as an ideal model for further molecular genetic analyses of

  9. Titan and Enceladus mission (TANDEM)

    NASA Astrophysics Data System (ADS)

    Coustenis, A.

    2007-08-01

    Our understanding of Titan's atmosphere and surface has recently been enhanced by the data returned by the Cassini-Huygens mission. The Cassini orbiter will continue to be operational for about 3 more years during its extended mission. After this mission, any unanswered questions will forever remain unknown, unless we go back with an optimized orbital tour and advanced instrumentation. Considering the complementary nature of the geological, chemical and evolutionary history of Titan and Enceladus, we propose to carry out studies for a mission to perform an in situ exploration of these two objects in tandem. In our proposal we determine key science measurements, the types of samples that would be needed and the instrument suites for achieving the science goals. In particular, we develop conceptual designs for delivering the science payload, including orbiters, aerial platforms and probes, and define a launch/delivery/communication management architecture. This mission will require new technologies and capabilities so that the science goals can be achieved within the cost cap and acceptable risks. International participation will play a key role in achieving all the science goals of this mission. We will build this mission concept around a central core of single orbiter, a single Titan aerial probe and a core group of category 1 instruments. Aerobraking with Titan's atmosphere will be given serious consideration to minimize resource requirements and risk. This approach will allow a single orbiter to be used for both Enceladus science and Titan science with final orbit around Titan and later release of aerial probe(s) into Titan's atmosphere. The Titan aerial probe may be a Montgolfière balloon concept that will use the waster heat ~ 1000 watts from a single RTG power system. There will be a release of penetrator(s) on Enceladus also. This proposal addresses directly several of the scientific questions highlighted in the ESA Cosmic Vision 2015-2025 call, particularly

  10. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  11. High performance polymer tandem solar cell

    NASA Astrophysics Data System (ADS)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  12. High performance polymer tandem solar cell.

    PubMed

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  13. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  14. Existence of hyperbolic calorons

    PubMed Central

    Sibner, Lesley; Sibner, Robert; Yang, Yisong

    2015-01-01

    Recent work of Harland shows that the SO(3)-symmetric, dimensionally reduced, charge-N self-dual Yang–Mills calorons on the hyperbolic space H3×S1 may be obtained through constructing N-vortex solutions of an Abelian Higgs model as in the study of Witten on multiple instantons. In this paper, we establish the existence of such minimal action charge-N calorons by constructing arbitrarily prescribed N-vortex solutions of the Witten type equations. PMID:27547084

  15. Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics.

    PubMed

    Helm, Dominic; Vissers, Johannes P C; Hughes, Christopher J; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I; Kuster, Bernhard

    2014-12-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A.

  16. Topological rearrangements and local search method for tandem duplication trees.

    PubMed

    Bertrand, Denis; Gascuel, Olivier

    2005-01-01

    The problem of reconstructing the duplication history of a set of tandemly repeated sequences was first introduced by Fitch . Many recent studies deal with this problem, showing the validity of the unequal recombination model proposed by Fitch, describing numerous inference algorithms, and exploring the combinatorial properties of these new mathematical objects, which are duplication trees. In this paper, we deal with the topological rearrangement of these trees. Classical rearrangements used in phylogeny (NNI, SPR, TBR, ...) cannot be applied directly on duplication trees. We show that restricting the neighborhood defined by the SPR (Subtree Pruning and Regrafting) rearrangement to valid duplication trees, allows exploring the whole duplication tree space. We use these restricted rearrangements in a local search method which improves an initial tree via successive rearrangements. This method is applied to the optimization of parsimony and minimum evolution criteria. We show through simulations that this method improves all existing programs for both reconstructing the topology of the true tree and recovering its duplication events. We apply this approach to tandemly repeated human Zinc finger genes and observe that a much better duplication tree is obtained by our method than using any other program.

  17. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  18. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  19. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  20. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  1. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  2. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  3. Radiocarbon dating using electrostatic accelerators: negative ions provide the key.

    PubMed

    Bennett, C L; Beukens, R P; Clover, M R; Gove, H E; Liebert, R B; Litherland, A E; Purser, K H; Sondheim, W E

    1977-11-01

    Mass spectrometric methods have long been suggested as ways of measuring (14)C/(12)C ratios for carbon dating. One problem has been to distinguish between (14)N and (14)C. With negative ions and a tandem electrostatic accelerator, the (14)N background is virtually absent and fewer than three (14)C atoms in 10(16) atoms of (12)C have been easily measured.

  4. An MCNPX accelerator beam source

    SciTech Connect

    Durkee, Joe W.; Elson, Jay S.; Jason, Andrew; Johns, Russell C.; Waters, Laurie S.

    2009-06-04

    MCNPX is a powerful Monte Carlo code that can be used to conduct sophisticated radiation-transport simulations involving complex physics and geometry. Although MCNPX possesses a wide assortment of standardized modeling tools, there are instances in which a user's needs can eclipse existing code capabilities. Fortunately, although it may not be widely known, MCNPX can accommodate many customization needs. In this article, we demonstrate source-customization capability for a new SOURCE subroutine as part of our development to enable simulations involving accelerator beams for active-interrogation studies. Simulation results for a muon beam are presented to illustrate the new accelerator-source capability.

  5. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  6. Modelling of tandem cell temperature coefficients

    SciTech Connect

    Friedman, D.J.

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  7. Vortex interaction between two tandem flexible propulsors

    NASA Astrophysics Data System (ADS)

    Park, Sung Goon; Sung, Hyung Jin; Flow Control Laboratory Team

    2015-11-01

    Schooling behaviors of flying and swimming animals are widespread phenomena in nature. Inspired by schooling behaviors of swimming jellyfish, self-propelling flexible bodies with a paddling-based locomotion were modeled in a tandem configuration. The interactions between surrounding fluids and propulsors were considered by using the immersed boundary method. The hydrodynamic patterns generated by the interactions between tandem flexible propulsors were analyzed in the presen study. As a result of the flow-mediated interactions between them, stable configurations were formed spontaneously in which the gap distance between propulsors increased and decreased during the contraction and relaxation phases of the upstream propulsor. The stable configuration was not affected by the initial gap distance but influenced by the phase difference in the flapping frequency between them. Both tandem propulsors benefited from the tandem configuration in terms of the locomotion as compared with an isolated propulsor. This study was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP).

  8. Technology for large tandem mirror experiments

    SciTech Connect

    Thomassen, K.I.

    1980-09-04

    Construction of a large tandem mirror (MFTF-B) will soon begin at Lawrence Livermore National Laboratory (LLNL). Designed to reach break-even plasma conditions, the facility will significantly advance the physics and technology of magnetic-mirror-based fusion reactors. This paper describes the objectives and the design of the facility.

  9. Tandem mirror fusion-fission hybrid studies

    NASA Astrophysics Data System (ADS)

    Lee, J. D.

    1980-04-01

    The concept of combining nuclear fusion and nuclear fission techniques is discussed. Initial tandem mirror hybrid studies predict the ability to produce large amounts of fissile fuel (2 to 7 tons U233 per year from a 4000 MW plant) at a cost that adds less than 25% to the cost of power from a light water reactor.

  10. Tandem BRCT Domains: DNA's Praetorian Guard.

    PubMed

    Mesquita, Rafael D; Woods, Nicholas T; Seabra-Junior, Eloy S; Monteiro, Alvaro N A

    2010-11-01

    The cell's ability to sense and respond to specific stimuli is a complex system derived from precisely regulated protein-protein interactions. Some of these protein-protein interactions are mediated by the recognition of linear peptide motifs by protein modular domains. BRCT (BRCA1 C-terminal) domains and their linear motif counterparts, which contain phosphoserines, are one such pair-wise interaction system that seems to have evolved to serve as a surveillance system to monitor threats to the cell's genetic integrity. Evidence indicates that BRCT domains found in tandem can cooperate to provide sequence-specific binding of phosphorylated peptides as is the case for the breast and ovarian cancer susceptibility gene BRCA1 and the PAX transcription factor-interacting protein PAXIP1. Particular interest has been paid to tandem BRCT domains as "readers" of signaling events in the form of phosphorylated serine moieties induced by the activation of DNA damage response kinases ATM, ATR, and DNA-PK. However, given the diversity of tandem BRCT-containing proteins, questions remain as to the origin and evolution of this domain. Here, we discuss emerging views of the origin and evolving roles of tandem BRCT domain repeats in the DNA damage response.

  11. Tandem oligonucleotide synthesis using linker phosphoramidites

    PubMed Central

    Pon, Richard T.; Yu, Shuyuan

    2005-01-01

    Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated. PMID:15814811

  12. Incorporating Peer Assessment into Tandem Learning

    ERIC Educational Resources Information Center

    Morley, John; Truscott, Sandra

    2006-01-01

    A credit-rated tandem course unit has been running at the University of Manchester for the past six years and an element of peer assessment has always been present in the assessment procedure. Unfortunately, the course leaders found that this element was not entirely satisfactory. Although there were clear criteria in the course documentation for…

  13. Tandem mirror next step conceptual design

    SciTech Connect

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-10-14

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs.

  14. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    In the past decade, research on organic solar cells has gone through an important development stage leading to major enhancements in power conversion efficiency, from 4% to 9% in single-junction devices. During this period, there are many novel processing techniques and device designs that have been proposed and adapted in organic solar-cell devices. One well-known device architecture that helps maximize the solar cell efficiency is the multi-junction tandem solar-cell design. Given this design, multiple photoactive absorbers as subcells are stacked in a monolithic fashion and assembled via series connection into one complete device, known as the tandem solar cell. Since multiple absorbers with different optical energy bandgaps are being applied in one tandem solar-cell device, the corresponding solar cell efficiency is maximized through expanded absorption spectrum and reduced carrier thermalization loss. In Chapter 3, the architecture of solution-processible, visibly transparent solar cells is introduced. Unlike conventional organic solar-cell devices with opaque electrodes (such as silver, aluminum, gold and etc.), the semi-transparent solar cells rely on highly transparent electrodes and visibly transparent photoactive absorbers. Given these two criteria, we first demonstrated the visibly transparent single-junction solar cells via the polymer absorber with near-infrared absorption and the top electrode based on solution-processible silver nanowire conductor. The highest visible transparency (400 ˜ 700 nm) of 65% was achieved for the complete device structure. More importantly, power conversion efficiency of 4% was also demonstrated. In Chapter 4, we stacked two semi-transparent photoactive absorbers in the tandem architecture in order to realize the semi-transparent tandem solar cells. A noticeable performance improvement from 4% to 7% was observed. More importantly, we modified the interconnecting layers with the incorporation of a thin conjugated

  15. Cascaded proton acceleration by collisionless electrostatic shock

    NASA Astrophysics Data System (ADS)

    Xu, T. J.; Shen, B. F.; Zhang, X. M.; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-01

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  16. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  17. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    SciTech Connect

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab.

  18. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  19. The Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory

    SciTech Connect

    Roberts, M.L.; Heikkinen, D.W.; Southon, J.R.; Proctor, I.D.

    1996-10-01

    CAMS operates an HVEC FN tandem accelerator for use in both basic research and technology development. The accelerator is operated under a distributed computer control system with sophisticated auto-scaling, beam flat-topping, archiving, and recall capabilities, which makes possible rapid and precise switching between experimental configurations daily. Using the spectrometer, the AMS group can routinely measure the isotopes {sup 3}H, {sup 9}Be, {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I at abundances as low as 1 part in 10{sup 16}.

  20. Autophagic cell death exists

    PubMed Central

    Clarke, Peter G.H.; Puyal, Julien

    2012-01-01

    The term autophagic cell death (ACD) initially referred to cell death with greatly enhanced autophagy, but is increasingly used to imply a death-mediating role of autophagy, as shown by a protective effect of autophagy inhibition. In addition, many authors require that autophagic cell death must not involve apoptosis or necrosis. Adopting these new and restrictive criteria, and emphasizing their own failure to protect human osteosarcoma cells by autophagy inhibition, the authors of a recent Editor’s Corner article in this journal argued for the extreme rarity or nonexistence of autophagic cell death. We here maintain that, even with the more stringent recent criteria, autophagic cell death exists in several situations, some of which were ignored by the Editor’s Corner authors. We reject their additional criterion that the autophagy in ACD must be the agent of ultimate cell dismantlement. And we argue that rapidly dividing mammalian cells such as cancer cells are not the most likely situation for finding pure ACD. PMID:22652592

  1. In situ detection of tandem DNA repeat length

    SciTech Connect

    Yaar, R.; Szafranski, P.; Cantor, C.R.; Smith, C.L.

