Science.gov

Sample records for existing tandem accelerator

  1. Argonne Tandem-Linac Accelerator System

    SciTech Connect

    Bollinger, L.M.

    1983-01-01

    Design considerations and operational experience for the existing heavy-ion accelerator consisting of a tandem injecting into a superconducting linac are summarized, with emphasis on the general features of the system. This introduction provides the basis for a discussion of the objectives and design of ATLAS, a larger tandem-linac system being formed by expanding the existing superconducting linac.

  2. Oak Ridge 25-MV tandem accelerator

    SciTech Connect

    Jones, C.M.

    1981-01-01

    A brief description is presented of the scope and status of the heavy ion accelerator facility, and status of the project is discussed. Initial operation of the 25 MV tandem accelerator from National Electrostatics Corporation is covered. (GHT)

  3. 25 MV tandem accelerator at Oak Ridge

    SciTech Connect

    Jones, C.M.

    1980-01-01

    A new heavy-ion accelerator facility is under construction at the Oak Ridge National Laboratory. A brief description of the scope and status of this project is presented with emphasis on the first operational experience with the 25 MV tandem accelerator.

  4. Oak Ridge 25-MV tandem accelerator

    SciTech Connect

    Ziegler, N.F.; Richardson, E.G.; Mann, J.E.; Juras, R.C.; Jones, C.M.; Biggerstaff, J.A.; Benjamin, J.A.

    1981-01-01

    A new heavy-ion accelerator facility is nearing completion at the Oak Ridge National Laboratory. This paper presents a brief description of the scope and status of this project and a discussion of some aspects of the first operational experience with the 25 MV tandem accelerator which is being provided by the National Electrostatics Corporation (NEC) as a major component of the first phase of the facility.

  5. The Naples University 3 MV tandem accelerator

    SciTech Connect

    Campajola, L.; Brondi, A.

    2013-07-18

    The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.

  6. Sulphur hexafluoride as a stripper gas for tandem accelerators

    NASA Astrophysics Data System (ADS)

    Hotchkis, M. A. C.; Child, D.; Fink, D.; Garton, D.; Levchenko, V.; Wilcken, K.

    2013-05-01

    We have investigated sulphur hexafluoride as a stripper gas in tandem accelerators by using the ANTARES accelerator system at ANSTO to measure charge state distributions for this gas. Results are reported at 4 MV terminal voltage for injected negative ions ranging from carbon to uranium oxide. For iodine and thorium the distributions are extended across a range of energies of practical use for accelerator mass spectrometry, ion beam analysis and other accelerator applications. Charge state distributions using sulphur hexafluoride are found to have mean charge states up to 1 charge unit higher than, and to be broader than, corresponding distributions for argon gas, except in the case of carbon beams. As a result, SF6 is shown to provide significantly higher yields for charge states of heavy ions above the mean charge state. We now perform actinide AMS measurements with 9% yield to the 5+ charge state, compared to 4-5% achieved previously with argon gas.

  7. Modification of the argon stripping target of the tandem accelerator.

    PubMed

    Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P

    2015-12-01

    The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator.

  8. A remote control console for the HHIRF 25-MV Tandem Accelerator

    SciTech Connect

    Hasanul Basher, A.M.

    1993-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders, and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. This capability will be useful in the new Radioactive Ion Beam project of the division. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 with the aid of a communication protocol. Hardware configuration has been established, a software program that reads the pages from the shared memory, and a communication protocol have been developed. The following sections present the implementation strategy, work completed, future action plans, and the functional details of the communication protocol.

  9. Progress in radiocarbon dating with the Chalk River MP tandem accelerator

    SciTech Connect

    Andrews, H.R.; Ball, G.C.; Brown, R.M.; Davies, W.G.; Imahori, Y.; Milton, J.C.D.

    1980-01-01

    The evolution of a tandem accelerator /sup 14/C dating system at Chalk River is recounted. Background problems and sources of instability are discussed and solutions are described. Details of sample chemistry and source preparation are presented.

  10. Oak Ridge 25URC Tandem Accelerator 2008 SNEAP Lab Report

    SciTech Connect

    Meigs, Martha J; Juras, Raymond C

    2011-01-01

    radiological survey found no contamination outside the shielded vaults. No decontamination was required. No individual received any detectable radiological dose as a result of this event. The 25URC tandem accelerator was given permission to resume operation with stable beams in early September, but radioactive ion production is still not allowed. Subsequent analysis indicated a release that consisted entirely of noble gasses (Xe and Kr isotopes). We believe we have identified two unrelated failures, one associated with the HVAC system and the other with the roughing system exhaust which accounts for both the escape of noble gasses into the IRIS1 vault and their migration outside the vault. An investigation team report is expected by October 24. At that time, corrective actions will be determined and the path to future radioactive ion beam production will be known. The break from operations allowed a few upgrades to be implemented. The most notable was the installation and commissioning of a SNICS ion source purchased from National Electrostatics Corporation (NEC). The SNICS replaced the old Alton/Aarhus source that we have used for many years. An ANU style gas cathode holder was purchased also but has not yet been implemented. The first beams have been produced by the source and the biggest problem encountered was reducing the beam for very low current experiments. A new power supply for the injection magnet was installed during this period also. Radioactive ion beam (RIB) development at the High Power Target Laboratory (HPTL) has been delayed this year while installing the platforms, conduits and equipment for the second Injector for Radioactive Ion Species (IRIS2) which is co-located with the HPTL facility. Therefore, the majority of development activities have been performed at the two off-line ion source test facilities (ISTF1 and ISTF2) and the On-Line Test Facility (OLTF). Both test facilities have been developing systems which will eventually be used with IRIS2. Two new

  11. Oak Ridge 25URC Tandem Accelerator 2007 SNEAP Lab Report

    SciTech Connect

    Meigs, Martha J; Juras, Raymond C

    2008-01-01

    contamination outside the shielded vaults. No decontamination was required. No individual received any detectable radiological dose as a result of this event. The 25URC tandem accelerator was given permission to resume operation with stable beams in early September, but radioactive ion production is still not allowed. Subsequent analysis indicated a release that consisted entirely of noble gasses (Xe and Kr isotopes). We believe we have identified two unrelated failures, one associated with the HVAC system and the other with the roughing system exhaust which accounts for both the escape of noble gasses into the IRIS1 vault and their migration outside the vault. An investigation team report is expected by October 24. At that time, corrective actions will be determined and the path to future radioactive ion beam production will be known. The break from operations allowed a few upgrades to be implemented. The most notable was the installation and commissioning of a SNICS ion source purchased from National Electrostatics Corporation (NEC). The SNICS replaced the old Alton/Aarhus source that we have used for many years. An ANU style gas cathode holder was purchased also but has not yet been implemented. The first beams have been produced by the source and the biggest problem encountered was reducing the beam for very low current experiments. A new power supply for the injection magnet was installed during this period also. Radioactive ion beam (RIB) development at the High Power Target Laboratory (HPTL) has been delayed this year while installing the platforms, conduits and equipment for the second Injector for Radioactive Ion Species (IRIS2) which is co-located with the HPTL facility. The majority of development activities have been performed at the two off-line ion source test facilities (ISTF1 and ISTF2) and the On-Line Test Facility (OLTF). Both test facilities have been developing systems which will eventually be used with IRIS2. Two new tunable Ti:Sapphire lasers have been

  12. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  13. The computer monitor and control system for the munich MP tandem accelerator

    NASA Astrophysics Data System (ADS)

    Mörchen, H.; Off, J.; Rohrer, L.; Schnitter, H.

    1981-05-01

    Presently a computer monitor and control system for the Munich MP tandem accelerator is being developed. It is based on a PDP-11/34 with disc units, DEC-tapes, and an interactive graphic terminal. The accelerator is connected to the system via CAMAC hardware. A monitor program takes all data and stores the accelerator status in the memory and in a direct access file. A logbook file is created and the logbook is printed. During test-runs subsystems of the accelerator have been controlled. A beam transport program controlling a quadrupole doublet and optimizing the beam current measured at a Faraday cup was operated successfully.

  14. Final version of the pick-up wheels in the Pelletron tandem accelerator at Lund

    NASA Astrophysics Data System (ADS)

    Håkansson, Kjell; Hellborg, Ragnar

    1993-04-01

    A new type of pick-up wheel has been designed and constructed for the charge transport system of the Lund 3UDH Pelletron tandem accelerator. The major improvements compared with older types are a slender design with only one ball bearing and more robust contact pins with a rubber ring between the pinhead and the wheel nave.

  15. Automated accelerator controls for a 3 MV tandem Pelletron

    NASA Astrophysics Data System (ADS)

    Rathmell, R. D.; Kitchen, R. L.; Luck, T. R.; Sundquist, M. L.

    1991-05-01

    A new accelerator control system has been developed which uses a real-time, multitasking operating system running on a Motorola 68030 based microcomputer. The system includes multiple graphic and text displays and allows the operator to communicate via these displays to the accelerator, which is interfaced to CAMAC. Most accelerator parameters can be controlled using a mouse in conjunction with a single graphic display, eliminating the need to change CRT pages in order to control parameters from the source to the target. A touch screen is also available to permit a number of parameters to be at the operator's finger tips at all times. Operating parameters for a new beam and energy can be automatically set by scaling from a previously stored run. The program and database are structured to facilitate interlocking and closed loop control of parameters. The hardware configuration, structure and features of the software will be reviewed.

  16. Half-life of Si-32 from tandem-accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Elmore, D.; Anantaraman, N.; Fulbright, H. W.; Gove, H. E.; Nishiizumi, K.; Murrell, M. T.; Honda, M.; Hans, H. S.

    1980-01-01

    A newly developed mass-spectrometry technique employing a tandem Van de Graaff accelerator together with a special beam-transport system and heavy-ion detector has been used to determine the half-life of Si-32. The result obtained, 108 plus or minus 18 yr, disagrees with the accepted value of 330 plus or minus 40 yr. The implications of the new half-life of Si-32, which is used for dating studies, are discussed.

  17. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  18. Scalable, One-Pot, Microwave-Accelerated Tandem Synthesis of Unsymmetrical Urea Derivatives.

    PubMed

    Kulkarni, Abhijit R; Garai, Sumanta; Thakur, Ganesh A

    2017-01-20

    We report a facile, microwave-accelerated, one-pot tandem synthesis of unsymmetrical ureas via a Curtius rearrangement. In this method, one-pot microwave irradiation of commercially available (hetero)aromatic acids and amines in the presence of diphenylphosphoryl azide enabled extremely rapid (1-5 min) construction of an array of unsymmetrical ureas in good to excellent yields. We demonstrate the utility of our method in the efficient, gram-scale synthesis of key biologically active compounds targeting the cannabinoid 1 and α7 nicotinic acetylcholine receptors.

  19. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days.

  20. Experiments to increase the parameters of the vacuum insulation tandem accelerator for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D. A.; Kolesnikov, J. A.; Koshkarev, A. M.; Kuznetsov, A. S.; Makarov, A. N.; Sokolova, E. O.; Sorokin, I. N.; Sycheva, T. V.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-12-01

    An epithermal neutron source that is based on a vacuum insulation tandem accelerator (VITA) and lithium target was created in the Budker Institute of Nuclear Physics for the development of boron neutron capture therapy (BNCT). A stationary proton beam with 2 MeV energy and 1.6 mA current has been obtained. To carry out BNCT, it is necessary to increase the beam parameters up to 2.3 MeV and 3 mA. Ways to increase the parameters of the proton beam have been proposed and discussed in this paper. The results of the experiments are presented.

  1. Distributed UHV system for the folded tandem ion accelerator facility at BARC

    NASA Astrophysics Data System (ADS)

    Gupta, S. K.; Agarwal, A.; Singh, S. K.; Basu, A.; P, Sapna; Sarode, S. P.; Singh, V. P.; Subrahmanyam, N. B. V.; Bhatt, J. P.; Pol, S. S.; Raut, P. J.; Ware, S. V.; Singh, P.; Choudhury, R. K.; Kailas, S.

    2008-05-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) Facility at the Nuclear Physics Division, BARC is operational and accelerated beams of both light and heavy ions are being used extensively for basic and applied research. An average vacuum of the order of 10-8-10-9 Torr is maintained for maximum beam transmission and minimum beam energy spreads. The FOTIA vacuum system comprises of about 55 meter long, 100 mm diameter beam lines including various diagnostic devices, two accelerating tubes and four narrow vacuum chambers. The cross sections of the vacuum chambers are 14mm × 24mm for 180°, 38mm × 60mm and 19 × 44 mm for the and 70° & 90° bending magnets and Switching chambers respectively. All the beam line components are UHV compatible, fabricated from stainless steel 304L grade material fitted with metal gaskets. The total volume ~5.8 × 105 cm3 and surface area of 4.6 × 104 cm2, interspersed with total 18 pumping stations. The accelerating tubes are subjected to very high voltage gradient, 20.4 kV/cm, which requires a hydrocarbon free and clean vacuum for smooth operation of the accelerator. Vacuum interlocks are provided to various devices for safe operation of the accelerator. Specially designed sputter ion pumps for higher environmental pressure of 8 atmospheres are used to pump the accelerating tubes and the vacuum chamber for the 180° bending magnet. Fast acting valves are provided for isolating main accelerator against accidental air rush from rest of the beam lines. All the vacuum readings are displayed locally and are also available remotely through computer interface to the Control Room. Vacuum system details are described in this paper.

  2. Neutron Induced Reactions with the 17 Mev Facility at the Athens Tandem Accelerator NCSR 'Demokritos'

    NASA Astrophysics Data System (ADS)

    Vlastou, R.; Kalamara, A.; Serris, M.; Diakaki, M.; Kokkoris, M.; Paneta, V.; Axiotis, M.; Lagoyannis, A.

    In the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" monoenergetic neutron beams have been produced in the energy range∼ 15-20 MeV using anew Ti-tritiated target of 373 GBq activity, by means of the 3H(d,n)4He reaction. The corresponding deuteron beam energies obtained from the accelerator, were in the 1.5-4.5MeV range.The maximum flux has been determined to be of the order of 106 n/cm2 s, implementing reference reactions. The 17.1MeV neutron beam has been used for the measurement of 197Au(n,2n) reaction cross section. Theoretical calculations have been performed via the statistical model code EMPIRE and compared to the experimental data of the present work and data from literature.

  3. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy.

  4. Gamma-resonance Contraband Detection using a high current tandem accelerator

    SciTech Connect

    Milton, B. F.; Beis, J.; Dale, D.; Rogers, J.; Ruegg, R.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Sredniawski, J.

    1999-04-26

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by {sup 14}N of gammas produced using {sup 13}C(p,{gamma}){sup 14}N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H{sup -} tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  5. Accelerator mass spectrometry and radioisotope detection at the Argonne FN tandem facility

    SciTech Connect

    Henning, W.; Kutschera, W.; Paul, M.; Smither, R.K.; Stephenson, E.J.; Yntema, J.L.

    1980-01-01

    The Argonne FN tandem accelerator and standard components of its experimental heavy-ion research facility, have been used as a highly-sensitive mass spectrometer to detect several long-lived radioisotopes and measure their concentration by counting of accelerated ions. Background beams from isobaric nuclei have been eliminated by combining the dispersion from the energy loss in a uniform Al foil stack with the momentum resolution of an Enge split-pole magnetic spectrograph. Radioisotope concentrations in the following ranges have been measured: /sup 14/C//sup 12/C = 10/sup -12/ to 10/sup -13/, /sup 26/Al//sup 27/Al = 10/sup -10/ to 10/sup -12/, /sup 32/Si/Si = 10/sup -8/ to 10/sup -14/, /sup 36/Cl/Cl = 10/sup -10/ to 10/sup -11/. Particular emphasis was put on exploring to what extent the technique of identifying and counting individual ions in an accelerator beam can be conveniently used to determine nuclear quantities of interest when their measurement involves very low radioisotope concentrations. The usefulness of this method can be demonstrated by measuring the /sup 26/Mg(p,n)/sup 26/Al(7.2 x 10/sup 5/ yr) cross section at proton energies in the astrophysically interesting range just above threshold, and by determining the previously poorly known half life of /sup 32/Si.

  6. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  7. Determination of cosmogenic Ca-41 in a meteorite with tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Kubik, P. W.; Elmore, D.; Conard, N. J.; Nishiizumi, K.; Arnold, J. R.

    1986-01-01

    The first use of tandem accelerator mass spectrometry (TAMS) to measure the content of Ca-41 in a natural sample, the iron Bogou meteorite, is reported. Ca in the samples was extracted by hydroxide precipitation and purified by means of a caution exchange resin (AG 50W-X8). After adding 4 percent ammonium oxide, the precipitate was ignited to CaO in a quartz vial at about 1100 C. The Ca-41/Ca ratios were determined following acceleration by alternate measurements of the Ca-40 beam current in an image Faraday cup. Ca-41 particles were also measured using a gas counter. The measured Ca-41/Ca ratio was 3.8 + or -0.6 x 10 to the 12th, which corresponds to a Ca-41 activity of 6.9 + or -1.1 d.p.m. per kg. Calculation of the half-life of Ca-41 in the Bogou meteorite yielded an age of 103,000 years.

  8. Comparison of a 250 kV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer--fitness for purpose in bioanalysis.

    PubMed

    Young, G C; Corless, S; Felgate, C C; Colthup, P V

    2008-12-01

    The introduction of 'compact' accelerator mass spectrometers into biomedical science, including use in drug metabolism and bioanalytical applications, is an exciting recent development. Comparisons are presented here between a more established and relatively large tandem accelerator which operates at up to 5 MV and a conventional laboratory-sized 250 kV single-stage accelerator mass spectrometer. Biological samples were enriched with low levels of radiocarbon, then converted into graphite prior to analysis on each of the two instruments. The data obtained showed the single-stage instrument to be capable of delivering comparable results, and thus able to provide similar study support, with that provided by the 5 MV instrument, without the significant overheads and complexities which are inherent to the operation of the larger instrument. We believe that the advent of these laboratory-sized accelerator mass spectrometry (AMS) instruments represents a real turning point in the potential for application of AMS by a wider user group.

  9. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    SciTech Connect

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-10-26

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.

  10. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  11. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  12. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  13. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  14. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring.

    PubMed

    Mello, S L A; Codeço, C F S; Magnani, B F; Sant'Anna, M M

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  15. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    NASA Astrophysics Data System (ADS)

    Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  16. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.

    PubMed

    Lagares, J I; Araque, J E Guerrero; Méndez-Villafañe, R; Arce, P; Sansaloni, F; Vela, O; Díaz, C; Campo, Xandra; Pérez, J M

    2016-08-01

    A Bonner sphere spectrometer was used to measure the neutron spectra produced at the collision of protons with an H2(18)O target at different angles. A unique H2(18)O target to produce (18)F was designed and placed in a Tandem linear particle accelerator which produces 8.5MeV protons. The neutron count rates measured with the Bonner spheres were unfolded with the MAXED code. With the GEANT4 Monte Carlo code the neutron spectrum induced in the (p, n) reaction was estimated, this spectrum was used as initial guess during unfolding. Although the cross section of the reaction (18)O(p,n)(18)F is well known, the neutron energy spectra is not correctly defined and it is necessary to verify the simulation with measurements. For this reason, the sensitivity of the unfolding method to the initial spectrum was analyzed applying small variation to the fast neutron peak.

  17. Accelerated quantification of amphetamine enantiomers in human urine using chiral liquid chromatography and on-line column-switching coupled with tandem mass spectrometry.

    PubMed

    Hädener, Marianne; Bruni, Pia S; Weinmann, Wolfgang; Frübis, Matthias; König, Stefan

    2017-02-01

    Amphetamine (AM) is a powerful psychostimulant existing in two enantiomeric forms. Stereoselective analysis of AM in biosamples can assist clinicians and forensic experts in differentiating between abuse of illicitly synthesized racemic AM and ingestion of pharmaceutical AM formulations containing either S-AM or different proportions of the S- and R-enantiomers. Therefore, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying AM enantiomers in urine was newly developed. The method comprised dilution with water, followed by injection of the diluted sample onto an achiral C18 trapping column for purification and subsequent backflush elution to a chiral Lux 3 μm AMP LC column by means of a switching valve. An isocratic mobile phase of 25 % acetonitrile in 0.1 M aqueous ammonia was used for enantiomeric separation. Injection, cleanup, and backflush of the next sample were performed before the previous sample had eluted from the analytical column, thus enabling simultaneous enantioseparation of up to three samples within the analytical column. This novel chromatographic concept allowed for increased sample throughput by accelerating both the sample preparation and the LC analysis. Analyte detection was accomplished by electrospray ionization in positive ion mode and selected reaction monitoring using a triple-stage quadrupole mass spectrometer. The method was successfully validated through assessment of its linearity, lower limit of quantification, accuracy and precision, selectivity, matrix effect, carry-over, dilution integrity, and re-injection reproducibility. Linearity ranged from 0.05 to 25 mg/L for both enantiomers. Proof of the method included analysis of urine samples obtained from drug abusers and patients receiving an S-AM prodrug. Graphical Abstract Enantioselective determination of amphetamine in human urine using liquid chromatography with achiral-chiral column-switching and tandem mass spectrometry.

  18. C-14 content of ten meteorites measured by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Andrews, H. R.; Ball, G. C.; Burn, N.; Imahori, Y.; Milton, J. C. D.; Fireman, E. L.

    1984-01-01

    Measurements of C-14 in three North American and seven Antarctic meteorites show in most cases that this cosmogenic isotope, which is tightly bound, was separated from absorbed atmospheric radiocarbon by stepwise heating extractions. The present upper limit to age determination by the accelerator method varies from 50,000 to 70,000 years, depending on the mass and carbon content of the sample. The natural limit caused by cosmic ray production of C-14 in silicate rocks at 2000 m elevation is estimated to be 55,000 + or - 5000 years. An estimation is also made of the 'weathering ages' of the Antarctic meteorites from the specific activity of loosely bound CO2 which is thought to be absorbed from the terrestrial atmosphere. Accelerator measurements are found to agree with previous low level counting measurements, but are more sensitive and precise.

  19. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-11-23

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.

  20. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  1. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    PubMed Central

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  2. Production of {sup 17}F, {sup 15}O and other radioisotopes for PET using a 3 MV electrostatic tandem accelerator

    SciTech Connect

    Roberts, A. D.; Davidson, R. J.; Nickles, R. J.

    1999-06-10

    Target systems for the production of positron emitting radioisotopes used for medical research with positron emission tomography (PET) are under development for a 3 MV electrostatic tandem accelerator (NEC 9SDH-2). This machine is intended primarily for the continuous production of short lived tracers labeled with {sup 15}O (t{sub 1/2}=122 s) or {sup 17}F (t{sub 1/2}=65 s) for determining regional cerebral blood flow in humans. Simple gas, liquid, and solid target systems are presented for the production of [{sup 15}O]H{sub 2}O (yield at saturation 13 mCi/{mu}A), [{sup 17}F]F{sub 2} (22 mCi/{mu}A), [{sup 17}F] fluoride (aq.) (12 mCi/{mu}A), [{sup 18}F]fluoride (aq.) (21 mCi/{mu}A), [{sup 13}N] in graphite (25 mCi/{mu}A), and [{sup 11}C]CO{sub 2} (2.3 mCi/{mu}A). Current limitations on single window targets for each production are discussed.

  3. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    PubMed

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  4. The new external ion beam analysis setup at the Demokritos Tandem accelerator and first applications in cultural heritage

    NASA Astrophysics Data System (ADS)

    Sokaras, Dimosthenis; Bistekos, Euthimios; Georgiou, Lambros; Salomon, Joseph; Bogovac, Mladen; Aloupi-Siotis, Eleni; Paschalis, Vasilis; Aslani, Ioanna; Karabagia, Sofia; Lagoyannis, Anastasios; Harissopulos, Sotirios; Kantarelou, Vasiliki; Karydas, Andreas-Germanos

    2011-03-01

    At the 5.5 MV Tandem VdG accelerator of the Institute of Nuclear Physics of N.C.S.R. "Demokritos", Athens, Greece, an external ion-beam set-up has been recently developed and installed. The aim of this development was to integrate the analytical capabilities of the PIXE, RBS and PIGE ion beam techniques in one experimental set-up, so that to attain a complete elemental and near surface structural characterization of samples in an almost non-destructive way and without any limitation concerning their size or conductive state. A careful 3D mechanical drawing optimized the set-up experimental parameters achieving probe dimensions at the millimeter range (1 mm 2) and fulfilling the special requirements imposed for optimum performance of the aforementioned techniques, including the possibility to use heavier, than protons, ion beams. For the digital pulse processing of the X-ray, γ-ray and charged particle detector signals, novel hardware and software tools were developed based on a custom FPGA configuration. The first applications were focused in the quality control of materials that have been intentionally contaminated with a particular tracer-element ("tagged" materials). The tagged materials which were developed and tested are technologically authentic replicas of ancient attic ceramics with black glazed decoration. Analytical diagnostic studies were carried out for a few representative paintings of contemporary Greek painters in order to identify and document materials/pigments and techniques and eventually to prevent trade of fakes. Finally, ancient glass beads were also examined with respect to the sodium concentration and its in-depth homogeneity.

  5. Characterization of Erwinia chrysanthemi PY35 cel and pel gene existing in tandem and rapid identification of their gene products.

    PubMed

    Park, S R; Kim, M K; Kim, J O; Bae, D W; Cho, S J; Cho, Y U; Yun, H D

    2000-02-16

    Genomic DNA of the phytopathogenic Erwinia chrysanthemi PY35 was partially digested with Sau3AI, ligated into the BamHI site of pBluescript II SK+, and introduced into E. coli. One clone that was able to hydrolyse carboxymethylcellulose and polygalacturonic acid was selected. A 2.9 kb fragment containing the pelL1 gene (pPY300) and cel5Z gene (pPY401) in tandem was subcloned and sequenced. The pelL1 and cel5Z genes had open reading frames of 1,278 bp and 1,281 bp encoding 425 and 426 amino acid residues with calculated molecular weights of 45,649 Da and 46,473 Da, respectively. pelL1 and cel5Z carried a typical prokaryotic signal peptide of 24 and 41 amino acid residues, respectively. The apparent molecular masses of the proteins when expressed in E. coli cells were approximately 43 kDa (PelL1) and 42 kDa (Cel5Z) as assessed by PGA-SDS-PAGE and CMC-SDS-PAGE.

  6. Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Sadiq, Muhammad Waqas; Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran; Hammarlund-Udenaes, Margareta

    2011-02-01

    Morphine has been predicted to show nonlinear blood-brain barrier transport at lower concentrations. In this study, we investigated the possibility of separating active influx of morphine from its efflux by using very low morphine concentrations and compared accelerator mass spectrometry (AMS) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a method for analyzing microdialysis samples. A 10-min bolus infusion of morphine, followed by a constant-rate infusion, was given to male rats (n = 6) to achieve high (250 ng/ml), medium (50 ng/ml), and low (10 ng/ml) steady-state plasma concentrations. An additional rat received infusions to achieve low (10 ng/ml), very low (2 ng/ml), and ultralow (0.4 ng/ml) concentrations. Unbound morphine concentrations from brain extracellular fluid and blood were sampled by microdialysis and analyzed by LC-MS/MS and AMS. The average partition coefficient for unbound drug (K(p,uu)) values for the low and medium steady-state levels were 0.22 ± 0.08 and 0.21 ± 0.05, respectively, when measured by AMS [not significant (NS); p = 0.5]. For the medium and high steady-state levels, K(p,uu) values were 0.24 ± 0.05 and 0.26 ± 0.05, respectively, when measured by LC-MS/MS (NS; p = 0.2). For the low, very low, and ultralow steady-state levels, K(p,uu) values were 0.16 ± 0.01, 0.16 ± 0.02, and 0.18 ± 0.03, respectively, when measured by AMS. The medium-concentration K(p,uu) values were, on average, 16% lower when measured by AMS than by LC-MS/MS. There were no significant changes in K(p,uu) over a 625-fold concentration range (0.4-250 ng/ml). It was not possible to separate active uptake transport from active efflux using these low concentrations. The two analytical methods provided indistinguishable results for plasma concentrations but differed by up to 38% for microdialysis samples; however, this difference did not affect our conclusions.

  7. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting

    PubMed Central

    McGhie, David; Danielsen, Jørgen; Sandbakk, Øyvind; Haugen, Thomas

    2016-01-01

    Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitions) with linear piecewise fitting (indicating breakpoint). We recorded the kinematics of 24 well trained sprinters during a 25 m sprint run with start from competition starting blocks. Kinematic data were collected for 24 anatomical landmarks in 3D, and the location of centre of mass (CoM) was calculated from this data set. The step-to-step development of seven variables (four related to CoM position, and ground contact time, aerial time and step length) were analysed by curve fitting. In most individual sprints (in total, 41 sprints were successfully recorded) no breakpoints were identified for the variables investigated. However, for the mean results (i.e., the mean curve for all athletes) breakpoints were identified for the development of vertical CoM position, angle of acceleration and distance between support surface and CoM. It must be noted that for these variables the exponential fit showed high correlations (r2>0.99). No relationship was found between the occurrences of breakpoints for different variables as investigated using odds ratios (Mantel-Haenszel Chi-square statistic). It is concluded that although breakpoints regularly appear during accelerated running, these are not the rule and thereby unlikely a fundamental characteristic, but more likely an expression of imperfection of performance. PMID:27467387

  8. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  9. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  10. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  11. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zastepa, Arthur; Pick, Frances R; Blais, Jules M; Saleem, Ammar

    2015-05-04

    The fate and persistence of microcystin cyanotoxins in aquatic ecosystems remains poorly understood in part due to the lack of analytical methods for microcystins in sediments. Existing methods have been limited to the extraction of a few extracellular microcystins of similar chemistry. We developed a single analytical method, consisting of accelerated solvent extraction, hydrophilic-lipophilic balance solid phase extraction, and reversed phase high performance liquid chromatography-tandem mass spectrometry, suitable for the extraction and quantitation of both intracellular and extracellular cyanotoxins in sediments as well as pore waters. Recoveries of nine microcystins, representing the chemical diversity of microcystins, and nodularin (a marine analogue) ranged between 75 and 98% with one, microcystin-RR (MC-RR), at 50%. Chromatographic separation of these analytes was achieved within 7.5 min and the method detection limits were between 1.1 and 2.5 ng g(-1) dry weight (dw). The robustness of the method was demonstrated on sediment cores collected from seven Canadian lakes of diverse geography and trophic states. Individual microcystin variants reached a maximum concentration of 829 ng g(-1) dw on sediment particles and 132 ng mL(-1) in pore waters and could be detected in sediments as deep as 41 cm (>100 years in age). MC-LR, -RR, and -LA were more often detected while MC-YR, -LY, -LF, and -LW were less common. The analytical method enabled us to estimate sediment-pore water distribution coefficients (K(d)), MC-RR had the highest affinity for sediment particles (log K(d)=1.3) while MC-LA had the lowest affinity (log K(d)=-0.4), partitioning mainly into pore waters. Our findings confirm that sediments serve as a reservoir for microcystins but suggest that some variants may diffuse into overlying water thereby constituting a new route of exposure following the dissipation of toxic blooms. The method is well suited to determine the fate and persistence of different

  12. Simultaneous chemical fingerprint and quantitative analysis of Rhizoma Smilacis Glabrae by accelerated solvent extraction and high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Dai, Weiquan; Zhao, Weiquan; Gao, Fangyuan; Shen, Jingjing; Lv, Diya; Qi, Yunpeng; Fan, Guorong

    2015-05-01

    Rhizoma Smilacis Glabrae (RSG) is a well-known herbal medicine with the homology of medicine and food. In this study, simultaneous chemical fingerprint and quantitative analysis of the bioactive flavonoid components of RSG were developed using accelerated solvent extraction and high-performance liquid chromatography coupled with ion trap tandem mass spectrometry. The operational parameters of accelerated solvent extraction including extraction solvent, extraction temperature, static extraction time, solid-to-liquid ratio, and extraction cycles were optimized. Hierarchical cluster analysis, similarity analysis, and principal component analysis were performed to evaluate the similarity and variation of the samples collected from several provinces in China. Subsequently, high-performance liquid chromatography fingerprints were established for the discrimination of 16 batches of RSG samples, and the major six flavonoids, namely, toxifolin, neoastilbin, astilbin, neoisoastilbin, isoastilbin, and engeletin were then quantitatively determined. The calibration curves for all the six analytes showed good linearity (r(2) > 0.999), and the limits of detection and quantification were less than 0.10 and 0.27 μg·mL(-1) , respectively. Therefore, the proposed extraction and determination methods were proved to be robust and reliable for the quality control of RSG.