    1996-11-01

    A simple method for scoring short tandem DNA repeats is presented. An oligonucleotide target, containing tandem repeats embedded in a unique sequence, was hybridized to a set of complementary probes, containing tandem repeats of known lengths. Single-stranded loop structures formed on duplexes containing a mismatched (different) number of tandem repeats. No loop structure formed on duplexes containing a matched (identical) number of tandem repeats. The matched and mismatched loop structures were enzymatically distinguished and differentially labeled by treatment with S1 nuclease and the Klenow fragment of DNA polymerase. 7 refs., 4 figs.

  2. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  3. Superconducting magnet technology for accelerators

    SciTech Connect

    Palmer, R.; Tollestrup, A.V.

    1984-03-01

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed.

  4. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. Hadron accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  6. Plumes Do Not Exist

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.; Anderson, D. L.; Foulger, G. R.; Winterer, E. L.

    conjectures are made ever more complex and implausible to encompass contrary data, and have no predictive value. The inescapable conclusion is that deep-mantle thermal plumes not only are unneces- sary but that they do not exist.

  7. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    SciTech Connect

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  8. The Research on Optimization of Edge Drop Control for Cold Tandem Rolling Mill

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Min; Yue, Xiao-Xue

    2016-05-01

    The cold tandem rolling of metal strip presents a significant control challenge because of nonlinearities and process complexities. And reducing edge drop of cold rolling strips and meeting uniform thickness will be a new tough shape theories and technologies. In this paper, the existing edge drop control are analyzed and optimized. The simulation results and practical data show that the optimized control system can effectively control the edge drop.

  9. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  10. Convex accelerated maximum entropy reconstruction

    NASA Astrophysics Data System (ADS)

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.

  11. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  12. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  13. Semiclassical geons at particle accelerators

    SciTech Connect

    Olmo, Gonzalo J.

    2014-02-01

    We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.

  14. Accelerator Availability and Reliability Issues

    SciTech Connect

    Steve Suhring

    2003-05-01

    Maintaining reliable machine operations for existing machines as well as planning for future machines' operability present significant challenges to those responsible for system performance and improvement. Changes to machine requirements and beam specifications often reduce overall machine availability in an effort to meet user needs. Accelerator reliability issues from around the world will be presented, followed by a discussion of the major factors influencing machine availability.

  15. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R.T.; Buksa, J.; Houts, M.

    1994-09-01

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  16. DDES and IDDES of tandem cylinders.

    SciTech Connect

    Balakrishnan, R.; Garbaruk, A.; Shur, M.; Strelets, M.; Spalart, P.; New Technologies and Services - Russia; St.-Peterburg State Polytechnic Univ.; Boeing Commercial Airplanes

    2010-09-09

    The paper presents an overview of the authors contribution to the BANC-I Workshop on the flow past tandem cylinders (Category 2). It includes an outline of the simulation approaches, numerics, and grid used, the major results of the simulations, their comparison with available experimental data, and some preliminary conclusions. The effect of varying the spanwise period in the simulations is strong for some quantities, and not others.

  17. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  18. Cold Climate Heat Pumps Using Tandem Compressors

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith; Baxter, Van D

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  19. Electron irradiation of tandem junction solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.; Scott-Monck, J. A.

    1979-01-01

    The electrical behavior of 100 micron thick tandem junction solar cells manufactured by Texas Instruments was studied as a function of 1 MeV electron fluence, photon irradiation, and 60 C annealing. These cells are found to degrade rapidly with radiation, the most serious loss occurring in the blue end of the cell's spectral response. No photon degradation was found to occur, but the cells did anneal a small amount at 60 C.

  20. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  1. Expression of tandem gene duplicates is often greater than twofold

    PubMed Central

    Loehlin, David W.; Carroll, Sean B.

    2016-01-01

    Tandem gene duplication is an important mutational process in evolutionary adaptation and human disease. Hypothetically, two tandem gene copies should produce twice the output of a single gene, but this expectation has not been rigorously investigated. Here, we show that tandem duplication often results in more than double the gene activity. A naturally occurring tandem duplication of the Alcohol dehydrogenase (Adh) gene exhibits 2.6-fold greater expression than the single-copy gene in transgenic Drosophila. This tandem duplication also exhibits greater activity than two copies of the gene in trans, demonstrating that it is the tandem arrangement and not copy number that is the cause of overactivity. We also show that tandem duplication of an unrelated synthetic reporter gene is overactive (2.3- to 5.1-fold) at all sites in the genome that we tested, suggesting that overactivity could be a general property of tandem gene duplicates. Overactivity occurs at the level of RNA transcription, and therefore tandem duplicate overactivity appears to be a previously unidentified form of position effect. The increment of surplus gene expression observed is comparable to many regulatory mutations fixed in nature and, if typical of other genomes, would shape the fate of tandem duplicates in evolution. PMID:27162370

  2. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  3. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies. PMID:26878670

  4. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  5. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  6. Organic Light-Emitting Devices with Tandem Structure.

    PubMed

    Chiba, Takayuki; Pu, Yong-Jin; Kido, Junji

    2016-06-01

    Tandem organic light-emitting devices (OLEDs) have attracted considerable attention for solid-state lighting and flat panel displays because their tandem architecture enables high efficiency and long operational lifetime simultaneously. In the tandem OLED structure, plural light-emitting units (LEUs) are stacked in series through a charge generation layer (CGL) and an electron injection layer (EIL). In this chapter, we focus on the key features of tandem OLEDs for high efficiency and long operational lifetimes. We also demonstrate the effect of the CGL comprising a Lewis acid, an n-type semiconductor metal oxide, and an organic electron-accepting material. We discuss the two types of EILs in tandem OLEDs: alkali metals containing n-type compounds and ultra-thin metals. Finally, we focus on the recent progress of the state-of-the-art solution-processed tandem OLEDs. PMID:27573273

  7. [Tandem repeats in rodents genome and their mapping].

    PubMed

    Ostromyshenskii, D I; Kuznetsova, L S; Komissarov, A S; Kartavtseva, I V; Podgornaya, L

    2015-01-01

    Tandemly-repeated sequences represent a unique class of eukaryotic DNA. Their content in the genome of higher eukaryotes mounts to tens of percents. However, the evolution of this class of sequences is poorly-studied. In our paper, 62 families of Mus musculus tandem repeats are analyzed by bioinformatic methods, and 7 of them are analyzed by fluorescence in situ hybridization. It is shown that the same tandem repeat sets co-occure only in closely related species of mice. But even in such species we observe differences in localization on the chromosomes and the number of individual tandem repeats. With increasing evolutionary distance only some of the tandem repeat families remain common for different species. It is shown, that the use of a combination of bioinformatics and molecular biology techniques is very perspective for further studies of the evolution of tandem repeats.

  8. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  9. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  10. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  11. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  12. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  13. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition.

    PubMed

    Freeling, Michael

    2009-01-01

    Each mode of gene duplication (tandem, tetraploid, segmental, transpositional) retains genes in a biased manner. A reciprocal relationship exists between plant genes retained postpaleotetraploidy versus genes retained after an ancient tandem duplication. Among the models (C, neofunctionalization, balanced gene drive) and ideas that might explain this relationship, only balanced gene drive predicts reciprocity. The gene balance hypothesis explains that more "connected" genes--by protein-protein interactions in a heteromer, for example--are less likely to be retained as a tandem or transposed duplicate and are more likely to be retained postpaleotetraploidy; otherwise, selectively negative dosage effects are created. Biased duplicate retention is an instant and neutral by-product, a spandrel, of purifying selection. Balanced gene drive expanded plant gene families, including those encoding proteasomal proteins, protein kinases, motors, and transcription factors, with each paleotetraploidy, which could explain trends involving complexity. Balanced gene drive is a saltation mechanism in the mutationist tradition.

  14. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  15. Lasers and new methods of particle acceleration

    SciTech Connect

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements.

  16. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  17. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  18. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  19. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  20. Locating tandem repeats in weighted sequences in proteins.

    PubMed

    Zhang, Hui; Guo, Qing; Iliopoulos, Costas S

    2013-01-01

    A weighted biological sequence is a string in which a set of characters may appear at each position with respective probabilities of occurrence. We attempt to locate all the tandem repeats in a weighted sequence. A repeated substring is called a tandem repeat if each occurrence of the substring is directly adjacent to each other. By introducing the idea of equivalence classes in weighted sequences, we identify the tandem repeats of every possible length using an iterative partitioning technique. We also present the algorithm for recording the tandem repeats, and prove that the problem can be solved in O(n²) time. PMID:23815711

  1. Rindler effect for a nonuniformly accelerating observer

    SciTech Connect

    Zhu Jian-yang; Bao Aidong; Zhao Zheng

    1995-10-01

    Both the Klein-Gordon equation and the Dirac equation are dealt with in the generalized Rindler space-time of a nonuniformly accelerating observer. Making use of a new method and introducing a tortoise-type coordinate transformation, it is proved that there exist an event horizon and thermal radiation depending on time in the space-time. The Hawking-Unruh temperature is proportional to the variable acceleration.

  2. Radition safety systems at Brookhaven National Laboratory's low-energy accelerators

    SciTech Connect

    Flood, Jr, C W

    1982-01-01

    Brookhaven National Laboratory has several low-energy accelerators in use at the present time. I intend to discuss the radiation safety systems installed at five of these accelerators. The accelerators included are a Dynamitron, 3.5 MeV Van de Graaff, 60'' Cyclotron, 41'' Cyclotron and Tandem Van de Graaff facility. All of these accelerators are capable of producing radiation levels in excess of 100 rem/h and the radiation safety systems are designed to prevent personnel from being exposed to high levels of radiation. For the purposes of this talk I would like to place the accelerators in two different categories. In the first category are the accelerators which have safety systems that prevent operation unless the radiation facilities are completely enclosed and interlocked, thus preventing any personnel access. Included are the Dynamitron, the 60'' Cyclotron, and the 41'' Cyclotron. In the second category are the accelerators with safety systems which allow access to any part of the accelerator facility when the radiation levels are low, but require complete personnel restrictions when the radiation levels are high. Included are the 3.5 MeV Van de Graaff and the Tandem Van de Graaff.

  3. Accelerating, hyperaccelerating, and decelerating networks

    NASA Astrophysics Data System (ADS)

    Gagen, M. J.; Mattick, J. S.

    2005-07-01

    Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits.

  4. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  5. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  6. Regimes of flow induced vibration for tandem, tethered cylinders

    NASA Astrophysics Data System (ADS)

    Nave, Gary; Stremler, Mark

    2015-11-01

    In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.

  7. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells.

    PubMed

    Schneider, Bennett W; Lal, Niraj N; Baker-Finch, Simeon; White, Thomas P

    2014-10-20

    Perovskite-on-silicon tandem solar cells show potential to reach > 30% conversion efficiency, but require careful optical control. We introduce here an effective light-management scheme based on the established pyramidal texturing of crystalline silicon cells. Calculations show that conformal deposition of a thin film perovskite solar cell directly onto the textured front surface of a high efficiency silicon cell can yield front surface reflection losses as low as 0.52mA/cm(2). Combining this with a wavelength-selective intermediate reflector between the cells additionally provides effective light-trapping in the high-bandgap top cell, resulting in calculated absolute efficiency gains of 2 - 4%. This approach provides a practical and effective method to adapt existing high efficiency silicon cell designs for use in tandem cells, with conversion efficiencies approaching 35%.

  8. One-way sequencing of multiple amplicons from tandem repetitive mitochondrial DNA control region.

    PubMed

    Xu, Jiawu; Fonseca, Dina M

    2011-10-01

    Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.

  9. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  10. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... switching facilities. (iii) A flat-rated charge for transport of traffic over dedicated transport facilities... defined in § 61.3(x) of this chapter shall then make downward exogenous adjustments to the service band... corresponding upward adjustments to the service band index for the tandem-switched transport service...

  11. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  12. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  13. A Hybrid Approach To Tandem Cylinder Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  14. Method of fabricating bifacial tandem solar cells

    SciTech Connect

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  15. Flute waves in a tandem mirror

    SciTech Connect

    Mikhailovskaya, L.V.

    1984-03-01

    Stability conditions are derived for flute waves in a short tandem mirror stabilized by end cells with a min B. The frequency spectrum of the flute waves is analyzed. Those conditions under which the resonant excitation of waves by ions and electrons must be taken into account are found. When end cells without a min B are added to a central mirror system, the system becomes destabilized as the result of resonant excitation of waves at a frequency near the precession frequency of ions having a finite energy distribution.