  13. [Determination of eight defoliant residues in cotton by accelerated solvent extraction coupled with ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Wu, Gang; Dong, Suozhuai; Pan, Lulu; Zhao, Shanhong; Wang, Lijun; Guo, Fanglong; Li, Dan

    2013-07-01

    A novel method has been developed for the rapid extraction and determination of eight defoliants including thidiazuron, butiphos, methabenzthiazuron, abscisic acid, carfentra-zone-ethyl, diuron, paraquat, and pyrithiobac-sodium in cotton by accelerated solvent extraction (ASE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The defoliants in cotton were extracted by ASE and the extracts were dried by a rotavapor, then redissolved in the solvents of acetonitrile and water (1:9, v/v). The chromatographic analysis was performed on an Acquity UPLC HSS T3 column (50 mmx 2. 1 mm, 1. 8 microm) by a gradient elution employing of acetonitrile and 0.05% (v/v) formic acid as mobile phases. The analytes were detected by electrospray ionization (ESI) tandem mass spectrometry with multiple reaction monitoring (MRM) in positive ion mode. Good linearities (r >0.99) were observed between 0. 01 and 0. 3 mg/L for all the compounds. The recoveries and relative standard deviations (RSDs) were obtained by spiking untreated samples with the eight defoliants at 0. 1, 0. 5 and 1.0 mg/kg. The average recoveries of the eight defoliants were from (84. 18 +/- 8.04)% to (95.99 +/- 6.76)%. The precision values expressed as RSDs were from 7. 04% to 10. 60% (n = 6). The limits of detection were 0. 8 - 29 microg/kg and the limits of quantification were 2.5 - 96 1/4g/kg for the analytes. The results ahowed that the method is simple, rapid, sensitive and accurate, and is suitable for the quantitative determination and confirmation of the eight defoliants in cotton.

  14. Optimal extraction and fingerprinting of carotenoids by accelerated solvent extraction and liquid chromatography with tandem mass spectrometry.

    PubMed

    Saha, Supradip; Walia, Suresh; Kundu, Aditi; Sharma, Khushbu; Paul, Ranjit Kumar

    2015-06-15

    Accelerated solvent extraction (ASE) is applied for the extraction of carotenoids from orange carrot and the extraction parameters were optimized. Two carotenoids, lutein and β-carotene, are selected as the validation process. Hildebrand solubility parameters and dielectric constant of solvents were taken into consideration in selecting solvent mixture. The effects of various experimental parameters, such as temperature, static time, drying agent etc., on the ASE extraction efficiency are investigated systematically. Interactions among the variables were also studied. Furthermore, two carotenoids were analyzed and characterized by LC-ESI MS. The study concluded that Hildebrand solubility parameter approach may be applicable for less polar bioactive molecules like carotenoids. The properties of solvent and extraction temperature are found to be the most important parameters affecting the ASE extraction efficiency of thermolabile natural compounds.

  15. Determination of CA-41, I-129 and OS-187 in the Rochester tandem accelerator and some applications of these isotopes

    NASA Technical Reports Server (NTRS)

    Fehn, U.; Elmore, D.; Gove, H. E.; Kubik, P.; Teng, R.; Tubbs, L.

    1986-01-01

    The measurement of Ca-41 and I-129 utilizing the Rochester Tanden Accelerator Mass Spectrometer (TAMS) is discussed. Ca-41, having a half-life of 100,000 yrs., is of potential use for the dating of ground water as well as of bones in the age range between 50,000 and 1 million yrs. A major problem for the measurement of Ca-41 with TAMS is the fact that calcium does not readily form negative atomic ions. It does, however, form negative molecular ions. The production of CaO ions from compounds such as CaO and CaCO3 and from free Ca molecules sprayed with oxygen gas was studied. A project to utilize I-129 as a tracer for hydrothermal convection in sediment-covered oceanic crust is also briefly described. Finally, plans to use the Os-187/Os-186 ratio for the determination of extraterrestrial material in the Ries crater in Germany are summarized.

  16. Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-02-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot. The repeatability was 5.2% and the internal reproducibility was 6.2%. Recovery was in the range 90-120%. No significant difference was observed between the results obtained by the present method and by a method using the same principle as the CEN-standard i.e. liquid-liquid extraction and post-column zinc reduction with fluorescence detection. Limit of quantification was estimated to 0.05 μg/100g fresh weight.

  17. Accelerator mass spectrometry of 63Ni at the Munich Tandem Laboratory for estimating fast neutron fluences from the Hiroshima atomic bomb.

    PubMed

    Rühm, W; Knie, K; Rugel, G; Marchetti, A A; Faestermann, T; Wallner, C; McAninch, J E; Straume, T; Korschinek, G

    2000-10-01

    After the release of the present dosimetry system DS86 in 1987, measurements have shown that DS86 may substantially underestimate thermal neutron fluences at large distances (>1,000 m) from the hypocenter in Hiroshima. This discrepancy casts doubts on the DS86 neutron source term and, consequently, the survivors' estimated neutron doses. However, the doses were caused mainly by fast neutrons. To determine retrospectively fast neutron fluences in Hiroshima, the reaction 63Cu(n, p)63Ni can be used, if adequate copper samples can be found. Measuring 63Ni (half life 100 y) in Hiroshima samples requires a very sensitive technique, such as accelerator mass spectrometry (AMS), because of the relatively small amounts of 63Ni expected (approximately 10(5)-10(6) atoms per gram of copper). Experiments performed at Lawrence Livermore National Laboratory have demonstrated in 1996 that AMS can be used to measure 63Ni in Hiroshima copper samples. Subsequently, a collaboration was established with the Technical University of Munich in view of its potential to perform more sensitive measurements of 63Ni than the Livermore facility and in the interest of interlaboratory validation. This paper presents the progress made at the Munich facility in the measurement of 63Ni by AMS. The Munich accelerator mass spectrometry facility is a combination of a high energy tandem accelerator and a detection system featuring a gas-filled magnet. It is designed for high sensitivity measurements of long-lived radioisotopes. Optimization of the ion source setup has further improved the sensitivity for 63Ni by reducing the background level of the 63Cu isobar interference by about two orders of magnitude. Current background levels correspond to a ratio of 63Ni/Ni<2x10(-14) and suggest that, with adequate copper samples, the assessment of fast neutron fluences in Hiroshima and Nagasaki is possible for ground distances of up to 1500 m, and--under favorable conditions--even beyond. To demonstrate this

  18. Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    PubMed

    Miyaji, Yoshihiro; Ishizuka, Tomoko; Kawai, Kenji; Hamabe, Yoshimi; Miyaoka, Teiji; Oh-hara, Toshinari; Ikeda, Toshihiko; Kurihara, Atsushi

    2009-01-01

    A technique utilizing simultaneous intravenous microdosing of (14)C-labeled drug with oral dosing of non-labeled drug for measurement of absolute bioavailability was evaluated using R-142086 in male dogs. Plasma concentrations of R-142086 were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and those of (14)C-R-142086 were measured by accelerator mass spectrometry (AMS). The absence of metabolites in the plasma and urine was confirmed by a single radioactive peak of the parent compound in the chromatogram after intravenous microdosing of (14)C-R-142086 (1.5 microg/kg). Although plasma concentrations of R-142086 determined by LC-MS/MS were approximately 20% higher than those of (14)C-R-142086 as determined by AMS, there was excellent correlation (r=0.994) between both concentrations after intravenous dosing of (14)C-R-142086 (0.3 mg/kg). The oral bioavailability of R-142086 at 1 mg/kg obtained by simultaneous intravenous microdosing of (14)C-R-142086 was 16.1%, this being slightly higher than the value (12.5%) obtained by separate intravenous dosing of R-142086 (0.3 mg/kg). In conclusion, on utilizing simultaneous intravenous microdosing of (14)C-labeled drug in conjunction with AMS analysis, absolute bioavailability could be approximately measured in dogs, but without total accuracy. Bioavailability in humans may possibly be approximately measured at an earlier stage and at a lower cost.

  19. Determination of ultra-trace organic acids in Masson pine (Pinus massoniana L.) by accelerated solvent extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Shuiliang; Fan, China Q; Wang, Ping

    2015-02-15

    An accelerated solvent extraction (ASE)-solid-phase extraction (SPE)-liquid chromatography with electrospray ionization-tandem mass spectrometry (ASE-SPE-LC-ESI-MS/MS) methodology was developed for the extraction, cleanup and quantification of ultra-trace organic acids in Masson pine (Pinus massoniana L.) tissues. The separation was carried out on a Bio-Rad Aminex HPX-87H sulfonic column with an eluent containing 5 mmol L(-1) H₂SO₄ at a flow rate of 0.5 mL min(-1). A linear ion trap mass spectrometer equipped with electrospray ionization (ESI) source was operated in negative ion mode, and the six organic acids were eluted within 20 min. ASE extraction, SPE cleanup and LC-ESI-MS/MS analysis conditions were optimized to obtain reliable information about plant organic acid composition. Selective reaction monitoring (SRM) was employed for quantitative measurement. Intra-day precisions averaged 6.7%, and inter-day precisions were 2.1-10.7% for organic acid measurements in the pine samples. External standard calibration curves were linear over the range of 16.5-5000 ng L(-1), and detection limits based on a signal-to-noise ratio of three were at 0.5-5.0 ng L(-1). The results obtained showed the sensibility of the method was better than that of previously described HPLC methodology, and had no significant matrix effect. The proposed ASE-SPE-LC-ESI-MS/MS method is sensitive and reliable for the determination of ultra-trace organic acids in plant samples, despite the presence of the particularly complex matrix.

  20. Linear Accelerator and Gamma Knife-Based Stereotactic Cranial Radiosurgery: Challenges and Successes of Existing Quality Assurance Guidelines and Paradigms

    SciTech Connect

    Goetsch, Steven J.

    2008-05-01

    Intracranial stereotactic radiosurgery has been practiced since 1951. The technique has expanded from a single dedicated unit in Stockholm in 1968 to hundreds of centers performing an estimated 100,000 Gamma Knife and linear accelerator cases in 2005. The radiation dosimetry of small photon fields used in this technique has been well explored in the past 15 years. Quality assurance recommendations have been promulgated in refereed reports and by several national and international professional societies since 1991. The field has survived several reported treatment errors and incidents, generally reacting by strengthening standards and precautions. An increasing number of computer-controlled and robotic-dedicated treatment units are expanding the field and putting patients at risk of unforeseen errors. Revisions and updates to previously published quality assurance documents, and especially to radiation dosimetry protocols, are now needed to ensure continued successful procedures that minimize the risk of serious errors.

  1. A Critical Shock Mach Number for Particle Acceleration in the Absence of Pre-existing Cosmic Rays: M=\\sqrt{5}

    NASA Astrophysics Data System (ADS)

    Vink, Jacco; Yamazaki, Ryo

    2014-01-01

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M\\gt\\sqrt{5}. The reason is that for M\\le \\sqrt{5} the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the unshocked medium, i.e., for low plasma beta, the resistivity of the magnetic field makes it even more difficult to fulfill the energetic requirements for the formation of shock with an accelerated particle precursor and associated compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a purely perpendicular magnetic field configuration with plasma beta β = 0, which gives a minimum Mach number of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays, indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks, and shocks in clusters of galaxies.

  2. [Determination of 19 antibiotic and 2 sulfonamide metabolite residues in wild fish muscle in mariculture areas of Laizhou Bay using accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Liu, Sisi; Du, Juan; Chen, Jingwen; Zhao, Hongxia

    2014-12-01

    A sample preparation and analytical method with accelerated solvent extraction (ASE) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/ MS) was developed to detect 19 antibiotic (9 sulfonamides, 4 quinolones, 3 macrolides and 3 others) and 2 sulfonamide metabolite residues in fish muscle. The target compounds were extracted using ASE and purified simultaneously by a C18 resin in the extraction cell. The extracts were evaporated to dryness, and redissolved with the initial mobile phase for HPLC-MS/MS analysis after freezing centrifugation (10,000 r/min, -4 °C) to remove the fat and other matrix compounds further. The separation of the analytes was carried out on an Xterra MS C18 column with methanol-acetonitrile (1:1, v/v) as mobile phase A and 0. 1% formic acid (containing 0. 1% ammonium formate) as mobile phase B. The spiked recoveries of the method were 55. 2%-113. 3%, with the relative standard deviations of 0. 1% - 17. 6% (n = 6). The limits of detection ranged from 0. 003 to 0. 6 ng/g. The method was applied to two fish (Synechogobius hasta and Liza haematocheilus) collected in mariculture areas of Laizhou Bay and six antibiotics were detected, in which the mass concentrations of norfloxacin were highest with mean values of 67. 01 and 27. 58 ng/g, respectively. The method is simple, rapid, highly sensitive, and useful in the study on exposure levels and environmental behavior of the antibiotics.

  3. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  4. Detecting long tandem duplications in genomic sequences

    PubMed Central

    2012-01-01

    Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations. PMID:22568762

  5. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  6. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  7. Simultaneous determination of bisphenol A, tetrabromobisphenol A, and perfluorooctanoic acid in small household electronics appliances of "Prohibition on Certain Hazardous Substances in Consumer Products" instruction using ultra-performance liquid chromatography-tandem mass spectrometry with accelerated solvent extraction.

    PubMed

    Guo, Qiaozhen; Du, Zhenxia; Zhang, Yun; Lu, Xiaoyu; Wang, Jinhua; Yu, Wenlian

    2013-02-01

    Simultaneous determination of bisphenol A, tetrabromobisphenol A, and perfluorooctanoic acid in small household electronics appliances by accelerated solvent extraction-ultra-performance liquid chromatography-tandem mass spectrometry was established. Samples, heated for 5 min, were extracted by toluene/methanol (10:1, v/v) under the pressure 1500 psi at 100°C, and were extracted 3 static cycles with 20 min per cycle. And then 15 mL extractant solvent was used to wash the samples, and at last the sample was purged by nitrogen for 100 s. The partial extractant (10 mL) was concentrated by nitrogen and re-dissolved with 1 mL methanol/water (1:1, v/v). The three compounds were separated by BEH C18 column effectively in 3 min and detected by electrospray ionization mode mass spectrometry. The linear ranges for bisphenol A, perfluorooctanoic acid, and tetrabromobisphenol A were 1-100, 10-1000 ng/mL, and 0.1-10 μg/mL, respectively. The correlation coefficient was greater than 0.996. The LOD and limit of quantitation for three compounds were 0.1, 10, 1 ng/mL, and 0.5, 50, 5 ng/mL, respectively. And the recoveries were 84-92, 76-82, and 72-74%, respectively, with RSD < 5%. The method was successfully used in determining the real samples. The method and the result were confirmed by liquid chromatography-ion trap-time of flight mass spectrometry.

  8. A tandem-based compact dual-energy gamma generator

    SciTech Connect

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  9. The LLNL multi-user tandem laboratory

    NASA Astrophysics Data System (ADS)

    Davis, J. C.

    1989-04-01

    An FN tandem laboratory, cofunded by several Lawrence Livermore National Laboratory Divisions, Sandia Livermore, and the University of California Regents, is now operational at Livermore. The accelerator, formerly the University of Washington injector, has been upgraded with SF 6, Dowlish tubes, and a NEC pelletron charging system. A conventional duoplasmatron, a tritium source, and two Cs sputtering sources will be fielded on the accelerator. Pulsed beams will be available from two source positions. The laboratory has been designed to accommodate up to 19 experimental positions with excellent optics and working vacuum. The facility is unshielded with both accelerator and radiological systems under the control of a distributed microprocessor system. Research activities at the tandem include nuclear physics and astrophysics, materials science and characterization programs, and accelerator mass spectrometry for archaeology, biomedical, environmental and geoscience investigators.

  10. Upgrading program for the FN tandem and AMS system at PRIME Lab

    NASA Astrophysics Data System (ADS)

    Purser, K. H.; Elmore, D.; Mueller, K. A.; Miller, T. E.; McK. Hyder, H. R.; Enge, H.