  16. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  17. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  18. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  19. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors.

  20. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  1. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. PMID:24345525

  2. Progress in the tandem mirror program

    SciTech Connect

    Fowler, T.K.; Borchers, R.R.

    1981-09-13

    Experimental results in TMX have confirmed the basic principles of the tandem-mirror concept. A center-cell particle confinement parameter eta tau approx. 10/sup 11/ cm/sup -3/ s has been obtained at ion temperatures around 100 eV, which is a hundred-fold improvement over single mirrors at the same temperatures. For TMX these results have been obtained at peak beta values in the center cell in the range 10 to 40%, not yet limited by MHD activity; and ion-cyclotron resonant heating (ICRH) in the Phaedrus tandem-mirror experiment has produced beta values approx. 25%, which is several times the ideal MHD limit for that device. In addition, it has been demonstrated that the end fan chambers of TMX simultaneously isolate the hot electrons from the end walls, provide adequate pumping and conveniently dispose of the exhaust plasma energy either by thermal deposition on the end wall or by direct conversion to electricity (at 48% efficiency in agreement with calculations). Also, evidence was obtained for inherent divertor action in TMX, presumably in part responsible for the observed low impurity level (<0.5% low-Z ions in the center cell).

  3. Theoretical studies in tandem mirror physics

    SciTech Connect

    Cohen, R.H.; Auerbach, S.P.; Baldwin, D.E.; Byers, J.A.; Chen, Y.J.; Cohen, B.I.; Freis, R.P.; Gilmore, J.M.; Hammer, J.H.; Kaiser, T.B.

    1984-07-17

    Recent developments in six areas of tandem-mirror theory are explored. Specifically, FLR terms (including electric-field drift) have been added to our 3-D paraxial MHD equilibrium code. Our low-frequency MHD stability analysis with FLR, which previously included only m/sub theta/ = 1 rigid perturbations, has been extended to incorporate moderate m/sub theta/, rotational drive, finite-beta effects on wall stabilization, and the well-digging effect of energetic electrons by using three computational techniques. In addition, we have examined the microstability of relativistic electrons with a loss-cone distribution, emphasizing the whistler and cyclotron-maser instabilities. We have also studied techniques for controlling radial transport, including the floating of segmented end plates and the tuning of transition-region coils, and have quantified the residual transport in a tandem mirror with axisymmetric throttle coils. Earlier work on the effect of ECRH on potentials in thermal-barrier cells has been extended. The transition between the weak- and strong-heating regimes has been examined using Fokker-Planck and Monte Carlo codes; an analytic model for the potentials relative to the end wall has been developed. Finally, our investigation of drift-frequency pumping of thermal-barrier ions has demonstrated that pumping is optimized when the magnetic fluctuation is perpendicular to both the unperturbed field and the thin fan, and that an adequate pumping rate is obtainable in future machines.

  4. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  5. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  6. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  7. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  8. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  9. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  10. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  11. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  12. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  13. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Use of tandem parachute systems. 105.45... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES PARACHUTE OPERATIONS Parachute Equipment and Packing § 105.45 Use of tandem parachute systems. (a) No person may conduct a parachute operation using a...

  14. Form-Focused Interaction in Online Tandem Learning

    ERIC Educational Resources Information Center

    O'Rourke, Breffni

    2005-01-01

    Tandem language learning--a configuration involving pairs of learners with complementary target/native languages--is an underexploited but potentially very powerful use of computer-mediated communication (CMC) in second-language pedagogy. Tandem offers the benefits of authentic, culturally grounded interaction, while also promoting a pedagogical…

  15. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  16. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  17. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  18. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  19. The physiological effects of cycling on tandem and single bicycles

    PubMed Central

    Seifert, J; Bacharach, D; Burke, E; Langenfeld, M; Snyder, A

    2003-01-01

    Objective: The purpose of this field study was to compare the physiological responses from cycling on a tandem road bicycle to those from cycling on a single road bicycle. Methods: Nine pairs of experienced, recreational tandem cyclists rode a tandem or their single bicycle for 5 min at each velocity of 19.3, 22.5, 25.8, and 29.0 kph on a flat, paved surface. Heart rate (HR), rating of perceived exertion (RPE), and lactic acid (LA) data were collected after each interval. Results: Riding a tandem resulted in lower HR, RPE, and LA mean values across the four velocities compared to the single bicycle. Mean (SD) HR, RPE, and LA for tandem and single bicycles were 126 (20.7) v 142 (20.1) bpm, 10.1 (1.7) v 11.3 (2.6), and 1.46 (1.0) mM/L v 2.36 (1.7) mM/L, respectively. No position differences were observed between the captain and stoker (front and rear positions) when both were on the tandem. Stokers had significantly lower HR, LA, and RPE values when they rode a tandem compared to a single bicycle. No statistical differences were observed between bicycles for the captains. When on the single bicycle, captains exhibited significantly lower HR, RPE, and LA values than stokers. Conclusion: Cycling on a tandem resulted in lower physiological stress than when cycling at the same velocity on a single bicycle. Cyclists were able to ride from 4.8–8.0 kph faster on a tandem than on a single bicycle at similar physiological stress. Apparently, stokers can add to power output on a tandem without adding significantly to wind resistance. PMID:12547743

  20. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  1. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  2. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  3. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  4. Electronic Tandem Language Learning (eTandem): A Third Approach to Second Language Learning for the 21st Century

    ERIC Educational Resources Information Center

    Cziko, Gary A.

    2004-01-01

    Tandem language learning occurs when two learners of different native languages work together to help each other learn the other language. First used in face-to-face contexts, Tandem is now increasingly being used by language-learning partners located in different countries who are linked via various forms of electronic communication, a context…

  5. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  6. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  7. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  8. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  9. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  10. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  11. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R F; Fowler, T K; Bulmer, R; Byers, J; Hua, D; Tung, L

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K

  12. Crystal structure of the three tandem FF domains of the transcription elongation regulator CA150.

    PubMed

    Lu, Ming; Yang, Jun; Ren, Zhiyong; Sabui, Subir; Espejo, Alexsandra; Bedford, Mark T; Jacobson, Raymond H; Jeruzalmi, David; McMurray, John S; Chen, Xiaomin

    2009-10-23

    FF domains are small protein-protein interaction modules that have two flanking conserved phenylalanine residues. They are present in proteins involved in transcription, RNA splicing, and signal transduction, and often exist in tandem arrays. Although several individual FF domain structures have been determined by NMR, the tandem nature of most FF domains has not been revealed. Here we report the 2.7-A-resolution crystal structure of the first three FF domains of the human transcription elongation factor CA150. Each FF domain is composed of three alpha-helices and a 3(10) helix between alpha-helix 2 and alpha-helix 3. The most striking feature of the structure is that an FF domain is connected to the next by an alpha-helix that continues from helix 3 to helix 1 of the next. The consequent elongated arrangement allows exposure of many charged residues within the region that can be engaged in interaction with other molecules. Binding studies using a peptide ligand suggest that a specific conformation of the FF domains might be required to achieve higher-affinity binding. Additionally, we explore potential DNA binding of the FF construct used in this study. Overall, we provide the first crystal structure of an FF domain and insights into the tandem nature of the FF domains and suggest that, in addition to protein binding, FF domains might be involved in DNA binding.

  13. Negative deuterium ions for tandem mirror next step and tandem mirror reactors

    SciTech Connect

    Hamilton, G.W.

    1980-09-25

    Recent designs for mirror fusion reactors with good power balance include ambipolar potential plugs to reduce end losses and thermal barriers to maintain a difference in electron temperature between the large-volume central cell plasma and the confining end plugs. These designs led to several new requirements for D/sup 0/ neutral beams derived from negative ions at energies of 150 to 200 keV and possibly higher. Such beams are required for injection of fat ions into the plugs and the barrier and for charge-exchange pumping of thermal ions diffusing into the barrier. Negative ions are preferred for these purposes because of their relatively high efficiency of neutralization and their high purity of single-energy D/sup -/. Examples of injector designs for Tandem Mirror Next Step (TMNS) and Tandem Mirror Reactors (TMR) are presented.

  14. TMX-U (Tandem Mirror Experiment-Upgrade) tandem-mirror thermal-barrier experiments

    SciTech Connect

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.; Barter, J.D.; Berzins, L.V.; Carter, M.R.; Casper, T.A.; Clauser, J.F.; Coensgen, F.H.; Correll, D.L.

    1986-10-29

    Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established.

  15. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  16. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  17. Tandem mass spectrometry of low solubility polyamides.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Afonso, Carlos; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-01-15

    The structural characterization of polyamides (PA) was achieved by tandem mass spectrometry (MS/MS) with a laser induced dissociation (LID) strategy. Because of interferences for precursor ions selection, two chemical modifications of the polymer end groups were proposed as derivatization strategies. The first approach, based on the addition of a trifluoroacetic acid (TFA) molecule, yields principally to complementary bn and yn product ions. This fragmentation types, analogous to those obtained with peptides or other PA, give only poor characterization of polymer end-groups [1]. A second approach, based on the addition of a basic diethylamine (DEA), permits to fix the charge and favorably direct the fragmentation. In this case, bn ions were not observed. The full characterization of ω end group structure was obtained, in addition to the expected yn and consecutive fragment ions. PMID:24370089

  18. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  19. Tandem mass spectrometry of low solubility polyamides.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Afonso, Carlos; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-01-15

    The structural characterization of polyamides (PA) was achieved by tandem mass spectrometry (MS/MS) with a laser induced dissociation (LID) strategy. Because of interferences for precursor ions selection, two chemical modifications of the polymer end groups were proposed as derivatization strategies. The first approach, based on the addition of a trifluoroacetic acid (TFA) molecule, yields principally to complementary bn and yn product ions. This fragmentation types, analogous to those obtained with peptides or other PA, give only poor characterization of polymer end-groups [1]. A second approach, based on the addition of a basic diethylamine (DEA), permits to fix the charge and favorably direct the fragmentation. In this case, bn ions were not observed. The full characterization of ω end group structure was obtained, in addition to the expected yn and consecutive fragment ions.

  20. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  1. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  2. Accelerated cleanup Initiatives Putting the Acceleration Plans into Action

    SciTech Connect

    TYREE, G.T.

    2003-01-01

    This paper describes project successes during the last year and presents strategies for accomplishing work required to accelerate waste retrieval, treatment and closure of 177 large underground waste tanks at the Hanford Site. The tanks contain approximately 53 million gallons of liquid, sludge, and solid waste resulting from decades of national defense production. The Hanford Site is a 560 square-mile area in southeastern Washington State. One of the nation's largest rivers, the Columbia River, flows through the site and within seven miles of the waste tanks. The US. Department of Energy (DOE) Office of River Protection and CH2M HILL Hanford Group, Inc. (CH2M HILL) drew upon the recommendations in the DOE's Top-To-Bottom Review and the ideas that emerged from the Cleanup Challenges and Constraints Team (C3T) when creating new initiatives last fall in accelerated tank cleanup. The initiatives reflect discussions and planning during the last year by the DOE, regulatory,agencies, Hanford stakeholders, and CH2M HILL on how to accelerate tank cleanup and closure. The initiatives focus on near-term risk reduction, deployment of proven cleanup technologies, and completing the feed delivery and waste storage systems needed to support Hanford's Waste Treatment Plant. Working with the Office of River Protection, CH2M HILL is changing the way it does business to align with the new focus on accelerated tank cleanup initiatives. A key concept of this new approach is to deploy simple, proven technologies whenever possible to accomplish program goals. Finding existing technologies and evaluating whether they can be applied to or adapted to Hanford tank cleanup provide the best chance for success in achieving treatment of all of Hanford's tank waste by 2028.

  3. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  4. Rational design of α-helical tandem repeat proteins with closed architectures.

    PubMed

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L; Bradley, Philip

    2015-12-24

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed α-solenoid repeat structures (α-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed α-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database.

  5. Tandem mass spectrometry studies of metallofullerenes

    SciTech Connect

    Callahan, J.H.; Nelson, H.; McElvany, S.W.; Ross, M.M.

    1993-12-31

    As interest in the chemistry of fullerenes grows, many laboratories are now directing their efforts toward the synthesis of fullerene derivatives such as metallofullerenes (endohedral complexes). Tandem mass spectrometry has proven useful in the characterization of such derivatives. In tandem mass spectrometry, ions of interest are selected with one mass analyzer, collided or reacted with a gas, and the products of the reaction are subsequently analyzed with an additional stage of mass analysis. The authors have used low- and high-energy collisions with reactive and inert target gas molecules to probe the structures, properties and reactivities of endohedral metallofullerene complexes. These studies have shown that metallofullerenes have properties similar to those of fullerenes, including the ability to take up He during keV collisions, forming complexes such as La{sub 2}He@C{sub 80} These studies indicate that the metal is not on the outside of the cage, although the formation of La{sub 2}He@C{sub 80} suggests that one of the metal atoms may be incorporated as part of the cage. Fragmentation processes in the metallofullerenes are similar to those of the fullerenes (e.g. successive C{sub 2} loss), lending further support for the proposed endohedral structure of the fullerenes. The behavior of the metallofullerenes in reactive collisions with oxygen has also been studied, indicating that their reactivities are similar to those of the fullerenes. Fourier transform spectroscopy studies are currently underway to further probe the reactivities, ionization energies and gas phase proton affinities of the metallofullerenes.

  6. Self-accelerating Warped Braneworlds

    SciTech Connect

    Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.

  7. Self-accelerating warped braneworlds

    SciTech Connect

    Carena, Marcela; Lykken, Joseph; Santiago, Jose; Park, Minjoon

    2007-01-15

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze, and Porrati (DGP) demonstrated the existence of a 'self-accelerating' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension, respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.

  8. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  9. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  10. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  12. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (5/5)

    SciTech Connect

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Accelerators (4/5)

    SciTech Connect

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators (3/5)

    SciTech Connect

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  17. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  18. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  19. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  20. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  1. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  2. Accelerating DSMC data extraction.

    SciTech Connect

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  3. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  4. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  5. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  6. Excimer Emission from Pulsed Tandem Microhollow Cathode Discharges in Xenon

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Iberler, Marcus; Teske, Christian; Jacoby, Joachim; Frank, Klaus

    2012-05-01

    This paper describes an extension of a basic single microhollow cathode discharge (MHCD) to a tandem MHCD, i.e., two discharges in series from an anode-cathode-anode configuration. When a high-voltage pulse is superimposed with a direct current (DC) tandem MHCD, an intense excimer emission along the discharge axis in a high pressure xenon gas is generated which is two orders of magnitude higher than that of the DC tandem MHCD. In addition, the emission intensity increases to almost twice by increasing cathode thickness from 250 to 1000 µm. The emission is further enhanced by increasing the gas pressure from 400 to 800 mbar.

  7. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  8. TAPO: A combined method for the identification of tandem repeats in protein structures.

    PubMed

    Do Viet, Phuong; Roche, Daniel B; Kajava, Andrey V

    2015-09-14

    In recent years, there has been an emergence of new 3D structures of proteins containing tandem repeats (TRs), as a result of improved expression and crystallization strategies. Databases focused on structure classifications (PDB, SCOP, CATH) do not provide an easy solution for selection of these structures from PDB. Several approaches have been developed, but no best approach exists to identify the whole range of 3D TRs. Here we describe the TAndem PrOtein detector (TAPO) that uses periodicities of atomic coordinates and other types of structural representation, including strings generated by conformational alphabets, residue contact maps, and arrangements of vectors of secondary structure elements. The benchmarking shows the superior performance of TAPO over the existing programs. In accordance with our analysis of PDB using TAPO, 19% of proteins contain 3D TRs. This analysis allowed us to identify new families of 3D TRs, suggesting that TAPO can be used to regularly update the collection and classification of existing repetitive structures. PMID:26320412

  9. Classroom Tandem--Outlining a Model for Language Learning and Instruction

    ERIC Educational Resources Information Center

    Karjalainen, Katri; Pörn, Michaela; Rusk, Fredrik; Björkskog, Linda

    2013-01-01

    The aim of this paper is to outline classroom tandem by comparing it with informal tandem learning contexts and other language instruction methods. Classroom tandem is used for second language instruction in mixed language groups in the subjects of Finnish and Swedish as L2. Tandem learning entails that two persons with different mother tongues…

  10. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  11. Future short-baseline sterile neutrino searches with accelerators

    SciTech Connect

    Spitz, J.

    2015-07-15

    A number of experimental anomalies in neutrino oscillation physics point to the existence of at least one light sterile neutrino. This hypothesis can be precisely tested using neutrinos from reactors, radioactive isotopes, and particle accelerators. The focus of these proceedings is on future dedicated short-baseline sterile neutrino searches using accelerators.

  12. Accelerated Learning Options: A Promising Strategy for States. Policy Insights

    ERIC Educational Resources Information Center

    Michelau, Demaree

    2006-01-01

    This issue of Policy Insights draws on findings from WICHE's report Accelerated Learning Options: Moving the Needle on Access and Success, to lay out some of the important policy issues that decision makers might consider when adopting new state policy related to accelerated learning or modifying policies already in existence. The publication…

  13. Solar Particle Acceleration Radiation and Kinetics (SPARK). A mission to understand the nature of particle acceleration

    NASA Astrophysics Data System (ADS)

    Matthews, Sarah A.; Williams, David R.; Klein, Karl-Ludwig; Kontar, Eduard P.; Smith, David M.; Lagg, Andreas; Krucker, Sam; Hurford, Gordon J.; Vilmer, Nicole; MacKinnon, Alexander L.; Zharkova, Valentina V.; Fletcher, Lyndsay; Hannah, Iain G.; Browning, Philippa K.; Innes, Davina E.; Trottet, Gerard; Foullon, Clare; Nakariakov, Valery M.; Green, Lucie M.; Lamoureux, Herve; Forsyth, Colin; Walton, David M.; Mathioudakis, Mihalis; Gandorfer, Achim; Martinez-Pillet, Valentin; Limousin, Olivier; Verwichte, Erwin; Dalla, Silvia; Mann, Gottfried; Aurass, Henri; Neukirch, Thomas

    2012-04-01

    Energetic particles are critical components of plasma populations found throughout the universe. In many cases particles are accelerated to relativistic energies and represent a substantial fraction of the total energy of the system, thus requiring extremely efficient acceleration processes. The production of accelerated particles also appears coupled to magnetic field evolution in astrophysical plasmas through the turbulent magnetic fields produced by diffusive shock acceleration. Particle acceleration is thus a key component in helping to understand the origin and evolution of magnetic structures in, e.g. galaxies. The proximity of the Sun and the range of high-resolution diagnostics available within the solar atmosphere offers unique opportunities to study the processes involved in particle acceleration through the use of a combination of remote sensing observations of the radiative signatures of accelerated particles, and of their plasma and magnetic environment. The SPARK concept targets the broad range of energy, spatial and temporal scales over which particle acceleration occurs in the solar atmosphere, in order to determine how and where energetic particles are accelerated. SPARK combines highly complementary imaging and spectroscopic observations of radiation from energetic electrons, protons and ions set in their plasma and magnetic context. The payload comprises focusing-optics X-ray imaging covering the range from 1 to 60 keV; indirect HXR imaging and spectroscopy from 5 to 200 keV, γ-ray spectroscopic imaging with high-resolution LaBr3 scintillators, and photometry and source localisation at far-infrared wavelengths. The plasma environment of the regions of acceleration and interaction will be probed using soft X-ray imaging of the corona and vector magnetography of the photosphere and chromosphere. SPARK is designed for solar research. However, in addition it will be able to provide exciting new insights into the origin of particle acceleration in

  14. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  15. Twisted waveguide accelerating structure.

    SciTech Connect

    Kang, Y. W.

    2000-08-15

    A hollow waveguide with a uniform cross section may be used for accelerating charged particles if the phase velocity of an accelerating mode is equal to or less than the free space speed of light. Regular straight hollow waveguides have phase velocities of propagating electromagnetic waves greater than the free-space speed of light. if the waveguide is twisted, the phase velocities of the waveguide modes become slower. The twisted waveguide structure has been modeled and computer simulated in 3-D electromagnetic solvers to show the slow-wave properties for the accelerating mode.

  16. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  17. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  18. Heavy-ion injection from tandems into an isochronous cyclotron

    SciTech Connect

    LeVine, M.J.; Chasman, C.

    1981-01-01

    A design has been realized for the injection of heavy ion beams generated by the BNL 3-stage tandem facility into a proposed isochronous cyclotron. The tandem beams are bunched into +- 1/sup 0/ R.F. phase (less than or equal to 0.5 nsec) in two stages. The beam is then injected into the cyclotron through a valley, past a hill, and into the next valley on to a stripper foil. Only a single steerer is required to make trajectory corrections for the different beams. Two achromats are used to regulate the tandem potential and to provide phase control. A final section of the injection optics provides matching of transverse phase space to the acceptance of the cyclotron. The calculations use realistic tandem emittances and magnetic fields for the cyclotron based on measurements with a model magnet.

  19. D STAND DELIVERY END OF #44 TANDEM BREAKDOWN MILL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    D STAND DELIVERY END OF #44 TANDEM BREAKDOWN MILL WITH UPCOILER. BACKUP ROLLS, 40 TONS. WORK ROLLS, 20 TONS., C. 1900. OPERATING SPEED, 600'/MINUTE. AUTOMATIC GAUGE CONTROL. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  20. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    SciTech Connect

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.

  1. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  2. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. Non-accelerator experiments

    SciTech Connect

    Goldhaber, M.

    1986-01-01

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay.

  4. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  5. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  6. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  7. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  8. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  9. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  10. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  11. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  12. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  13. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  14. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  15. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  16. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  17. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  18. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  19. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  20. Tandem-mirror technology demonstration facility

    SciTech Connect

    Fowler, T.K.; Logan, B.G.

    1981-09-18

    Preliminary calculations at LLNL indicate that a Technology Demonstration Facility (TDF) consisting of a tandem mirror machine about the size of TMX could begin providing fusion nuclear engineering data as early as 1988. With high density operation based on physics already demonstrated in TMX, this machine would produce 12 MW of DT neutrons in steady-state from a plasma column 0.08 m in radius and 8 m in length. Allowing space for neutral beam injectors at each end of the column, this would permit testing of blanket modules and components at 1 MW/m/sup 2/ neutron wall load over a cylindrical surface 8 m/sup 2/ in area at a radius of 0.25 m; or one could irradiate thousands of small samples at 2 MW/m/sup 2/ at r = 0.125 m (4 m/sup 2/ area). With improved end-plug physics to be tested in TMX-Upgrade in 1982-83, the wall load at 0.25 m could be increased to 2 MW/m/sup 2/ (4 MW/m/sup 2/ at r = 0.125 m). Construction of the TDF could begin in FY84 and be completed in 4 to 5 years, at a cost roughly estimated as $700M in '81 dollars including engineering and 30% contingency.

  1. Small, octopole-stabilized tandem mirror reactor

    SciTech Connect

    Devoto, R.S.; Baldwin, D.E.; Logan, B.G.; Hamilton, G.W.; Johnston, B.W.

    1984-10-03

    It is shown that the use of octopole stabilization in a tandem mirror allows a large reduction in end-cell length. A novel feature of the method proposed in this report is the placement of the minimum IBI region coonsiderably off axis, thus rendering the core plasma more axisymmetric. The region from the core to the field minimum is bridged by a mirror-confined hot-electron mantle. Low ..beta.., ideal magnetohydrodynamic stability, as evaluated with the interchange criterion, yields an upper limit to the required mantle peak ..beta.. of 78% for a center-cell peak ..beta.. of 75% and barrier peak ..beta.. of 30%. Estimates for the worst type of classical radial diffusion - with stochastic displacements per bounce - show that such radial losses are negligible for this configuration. First estimates of power balance indicate Q approx. 10 for a reactor producing 500 MW of fusion power and Q approx. 25 for one producing 1000 MW, using conservative assumptions regarding mantle ..beta.. requirements and synchrotron radiation losses.

  2. Wake-induced vibrations in Tandem Cylinders

    NASA Astrophysics Data System (ADS)

    Mysa, Ravi Chaithanya; Jaiman, Rajeev Kumar

    2015-11-01

    The upstream cylinder is fixed in the tandem cylinders arrangement. The downstream cylinder is placed at a distance of four diameters from the upstream cylinder in the free stream direction and is mounted on a spring. The dynamic response of the downstream cylinder is studied at Reynolds number of 10,000. The transverse displacement amplitude of the downstream cylinder is larger compared to that of single cylinder in the post-lock-in region. The transverse dynamic response of the downstream cylinder in the post-lock-in region is characterized by a dominant low frequency component compared to shed frequency, which is nearer to the structural natural frequency. The interaction of upstream wake with the downstream cylinder is carefully analyzed to understand the introduction of low frequency component in the transverse load along with the shed frequency. We found that the stagnation point moves in proportional to the velocity of the cylinder and is in-phase with the velocity. The low frequency component in the stagnation point movement on the downstream cylinder is sustained by the interaction of upstream wake. The frequencies in the movement of the stagnation point is reflected in the transverse load resulting in large deformation of the cylinder. The authors wish to acknowledge support from A*STAR- SERC and Singapore Maritime Institute.