    1994-06-01

    A coordinated upgrading program is underway at PRIME Lab with the goal of permitting isotopic ratio measurements throughout the periodic table with systematic errors below 1%, detection limits at or below 10 -15 and a capacity of over 3000 samples per year. The FN tandem upgrade will include spiral-inclined titanium electrode acceleration tubes, dual Pelletron chains, shielded column grading resistors, a longer and larger diameter stripper with both gas recirculation and active pumping, and a 300-foil stripper. The ion source system will provide for tandem injection at energies as great as 130 keV and includes a non-dispersive energy/momentum analysis pair having M/ ΔM above 300 together with 5 Hz mass switching. The 90° electrostatic analyzer will have double-focusing spherical geometry. The 90° magnetic analyzer will have two independent poles to provide four curved boundaries for correction of aberrations. An electrostatic quadrupole triplet will prepare the beam for injection into the tandem and correct any distortion. Following the tandem, an electrostatic quadrupole doublet will be substituted for the existing magnetic lens. This lens will be located close to the tank base for improved optical matching of the existing 90° magnet. The pole width of the existing 90° magnet is adequate for allowing masses 35, 36 and 37 to be directed into separate cups at constant field. Computer control will be added to all power supplies to permit polling of all parameters, unattended operation, and rapid conversion between isotopic systems. The upgrade will begin in the fall of 1993, starting with the tandem

  11. Asymmetric tandem organic solar cells

    NASA Astrophysics Data System (ADS)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells

  12. A new LabVIEW-based control system for the Naval Research Laboratory Trace Element Accelerator Mass Spectrometer

    SciTech Connect

    DeTurck, T. M.; Treacy, D. J. Jr.; Knies, D. L.; Grabowski, K. S.; Knoll, C.; Kennedy, C. A.; Hubler, G. K.

    1999-06-10

    A new LabVIEW-based control system for the existing tandem accelerator and new AMS components has been implemented at the Trace Element Accelerator Mass Spectrometry (TEAMS) facility at the Naval Research Laboratory. Through the use of Device Interfaces (DIs) distributed along a fiber optic network, virtually every component of the accelerator system can be controlled from any networked computer terminal as well as remotely via modem or the internet. This paper discusses the LabVIEW-based control software, including remote operation, automatic calculation of ion optical component parameters, beam optimization, and data logging and retrieval.

  13. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  14. Test of the Tandem transmission at low terminal voltages

    SciTech Connect

    Rehm, K.E.; Blumenthal, D.; Gehring, J.

    1995-08-01

    For a planned experiment with {sup 18}F beams at energies below 1 MeV/u the transmission of the Tandem-Linac system was investigated. The energies required in the experiment are typically around 600 keV/u, which for the most abundant charge states for F(4{sup +}) corresponds to terminal voltages between 2-3 MV. We studied the transmission from the source to the tandem accelerator and to the spectrograph in area II with {sup 18}O and {sup 19}F beams using two different approaches. In the first method only the tandem accelerator was used producing a 14-MeV DC {sup 18}O beam. In the second method a pulsed beam was accelerated to 33 MeV with the tandem accelerator followed by deceleration to 14 MeV with the first 9 resonators of ATLAS. The total transmission from ion source to target was in both cases about 10%. Because of the smaller complexity we used the first method for the {sup 18}F experiment. In future runs we are planning to use the electrostatic lens in the terminal of the tandem to improve the overall transmission.

  15. Summary report on large HVEC accelerators

    SciTech Connect

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated.

  16. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  17. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  18. Tandem mirror thermal barrier experimental program plan

    SciTech Connect

    Coensgen, F.H.; Drake, R.P.; Simonen, T.C.

    1980-01-02

    This report describes an experimental plan for the development of the Tandem Mirror Thermal Barrier. Included is: (1) a description of thermal barrier related physics experiments; (2) thermal barrier related experiments in the existing TMX and Phaedrus experiments; (3) a thermal barrier TMX upgrade; and (4) initiation of investigations of axisymmetric magnetic geometry. Experimental studies of the first two items are presently underway. Results are expected from the TMX upgrade by the close of 1981 and from axisymmetric tandem mirror experiments at the end of 1983. Plans for Phaedrus upgrades are developing for the same period.

  19. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.

    PubMed

    Tsechanski, A; Krutman, Y; Faermann, S

    2005-12-07

    Low-energy photons (<150 keV) are essential for obtaining high quality x-ray radiographs. These photons are usually produced in the accelerator target, but are effectively absorbed by the flattening filter and, at least partially, by the target itself. Experimental proof is presented for the existence of low-energy photons in the unflattened x-ray beam produced by a 6 MeV electron beam normally incident on the thinner of the two existing ports of the all-Cu radiotherapeutic target of a Clinac 18 (Varian Associates) linear accelerator. A number of one-shot absorption measurements were carried out with 12 foils of Pb absorbers with thicknesses varying from 0.25 to 3 mm in steps of 0.25 mm arranged symmetrically around the central axis on a 7.2 cm radius circumference. A Kodak ECL film-screen-cassette combination was used as a detector in the absorption measurements, in which optical density was measured as a function of the thickness of the Pb absorbers. Two sets of absorption measurements were carried out: the first one with the Clinac 18 6 MV unflattened beam and the second one with the Clinac 600C 6 MV therapeutic counterpart beam. There is a striking difference between the two sets: the optical density versus Pb-absorber thickness curve shows a sharp increase in optical density at small absorber thicknesses in the case of the unflattened 6 MV x-ray beam as compared with a gently sloping dependence in the case of the 6 MV therapeutic beam. A semi-quantitative assessment of the low-energy photon contribution to the whole optical density/contrast is presented. A 0.85 mm thick Pb absorber intercepting the 6 MV unflattened x-ray beam eliminates almost totally the sharp peak in the optical density curve at small Pb-absorber thicknesses. This constitutes additional evidence for the existence of low-energy photons (<150 keV) in the unflattened 6 MV beam from the Cu therapeutic target.

  20. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  1. Non-existence of isometry-invariant Hadamard states for a Kruskal black hole in a box and for massless fields on 1+1 Minkowski spacetime with a uniformly accelerating mirror

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Lupo, Umberto

    2016-11-01

    We conjecture that (when the notion of Hadamard state is suitably adapted to spacetimes with timelike boundaries) there is no isometry-invariant Hadamard state for the massive or massless covariant Klein-Gordon equation defined on the region of the Kruskal spacetime to the left of a surface of constant Schwarzschild radius in the right Schwarzschild wedge when Dirichlet boundary conditions are put on that surface. We also prove that, with a suitable definition for ‘boost-invariant Hadamard state’ (which we call ‘strongly boost-invariant globally Hadamard’) which takes into account both the existence of the timelike boundary and the special infra-red pathology of massless fields in 1+1 dimensions, there is no such state for the massless wave equation on the region of 1+1 Minkowski space to the left of an eternally uniformly accelerating mirror—with Dirichlet boundary conditions at the mirror. We argue that this result is significant because, as we point out, such a state does exist if there is also a symmetrically placed decelerating mirror in the left wedge (and the region to the left of this mirror is excluded from the spacetime). We expect a similar existence result to hold for Kruskal when there are symmetrically placed spherical boxes in both right and left Schwarzschild wedges. Our Kruskal no-go conjecture raises basic questions about the nature of the black holes in boxes considered in black hole thermodynamics. If true, it would lend further support to the conclusion of Kay (2015 Gen. Relativ. Gravit. 47 1-27) that the nearest thing to a description of a black hole in equilibrium in a box in terms of a classical spacetime with quantum fields propagating on it has, for the classical spacetime, the exterior Schwarzschild solution, with the classical spacetime picture breaking down near the horizon. Appendix B to the paper points out the existence of, and partially fills, a gap in the proofs of the theorems in Kay and Wald (1991 Phys. Rep. 207 49-136).

  2. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  3. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  4. Tandem Air Propellers

    NASA Technical Reports Server (NTRS)

    Lesley, E.P.

    1937-01-01

    Tests of 2-blade, adjustable-pitch, counterrotating tandem model propellers, adjusted to absorb equal power at maximum efficiency, were made at Stanford University. The characteristics, for 15 degrees, 25 degrees, 35 degrees, and 45 degrees pitch settings at 0.75 R of the forward propeller and for 8 1/2%, 15% and 30% diameter spacings, were compared with those of 2-blade and 4-blade propellers of the same blade form. The tests showed that the efficiency of the tandem propellers was from 0.5% to 4% greater than that of a 4-blade propeller and, at the high pitch settings, not appreciable inferior to that of a 2-blade propeller. It was found that the rear tandem propeller should be set at a pitch angle slightly less than that of the forward propeller to realize the condition of equal power at maximum efficiency. Under this condition the total power absorbed by the tandem propellers was from 3% to 9% more than that absorbed by the 4-blade propeller and about twice that absorbed by a 2-blade propeller.

  5. Terminal ion source for an FN tandem

    SciTech Connect

    Harper, G.C.

    1995-09-01

    An RF discharge source assembly has been developed for use in the terminal of the FN tandem van de Graaff accelerator at the Nuclear Physics Laboratory of the University of Washington. The primary motivation for developing the source was to provide a high intensity beam of {sup 3}He{sup +} to produce {sup 8}B from the reaction {sub 6}Li({sup 3}He,n){sup 8}B. The design of the optics and the performance of the source are described here.

  6. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  7. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  9. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  10. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  11. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  12. Comprehensive multiresidue method for the simultaneous determination of 74 pesticides and metabolites in traditional Chinese herbal medicines by accelerated solvent extraction with high-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Jia, Zhengwei; Mao, Xiuhong; Chen, Ke; Wang, Ke; Ji, Shen

    2010-01-01

    In this paper, a multiresidue method for the simultaneous target analysis of 74 pesticides and metabolites in traditional Chinese herbal medicines (TCHMs) was developed using accelerated solvent extraction (ASE) coupled with HPLC/MS/MS. Pesticide residues were extracted from the different samples using ASE, then purified by gel permeation chromatography and graphitized carbon black/primary, secondary amine SPE. Gradient elution was used in conjunction with positive mode electrospray ionization MS/MS to detect 74 pesticides and metabolites from Cortex Cinnamomi, Flos Carthami, Folium Ginkgo, Herba Pogostemonis, Radix Ginseng, and Semen Ginkgo using a single chromatographic run. The analytical performance was demonstrated by the analysis of extracts spiked at three concentration levels ranging from 0.005 to 0.125 mg/kg for each pesticide and metabolite. In general, recoveries ranging from 70 to 110%, with RSDs better than 15%, were obtained. The recovery and repeatability data were in good accordance with European Union guidelines for pesticide residue analysis. The LOD for most of the targeted pesticides and metabolites tested was below 0.01 mg/kg.

  13. Negative tandem mirror

    SciTech Connect

    Poulsen, P.; Allen, S.L.; Casper, T.A.; Grubb, D.P.; Jong, R.A.; Nexsen, W.E.; Porter, G.D.; Simonen, T.C.

    1981-11-30

    A tandem mirror configuration can be created by combining hot electron end cell plasmas with neutral beam pumping. A region of large negative potential formed in each end cell confines electrons in the central cell. The requirement of charge neutrality causes the central cell potential to become negative with respect to ground in order to confine ions as well as electrons. We discuss the method of producing and calculating the desired axial potential profile, and show the calculated axial potential profile and plasma parameters for a negative configuration of TMX-Upgrade.

  14. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  15. Bifacial tandem solar cells

    DOEpatents

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  16. Present and future prospects of accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    1988-05-01

    Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  17. Present and future prospects of accelerator mass spectrometry

    SciTech Connect

    Kutschera, W.

    1987-04-01

    Accelerator Mass Spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10/sup -10/ to 10/sup -15/ relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10/sup 2/ to 10/sup 8/ years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and man-made (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotope are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, minerals exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS are discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  18. The Bucharest heavy ion accelerator facility

    NASA Astrophysics Data System (ADS)

    Ceauşescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivaşcu, M.; Păpureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-01

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  19. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  20. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  1. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  2. Tandem-ESQ for Accelerator-Based BNCT

    SciTech Connect

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.

    2006-06-01

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  3. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  4. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  5. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  6. The Lawrence Livermore National Laboratory (LLNL) multi-user Tandem Laboratory

    SciTech Connect

    Davis, J.C.

    1988-09-01

    An FN tandem laboratory, cofounded by several Lawrence Livermore National Laboratory Divisions, Sandia Livermore, and the University of California Regents, is now operational at Livermore. The accelerator, formerly the University of Washington injector, has been upgraded with SF/sub 6/, Dowlish tubes, and a NEC pelletron charging system. A conventional duoplasmatron, a tritium source, and two Cs sputtering sources will be fielded on the accelerator. Pulsed beams will be available from two source positions. The laboratory has been designed to accommodate up to 19 experimental positions with excellent optics and working vacuum. The facility is unshielded with both accelerator and radiological systems under the control of a distributed microprocessor system. Research activities at the tandem include nuclear physics and astrophysics, materials science and characterization programs, and accelerator mass spectrometry for archaeology, biomedical, environmental and geoscience investigators. 3 refs., 1 fig.

  7. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  8. An unsupervised machine learning method for assessing quality of tandem mass spectra

    PubMed Central

    2012-01-01

    Background In a single proteomic project, tandem mass spectrometers can produce hundreds of millions of tandem mass spectra. However, majority of tandem mass spectra are of poor quality, it wastes time to search them for peptides. Therefore, the quality assessment (before database search) is very useful in the pipeline of protein identification via tandem mass spectra, especially on the reduction of searching time and the decrease of false identifications. Most existing methods for quality assessment are supervised machine learning methods based on a number of features which describe the quality of tandem mass spectra. These methods need the training datasets with knowing the quality of all spectra, which are usually unavailable for the new datasets. Results This study proposes an unsupervised machine learning method for quality assessment of tandem mass spectra without any training dataset. This proposed method estimates the conditional probabilities of spectra being high quality from the quality assessments based on individual features. The probabilities are estimated through a constraint optimization problem. An efficient algorithm is developed to solve the constraint optimization problem and is proved to be convergent. Experimental results on two datasets illustrate that if we search only tandem spectra with the high quality determined by the proposed method, we can save about 56 % and 62% of database searching time while losing only a small amount of high-quality spectra. Conclusions Results indicate that the proposed method has a good performance for the quality assessment of tandem mass spectra and the way we estimate the conditional probabilities is effective. PMID:22759570

  9. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  10. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  11. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  12. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  13. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  14. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  15. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  16. Auroral ion acceleration

    NASA Astrophysics Data System (ADS)

    Shalimov, S. L.

    From the altitude of 500 km to 15 R sub E everywhere conic like distributions of H+, O+, He+ ions are moving upwards from the ionosphere along the geomagnetic field lines in the auroral zone. The distributed ions suggest the existence of ion transverse acceleration mechanisms (ITAM) acting below the observation point. The more plausible mechanisms are connected with the resonance of the type wave particle between ions and the observed EIC and LH waves and are also due to the existence of the local transverse electric fields in the ionoshere and the magnetosphere. The known ion transverse acceleration mechanisms were complemented by new results. The conical distributions of ionospheric ions at different altitudes in the auroral zone are pointed out.

  17. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  18. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  19. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  20. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  1. Tandem motors reduce well costs

    SciTech Connect

    Hooper, M.; Daigle, C.; Crowe, R.

    1995-10-01

    The new generation of tandem mud motors that recently appeared on the drilling scene is significantly affecting drilling efficiency worldwide. These motors provide drillers with increased horsepower at the bit, higher torque, and faster rates of penetration (ROP). With advanced engineering and more durable materials, motor life is being extended, thereby increasing the time between bit trips and reducing drilling costs. This article reviews the performance, design, and operation of these motors.

  2. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  3. Development of an advanced spacecraft tandem mass spectrometer

    NASA Technical Reports Server (NTRS)

    Drew, Russell C.

    1992-01-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  4. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  5. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  6. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  7. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  8. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  9. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  10. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2005 RUN WITH COPPER IONS.

    SciTech Connect

    AHRENS, L.; ALESSI, J.; GARDNER, C.J.

    2005-05-16

    Copper ions for the 2005 run [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of these accelerators with copper are reviewed in this paper.

  11. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuits used in the tandem to end office links (or a surrogate based on the proportion of copper and fiber... the relative number of DS1 and DS3 circuits used in the tandem to end office links (or a surrogate... circuits used in the tandem to end office links (or a surrogate based on the proportion of copper and...

  12. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuits used in the tandem to end office links (or a surrogate based on the proportion of copper and fiber... the relative number of DS1 and DS3 circuits used in the tandem to end office links (or a surrogate... circuits used in the tandem to end office links (or a surrogate based on the proportion of copper and...

  13. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  14. Developments and applications of accelerator system at the Wakasa Wan Energy Research Center

    NASA Astrophysics Data System (ADS)

    Hatori, S.; Kurita, T.; Hayashi, Y.; Yamada, M.; Yamada, H.; Mori, J.; Hamachi, H.; Kimura, S.; Shimoda, T.; Hiroto, M.; Hashimoto, T.; Shimada, M.; Yamamoto, H.; Ohtani, N.; Yasuda, K.; Ishigami, R.; Sasase, M.; Ito, Y.; Hatashita, M.; Takagi, K.; Kume, K.; Fukuda, S.; Yokohama, N.; Kagiya, G.; Fukumoto, S.; Kondo, M.