  3. Software dependability in the Tandem GUARDIAN system

    NASA Technical Reports Server (NTRS)

    Lee, Inhwan; Iyer, Ravishankar K.

    1995-01-01

    Based on extensive field failure data for Tandem's GUARDIAN operating system this paper discusses evaluation of the dependability of operational software. Software faults considered are major defects that result in processor failures and invoke backup processes to take over. The paper categorizes the underlying causes of software failures and evaluates the effectiveness of the process pair technique in tolerating software faults. A model to describe the impact of software faults on the reliability of an overall system is proposed. The model is used to evaluate the significance of key factors that determine software dependability and to identify areas for improvement. An analysis of the data shows that about 77% of processor failures that are initially considered due to software are confirmed as software problems. The analysis shows that the use of process pairs to provide checkpointing and restart (originally intended for tolerating hardware faults) allows the system to tolerate about 75% of reported software faults that result in processor failures. The loose coupling between processors, which results in the backup execution (the processor state and the sequence of events) being different from the original execution, is a major reason for the measured software fault tolerance. Over two-thirds (72%) of measured software failures are recurrences of previously reported faults. Modeling, based on the data, shows that, in addition to reducing the number of software faults, software dependability can be enhanced by reducing the recurrence rate.

  4. Engineering problems of tandem-mirror reactors

    SciTech Connect

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  5. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  6. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  7. Improving quantitative precision and throughput by reducing calibrator use in liquid chromatography-tandem mass spectrometry.

    PubMed

    Rule, Geoffrey S; Rockwood, Alan L

    2016-05-01

    To improve efficiency in our mass spectrometry laboratories we have made efforts to reduce the number of calibration standards utilized for quantitation over time. We often analyze three or more batches of 96 samples per day, on a single instrument, for a number of assays. With a conventional calibration scheme at six concentration levels this amounts to more than 5000 calibration points per year. Modern LC-tandem mass spectrometric instrumentation is extremely rugged however, and isotopically labelled internal standards are widely available. This made us consider whether alternative calibration strategies could be utilized to reduce the number of calibration standards analyzed while still retaining high precision and accurate quantitation. Here we demonstrate how, by utilizing a single calibration point in each sample batch, and using the resulting response factor (RF) to update an existing, historical response factor (HRF), we are able to obtain improved precision over a conventional multipoint calibration approach, as judged by quality control samples. The laboratory component of this study was conducted with an existing LC tandem mass spectrometric method for three androgen analytes in our production laboratory. Using examples from both simulated and laboratory data we illustrate several aspects of our single point alternative calibration strategy and compare it with a conventional, multipoint calibration approach. We conclude that both the cost and burden of preparing multiple calibration standards with every batch of samples can be reduced while at the same time maintaining, or even improving, analytical quality. PMID:27086099

  8. ERD, 15N external beam for NRRA in air, HIRBS: ion beam analysis developments on the HVEC EN-1 Tandem

    NASA Astrophysics Data System (ADS)

    Schiettekatte, F.; Chicoine, M.; Forster, J. S.; Geiger, J. S.; Gujrathi, S.; Kolarova, R.; Paradis, A.; Roorda, S.; Wei, P.

    2004-06-01

    In the last year, EN-1, the first HVEC Tandem accelerator, has gone through a major upgrade in which the injector, charging system and tubes were replaced. In addition, the ion beam analysis facilities have been upgraded and expanded. The gas-counter ERD set-up, previously installed on the former TASCC accelerator at Chalk River, is now operating with a new data-acquisition system. This system also interfaces with the surface barrier detector and TOF based ERD facilities (both of which were developed at the University of Montréal). Gas-counter and ERD-TOF are compared in terms of sensitivity, pileup, depth and mass resolution, and efficiency in the case of hydrogen detection. The 15N NRRA technique has been extended to include an external beam capability. This allows, for example, in situ profiling of hydrogen in metallic hydrides exposed to different partial pressures of hydrogen.

  9. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  10. Cogeneration for existing alfalfa processing

    SciTech Connect

    Not Available

    1984-01-01

    This study is designed to look at the application of gas-turbine generator cogeneration to a typical Nebraska alfalfa processing mill. The practicality is examined of installing a combustion turbine generator at a plant site and modifying existing facilities for generating electricity, utilizing the electricity generated, selling excess electricity to the power company and incorporating the turbine exhaust flow as a drying medium for the alfalfa. The results of this study are not conclusive but the findings are summarized.

  11. Determination of dalcetrapib by liquid chromatography-tandem mass spectrometry.

    PubMed

    Heinig, Katja; Bucheli, Franz; Kuhlmann, Olaf; Zell, Manfred; Pähler, Axel; Zwanziger, Elke; Gross, Günter; Tardio, Joseph; Ishikawa, Tomohiro; Yamashita, Tomoko

    2012-07-01

    The cholesteryl ester transfer protein modulator dalcetrapib is currently under development for the prevention of dyslipidemia and cardiovascular disease. Dalcetrapib, a thioester, is rapidly hydrolyzed in vivo to the corresponding thiophenol which in turn is further oxidized to the dimer and mixed disulfides (where the thiophenol binds to peptides, proteins and other endogenous thiols). These forms co-exist in an oxidation-reduction equilibrium via the thiol and cannot be stabilized without influencing the equilibrium, hence specific determination of individual components, i.e., in order to distinguish between the free thiol, the disulfide dimer and mixed disulfide adducts, was not pursued for routine analysis. The individual forms were quantified collectively as dalcetrapib-thiol (dal-thiol) after reduction under basic conditions with dithiothreitol to break disulfide bonds and derivatization with N-ethylmaleimide to stabilize the free thiol. The S-methyl and S-glucuronide metabolites were determined simultaneously with dal-thiol with no effect from the derivatization procedure. Column-switching liquid chromatography-tandem mass spectrometry provided a simple, fast and robust method for analysis of human and animal plasma and human urine samples. Addition of the surfactant Tween 80 to urine prevented adsorptive compound loss. The lower limits of quantitation (LLOQ) were 5 ng/mL for dal-thiol, and 5 ng/mL for the S-methyl and 50 ng/mL for the S-glucuronide metabolites. Using stable isotope-labeled internal standards, inter- and intra-assay precisions were each <15% (<20% at LLOQ) and accuracy was between 85 and 115%. Recovery was close to 100%, and no significant matrix effect was observed. PMID:22541249

  12. Deuterium accelerator experiments for APT.

    SciTech Connect

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  13. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  14. Y-chromosomal short tandem repeats haplotyping from vaginal swabs using a chelating resin-based DNA extraction method and a dual-round polymerase chain reaction.

    PubMed

    Iwasa, Mineo; Koyama, Hiroyoshi; Tsuchimochi, Tsukasa; Maeno, Yoshitaka; Isobe, Ichiro; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun; Matsumoto, Tomohiro; Nagao, Masataka

    2003-09-01

    Reported are 2 autopsy cases in which Y-chromosomal microsatellite short tandem repeats DYS19, DYS389I and II, DYS390, and DYS393 could be haplotyped with vaginal swabs by using a Chelex 100-based DNA extraction method and dual-round polymerase chain reaction. The extraction of DNA from vaginal swabs by using this method was as efficient or more efficient than using proteinase K and phenol-chloroform extraction or the alkaline lysis methods. Y-chromosomal microsatellite short tandem repeats haplotyping based on the dual-round polymerase chain reaction method provided genotypes from all the loci determined. Although amplification of Y-chromosomal microsatellite short tandem repeats loci is not directly involved in the existence of spermatozoa, it is considerably advantageous for male individualization from body fluid mixture stains in criminal cases.

  15. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  16. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  17. Landmarks and ant search strategies after interrupted tandem runs.

    PubMed

    Basari, Norasmah; Bruendl, Aisha C; Hemingway, Charlotte E; Roberts, Nicholas W; Sendova-Franks, Ana B; Franks, Nigel R

    2014-03-15

    During a tandem run, a single leading ant recruits a single follower to an important resource such as a new nest. To examine this process, we used a motorized gantry, which has not previously been used in ant studies, to track tandem running ants accurately in a large arena and we compared their performance in the presence of different types of landmark. We interrupted tandem runs by taking away the leader and moved a large distant landmark behind the new nest just at the time of this separation. Our aim was to determine what information followers might have obtained from the incomplete tandem run they had followed, and how they behaved after the tandem run had been interrupted. Our results show that former followers search by using composite random strategies with elements of sub-diffusive and diffusive movements. Furthermore, when we provided more landmarks former followers searched for longer. However, when all landmarks were removed completely from the arena, the ants' search duration lasted up to four times longer. Hence, their search strategy changes in the presence or absence of landmarks. Even after extensive search of this kind, former followers headed back to their old nest but did not return along the path of the tandem run they had followed. The combination of the position to which the large distant landmark behind the new nest was moved and the presence or absence of additional landmarks influenced the orientation of the former followers' paths back to the old nest. We also found that these ants exhibit behavioural lateralization in which they possibly use their right eye more than their left eye to recognize landmarks for navigation. Our results suggest that former follower ants learn landmarks during tandem running and use this information to make strategic decisions. PMID:24198259

  18. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  19. Probing gravitation, dark energy, and acceleration

    SciTech Connect

    Linder, Eric V.

    2004-02-20

    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  20. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  1. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  2. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  3. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  4. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  5. Beamlets from stochastic acceleration.

    PubMed

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  6. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  7. Acceleration radioisotope production simulations

    SciTech Connect

    Waters, L.S.; Wilson, W.B.

    1996-12-31

    We have identified 96 radionuclides now being used or under consideration for use in medical applications. Previously, we calculated the production of {sup 99}Mo from enriched and depleted uranium targets at the 800-MeV energy used in the LAMPF accelerator at Los Alamos. We now consider the production of isotopes using lower energy beams, which may become available as a result of new high-intensity spallation target accelerators now being planned. The production of four radionuclides ({sup 7}Be, {sup 67}Cu, {sup 99}Mo, and {sup 195m}Pt) in a simplified proton accelerator target design is being examined. The LAHET, MCNP, and CINDER90 codes were used to model the target, transport a beam of protons and secondary produced particles through the system, and compute the nuclide production from spallation and low-energy neutron interactions. Beam energies of 200 and 400 MeV were used, and several targets were considered for each nuclide.

  8. Laser acceleration with open waveguides

    SciTech Connect

    Xie, Ming

    1999-03-01

    A unified framework based on solid-state open waveguides is developed to overcome all three major limitations on acceleration distance and hence on the feasibility of two classes of laser acceleration. The three limitations are due to laser diffraction, acceleration phase slippage, and damage of waveguide structure by high power laser. The two classes of laser acceleration are direct-field acceleration and ponderomotive-driven acceleration. Thus the solutions provided here encompass all mainstream approaches for laser acceleration, either in vacuum, gases or plasmas.

  9. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  10. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  11. Photocathodes in accelerator applications

    SciTech Connect

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs/sub 3/Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera.

  12. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  13. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  14. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  15. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

    1991-01-01

    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

  16. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  17. Design of a new tandem wings hybrid airship

    NASA Astrophysics Data System (ADS)

    Li, Feng; Ye, ZhengYin; Gao, Chao

    2012-10-01

    It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform. Through the numerical method, a new tandem wings hybrid airship with both higher utility value and economy efficiency was obtained and its total performance and technical parameters were analyzed in detail. In order to further improve the lift-drag characteristics, we implemented the optimization design for aerodynamic configuration of tandem wings hybrid airship via the response surface method. The results indicate that the tandem wings hybrid airship has considerable volume efficiency and higher aerodynamic characteristics. After optimization, the lift-drag ratio of this hybrid airship was increased by 6.08%. In a given gross lift condition, tandem wings hybrid airship may provide more payload and specific productivity. Furthermore, the size of tandem airship is smaller so the demand for skin flexible materials can be reduced. Results of this study could serve as a new approach to designing buoyancy-lifting integrated hybrid airship.

  18. Dynamic landscape of tandem 3' UTRs during zebrafish development.

    PubMed

    Li, Yuxin; Sun, Yu; Fu, Yonggui; Li, Mengzhen; Huang, Guangrui; Zhang, Chenxu; Liang, Jiahui; Huang, Shengfeng; Shen, Gaoyang; Yuan, Shaochun; Chen, Liangfu; Chen, Shangwu; Xu, Anlong

    2012-10-01

    Tandem 3' untranslated regions (UTRs), produced by alternative polyadenylation (APA) in the terminal exon of a gene, could have critical roles in regulating gene networks. Here we profiled tandem poly(A) events on a genome-wide scale during the embryonic development of zebrafish (Danio rerio) using a recently developed SAPAS method. We showed that 43% of the expressed protein-coding genes have tandem 3' UTRs. The average 3' UTR length follows a V-shaped dynamic pattern during early embryogenesis, in which the 3' UTRs are first shortened at zygotic genome activation, and then quickly lengthened during gastrulation. Over 4000 genes are found to switch tandem APA sites, and the distinct functional roles of these genes are indicated by Gene Ontology analysis. Three families of cis-elements, including miR-430 seed, U-rich element, and canonical poly(A) signal, are enriched in 3' UTR-shortened/lengthened genes in a stage-specific manner, suggesting temporal regulation coordinated by APA and trans-acting factors. Our results highlight the regulatory role of tandem 3' UTR control in early embryogenesis and suggest that APA may represent a new epigenetic paradigm of physiological regulations.

  19. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  20. Finite Time Shock Acceleration at Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Channok, C.; Ruffolo, D.; Desai, M. I.; Mason, G. M.

    2004-05-01

    Observations of energetic ion acceleration at interplanetary shocks sometimes indicate a spectral rollover at ˜ 0.1 to 1 MeV nucl-1. This rollover is not well explained by finite shock width or thickness effects. At the same time, a typical timescale of diffusive shock acceleration is several days, implying that the process of shock acceleration at an interplanetary shock near Earth usually gives only a mild increase in energy to an existing seed particle population. This is consistent with a recent analysis of ACE observations that argues for a seed population at substantially higher energies than the solar wind. Therefore an explanation of typical spectra of interplanetary shock-accelerated ions requires a theory of finite-time shock acceleration, which for long times (or an unusually fast acceleration timescale) tends to the steady-state result of a power-law spectrum. We present analytic and numerical models of finite-time shock acceleration. For a given injection momentum p0, after a very short time there is only a small boost in momentum, at intermediate times the spectrum is a power law with a hump and steep cutoff at a critical momentum, and at longer times the critical momentum increases and the spectrum approaches the steady-state power law. The composition dependence of the critical momentum is different from that obtained for other cutoff mechanisms. The results are compared with observed spectra. Work in Thailand was supported by the Commission for Higher Education, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the Thailand Research Fund. Work at the University of Maryland was supported by NASA contract NAS5-30927 and NASA grant PC 251428.

  1. Origin and acceleration of suprathermal particles

    NASA Astrophysics Data System (ADS)

    Desai, Mihir I.; Dayeh, Maher A.; Ebert, Robert W.

    2016-03-01

    Observations over the last decade have shown that suprathermal ions with energies above that of the core or bulk solar wind protons (i.e., ~1-2 keV/nucleon) are an important constituent of the overall seed population that is accelerated in solar and interplanetary events. Despite the recent recognition of their importance, the origin of these populations and the method of their acceleration remains poorly understood. This is partly due to the fact that these particles exist in the so-called tail regions of the corresponding solar wind distributions where high temporal and sensitivity measurements are sparse. Moreover, observations comprising long-term averages (between hours to more than a day) show conflicting results. For instance, below ~40 keV/nucleon the ion differential intensities in the solar wind frame appear to exhibit a near-constant power-law spectral slope of ~1.5, perhaps indicating a universal acceleration mechanism. In contrast, at energies greater than ~40 keV/nucleon, the ion composition changes with solar activity, and the energy spectra are significantly steeper, perhaps indicating that the suprathermal pool of material also comprises lower-energy particle populations accelerated in corotating interaction regions, interplanetary shocks, and solar energetic particle events. This paper discusses key observations of suprathermal ions and electrons in terms of state-of-the-art theories and models that have been put forward to account for their origin and acceleration.

  2. MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis

    PubMed Central

    Tabb, David L.; Fernando, Christopher G.; Chambers, Matthew C.

    2008-01-01

    Shotgun proteomics experiments are dependent upon database search engines to identify peptides from tandem mass spectra. Many of these algorithms score potential identifications by evaluating the number of fragment ions matched between each peptide sequence and an observed spectrum. These systems, however, generally do not distinguish between matching an intense peak and matching a minor peak. We have developed a statistical model to score peptide matches that is based upon the multivariate hypergeometric distribution. This scorer, part of the “MyriMatch” database search engine, places greater emphasis on matching intense peaks. The probability that the best match for each spectrum has occurred by random chance can be employed to separate correct matches from random ones. We evaluated this software on data sets from three different laboratories employing three different ion trap instruments. Employing a novel system for testing discrimination, we demonstrate that stratifying peaks into multiple intensity classes improves the discrimination of scoring. We compare MyriMatch results to those of Sequest and X!Tandem, revealing that it is capable of higher discrimination than either of these algorithms. When minimal peak filtering is employed, performance plummets for a scoring model that does not stratify matched peaks by intensity. On the other hand, we find that MyriMatch discrimination improves as more peaks are retained in each spectrum. MyriMatch also scales well to tandem mass spectra from high-resolution mass analyzers. These findings may indicate limitations for existing database search scorers that count matched peaks without differentiating them by intensity. This software and source code is available under Mozilla Public License at this URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/. PMID:17269722

  3. The query execution engine in Tandem`s new ServerWare SQL product

    SciTech Connect

    Celis, P.; Zeller, H.

    1996-12-31

    Tandem has re-written its SQL compiler and its query execution engine into a new product that will be available on multiple operating systems. The new product uses a novel query execution engine and we will highlight the unique aspects of the new engine. ServerWare SQL uses a data flow and scheduler driven task model to execute queries. Tasks communicate either via in-memory queues or via interprocess communication. Partitioned, pipelined, or independent operations are executed in parallel. By adding new task types the model can be easily extended. Parallelism in a distributed memory environment is implemented as a special {open_quotes}Exchange{close_quotes} task type, as in the Volcano research prototype. Scheduling and load balancing are performed by separate scheduler tasks.

  4. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  5. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  6. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  7. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  8. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  9. Straightening: existence, uniqueness and stability

    PubMed Central

    Destrade, M.; Ogden, R. W.; Sgura, I.; Vergori, L.

    2014-01-01

    One of the least studied universal deformations of incompressible nonlinear elasticity, namely the straightening of a sector of a circular cylinder into a rectangular block, is revisited here and, in particular, issues of existence and stability are addressed. Particular attention is paid to the system of forces required to sustain the large static deformation, including by the application of end couples. The influence of geometric parameters and constitutive models on the appearance of wrinkles on the compressed face of the block is also studied. Different numerical methods for solving the incremental stability problem are compared and it is found that the impedance matrix method, based on the resolution of a matrix Riccati differential equation, is the more precise. PMID:24711723

  10. Streamlining workflow using existing technology.

    PubMed

    Corkery, Terry S

    2007-01-01

    Processing rehabilitation admissions and case management records in a three-person office in a major academic medical center had become cumbersome and redundant due to multiple information management approaches and requirements from various sources. Simple questionnaires and brief, casual meetings with pertinent personnel defined what was working well and what was problematic and helped establish a foundation for change management. Analysis of the existing paper system revealed more than 300 data items used more than once throughout the departmental processes. A simple timing trial, based on selected segments of a workflow diagram, revealed the potential to save 3 to 3(1/2) hours per case by revising a departmental database, decreasing work redundancy, and creating an electronic case file. Because the work environment utilized Microsoft Office and Access databases, a plan was developed to utilize these resources to streamline the workflow and eliminate duplication of effort in the admission/case management documentation processes.

  11. Does the polystomatic gland exist?

    PubMed

    Imai, M; Shibata, T; Moriguchi, K; Kinbara, M

    1989-03-01

    According to the P.N.A., the N.A.J. and some scholars, the sublingual gland has the ductus sublingualis major and ductus sublinguales minores. This means that the gland is a polystomatic gland. We intended to determine whether the so-called polystomatic gland exists or not. 1. According to the P.N.A., the N.A.J. and some scholars, the gl. sublingualis has the ductus sublingualis major and ductus sublinguales minores. This means the gland is a polystomatic gland. However, the formation of one gland with plural excretory ducts is embryologically impossible, in other words, the polystomatic gland does not exist. 2. Many scholars described that the gl. sublingualis was composed of the gl. sublingualis major and g11. sublinguales minores. However, they are completely different kinds of glands. Accordingly, we suggest the terms for these glands: the g1. sublingualis and its ductus sublingualis ("major" is useless), the g11. sublinguales minores and their ductus sublinguales minores. 3. The N.A.V.J. and some scholars use the term g1. sublingualis polystomatica or parvicanalaris. However, this is a group of a number of independent glands each of which has its own excretory duct. Such a gland should not be regarded as a single gland. We suggest that the term g11. sublinguales minores and their excretory ducts should be replaced with the term the ductus sublinguales minores. 4. The g1. lingualis anterior, g1. retromolaris and g1. lacrimalis are not single glands but a group of several independent glands each of which has its own excretory duct. Accordingly, they should be termed the g11. linguales anteriores, g11. retromolares and g11. lacrimales such as the g11. labiales, g11. buccales and g11. palatinae.

  12. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  13. Dosimetric Comparison of Tandem and Ovoids vs. Tandem and Ring for Intracavitary Gynecologic Applications

    SciTech Connect

    Levin, Daphne Menhel, Janna; Rabin, Tanya; Pfeffer, M. Raphael; Symon, Zvi

    2008-01-01

    We evaluated dosimetric differences in tandem and ovoid (TO) and tandem and ring (TR) gynecologic brachytherapy applicators. Seventeen patients with cervical cancer (Stages II-IV) receiving 3 high-dose-rate (HDR) brachytherapy applications (both TO and TR) were studied. Patients underwent computed tomography (CT) scans with contrast in bladder, and were prescribed 8 Gy to ICRU points A, with additional optimization goals of maintaining the pear-shaped dose distribution and minimizing bladder and rectum doses. Bladder and rectum point doses, mean, and maximum doses were calculated. Total treatment time and volumes treated to 95%, 85%, 50%, and 20% or the prescription dose were compared. There were no significant differences between TO and TR applicators in doses to prescription points or critical organs. However, there were significant differences (p < 0.001) between the applicators in treated volumes and total treatment time. The TO treated larger volumes over a longer time. Within each patient, when the applicators were compared, treated volumes were also found to be significantly different (p < 0.01, {chi}{sup 2}). Our results demonstrate that the 2 applicators, while delivering the prescribed dose to points A and keeping critical organ doses below tolerance, treat significantly different volumes. It is unclear if this difference is clinically meaningful. TO applicators may be treating surrounding healthy tissue unnecessarily, or TR applicators may be underdosing tumor tissue. Further investigation with appropriate imaging modalities is required for accurate delineation of target volumes. Clearly, the TO and TR are not identical, and should not be used interchangeably without further study.

  14. High efficiency all-polymer tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-05-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells.

  15. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  16. mreps: efficient and flexible detection of tandem repeats in DNA

    PubMed Central

    Kolpakov, Roman; Bana, Ghizlane; Kucherov, Gregory

    2003-01-01

    The presence of repeated sequences is a fundamental feature of genomes. Tandemly repeated DNA appears in both eukaryotic and prokaryotic genomes, it is associated with various regulatory mechanisms and plays an important role in genomic fingerprinting. In this paper, we describe mreps, a powerful software tool for a fast identification of tandemly repeated structures in DNA sequences. mreps is able to identify all types of tandem repeats within a single run on a whole genomic sequence. It has a resolution parameter that allows the program to identify ‘fuzzy’ repeats. We introduce main algorithmic solutions behind mreps, describe its usage, give some execution time benchmarks and present several case studies to illustrate its capabilities. The mreps web interface is accessible through http://www.loria.fr/mreps/. PMID:12824391

  17. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  18. A periodic table of symmetric tandem mismatches in RNA.