    2005-12-01

    At the Wakasa Wan Energy Research Center (WERC), an accelerator system with a 5 MV tandem accelerator and a 200 MeV proton synchrotron is used for ion beam analyses and irradiation experiments. The study of cancer therapy with a proton beam is also performed. Therefore, the stable operation and efficient sharing of beam time of the system are required, based on the treatment standard. Recent developments and the operation status of the system put stress on the tandem accelerator operation, magnifying the problems.

  15. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  16. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  17. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  18. Greening Existing Tribal Buildings

    EPA Pesticide Factsheets

    Guidance about improving sustainability in existing tribal casinos and manufactured homes. Many steps can be taken to make existing buildings greener and healthier. They may also reduce utility and medical costs.

  19. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  20. Robotic tele-existence

    NASA Technical Reports Server (NTRS)

    Tachi, Susumu; Arai, Hirohiko; Maeda, Taro

    1989-01-01

    Tele-existence is an advanced type of teleoperation system that enables a human operator at the controls to perform remote manipulation tasks dexterously with the feeling that he or she exists in the remote anthropomorphic robot in the remote environment. The concept of a tele-existence is presented, the principle of the tele-existence display method is explained, some of the prototype systems are described, and its space application is discussed.

  1. Review of ion accelerators

    SciTech Connect

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  2. Heavy-ion acceleration with a superconducting linac

    SciTech Connect

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  3. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. Accelerating Gallstone Dissolution

    PubMed Central

    Tao, J. C.; Cussler, E. L.; Evans, D. F.

    1974-01-01

    The dissolution rates of cholesterol in model bile salt solutions are controlled by diffusion in slowly flowing bile and by interfacial kinetics in rapidly flowing bile. At low flow, dissolution varies with the square root of bile flow and can be predicted, a priori, from existing correlations of mass transfer. At high bile flow, dissolution is independent of bile flow and is probably dominated by the rate of micelle adsorption. These results show that cholesterol gallstone dissolution, a potential nonsurgical therapy for cholelithiasis, can be accelerated little in slow bile, but more significantly in rapidly flowing bile. PMID:4530271

  6. Accelerated Profile HMM Searches.

    PubMed

    Eddy, Sean R

    2011-10-01

    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  7. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  8. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  9. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  10. Pulsed Drift Tube Accelerator

    SciTech Connect

    Faltens, A.

    2004-10-25

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K{sup +} beams at a constant line charge density of 0.25{micro} C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2{micro}s rectangular 1 Ampere C{sub s}{sup +} beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K{sup +}, was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1

  11. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  12. 33 CFR 401.41 - Tandem lockage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.41 Tandem lockage. Where two or... stop a sufficient distance from the preceding vessel to avoid a collision; and (b) Be moved...

  13. TRDB—The Tandem Repeats Database

    PubMed Central

    Gelfand, Yevgeniy; Rodriguez, Alfredo; Benson, Gary

    2007-01-01

    Tandem repeats in DNA have been under intensive study for many years, first, as a consequence of their usefulness as genomic markers and DNA fingerprints and more recently as their role in human disease and regulatory processes has become apparent. The Tandem Repeats Database (TRDB) is a public repository of information on tandem repeats in genomic DNA. It contains a variety of tools for repeat analysis, including the Tandem Repeats Finder program, query and filtering capabilities, repeat clustering, polymorphism prediction, PCR primer selection, data visualization and data download in a variety of formats. In addition, TRDB serves as a centralized research workbench. It provides user storage space and permits collaborators to privately share their data and analysis. TRDB is available at . PMID:17175540

  14. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  15. Does Unconscious Racism Exist?

    ERIC Educational Resources Information Center

    Quillian, Lincoln

    2008-01-01

    This essay argues for the existence of a form of unconscious racism. Research on implicit prejudice provides good evidence that most persons have deeply held negative associations with minority groups that can lead to subtle discrimination without conscious awareness. The evidence for implicit attitudes is briefly reviewed. Criticisms of the…

  16. Relativity, Dimensionality, and Existence

    NASA Astrophysics Data System (ADS)

    Petkov, Vesselin

    A 100 years have passed since the advent of special relativity and 2008 will mark another important to all relativists anniversary - 100 years since Minkowski gave his talk "Space and Time" on September 21, 1908 in which he proposed the unifi- cation of space and time into an inseparable entity - space-time. Although special relativity has been an enormously successful physical theory no progress has been made in clarifying the question of existence of the objects represented by two of its basic concepts - space-time and world lines (or worldtubes in the case of extended bodies). The major reason for this failure appears to be the physicists' tradition to call such questions of existence philosophical. This tradition, however, is not quite consistent. In Newtonian mechanics physicists believe that they describe real objects whenever they talk about particles - one of the basic concepts of Newtonian physics. The situation is the same in quantum physics - no one questions the existence of electrons, protons, etc. Then why should the question of existence of worldtubes (representing particles in relativity) be regarded as a philosophical question?

  17. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  18. Evidence showing duplication and recombination of cel genes in tandem from hyperthermophilic Thermotoga sp.

    PubMed

    Kim, Min Keun; Kang, Tae Ho; Kim, Jungho; Kim, Hoon; Yun, Han Dae

    2012-12-01

    This study was conducted to assess the gene duplication and diversification of tandem cellulase genes in thermophilic bacteria. The tandem cellulase genes cel5C and cel5D were cloned from Thermotoga maritima MSB8, and a survey of the thermophilic bacterial genome for tandem cel genes from the databases was carried out. A clone having 2.3 kb fragment from T. maritima MSB8 showed cellulase activity, which had two open reading frames in tandem (cel5C and cel5D). The cel5C gene has 954 bp, which encodes a protein of 317 amino acid residues with a signal peptide of 23 amino acids, and the other gene cel5D consisting of 990 bp encoding a protein of 329 amino acid residues. These two proteins have similarity with the enzymes of glycosyl hydrolase family 5. From the enzyme assay, it was observed that Cel5C was extracellular and Cel5D was intracellular cellulase. Phylogenetic and homology matrix analyses of DNA and protein sequences revealed that family 12 cellulase enzymes Cel12A and Cel12B displayed higher homology (>50 %), but Cel5C and Cel5D enzymes belong to family 5 displayed lower homology (<30 %). In addition, repeated and mirror sequences in tandem genes are supposed to show the existence of gene duplication and recombination.

  19. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  20. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  1. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  2. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. Linear accelerator for radioisotope production

    SciTech Connect

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  4. Evaluation of Existing Structures

    DTIC Science & Technology

    1974-12-01

    EVALUATION OF EXISTING STRUCTURES Final Report 6 PERFORMING ORG . REPORT NUMBER 7 AUTHOR(s) 8 CONTRACT OR GRANT NUMBERls) C. K. Wiehie IDAHC20-71-C-0292 9...43,F:9J 4).IC A-44) S ’t 1001 iC 310140’ Cl144 PcC.0 4,:,(F <R49,10.- 1.y 10. . . U .A 30G150 4 -L4T-’P-.T’Ii𔃻J 4’ IARA (4.PS4*IC).P4)FC 30R100: RFAL R

  5. Existence of hyperbolic calorons

    PubMed Central

    Sibner, Lesley; Sibner, Robert; Yang, Yisong

    2015-01-01

    Recent work of Harland shows that the SO(3)-symmetric, dimensionally reduced, charge-N self-dual Yang–Mills calorons on the hyperbolic space H3×S1 may be obtained through constructing N-vortex solutions of an Abelian Higgs model as in the study of Witten on multiple instantons. In this paper, we establish the existence of such minimal action charge-N calorons by constructing arbitrarily prescribed N-vortex solutions of the Witten type equations. PMID:27547084

  6. Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics

    PubMed Central

    Helm, Dominic; Vissers, Johannes P. C.; Hughes, Christopher J.; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K.; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I.; Kuster, Bernhard

    2014-01-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A. PMID:25106551

  7. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  8. Does 'mental kinesiophobia' exist?

    PubMed

    Schmidt, Anton J M

    2003-10-01

    In this study the relevance of the concept of mental kinesiophobia (respectively cogniphobia or fear of mental exertion) for clients with chronic stress problems was explored. It was hypothesized that cognitive, chronic stress complaints, such as concentration problems or decreased problem solving abilities, could be catastrophized as signs of heightened personal vulnerability, with a chance of becoming permanent. As a consequence, mental exertion is avoided. This line of reasoning comes from the existing concept of kinesiophobia. This concept describes the avoidance behavior in chronic benign pain patients and refers to their fear of inflicting irreversible bodily damage due to physical exertion.An illustrative case of cogniphobia is presented. In an explorative pilot-study it was demonstrated that chronically stressed clients scored significantly higher on an experimental questionnaire measuring avoidance tendencies for mental exertion, compared with actively working employees. Consequences for treatment and suggestions for further study are discussed.

  9. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  10. Tandem-mirror program: status and projection

    SciTech Connect

    Van Atta, C.M.

    1981-03-12

    Construction of MFTF-B is scheduled for completion in 1985. Results of experiments in TMX-U and MFTF-B will permit the design of the D-T burning tandem-mirror next-step facility (TMNS) in which physics issues will not be at issue. TMNS will be a facility for engineering research and development. The end cells of TMNS are expected to be appropriate for a tandem-mirror demonstration fusion reactor (TMR), construction of which should begin about 1986 for operation in the 1990's.

  11. Accelerator Availability and Reliability Issues

    SciTech Connect

    Steve Suhring

    2003-05-01

    Maintaining reliable machine operations for existing machines as well as planning for future machines' operability present significant challenges to those responsible for system performance and improvement. Changes to machine requirements and beam specifications often reduce overall machine availability in an effort to meet user needs. Accelerator reliability issues from around the world will be presented, followed by a discussion of the major factors influencing machine availability.

  12. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  13. Differential length measurement using low coherence coupled tandem interferometry

    NASA Astrophysics Data System (ADS)

    Smith, Martin D.; MacPherson, William N.; Maier, Robert R. J.

    2013-05-01

    This paper presents the use of low coherence coupled tandem interferometry to measure the differential length of two independent Fabry-Perot (F-P) type microcavities. The two discrete F-P type microcavities are formed between the cleaved end of a fibre and a reflective surface, which could for example, be a pressure sensing membrane or any other component of a transducing element. The technique is an all-optical fibre based sensing configuration in which the sensing cavities are at widely separated locations in an environment where strong temperature gradients may exist. The sensing system is based on two sequential cavities arranged in tandem. The lengths of the cavities are probed by a temperature stabilised fibre based Michelson interferometer operating with a broadband light source. One arm of the probing Michelson interferometer is scanned using a piezo fibre stretcher resulting in an optical path length difference (OPD) between the two arms. The optical interconnecting leads from the probing Michelson interferometer to the two F-P locations are not an active part of the sensor configuration and therefore this configuration is largely insensitive to temperature and strain effects on these interconnecting leads. It is only the probing Michelson interferometer which has to be temperature stabilised. This arrangement allows the F-P measurement cavities to be separated by distances in the range of tens of meters.

  14. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  15. STATUS AND RECENT PERFORMANCE OF THE ACCELERATORS THAT SERVE AS GOLD INJECTOR FOR RHIC.

    SciTech Connect

    AHRENS,L.; ALESSI,J.; VAN ASSELT,W.; BENJAMIN,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.A.; CARLSON,C.; DELONG,J.; GARDNER,C.J.; GLENN,J.W.; HAYES,T.; ROSER,T.; SMITH,K.S.; STESKI,D.; TSOUPAS,N.; ZENO,K.; ZHANG,S.Y.

    2001-06-18

    The recent successful commissioning and operation [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) requires the injection of gold ions of specified energy and intensity with longitudinal and transverse emittances small enough to meet the luminosity requirements of the collider. Ion beams with the desired characteristics are provided by a series of three accelerators, the Tandem, Booster and AGS. The current status and recent performance of these accelerators are reviewed in this paper.

  16. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  17. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  18. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  19. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  20. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  1. 14 CFR 23.302 - Canard or tandem wing configurations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Canard or tandem wing configurations. 23... General § 23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: (a) Meet all requirements of subpart C and subpart D of this part applicable to a wing;...

  2. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than

  3. Modelling of tandem cell temperature coefficients

    SciTech Connect

    Friedman, D.J.

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  4. Electrospray tandem mass spectrometric investigations of morphinans.

    PubMed

    Raith, Klaus; Neubert, Reinhard; Poeaknapo, Chotima; Boettcher, Christian; Zenk, Meinhart H; Schmidt, Jürgen

    2003-11-01

    In this study positive ESI tandem mass spectra of the [M + H]+ ions of morphinan alkaloids obtained using an ion trap MS were compared with those from a triple quadrupole MS. This allows to assess the differences of the tandem-in-time versus the tandem-in-space principle, often hampering the development of ESI MS/MS libraries. Fragmentation pathways and possible fragment ion structures were discussed. In order to obtain elemental composition, accurate mass measurements were performed. According to the MS/MS fragmentation pathway, the investigated compounds can be grouped into 4 subsets: (1) morphine and codeine, (2) morphinone, codeinone, and neopinone, (3) thebaine and oripavine, (4) salutaridine and salutaridinol. Salutaridinol-7-O-acetate shows a different fragmentation behavior because of the favored loss of acetic acid. Although most fragment ions occur in both ion trap and triple quad tandem mass spectra, some are exclusively seen in either type. For triple quad, quadrupole time-of-flight and FT-ICR MS/MS, the base peak of morphine results from an ion at m/z 165 that contains neither nitrogen nor oxygen. This ion is not found in ion trap MS/MS, but in subsequential MS3 and MS4.

  5. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    In the past decade, research on organic solar cells has gone through an important development stage leading to major enhancements in power conversion efficiency, from 4% to 9% in single-junction devices. During this period, there are many novel processing techniques and device designs that have been proposed and adapted in organic solar-cell devices. One well-known device architecture that helps maximize the solar cell efficiency is the multi-junction tandem solar-cell design. Given this design, multiple photoactive absorbers as subcells are stacked in a monolithic fashion and assembled via series connection into one complete device, known as the tandem solar cell. Since multiple absorbers with different optical energy bandgaps are being applied in one tandem solar-cell device, the corresponding solar cell efficiency is maximized through expanded absorption spectrum and reduced carrier thermalization loss. In Chapter 3, the architecture of solution-processible, visibly transparent solar cells is introduced. Unlike conventional organic solar-cell devices with opaque electrodes (such as silver, aluminum, gold and etc.), the semi-transparent solar cells rely on highly transparent electrodes and visibly transparent photoactive absorbers. Given these two criteria, we first demonstrated the visibly transparent single-junction solar cells via the polymer absorber with near-infrared absorption and the top electrode based on solution-processible silver nanowire conductor. The highest visible transparency (400 ˜ 700 nm) of 65% was achieved for the complete device structure. More importantly, power conversion efficiency of 4% was also demonstrated. In Chapter 4, we stacked two semi-transparent photoactive absorbers in the tandem architecture in order to realize the semi-transparent tandem solar cells. A noticeable performance improvement from 4% to 7% was observed. More importantly, we modified the interconnecting layers with the incorporation of a thin conjugated

  6. Tandem mirror next step conceptual design

    SciTech Connect

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-10-14

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs.

  7. Advances in Tandem Mirror fusion power reactors

    SciTech Connect

    Perkins, L.J.; Logan, B.G.

    1986-05-20

    The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

  8. Note on Hovering Turns with Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Reeder, John P; Tapscott, Robert J

    1955-01-01

    The source of an appreciable pitching-moment difference between left and right hovering turns for a tandem helicopter is described. The difference in pitching moment results from the difference in rotational speed of the counter rotating rotors with respect to the air while the helicopter is turning.

  9. Vortex interaction between two tandem flexible propulsors

    NASA Astrophysics Data System (ADS)

    Park, Sung Goon; Sung, Hyung Jin; Flow Control Laboratory Team

    2015-11-01

    Schooling behaviors of flying and swimming animals are widespread phenomena in nature. Inspired by schooling behaviors of swimming jellyfish, self-propelling flexible bodies with a paddling-based locomotion were modeled in a tandem configuration. The interactions between surrounding fluids and propulsors were considered by using the immersed boundary method. The hydrodynamic patterns generated by the interactions between tandem flexible propulsors were analyzed in the presen study. As a result of the flow-mediated interactions between them, stable configurations were formed spontaneously in which the gap distance between propulsors increased and decreased during the contraction and relaxation phases of the upstream propulsor. The stable configuration was not affected by the initial gap distance but influenced by the phase difference in the flapping frequency between them. Both tandem propulsors benefited from the tandem configuration in terms of the locomotion as compared with an isolated propulsor. This study was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP).

  10. Technology for large tandem mirror experiments

    SciTech Connect

    Thomassen, K.I.

    1980-09-04

    Construction of a large tandem mirror (MFTF-B) will soon begin at Lawrence Livermore National Laboratory (LLNL). Designed to reach break-even plasma conditions, the facility will significantly advance the physics and technology of magnetic-mirror-based fusion reactors. This paper describes the objectives and the design of the facility.

  11. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  12. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  13. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  14. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  15. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  16. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  17. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  18. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  19. Calculation of density profiles in tandem mirrors fueled by pellets

    SciTech Connect

    Campbell, R.B.; Gilmore, J.M.

    1983-12-02

    We have modified the LLNL radial transport code TMT to model reactor regime plasmas, fueled by pellets. The source profiles arising from pellet fueling are obtained from existing pellet ablation models. Because inward radial diffusion due to inverted profiles must compete with trapping of central cell ions in the transition region for tandem mirrors, pellets must penetrate fairly far into the plasma. In fact, based on our radial calculations, a pellet with a velocity of 10 km/sec cannot sustain the central flux tubes; a velocity more like 100 km/sec will be necessary. We also find that the central cell radial diffusion must exceed classical by about a factor of 100.

  20. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  1. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  2. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  3. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    SciTech Connect

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  4. Rindler effect for a nonuniformly accelerating observer

    SciTech Connect

    Zhu Jian-yang; Bao Aidong; Zhao Zheng

    1995-10-01

    Both the Klein-Gordon equation and the Dirac equation are dealt with in the generalized Rindler space-time of a nonuniformly accelerating observer. Making use of a new method and introducing a tortoise-type coordinate transformation, it is proved that there exist an event horizon and thermal radiation depending on time in the space-time. The Hawking-Unruh temperature is proportional to the variable acceleration.

  5. The Research on Optimization of Edge Drop Control for Cold Tandem Rolling Mill

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Min; Yue, Xiao-Xue

    2016-05-01

    The cold tandem rolling of metal strip presents a significant control challenge because of nonlinearities and process complexities. And reducing edge drop of cold rolling strips and meeting uniform thickness will be a new tough shape theories and technologies. In this paper, the existing edge drop control are analyzed and optimized. The simulation results and practical data show that the optimized control system can effectively control the edge drop.

  6. COMPUTATIONAL NEEDS FOR MUON ACCELERATORS.

    SciTech Connect

    BERG, J.S.

    2004-06-29

    Muon accelerators contain beam lines and components which are unlike any found in existing accelerators. Production of the muons requires targets for beams with powers which are at or beyond what has currently been achieved. Many subsystems use solenoid focusing systems where at any given point, several magnets have a significant influence. The beams that are transported can have energy spreads of {+-}30% or more. The required emittances necessitate accurate tracking of particles with angles of tenths of a radian and which are positioned almost at the edge of the beam pipe. Tracking must be done not only in vacuum, but also in materials; therefore, statistical fluctuations must also be included. Design and simulation of muon accelerators requires software which can: accurately simulate the dynamics of solid and liquid targets under proton bombardment; predict the production of particles from these targets; accurately compute magnetic fields based on either a real magnet design or a model which includes end fields; and accurately design and simulate a beam line where the transported beam satisfies the above specifications and the beam line contains non-standard, overlapping elements. The requirements for computational tools will be discussed, the capabilities of existing tools will be described and compared to what is required.

  7. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  8. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  9. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  10. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  11. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  12. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  13. Mechanically stacked concentrator tandem solar cells

    NASA Technical Reports Server (NTRS)

    Andreev, V. M.; Rumyantsev, V. D.; Karlina, L. B.; Kazantsev, A. B.; Khvostikov, V. P.; Shvarts, M. Z.; Sorokina, S. V.

    1995-01-01

    Four-terminal mechanically stacked solar cells were developed for advanced space arrays with line-focus reflective concentrators. The top cells are based on AlGaAs/GaAs multilayer heterostructures prepared by low temperature liquid phase epitaxy. The bottom cells are based on heteroepitaxial InP/InGaAs liquid phase epitaxy or on homo-junction GaSb, Zn-diffused structures. The sum of the highest reached efficiencies of the top and bottom cells is 29.4 percent. The best four-terminal tandems have an efficiency of 27 to 28 percent. Solar cells were irradiated with 1 MeV electrons and their performances were determined as a function of fluence up to 10(exp 16) cm(exp-2). It was shown that the radiation resistance of developed tandem cells is similar to the most radiative stable AlGaAs/GaAs cells with a thin p-GaAs photoactive layer.

  14. Current results of the tandem mirror experiment

    SciTech Connect

    Drake, R.P.

    1980-04-09

    The basic operating characteristics of the Tandem Mirror Experiment, (TMX) at the Lawrence Livermore Laboratory in the USA have been established. Tandem-mirror plasmas have been produced using neutral-beam-fueled end plugs and a gas-fueled center cell. An axial potential well between the end plugs has been measured. There is direct evidence that this potential well enhances the axial confinement of the center-cell ions. The observed densities and loss currents are consistent with preliminary studies of the particle sources and losses near the magnetic axis. The observed confinement is consistent with theory when plasma fluctuations are low. When the requirement of drift-cyclotron loss-cone mode stability is violated, the plasma fluctuations degrade the center-cell confinement.

  15. Progress in the tandem mirror program

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Borchers, R. R.

    1981-09-01

    Experimental results in TMX have confirmed the basic principles of the tandem mirror concept. A center cell particle confinement parameter eta tau approximately one hundred billion cu cm obtained at ion temperatures around 100 eV, which is a hundred fold improvement over single mirrors at the same temperatures. For TMX these results were obtained at peak beta values in the center cell in the range 10 to 40%, not yet limited by MHD activity, and ion cyclotron resonant heating in the Phaedrus tandem mirror experiment has produced beta values approximately 25%, which is several times the ideal MHD limit for that device. In addition, it was demonstrated that the end fan chambers of TMX simultaneously isolate the hot electrons from the end walls, provide adequate pumping and conveniently dispose of the exhaust plasma energy either by thermal deposition on the end wall or by direct conversion to electricity (at 48% efficiency in agreement with calculations).

  16. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  17. DDES and IDDES of tandem cylinders.

    SciTech Connect

    Balakrishnan, R.; Garbaruk, A.; Shur, M.; Strelets, M.; Spalart, P.; New Technologies and Services - Russia; St.-Peterburg State Polytechnic Univ.; Boeing Commercial Airplanes

    2010-09-09

    The paper presents an overview of the authors contribution to the BANC-I Workshop on the flow past tandem cylinders (Category 2). It includes an outline of the simulation approaches, numerics, and grid used, the major results of the simulations, their comparison with available experimental data, and some preliminary conclusions. The effect of varying the spanwise period in the simulations is strong for some quantities, and not others.

  18. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  19. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications . Advanced Materials, 25, 825-831 (2012). 6. L. Dou, J. Gao, E. Richard...Hong, Zheng Xu, Gang Li, Robert A. Street, Yang Yang. 25th Anniversary Article: A Decade of Organic / Polymeric Photovoltaic Research Advanced... Organization / Institution name UCLA Grant/Contract Title The full title of the funded effort. Achieving 15% tandem polymer solar cells Grant/Contract

  20. Cold Climate Heat Pumps Using Tandem Compressors

    SciTech Connect

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith; Baxter, Van D

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  1. A tandem mass spectrometer for collision-induced dissociation

    NASA Astrophysics Data System (ADS)

    1982-02-01

    A tandem mass spectrometer is described for studies of collision-induced dissociation. This instrument is especially suited for investigations on organic molecules, e.g., biochemical substances, for m/z values up to 1000. The first stage is formed by a conventional EI source and a sector magnet, and has a mass resolution of about 600. The first stage is provided with a collision gas cell at the site of the detector slit. In the second stage the fragment ions are post-accelerated in order to reduce the relative energy-spread and to increase the resolution and transmission. The fragment spectrum is analyzed by a second magnet (R = 750 mm, deflection angle = 15 deg) and simultaneously recorded. Quadrupoles are added in order to vary the dispersion and to aid focussing. The ratio between the highest and lowest masses in a simultaneously detected spectrum may vary from 4 : 1 to 1.06 : 1. The resolution can be as high as 600, and the transmission from the collision cell to the CEMA ranges from 60 to 100%; the detection sensitivity can be as high as 1 ion per 10 s.

  2. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  3. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  4. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  5. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  6. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  7. 18 CFR 5.4 - Acceleration of a license expiration date.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Acceleration of a... APPLICATION PROCESS § 5.4 Acceleration of a license expiration date. (a) Request for acceleration. (1) No... chapter, a written request for acceleration of the expiration date of its existing license, containing...

  8. Production and applications of neutrons using particle accelerators

    SciTech Connect

    Chichester, David L.

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  9. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  10. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  11. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  12. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors.

  13. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  14. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  15. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  16. Determination of higher order accelerations by a functional method

    NASA Astrophysics Data System (ADS)

    Tudosie, C.

    A functional method is developed for the simultaneous determination of all the linear accelerations which exist in the differential equation of a material system dynamics. The method introduces variable angular accelerations of different orders, called direct connection functions, which allow the passing from a linear acceleration of a certain order to that of a higher order. Feedback functions are also introduced which allow the passing from a linear acceleration of a certain order to that of lower orders. This method is applicable to accelerations which occur when passenger trains move rapidly around a curve and at the vertical vibrations of trucks and tractors.

  17. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  18. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  20. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  1. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  2. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  4. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  5. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  6. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  7. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  8. Auroral plasma acceleration processes at Mars

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Barabash, S.; Winningham, D.

    2012-09-01

    Following the first Mars Express (MEX) findings of auroral plasma acceleration above Martian magnetic anomalies[1, 2], a more detailed analysis is carried out regarding the physical processes that leads to plasma acceleration, and how they connect to the dynamo-, and energy source regions. The ultimate energy source for Martian plasma acceleration is the solar wind. The question is, by what mechanisms is solar wind energy and momentum transferred into the magnetic flux tubes that connect to Martian magnetic anomalies? What are the key plasma acceleration processes that lead to aurora and the associated ionospheric plasma outflow from Mars? The experimental setup on MEX limits our capability to carry out "auroral physics" at Mars. However, with knowledge acquired from the Earth, we may draw some analogies with terrestrial auroral physics. Using the limited data set available, consisting of primarily ASPERA and MARSIS data, an interesting picture of aurora at Mars emerges. There are some strong similarities between accelerated/heated electrons and ions in the nightside high altitude region above Mars and the electron/ion acceleration above Terrestrial discrete aurora. Nearly monoenergetic downgoing electrons are observed in conjunction with nearly monoenergetic upgoing ions. Monoenergetic counterstreaming ions and electrons is the signature of plasma acceleration in quasi-static electric fields. However, compared to the Earth's aurora, with auroral process guided by a dipole field, aurora at Mars is expected to form complex patterns in the multipole environment governed by the Martian crustal magnetic field regions. Moreover, temporal/spatial scales are different at Mars. It is therefore of interest to mention another common characteristics that exist for Earth and Mars, plasma acceleration by waves. Low-frequency, Alfvén, waves is a very powerful means of plasma acceleration in the Earth's magnetosphere. Low-frequency waves associated with plasma acceleration

  9. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  10. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  11. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  12. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  13. Bilinguals' Existing Languages Benefit Vocabulary Learning in a Third Language

    ERIC Educational Resources Information Center

    Bartolotti, James; Marian, Viorica

    2017-01-01

    Learning a new language involves substantial vocabulary acquisition. Learners can accelerate this process by relying on words with native-language overlap, such as cognates. For bilingual third language learners, it is necessary to determine how their two existing languages interact during novel language learning. A scaffolding account predicts…

  14. Self-accelerating warped braneworlds

    SciTech Connect

    Carena, Marcela; Lykken, Joseph; Santiago, Jose; Park, Minjoon

    2007-01-15

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze, and Porrati (DGP) demonstrated the existence of a 'self-accelerating' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension, respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.

  15. Self-accelerating Warped Braneworlds

    SciTech Connect

    Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.

  16. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  17. Accelerator Science: Why RF?

    SciTech Connect

    Lincoln, Don

    2016-12-21

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  18. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  19. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  20. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  1. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  2. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  3. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  4. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  5. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  7. Regimes of flow induced vibration for tandem, tethered cylinders

    NASA Astrophysics Data System (ADS)

    Nave, Gary; Stremler, Mark

    2015-11-01

    In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.

  8. Tandem zinc-finger gene families in mammals: insights and unanswered questions.

    PubMed

    Shannon, M; Kim, J; Ashworth, L; Branscomb, E; Stubbs, L

    1998-01-01

    Evidence for the remarkable conservation of mammalian genomes, in both content and organization of resident genes, is rapidly emerging from comparative mapping studies. The frequent occurrence of familial gene clustering, presumably reflecting a history of tandem in situ duplications starting from a single ancestral gene, is also apparent from these analyses. Genes encoding Kruppel-type zinc-finger (ZNF) proteins, including those containing Kruppel-associated box (KRAB) motifs, are particularly prone to such clustered organization. Existing data suggest that genes in KRAB-ZNF gene clusters have diverged in sequence and expression patterns, possibly yielding families of proteins with distinct, yet related, functions. Comparative mapping studies indicate that at least some of the genes within these clusters in mammals were elaborated prior to the divergence of mammalian orders and, subsequently, have been conserved. These data suggest a possible role for these tandem KRAB-ZNF gene families in mammalian evolution.

  9. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells.

    PubMed

    Schneider, Bennett W; Lal, Niraj N; Baker-Finch, Simeon; White, Thomas P

    2014-10-20

    Perovskite-on-silicon tandem solar cells show potential to reach > 30% conversion efficiency, but require careful optical control. We introduce here an effective light-management scheme based on the established pyramidal texturing of crystalline silicon cells. Calculations show that conformal deposition of a thin film perovskite solar cell directly onto the textured front surface of a high efficiency silicon cell can yield front surface reflection losses as low as 0.52mA/cm(2). Combining this with a wavelength-selective intermediate reflector between the cells additionally provides effective light-trapping in the high-bandgap top cell, resulting in calculated absolute efficiency gains of 2 - 4%. This approach provides a practical and effective method to adapt existing high efficiency silicon cell designs for use in tandem cells, with conversion efficiencies approaching 35%.

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  12. Flexible and fragmentable tandem photosensitive nanocrystal skins.

    PubMed

    Akhavan, S; Uran, C; Bozok, B; Gungor, K; Kelestemur, Y; Lesnyak, V; Gaponik, N; Eychmüller, A; Demir, H V

    2016-02-28

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm(-2) at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.

  13. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  14. 10 CFR 820.34 - Accelerated decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.34 Accelerated decision. (a) General. The Presiding Officer, upon motion of any party or sua sponte, may at any time... require, if no genuine issue of material fact exists and a party is entitled to judgment as a matter...

  15. Accelerated Baccalaureate Nursing Students: Perceptions of Success

    ERIC Educational Resources Information Center

    Blozen, Barbara B.

    2010-01-01

    Although there are a number of anecdotal reports on demographic characteristics and academic success of accelerated nursing students, few empirical studies have been undertaken to examine these students' success, despite this type of programs' existence for more than a decade, and only three studies have sought to examine the perspective of the…

  16. Method of fabricating bifacial tandem solar cells

    SciTech Connect

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  17. A Hybrid Approach To Tandem Cylinder Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  18. Flute waves in a tandem mirror

    SciTech Connect

    Mikhailovskaya, L.V.

    1984-03-01

    Stability conditions are derived for flute waves in a short tandem mirror stabilized by end cells with a min B. The frequency spectrum of the flute waves is analyzed. Those conditions under which the resonant excitation of waves by ions and electrons must be taken into account are found. When end cells without a min B are added to a central mirror system, the system becomes destabilized as the result of resonant excitation of waves at a frequency near the precession frequency of ions having a finite energy distribution.

  19. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  20. Accelerator mass spectrometry of small biological samples.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  1. Vacuum Beat Wave Accelerator

    NASA Astrophysics Data System (ADS)

    Moore, C. I.; Hafizi, B.; Ting, A.; Burris, H. R.; Sprangle, P.; Esarey, E.; Ganguly, A.; Hirshfield, J. L.