    PubMed

    Wu, M; McDowell, J A; Turner, D H

    1995-03-14

    The stabilities and structures of a series of RNA octamers containing symmetric tandem mismatches were studied by UV melting and imino proton NMR. The free energy increments for tandem mismatch formation are found to depend upon both mismatch sequence and adjacent base pairs. The observed sequence dependence of tandem mismatch stability is UGGU > GUUG > GAAG > or = AGGA > UUUU > CAAC > or = CUUC approximately UCCU approximately CCCC approximately ACCA approximately AAAA, and the closing base pair dependence is 5'G3'C > 5'C3'G > 5'U3'A approximately 5'A3'U. These results differ from expectations based on models used in RNA folding algorithms and from the sequence dependence observed for folding of RNA hairpins. Imino proton NMR results indicate the sequence dependence is partially due to hydrogen bonding within mismatches.

  19. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.

    PubMed

    Kim, Jin Hyun; Kaneko, Hiroyuki; Minegishi, Tsutomu; Kubota, Jun; Domen, Kazunari; Lee, Jae Sung

    2016-01-01

    A stand-alone photoelectrochemical (PEC) water-splitting system driven only by sunlight was demonstrated with a tandem-scheme of Pt/CdS/CuGa3 Se5 /(Ag,Cu)GaSe2 photocathode and NiOOH/FeOOH/Mo:BiVO4 photoanode in a neutral phosphate buffer solution as an electrolyte. The as-prepared semi-transparent Mo:BiVO4 layer allows sunlight to pass through the top photoanode and reach the bottom photocathode. Consequently, the tandem cell showed stoichiometric hydrogen and oxygen evolution with a solar-to-hydrogen (STH) conversion efficiency of 0.67 % over 2 h without degradation. The stability and STH efficiency are the highest among similar configuration of PEC tandem cells.

  20. High efficiency all-polymer tandem solar cells.

    PubMed

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  1. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  2. The innervation of tandem muscle spindles in the cat neck.

    PubMed

    Richmond, F J; Bakker, G J; Bakker, D A; Stacey, M J

    1986-03-22

    Patterns of innervation were examined in tandem muscle spindles teased from silver-stained muscles of the cat neck. Each tandem spindle was composed of two or more encapsulated receptors linked in series by a shared bag2 fiber. In most tandem spindles, two different types of encapsulation were identified according to differences in their intrafusal fiber content. One type, the b1b2c unit, contained typical bag1, bag2, and chain fibers and was structurally similar to single spindles described in other cat muscles. Each b1b2c unit contained a single primary sensory ending and 1-6 secondary endings. Fusimotor innervation was supplied by many axons. Some fusimotor axons ended in trail ramifications on bag2 and chain fibers, others ended in plates on the bag1 or long chain fiber. The other type of tandem encapsulation, the b2c unit, had only bag2 and chain fibers in its intrafusal fiber bundle. The b2c unit was usually supplied by only one sensory axon that ended on the nucleated part of the intrafusal fiber bundle. This single ending had a more variable terminal morphology than the primary ending in b1b2c units. A few b2c units (3/49) were also supplied by a secondary ending. The fusimotor innervation of the b2c unit was relatively simple. A single pole of the b2c unit was usually supplied by only one to three axons, all ending in trail ramifications. No plate endings were found in b2c units. These morphological specializations suggest that b1b2c and b2c units in tandem spindles differ in both their transductive and fusimotor mechanisms. Thus, the tandem spindle is a specialized structure that may provide additional proprioceptive information beyond that available from single muscle spindles.

  3. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  4. Tandem riboswitch architectures exhibit complex gene control functions.

    PubMed

    Sudarsan, Narasimhan; Hammond, Ming C; Block, Kirsten F; Welz, Rüdiger; Barrick, Jeffrey E; Roth, Adam; Breaker, Ronald R

    2006-10-13

    Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors. PMID:17038623

  5. Does Metabolically Healthy Obesity Exist?

    PubMed Central

    Muñoz-Garach, Araceli; Cornejo-Pareja, Isabel; Tinahones, Francisco J.

    2016-01-01

    The relationship between obesity and other metabolic diseases have been deeply studied. However, there are clinical inconsistencies, exceptions to the paradigm of “more fat means more metabolic disease”, and the subjects in this condition are referred to as metabolically healthy obese (MHO).They have long-standing obesity and morbid obesity but can be considered healthy despite their high degree of obesity. We describe the variable definitions of MHO, the underlying mechanisms that can explain the existence of this phenotype caused by greater adipose tissue inflammation or the different capacity for adipose tissue expansion and functionality apart from other unknown mechanisms. We analyze whether these subjects improve after an intervention (traditional lifestyle recommendations or bariatric surgery) or if they stay healthy as the years pass. MHO is common among the obese population and constitutes a unique subset of characteristics that reduce metabolic and cardiovascular risk factors despite the presence of excessive fat mass. The protective factors that grant a healthier profile to individuals with MHO are being elucidated. PMID:27258304

  6. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry.

    PubMed

    Yoon, Hye-Ran

    2015-09-01

    The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and the major factors that influence the results of biochemical analysis. Compared to regular biochemical testing, this is a complex process carried out by a medical physician specialist. It is comprised of an integrated program requiring multidisciplinary approach such as, pediatric specialist, expert scientist, clinical laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful tool to improve screening of newborns for diverse metabolic diseases. It is likely to be used to analyze other treatable disorders or significantly improve existing newborn tests to allow broad scale and precise testing. This new era of various screening programs, new treatments, and the availability of detection technology will prove to be beneficial for the future generations. PMID:26512346

  7. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats.

    PubMed

    Curtis, Edward A; Liu, David R

    2014-01-01

    Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the "CA motif." The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats.

  8. Two-dimensional wakes of oscillating and tandem cylinders at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Stremler, Mark

    2015-11-01

    Transverse flow past an oscillating bluff body or multiple stationary bodies can produce wakes with complicated spatio-temporal structure. Previous work by others has characterized the wake structure as a function of system parameters. These are typically 2D characterizations, despite the fact that instabilities often cause such wakes to become strongly 3D. We use a flowing soap film system to investigate the connections and differences between (quasi) 2D wakes and 3D wakes generated behind oscillating and tandem cylinders. Wake structure is identified through flow visualization. Inspired by the work of Williamson and collaborators, we investigate the wake structure behind a circular cylinder forced to oscillate transverse to the flow. We map the boundaries of the different wake modes with variations in the amplitude and frequency of oscillation, and we discuss how our quasi-2D results compare with 3D results from the literature. We also consider the wake interaction of two stationary cylinders arranged in tandem. Existing literature disagrees on the critical cylinder spacing that gives changes in the wake mode. We examine this point and discuss the connections and distinctions between our quasi-2D experiments, 2D simulations, and results from the literature.

  9. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-01

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. PMID:27241180

  10. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry

    PubMed Central

    2015-01-01

    The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and the major factors that influence the results of biochemical analysis. Compared to regular biochemical testing, this is a complex process carried out by a medical physician specialist. It is comprised of an integrated program requiring multidisciplinary approach such as, pediatric specialist, expert scientist, clinical laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful tool to improve screening of newborns for diverse metabolic diseases. It is likely to be used to analyze other treatable disorders or significantly improve existing newborn tests to allow broad scale and precise testing. This new era of various screening programs, new treatments, and the availability of detection technology will prove to be beneficial for the future generations. PMID:26512346

  11. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  12. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  13. SUPERDIFFUSIVE SHOCK ACCELERATION

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  14. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  15. Accelerated expansion through interaction

    SciTech Connect

    Zimdahl, Winfried

    2009-05-01

    Interactions between dark matter and dark energy with a given equation of state are known to modify the cosmic dynamics. On the other hand, the strength of these interactions is subject to strong observational constraints. Here we discuss a model in which the transition from decelerated to accelerated expansion of the Universe arises as a pure interaction phenomenon. Various cosmological scenarios that describe a present stage of accelerated expansion, like the {lambda}CDM model or a (generalized) Chaplygin gas, follow as special cases for different interaction rates. This unifying view on the homogeneous and isotropic background level is accompanied by a non-adiabatic perturbation dynamics which can be seen as a consequence of a fluctuating interaction rate.

  16. Hypervelocity plate acceleration

    SciTech Connect

    Marsh, S.P.; Tan, T.H.

    1991-01-01

    Shock tubes have been used to accelerate 1.5-mm-thick stainless steel plates to high velocity while retaining their integrity. The fast shock tubes are 5.1-cm-diameter, 15.2-cm-long cylinders of PBX-9501 explosive containing a 1.1-cm-diameter cylindrical core of low-density polystyrene foam. The plates have been placed directly in contact with one face of the explosive system. Plane-wave detonation was initiated on the opposite face. A Mach disk was formed in the imploding styrofoam core, which provided the impulse required to accelerate the metal plate to high velocity. Parametric studies were made on this system to find the effect of varying plate metal, plate thickness, foam properties, and addition of a barrel. A maximum plate velocity of 9.0 km/s has been observed. 6 refs., 17 figs.

  17. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  18. Commissioning the GTA accelerator

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  19. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  20. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  1. STOCHASTIC PARTICLE ACCELERATION AND THE PROBLEM OF BACKGROUND PLASMA OVERHEATING

    SciTech Connect

    Chernyshov, D. O.; Dogiel, V. A.; Ko, C. M.

    2012-11-10

    The origin of hard X-ray (HXR) excess emission from clusters of galaxies is still an enigma, whose nature is debated. One of the possible mechanisms to produce this emission is the bremsstrahlung model. However, previous analytical and numerical calculations showed that in this case the intracluster plasma had to be overheated very fast because suprathermal electrons emitting the HXR excess lose their energy mainly by Coulomb losses, i.e., they heat the background plasma. It was concluded also from these investigations that it is problematic to produce emitting electrons from a background plasma by stochastic (Fermi) acceleration because the energy supplied by external sources in the form of Fermi acceleration is quickly absorbed by the background plasma. In other words, the Fermi acceleration is ineffective for particle acceleration. We revisited this problem and found that at some parameter of acceleration the rate of plasma heating is rather low and the acceleration tails of nonthermal particles can be generated and exist for a long time while the plasma temperature is almost constant. We showed also that for some regime of acceleration the plasma cools down instead of being heated up, even though external sources (in the form of external acceleration) supply energy to the system. The reason is that the acceleration withdraws effectively high-energy particles from the thermal pool (analog of Maxwell demon).

  2. Modulational effects in accelerators

    SciTech Connect

    Satogata, T.

    1997-12-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

  3. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  4. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  5. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  6. Simplified tandem polymer solar cells with an ideal self-organized recombination layer.

    PubMed

    Kang, Hongkyu; Kee, Seyoung; Yu, Kilho; Lee, Jinho; Kim, Geunjin; Kim, Junghwan; Kim, Jae-Ryoung; Kong, Jaemin; Lee, Kwanghee

    2015-02-25

    A new tandem architecture for printable photovoltaics using a versatile organic nanocomposite containing photoactive and interfacial materials is demonstrated. The nanocomposite forms an ideal self-organized recombination layer via a spontaneous vertical phase separation, which yields a simplified tandem structure fabricated with only four component layers and a high tandem efficiency of 10.8%. PMID:25449142

  7. Simplified tandem polymer solar cells with an ideal self-organized recombination layer.

    PubMed

    Kang, Hongkyu; Kee, Seyoung; Yu, Kilho; Lee, Jinho; Kim, Geunjin; Kim, Junghwan; Kim, Jae-Ryoung; Kong, Jaemin; Lee, Kwanghee

    2015-02-25

    A new tandem architecture for printable photovoltaics using a versatile organic nanocomposite containing photoactive and interfacial materials is demonstrated. The nanocomposite forms an ideal self-organized recombination layer via a spontaneous vertical phase separation, which yields a simplified tandem structure fabricated with only four component layers and a high tandem efficiency of 10.8%.

  8. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  9. Computer assisted accelerator tuning

    SciTech Connect

    Boyd, J.K.

    1993-04-14

    The challenge of tuning an induction accelerator in real time has been addressed with the new TUNE GUIDE code. The code initializes a beam at a particular position using a tracer particle representation of the phase space. The particles are transported, using a matrix formulation, element by element along the beamline assuming that the field of a solenoid, or steering element is constant over its length. The other allowed elements are gaps and drift sections. A great deal of effort has been spent programming TUNE GUIDE to operate under the IBMPC Windows 3.1 system. This system features an intuitive, menu driven interface, which provides an ability to rapidly change beamline component parameter values. Consequently various accelerator setups can be explored and new values determined in real time while the accelerator is operating. In addition the code has the capability of varying a capability value over a range and then plotting the resulting beam properties, such as radius or centroid position, at a down stream position. Element parameter editing is also included along with an on-line hyper text oriented help package.

  10. TRACKING ACCELERATOR SETTINGS.

    SciTech Connect

    D OTTAVIO,T.; FU, W.; OTTAVIO, D.P.