    1997-11-01

    The Vacuum Beat Wave Accelerator (VBWA) is a particle acceleration scheme which uses the non-linear ponderomotive beating of two different frequency laser beams to accelerate electrons. A proof-of-principle experiment to demonstrate the VBWA is underway at the Naval Research Laboratory (NRL). This experiment will use the beating of a 1054 nm and 527 nm laser pulse from the NRL T-cubed laser to generate the beat wave and a 4.5 MeV RF electron gun as the electron source. Simulation results and the experimental design will be presented. The suitability of using axicon or higher order Gaussian laser beams will also be discussed.

  2. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  3. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  4. Future short-baseline sterile neutrino searches with accelerators

    SciTech Connect

    Spitz, J.

    2015-07-15

    A number of experimental anomalies in neutrino oscillation physics point to the existence of at least one light sterile neutrino. This hypothesis can be precisely tested using neutrinos from reactors, radioactive isotopes, and particle accelerators. The focus of these proceedings is on future dedicated short-baseline sterile neutrino searches using accelerators.

  5. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Signalling for tandem switching. 69.129 Section 69.129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that...

  6. Tandem-type pulse tube refrigerator without reservoir

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Jeong, Sangkwon; Ko, Junseok; Park, Jiho

    2015-12-01

    In this paper, a tandem-type pulse tube refrigerator without a reservoir is discussed and investigated. For its practical application a tandem-type compressor is designed to generate two pulsating pressure waves with opposite phases, simultaneously. A tandem-type pulse tube refrigerator consists of a tandem-type compressor and two identical pulse tube refrigerators. The two identical pulse tube refrigerators share the same heat exchangers and one can be connected with the other by an inertance tube without a reservoir. In this proposed configuration, the mechanical vibration and temperature oscillations in the cold-end heat exchanger can be internally suppressed due to its intrinsic opposite-characteristic operation. To examine the quantitative evaluation of the tandem feature which does not require a reservoir in the pulse tube, an evolutionary approach has been attempted. A general structure of a pulse tube refrigerator is modified into tandem Stirling-type and GM-type machines and the transformed configuration has been simulated for tandem operation. The simulation results clearly demonstrate that a properly designed tandem-type pulse tube refrigerator without a reservoir can function favorably.

  7. Summary of the tandem energy focusing explosive warhead technologies

    SciTech Connect

    Zhou, T.S.

    1996-09-26

    In this paper, on the basis of a great amount of the analysis of the tandem energy focusing explosive warhead in our country and other countries, we summarize the design demand of the tandem warhead, the delayed ignition controlling technique between the explosives, the isolating explosion protection technique and the detonator technique.

  8. Monitoring Bilingualism: Pedagogical Implications of the Bilingual Tandem Analyser

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus; Borgia, Alexandre

    2006-01-01

    Tandem learning is the collaborative learning partnership of two language learners with complementary language combinations, for example an Irish student learning German and a German student learning English. One of the major principles in tandem learning, apart from reciprocity and learner autonomy, is balanced bilingualism. While learners may…

  9. Measurements of I-129 in meteorites and lunar rock by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Nizhiizumi, K.; Arnold, J. R.; Elmore, D.; Gove, H. E.; Honda, M.

    1983-01-01

    Precise measurements of the half-life of I-129 in three different meteorites and one lunar surface rock are reported. The meteorite source of I-129 was produced by cosmic ray secondary neutron reactions on Te, while the source in lunar materials in spallation on barium and rare earth elements. The Abee, Allende, and Dhajala meteorites were examined, together with the lunar rock 14310. Details of the process used to extract the iodine are provided. The Abee and Allende samples exhibited a production of 0.5 atom/min per gm of Te from the (n,2n) reaction and 0.05 atom/min/gm for the (n,gamma) reaction. The I-129 is concluded to be a viable tool for long-lived cosmogenic nuclide studies. Further work to extend the data to include the constancy of the cosmic ray flux, the meteorite bombardment history, and the cosmic exposure age dating by means of the I-129 and Xe-129 method is indicated.

  10. Accelerated cleanup risk reduction

    SciTech Connect

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria

  11. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  12. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  13. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  14. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  15. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  16. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  17. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  18. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  19. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  20. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  1. Designing reliability into accelerators

    NASA Astrophysics Data System (ADS)

    Hutton, A.

    1992-07-01

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed.

  2. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  3. CEBAF Accelerator Achievements

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Drury, M.; Hovater, C.; Hutton, A.; Krafft, G. A.; Poelker, M.; Reece, C.; Tiefenback, M.

    2011-05-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  4. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  5. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  6. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  7. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  8. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  9. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  10. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  11. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R F; Fowler, T K; Bulmer, R; Byers, J; Hua, D; Tung, L

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K

  12. Acceleration of positrons in supernova shocks

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.

    1992-01-01

    During this project we investigated the acceleration of leptons (electrons and positrons) in collisionless shock waves. In particular, we were interested in how leptons are accelerated in the blast waves existing in the remnants of supernova explosions. Supernova remnants (SNRs) have long been considered as the most likely source of galactic cosmic rays but no definite connection between SNRs and the cosmic rays seen at earth can be made. Only by understanding lepton acceleration in shocks can the rich SNR data base be properly used to understand cosmic ray origins. Our project was directed at the neglected aspects of lepton acceleration. We showed that the efficiency of lepton acceleration depended critically on the lepton injection energy. We showed that, even when infection effects are not important, that proton and lepton distribution functions produced by shocks are quite different in the critical energy range for producing the observed synchrotron emission. We also showed that transrelativistic effects produced proton spectra that were not in agreement with standard results from radio observations, but that the lepton spectra were, in fact, consistent with observations. We performed simulations of relativistic shocks (shocks where the flow speed is a sizable fraction of the speed of light) and discovered some interesting effects. We first demonstrated the power of the Monte Carlo technique by determining the shock jump conditions in relativistic shocks. We then proceeded to determine how relativistic shocks accelerate particles. We found that nonlinear relativistic shocks treat protons and leptons even more differently than nonrelativistic shocks. The transrelativistic effects on the shock structure from the heavy ion component reduces the lepton acceleration to a tiny fraction of the ion acceleration. This effect is dramatic even if high energy leptons (many times thermal energy) are injected, and was totally unexpected. Our results have important

  13. Negative deuterium ions for tandem mirror next step and tandem mirror reactors

    SciTech Connect

    Hamilton, G.W.

    1980-09-25

    Recent designs for mirror fusion reactors with good power balance include ambipolar potential plugs to reduce end losses and thermal barriers to maintain a difference in electron temperature between the large-volume central cell plasma and the confining end plugs. These designs led to several new requirements for D/sup 0/ neutral beams derived from negative ions at energies of 150 to 200 keV and possibly higher. Such beams are required for injection of fat ions into the plugs and the barrier and for charge-exchange pumping of thermal ions diffusing into the barrier. Negative ions are preferred for these purposes because of their relatively high efficiency of neutralization and their high purity of single-energy D/sup -/. Examples of injector designs for Tandem Mirror Next Step (TMNS) and Tandem Mirror Reactors (TMR) are presented.

  14. Possible parameters of proton acceleration using backward traveling wave harmonic

    NASA Astrophysics Data System (ADS)

    Paramonov, V. V.

    2016-12-01

    Analysis shows that, when accelerating protons of intermediate energy range using the field of backward harmonic of the traveling wave, a range of practically accessible parameters of accelerating structure exists, where it is possible to provide simultaneously the stability of longitudinal and transverse particle motion and high rates of acceleration. The focusing effect is provided by the field of slow fundamental harmonic. The calculated characteristics of accelerating structure and the assessment of parameters of the proton linac are obtained in a range of 15-230 MeV.

  15. Liquid chromatography tandem mass spectrometry in the clinical laboratory.

    PubMed

    Adaway, Joanne E; Keevil, Brian G; Owen, Laura J

    2015-01-01

    Clinical laboratory medicine has seen the introduction and evolution of liquid chromatography tandem mass spectrometry in routine clinical laboratories over the last 10-15 years. There still exists a wide diversity of assays from very esoteric and highly specialist manual assays to more simplified kit-based assays. The technology is not static as manufacturers are continually making improvements. Mass spectrometry is now commonly used in several areas of diagnostics including therapeutic drug monitoring, toxicology, endocrinology, paediatrics and microbiology. Some of the most high throughput analyses or common analytes include vitamin D, immunosuppressant monitoring, androgen measurement and newborn screening. It also offers flexibility for the measurement of analytes in a variety of different matrices which would prove difficult with immunoassays. Unlike immunoassays or high-pressure liquid chromatography assays using ultraviolet or fluorescence detection, mass spectrometry offers better specificity and reduced interferences if attention is paid to potential isobaric compounds. Furthermore, multiplexing, which enables multiple analytes to be measured with the same volume of serum is advantageous, and the requirement for large sample volumes is decreasing as instrument sensitivity increases. There are many emerging applications in the literature. Using mass spectrometry to identify novel isoforms or modified peptides is possible as is quantification of proteins and peptides, with or without protein digests. Future developments by the manufacturers may also include mechanisms to improve the throughput of samples and strategies to decrease the level of skill required by the operators.

  16. TMX-U (Tandem Mirror Experiment-Upgrade) tandem-mirror thermal-barrier experiments

    SciTech Connect

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.; Barter, J.D.; Berzins, L.V.; Carter, M.R.; Casper, T.A.; Clauser, J.F.; Coensgen, F.H.; Correll, D.L.

    1986-10-29

    Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established.

  17. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  18. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  19. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  20. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  1. Deuterium accelerator experiments for APT.

    SciTech Connect

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  2. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  3. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  4. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  5. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  6. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  7. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  8. Sterile Neutrino Experiments I: Accelerator-based

    NASA Astrophysics Data System (ADS)

    Toups, Matthew

    2017-01-01

    The Standard Model is the theory that describes the fundamental constituents of matter and their interactions. Despite its great success, there still exists evidence for a wide range of phenomena, which lie outside the framework of the Standard Model. Among these, neutrino flavor oscillations hold great promise to bring insight to the field towards a theory that transcends the Standard Model. The discovery of light, sterile neutrinos that mix with the three active neutrino flavors and modify the standard three-neutrino oscillation probabilities in vacuum and matter would be a major breakthrough for the field and contribute to our overall understanding of neutrino mass and mixing. Current indications for light sterile neutrinos come from a variety of experiments reporting anomalies. The accelerator-based LSND and MiniBooNE experiments, for example, reported an excess of electron-type neutrinos over short baselines, which if interpreted as due to νμ ->νe (or νμ ->νe) oscillations, would imply the existence of a fourth light neutrino mass state. On the other hand, null results from other accelerator-based neutrino oscillation experiments searching for sterile neutrinos have put constraints on the possible existence of these particles. This talk will review the accelerator-based searches for light, sterile neutrinos as well as the prospects for confirming or refuting their existence in the coming years.

  9. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  10. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  11. Probing gravitation, dark energy, and acceleration

    SciTech Connect

    Linder, Eric V.

    2004-02-20

    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  12. Ambipolar potential effect on a drift-wave mode in a tandem-mirror plasma

    SciTech Connect

    Mase, A.; Jeong, J.H.; Itakura, A.; Ishii, K.; Inutake, M.; Miyoshi, S. )

    1990-05-07

    The {bold k}-{omega} spectra of low-frequency waves which exist in a tandem-mirror plasma are observed by using the Fraunhofer-diffraction method. The observed dispersion relations are in good agreement with those of drift waves including a Doppler shift due to {bold E}{times}{bold B} rotation velocity. The fluctuation level is observed to depend sensitively on the radial profile of a plasma potential. It has a maximum value when a slightly negative electric field is formed, and decreases with increase in an electric field regardless of its sign.

  13. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  14. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  15. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  16. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  17. TAPO: A combined method for the identification of tandem repeats in protein structures.

    PubMed

    Do Viet, Phuong; Roche, Daniel B; Kajava, Andrey V

    2015-09-14

    In recent years, there has been an emergence of new 3D structures of proteins containing tandem repeats (TRs), as a result of improved expression and crystallization strategies. Databases focused on structure classifications (PDB, SCOP, CATH) do not provide an easy solution for selection of these structures from PDB. Several approaches have been developed, but no best approach exists to identify the whole range of 3D TRs. Here we describe the TAndem PrOtein detector (TAPO) that uses periodicities of atomic coordinates and other types of structural representation, including strings generated by conformational alphabets, residue contact maps, and arrangements of vectors of secondary structure elements. The benchmarking shows the superior performance of TAPO over the existing programs. In accordance with our analysis of PDB using TAPO, 19% of proteins contain 3D TRs. This analysis allowed us to identify new families of 3D TRs, suggesting that TAPO can be used to regularly update the collection and classification of existing repetitive structures.

  18. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  19. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  20. Existing Steel Railway Bridges Evaluation

    NASA Astrophysics Data System (ADS)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  1. Classroom Tandem--Outlining a Model for Language Learning and Instruction

    ERIC Educational Resources Information Center

    Karjalainen, Katri; Pörn, Michaela; Rusk, Fredrik; Björkskog, Linda

    2013-01-01

    The aim of this paper is to outline classroom tandem by comparing it with informal tandem learning contexts and other language instruction methods. Classroom tandem is used for second language instruction in mixed language groups in the subjects of Finnish and Swedish as L2. Tandem learning entails that two persons with different mother tongues…

  2. 47 CFR 36.124 - Tandem switching equipment-Category 2.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Tandem switching equipment-Category 2. 36.124... Central Office Equipment § 36.124 Tandem switching equipment—Category 2. (a) Tandem switching equipment is contained in Accounts 2210, 2211, and 2212. It includes all switching equipment in a tandem central...

  3. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  4. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  5. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  6. [Does Stendhal's syndrome exist really?].

    PubMed

    Valtueña Borque, Oscar

    2009-01-01

    The author, Medical Doctor and Master in Art History, dicusses the real existence of the so called by the Florentine MD Magherini Stendhal syndrome, first time published in 1980 to put out the sickness that some tourists in their Florentia visit suffered, because the big beauty they founded in the city, as the French writter Stendahl suffered two centuries ago.

  7. ADD: Does It Really Exist?

    ERIC Educational Resources Information Center

    Armstrong, Thomas

    1996-01-01

    Questions the existence of attention deficit disorder (ADD), a commonly diagnosed "disease" based on behavioral characteristics. There may be no medical or physiological basis for ADD. The National Association of School Psychologists deplores labeling children and creating categories of exclusion. Instead, educators should respond to individual…

  8. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  9. Accelerated Management Development

    ERIC Educational Resources Information Center

    Munn, Kenn

    1974-01-01

    Western Electric's accelerated management development program for hand picked college graduate students consists of a high risk training project in which the management candidate accomplishes his task or is terminated. The success of such projects puts candidates in third level management in seven years or half the normal time. (DS)

  10. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  11. Tandem wheel drop-legs for standard truck trailer

    NASA Technical Reports Server (NTRS)

    Cantwell, W.; Selstad, R.

    1970-01-01

    Tandem wheel drop-leg device provides a semitrailer with fore and aft mobility that allows it to be moved without a prime mover. The modified drop-legs have trunnion dual wheels and an adjustable brace.

  12. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  13. Plasma-wall interactions in tandem mirror machines

    SciTech Connect

    Allen, S.L.

    1984-11-01

    A description is presented of the plasma-surface interactions in thermal-barrier tandem-mirror machines. The thermal-barrier mode of axial confinement is an integral part of a tandem mirror, and it dictates the required plasma conditions, particularly at the surface of the plasma. For this reason, a qualitative discussion of the thermal barrier is presented first in Section 2. A brief description of the experimental configuration used in tandem mirrors to create the thermal barrier is then examined in detail in Section 3; the TMX-U and MFTF-B machines are used as specific examples. In Section 4, the relevant plasma-surface interaction issues are addressed, and experimental results from currently operating tandom mirror machines are included. Section 5 is both a summary and a discussion of future work concerned with plasma-surface interactions in tandem mirrors.

  14. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    SciTech Connect

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.

  15. 5. GENERAL VIEW OF UNITEDTOD TWIN TANDEM STEAM ENGINE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF UNITED-TOD TWIN TANDEM STEAM ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  16. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  17. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  18. Neurodegeneration in accelerated aging.

    PubMed

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  19. Menopause accelerates biological aging

    PubMed Central

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  20. On horizonless temperature with an accelerating mirror

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Yelshibekov, Khalykbek; Ong, Yen Chin

    2017-03-01

    A new solution of a unitary moving mirror is found to produce finite energy and emit thermal radiation despite the absence of an acceleration horizon. In the limit that the mirror approaches the speed of light, the model corresponds to a black hole formed from the collapse of a null shell. For speeds less than light, the black hole correspondence, if it exists, is that of a remnant.