    2007-10-15

    Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year.

  11. ACCELERATION INTEGRATING MEANS

    DOEpatents

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  12. Acceleration during magnetic reconnection

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  13. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  14. Particle accelerators test cosmological theory

    SciTech Connect

    Schramm, D.N.; Steigman, G.

    1988-06-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs.

  15. Overview of accelerators in medicine

    SciTech Connect

    Lennox, A.J. |

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field.

  16. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  17. Tandem warhead considerations for electronic safety and arming devices

    SciTech Connect

    Dell, D.; Medina, A.

    1990-01-01

    There are four issues that an ESA designer must address when designing a tandem system: (1) warhead detonation shock, (2) warhead detonation ion cloud, (3) warhead detonation electromagnetic pulse, and (4) slapper/sparkgap electromagnetic pulse. Each of these hazards can upset the ESA time delay circuitry which would then either dud the munition or prematurely detonate the main charge. 14 figs.

  18. Tandem Fan Applications in Advanced STOVL Fighter Configurations

    NASA Technical Reports Server (NTRS)

    Zola, Charlse L.; Wilson, Samuel B., III; Eskey, Megan A.

    1984-01-01

    The series/parallel tandem fan engine is evaluated for application in advanced STOVL supersonic fighter aircraft. Options in engine cycle parameters and design of the front fan flow diverter are examined for their effects on engine weight, dimensions, and other factors in integration of the engine with the aircraft. Operation of the engine in high-bypass flow mode during cruise and loiter flight is considered as a means of minimizizng fuel consumption. Engine thrust augmentation by burning in the front fan exhaust is discussed. Achievement of very sort takeoff with vectored thrust in briefly reviewed for tandem fan engine configurations with vectorable front fan nozzles. Examples are given of two aircraft configuration planforms, a delta-canard, and a forward-swept wing, to illustrate the major features. design considerations, and potential performance of the tandem fan installation in each. Full realization of the advantages of tandem fan propulsion are found to depend on careful selection of the aircraft configuration, since integration requirements can strongly influence the engine performance.

  19. Efficient tandem and triple-junction polymer solar cells.

    PubMed

    Li, Weiwei; Furlan, Alice; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2013-04-17

    We demonstrate tandem and triple-junction polymer solar cells with power conversion efficiencies of 8.9% and 9.6% that use a newly designed, high molecular weight, small band gap semiconducting polymer and a matching wide band gap polymer.

  20. The Dynamics of Social Interaction in Telecollaborative Tandem Exchanges

    ERIC Educational Resources Information Center

    Janssen Sanchez, Brianna

    2015-01-01

    Using both quantitative and qualitative methods of inquiry, this dissertation study undertakes an exploration of the dynamics of the social interaction in discourse co-constructed by pairs of college students in telecollaborative tandem exchanges. Two groups of participants, Mexican learners of English as a foreign language and American learners…

  1. Optochemokine Tandem for Light-Control of Intracellular Ca2+

    PubMed Central

    Weissbecker, Juliane; Sauer, Frank; Wood, Phillip G.; Bamberg, Ernst

    2016-01-01

    An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light. PMID:27768773

  2. High efficiency GaAs/Ge monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Tobin, S. P.; Vernon, S. M.; Bajgar, C.; Haven, V. E.; Geoffroy, L. M.; Sanfacon, M. M.; Lillington, D. R.; Hart, R. E., Jr.

    1988-01-01

    Two-terminal monolithic tandem cells consisting of a GaAs solar cell grown epitaxially on a Ge solar cell substrate are very attractive for space applications. Tandem cells of GaAs grown by metal-organic chemical vapor deposition on thin Ge were investigated to address both higher efficiency and reduced weight. Two materials growth issues associated with this heteroepitaxial system, autodoping of the GaAs layers by Ge and diffusion of Ga and As into the Ge substrate, were addressed. The latter appears to result in information of an unintentional p-n junction in the Ge. Early simulator measurements gave efficiencies as high as 21.7 percent for 4 cm2 GaAs/Ge cells, but recent high-altitude testing has given efficiencies of 18 percent. Sources of errors in simulator measurements of two-terminal tandem cells are discussed. A limiting efficiency of about 36 percent for the tandem cell at AMO was calculated. Ways to improve the performance of present cells, primarily by increasing the Isc and Voc of the Ge cell, are proposed.

  3. Peptide identification by database search of mixture tandem mass spectra.

    PubMed

    Wang, Jian; Bourne, Philip E; Bandeira, Nuno

    2011-12-01

    In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision.

  4. Design considerations for the Tandem Junction Solar Cell

    NASA Technical Reports Server (NTRS)

    Matzen, W. T.; Carbajal, B. G.; Hardy, R. W.

    1979-01-01

    Structure and operation of the tandem junction cell (TJC) are described. The impact of using only back contacts is discussed. A model is presented which explains operation of the TJC in terms of transistor action. The model is applied to predict TJC performance as a function of physical parameters.

  5. Efficient tandem and triple-junction polymer solar cells.

    PubMed

    Li, Weiwei; Furlan, Alice; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2013-04-17

    We demonstrate tandem and triple-junction polymer solar cells with power conversion efficiencies of 8.9% and 9.6% that use a newly designed, high molecular weight, small band gap semiconducting polymer and a matching wide band gap polymer. PMID:23544881

  6. Ruthenium-catalyzed tandem olefin metathesis-oxidations.

    PubMed

    Scholte, Andrew A; An, Mi Hyun; Snapper, Marc L

    2006-10-12

    [reaction: see text] The utility of Grubbs' 2nd generation metathesis catalyst has been expanded by the development of two tandem olefin metathesis/oxidation protocols. These ruthenium-catalyzed processes provide cis-diols or alpha-hydroxy ketones from simple olefinic starting materials.

  7. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  8. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  9. Particle acceleration on Galactic scales

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The history of and current ideas concerning the origin of cosmic rays in the Galaxy and in extragalactic sources are surveyed. The observed properties of Galactic cosmic rays and shock acceleration are discussed. It is argued that shock acceleration in various guises is an essential and conceptually the most economical acceleration mechanism.

  10. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  11. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  12. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  13. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  14. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    SciTech Connect

    Chen, Pisin; Chang, Feng-Yin; Lin, Guey-Lin; Noble, Robert J.; Sydora, Richard; /Alberta U.

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.

  15. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  16. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  17. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2016-07-12

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  18. Center for accelerator mass spectrometry Lawrence Livermore National Laboratory

    SciTech Connect

    Roberts, M.L.; Southon, J.R.; Proctor, I.D.

    1997-09-01

    The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) is a multi-disciplinary research organization that conducts both technological and applications research. CAMS operates both an HVEC FN tandem and a NEC Model 5SDH-2 tandem accelerator. Using highly sensitive accelerator-based element and isotope detection methods, staff at CAMS collaborate with a broad scope of external and internal researchers to solve problems for LLNL, the University of California, the U.S. Department of Energy, and other academic, government, and industrial laboratories. The HVEC FN tandem is used by the LLNL Accelerator Mass Spectrometry (AMS) group. AMS is a technique that uses isotope ratio mass spectrometry at MeV energies to quantify long lived radioisotopes. For AMS, the FN tandem is operated under a distributed computer control system that makes possible rapid and precise switching between experimental configurations on a daily basis. The accelerator and beam lines are unshielded with radiation protection provided by a computer supervised radiation monitoring system and proximity shielding. With AMS, we routinely measure the isotopes {sup 3} H, {sup 7} Be, {sup 10} Be, {sup 14} C, {sup 26} Al, {sup 36} Cl, {sup 41} Ca, {sup 59} Ni, and {sup 129} I at abundances as low as 1 part in 10{sup 15} . Research programs are as diverse as archaeology, dosimetry of carcinogens and mutagens, oceanic and atmospheric chemistry, paleoclimatology, and detection of signatures of nuclear fuel reprocessing for non-proliferation purposes. During the past year our AMS group has run approximately 20,000 research samples. The NEC Model 5SDH-2 tandem accelerator is used by the Ion Micro Analysis Group (IMAG), a joint collaboration between LLNL and Sandia National Laboratories/California in biological and materials science research. The 1.7 MV accelerator and an Oxford Microbeams Quadrupole Triplet Lens System are used to create a 3 MeV micron scale focused ion

  19. APT accelerator. Topical report

    SciTech Connect

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  20. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  1. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Freeman, S. P. H. T.; Xu, S.; Dougans, A.

    2013-01-01

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such 14C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed 13C and 16O by improvising an additional Wien filter on our SSAMS deck. Also, 14C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the 14N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  2. Muon Acceleration - RLA and FFAG

    SciTech Connect

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  3. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  4. Accelerated Innovation Pilot

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  5. Ion wave breaking acceleration

    NASA Astrophysics Data System (ADS)

    Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.

    2016-07-01

    Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.

  6. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  7. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    SciTech Connect

    Coutts, G.W.; Coon, M.L.; Hinz, A.F.; Hornady, R.S.; Lang, D.D.; Lund, N.P.

    1983-11-30

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added.

  8. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  9. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  10. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    SciTech Connect

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to be conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.

  11. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  12. Laser acceleration in vacuum

    SciTech Connect

    Hsu, J.L.; Katsouleas, T.; Mori, W.B.; Schroeder, C.B.; Wurtele, J.S.

    1997-02-01

    This paper explores the use of the large electric fields of high-brightness lasers (e.g., up to order TV/cm) to accelerate particles. Unfortunately, as is well known, it is difficult to couple the vacuum field of the laser to particles so as to achieve a net energy gain. In principle, the energy gain near the focus of the laser can be quite high, i.e., on the order of the work done in crossing the focus {Delta}{gamma}={radical}({pi})eEw{approximately}30MeV{radical}(P/1TW), where P is the laser power. In order to retain this energy, the particles must be in the highly nonlinear regime (Vosc/c{gt}1) or must be separated from the laser within a distance on the order of a Rayleigh length from the focus. In this work, we explore the acceleration and output energy distribution of an electron beam injected at various angles and injection energies into a focused laser beam. Insight into the physical mechanism of energy gain is obtained by separating the contributions from the longitudinal and transverse laser field components. {copyright} {ital 1997 American Institute of Physics.}

  13. Axionic suppression of plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Burton, D. A.; Noble, A.; Walton, T. J.

    2016-09-01

    Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.

  14. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  15. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  16. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  17. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  18. Fully integrated, fully automated generation of short tandem repeat profiles

    PubMed Central

    2013-01-01

    Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow as well as to enable short tandem repeat profile generation to be performed in police stations and in field-forward military, intelligence, and homeland security settings. Results An integrated system was developed consisting of an injection-molded microfluidic BioChipSet cassette, a ruggedized instrument, and expert system software. For each of five buccal swabs, the system purifies DNA using guanidinium-based lysis and silica binding, amplifies 15 short tandem repeat loci and the amelogenin locus, electrophoretically separates the resulting amplicons, and generates a profile. No operator processing of the samples is required, and the time from swab insertion to profile generation is 84 minutes. All required reagents are contained within the BioChipSet cassette; these consist of a lyophilized polymerase chain reaction mix and liquids for purification and electrophoretic separation. Profiles obtained from fully automated runs demonstrate that the integrated system generates concordant short tandem repeat profiles. The system exhibits single-base resolution from 100 to greater than 500 bases, with inter-run precision with a standard deviation of ±0.05 - 0.10 bases for most alleles. The reagents are stable for at least 6 months at 22°C, and the instrument has been designed and tested to Military Standard 810F for shock and vibration ruggedization. A nontechnical user can operate the system within or outside the laboratory. Conclusions The integrated system represents the

  19. Introduction to Korean Accelerator Science and Activities in Industrial Accelerators

    NASA Astrophysics Data System (ADS)

    Namkung, Won

    2012-03-01

    After 20 years of the first large-scale accelerator in Korea, the Pohang Light Source (PLS) of 2.0 GeV at POSTECH, its upgrade (PLS-II) is now under commissioning with energy of 3.0 GeV. The users' service for synchrotron radiation is scheduled in April 2012. There are five big accelerator projects in various stages of construction, namely a high-intensity proton linac of 100 MeV, the PAL-XFEL of 10-GeV, a carbon therapy cyclotron of 400 MeV/u, and rare isotope accelerators for isotope separator on-line (ISOL) and In-flight Fragmentation (IFF). There are also strong demands for industrial uses of accelerators, especially in sterilization applications. In this paper, we report the current status of accelerator projects and its science in Korea, along with a brief review of accelerator R&D going back to the early 1960s at universities.

  20. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)