  1. The EXIST Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  2. Cogeneration for existing alfalfa processing

    SciTech Connect

    Not Available

    1984-01-01

    This study is designed to look at the application of gas-turbine generator cogeneration to a typical Nebraska alfalfa processing mill. The practicality is examined of installing a combustion turbine generator at a plant site and modifying existing facilities for generating electricity, utilizing the electricity generated, selling excess electricity to the power company and incorporating the turbine exhaust flow as a drying medium for the alfalfa. The results of this study are not conclusive but the findings are summarized.

  3. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  4. Software dependability in the Tandem GUARDIAN system

    NASA Technical Reports Server (NTRS)

    Lee, Inhwan; Iyer, Ravishankar K.

    1995-01-01

    Based on extensive field failure data for Tandem's GUARDIAN operating system this paper discusses evaluation of the dependability of operational software. Software faults considered are major defects that result in processor failures and invoke backup processes to take over. The paper categorizes the underlying causes of software failures and evaluates the effectiveness of the process pair technique in tolerating software faults. A model to describe the impact of software faults on the reliability of an overall system is proposed. The model is used to evaluate the significance of key factors that determine software dependability and to identify areas for improvement. An analysis of the data shows that about 77% of processor failures that are initially considered due to software are confirmed as software problems. The analysis shows that the use of process pairs to provide checkpointing and restart (originally intended for tolerating hardware faults) allows the system to tolerate about 75% of reported software faults that result in processor failures. The loose coupling between processors, which results in the backup execution (the processor state and the sequence of events) being different from the original execution, is a major reason for the measured software fault tolerance. Over two-thirds (72%) of measured software failures are recurrences of previously reported faults. Modeling, based on the data, shows that, in addition to reducing the number of software faults, software dependability can be enhanced by reducing the recurrence rate.

  5. Engineering problems of tandem-mirror reactors

    SciTech Connect

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  6. Light Signaling Mechanism of Two Tandem Bacteriophytochromes

    PubMed Central

    Yang, Xiaojing; Stojković, Emina A.; Ozarowski, Wesley B.; Kuk, Jane; Davydova, Erna; Moffat, Keith

    2015-01-01

    RpBphP2 and RpBphP3, two tandem bacteriophytochromes from the photosynthetic bacterium R. palustris, share high sequence identity but exhibit distinct photoconversion behavior. Unlike the canonical RpBphP2, RpBphP3 photoconverts to an unusual nearred-absorbing (Pnr) state; both are required for synthesis of light harvesting complexes under low-light conditions. Here we report the crystal structures of the photosensory core modules of RpBphP2 and RpBphP3. Despite different quaternary structures, RpBphP2 and RpBphP3 adopt nearly identical tertiary structures. The RpBphP3 structure reveals “tongue-and-groove” interactions at the interface between the GAF and PHY domains. A single mutation in the PRxSF motif at the GAF-PHY interface abolishes light-induced formation of the Pnr state in RpBphP3, possibly due to altered structural rigidity of the chromophore-binding pocket. Structural comparisons suggest that long-range signaling involves structural rearrangement of the helical spine at the dimer interface. These structures together with mutational studies provide insights into photoconversion and long-range signaling mechanism in phytochromes. PMID:26095026

  7. Stacked insulator induction accelerator gaps

    SciTech Connect

    Houck, T.I.; Westenskow, G.A.; Kim, J.S.; Eylon, S.; Henestroza, E.; Yu, S.S.; Vanecek, D.

    1997-05-01

    Stacked insulators, with alternating layers of insulating material and conducting film, have been shown to support high surface electrical field stresses. We have investigated the application of the stacked insulator technology to the design of induction accelerator modules for the Relativistic-Klystron Two-Beam Accelerator program. The rf properties of the accelerating gaps using stacked insulators, particularly the impedance at frequencies above the beam pipe cutoff frequency, are investigated. Low impedance is critical for Relativistic-Klystron Two-Beam Accelerator applications where a high current, bunched beam is trsnsported through many accelerating gaps. An induction accelerator module designs using a stacked insulator is presented.

  8. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  9. Commissioning the GTA accelerator

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  10. Commissioning the GTA accelerator

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V. ); Connolly, R.; Weiss, R. (Gr

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  11. Review of accelerator instrumentation

    SciTech Connect

    Pellegrin, J.L.

    1980-05-01

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included.

  12. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  13. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  14. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  15. SUPERDIFFUSIVE SHOCK ACCELERATION

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  16. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  17. STOCHASTIC PARTICLE ACCELERATION AND THE PROBLEM OF BACKGROUND PLASMA OVERHEATING

    SciTech Connect

    Chernyshov, D. O.; Dogiel, V. A.; Ko, C. M.

    2012-11-10

    The origin of hard X-ray (HXR) excess emission from clusters of galaxies is still an enigma, whose nature is debated. One of the possible mechanisms to produce this emission is the bremsstrahlung model. However, previous analytical and numerical calculations showed that in this case the intracluster plasma had to be overheated very fast because suprathermal electrons emitting the HXR excess lose their energy mainly by Coulomb losses, i.e., they heat the background plasma. It was concluded also from these investigations that it is problematic to produce emitting electrons from a background plasma by stochastic (Fermi) acceleration because the energy supplied by external sources in the form of Fermi acceleration is quickly absorbed by the background plasma. In other words, the Fermi acceleration is ineffective for particle acceleration. We revisited this problem and found that at some parameter of acceleration the rate of plasma heating is rather low and the acceleration tails of nonthermal particles can be generated and exist for a long time while the plasma temperature is almost constant. We showed also that for some regime of acceleration the plasma cools down instead of being heated up, even though external sources (in the form of external acceleration) supply energy to the system. The reason is that the acceleration withdraws effectively high-energy particles from the thermal pool (analog of Maxwell demon).

  18. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  19. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  20. Compact pulsed accelerator

    SciTech Connect

    Rhee, M.J.; Schneider, R.F.

    1983-01-01

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab.

  1. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  2. Frontiers of accelerator instrumentation

    SciTech Connect

    Ross, M.

    1992-08-01

    New technology has permitted significant performance improvements of established instrumentation techniques including beam position and profile monitoring. Fundamentally new profile monitor strategies are required for the next generation of accelerators, especially linear colliders (LC). Beams in these machines may be three orders of magnitude smaller than typical beams in present colliders. In this paper we review both the present performance levels achieved by conventional systems and present some new ideas for future colliders.

  3. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  4. Accelerator simulation using computers

    SciTech Connect

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  5. Acceleration during magnetic reconnection

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  6. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  7. ACCELERATION INTEGRATING MEANS

    DOEpatents

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  8. French nuclear physics accelerator opens

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  9. Turbulence: Does Energy Cascade Exist?

    NASA Astrophysics Data System (ADS)

    Josserand, Christophe; Le Berre, Martine; Lehner, Thierry; Pomeau, Yves

    2016-11-01

    To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber k1 to k2 than from k1 to k'2 larger than k2.

  10. Plasma accelerator experiments in Yugoslavia

    NASA Astrophysics Data System (ADS)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  11. Science and Technology of Accelerators

    NASA Astrophysics Data System (ADS)

    Valerio Lizarraga, Cristhian; Castilla Loaeza, Alejandro; Guillermo Cantón, Gerardo; Duarte, Carlos; Chavez Valenzuela, Daniel; Hernández Chahín, Karim; Cuna, Humberto Maury; Medina Medrano, Luis; Reyes Herrera, Juan; Sosa Güitrón, Salvador; Valdivia García, Alan; Rendón, Bruce Yee

    2016-10-01

    The Mexican Particle Accelerator Community (CMAP) was created in 2015 and currently its members participate in different experiments around the world. Using their expertise, they are working in the development of the particle accelerators area in Mexico. This paper provides a summary of the research done by its members and presents the preliminary design of an electron linear particle accelerator (eLINAC). This proposal will be the first accelerator designed and created in Mexico.

  12. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  13. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2016-10-19

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  14. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2016-12-14

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  15. Accelerator Science: Circular vs. Linear

    SciTech Connect

    Lincoln, Don

    2016-11-10

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  16. Accelerator Science: Proton vs. Electron

    SciTech Connect

    Lincoln, Don

    2016-10-11

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  17. A new type of accelerator for charged particle cancer therapy

    SciTech Connect

    Edgecock, Rob

    2013-04-19

    Non-scaling Fixed Field Alternating Gradient accelerators (ns-FFAGs) show great potential for the acceleration of protons and light ions for the treatment of certain cancers. They have unique features as they combine techniques from the existing types of accelerators, cyclotrons and synchrotrons, and hence look to have advantages over both for this application. However, these unique features meant that it was necessary to build one of these accelerators to show that it works and to undertake a detailed conceptual design of a medical machine. Both of these have now been done. This paper will describe the concepts of this type of accelerator, show results from the proof-of-principle machine (EMMA) and described the medical machine (PAMELA).

  18. TOPICAL REVIEW: Ghosts in the self-accelerating universe

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2007-12-01

    The self-accelerating universe realizes the accelerated expansion of the universe at late times by large-distance modification of general relativity (GR) without a cosmological constant. The Dvali Gabadadze Porrati (DGP) braneworld model provides an explicit example of the self-accelerating universe. Recently, the DGP model became very popular for studying the observational consequences of the modified gravity models as an alternative to dark energy models in GR. However, it has been shown that the self-accelerating universe in the DGP model contains a ghost at the linearized level. The ghost carries negative energy densities and it leads to the instability of the spacetime. In this review, we review the origin of the ghost in the self-accelerating universe and explore the physical implications of the existence of the ghost.

  19. Identification of Glycopeptides with Multiple Hydroxylysine O-Glycosylation Sites by Tandem Mass Spectrometry.

    PubMed

    Zhang, Yanlin; Yu, Chuan-Yih; Song, Ehwang; Li, Shuai Cheng; Mechref, Yehia; Tang, Haixu; Liu, Xiaowen

    2015-12-04

    Glycosylation is one of the most common post-translational modifications in proteins, existing in ~50% of mammalian proteins. Several research groups have demonstrated that mass spectrometry is an efficient technique for glycopeptide identification; however, this problem is still challenging because of the enormous diversity of glycan structures and the microheterogeneity of glycans. In addition, a glycopeptide may contain multiple glycosylation sites, making the problem complex. Current software tools often fail to identify glycopeptides with multiple glycosylation sites, and hence we present GlycoMID, a graph-based spectral alignment algorithm that can identify glycopeptides with multiple hydroxylysine O-glycosylation sites by tandem mass spectra. GlycoMID was tested on mass spectrometry data sets of the bovine collagen α-(II) chain protein, and experimental results showed that it identified more glycopeptide-spectrum matches than other existing tools, including many glycopeptides with two glycosylation sites.

  20. Equality and selection for existence.

    PubMed Central

    Persson, I

    1999-01-01

    It is argued that the policy of excluding from further life some human gametes and pre-embryos as "unfit" for existence is not at odds with a defensible idea of human equality. Such an idea must be compatible with the obvious fact that the "functional" value of humans differs, that their "use" to themselves and others differs. A defensible idea of human equality is instead grounded in the fact that as this functional difference is genetically determined, it is nothing which makes humans deserve or be worthy of being better or worse off. Rather, nobody is worth a better life than anyone else. This idea of equality is, however, not applicable to gametes and pre-embryos, since they are not human beings, but something out of which human beings develop. PMID:10226918

  1. Straightening: existence, uniqueness and stability

    PubMed Central

    Destrade, M.; Ogden, R. W.; Sgura, I.; Vergori, L.

    2014-01-01

    One of the least studied universal deformations of incompressible nonlinear elasticity, namely the straightening of a sector of a circular cylinder into a rectangular block, is revisited here and, in particular, issues of existence and stability are addressed. Particular attention is paid to the system of forces required to sustain the large static deformation, including by the application of end couples. The influence of geometric parameters and constitutive models on the appearance of wrinkles on the compressed face of the block is also studied. Different numerical methods for solving the incremental stability problem are compared and it is found that the impedance matrix method, based on the resolution of a matrix Riccati differential equation, is the more precise. PMID:24711723

  2. Does a quarterlife crisis exist?

    PubMed

    Rossi, Nicole E; Mebert, Carolyn J

    2011-01-01

    In this study, the authors examined quarterlife crisis, defined in the popular press as an identity crisis that leaves recent college graduates depressed, anxious, and full of doubt. To determine if a unique crisis exists, 4 groups of young adults (recent high school [n = 23] and college [n = 117] graduates in the workforce, present undergraduate [n = 75], and graduate [n = 57] students) completed self-report measures assessing identity development, future time perspective, social support, coping, depression, anxiety, and job and life satisfaction. No support was found for a quarterlife crisis among these 4 groups. Working high school graduates displayed the highest anxiety, followed by present undergraduates. Depression was predicted by family support and identity commitment. Job satisfaction was associated with income and support from friends. Life satisfaction was associated with income, social support from friends and family, and identity commitment.

  3. Straightening: existence, uniqueness and stability.

    PubMed

    Destrade, M; Ogden, R W; Sgura, I; Vergori, L

    2014-04-08

    One of the least studied universal deformations of incompressible nonlinear elasticity, namely the straightening of a sector of a circular cylinder into a rectangular block, is revisited here and, in particular, issues of existence and stability are addressed. Particular attention is paid to the system of forces required to sustain the large static deformation, including by the application of end couples. The influence of geometric parameters and constitutive models on the appearance of wrinkles on the compressed face of the block is also studied. Different numerical methods for solving the incremental stability problem are compared and it is found that the impedance matrix method, based on the resolution of a matrix Riccati differential equation, is the more precise.

  4. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

    1991-01-01

    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

  5. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  6. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  7. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  8. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  9. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; Bloomberg, J. J.; Mulavara, A.; Kozlovskaya, I.; Tomilovskaya, E.

    2016-01-01

    BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also

  10. Advanced Microgravity Acceleration Measurement Systems (AMAMS) Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2003-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project is part of NASA s Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical systems (MEMS) for acceleration sensor systems to replace existing electromechanical sensor systems presently used to assess relative gravity levels aboard spacecraft. These systems are used to characterize both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data is useful to the microgravity life sciences, microgravity physical sciences, and structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, with enhanced long-term calibration stability.

  11. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  12. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    SciTech Connect

    Chen, Pisin; Chang, Feng-Yin; Lin, Guey-Lin; Noble, Robert J.; Sydora, Richard; /Alberta U.

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.

  13. APT accelerator. Topical report

    SciTech Connect

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  14. VLHC accelerator physics

    SciTech Connect

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  15. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2016-07-12

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  16. Recent Advances in Plasma Acceleration

    SciTech Connect

    Hogan, Mark

    2007-03-19

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  17. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  18. Accelerated Innovation Pilot

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  19. The Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Schmidt, Brian P.

    2012-05-01

    In 1998 two teams traced back the expansion of the universe over billions of years and discovered that it was accelerating, a startling discovery that suggests that more than 70% of the cosmos is contained in a previously unknown form of matter, called Dark Energy. The 2011 Nobel Laureate for Physics, Brian Schmidt, leader of the High-Redshift Supernova Search Team, will describe this discovery and explain how astronomers have used observations to trace our universe's history back more than 13 billion years, leading them to ponder the ultimate fate of the cosmos.

  20. Does Metabolically Healthy Obesity Exist?

    PubMed Central

    Muñoz-Garach, Araceli; Cornejo-Pareja, Isabel; Tinahones, Francisco J.

    2016-01-01

    The relationship between obesity and other metabolic diseases have been deeply studied. However, there are clinical inconsistencies, exceptions to the paradigm of “more fat means more metabolic disease”, and the subjects in this condition are referred to as metabolically healthy obese (MHO).They have long-standing obesity and morbid obesity but can be considered healthy despite their high degree of obesity. We describe the variable definitions of MHO, the underlying mechanisms that can explain the existence of this phenotype caused by greater adipose tissue inflammation or the different capacity for adipose tissue expansion and functionality apart from other unknown mechanisms. We analyze whether these subjects improve after an intervention (traditional lifestyle recommendations or bariatric surgery) or if they stay healthy as the years pass. MHO is common among the obese population and constitutes a unique subset of characteristics that reduce metabolic and cardiovascular risk factors despite the presence of excessive fat mass. The protective factors that grant a healthier profile to individuals with MHO are being elucidated. PMID:27258304

  1. Dosimetric Comparison of Tandem and Ovoids vs. Tandem and Ring for Intracavitary Gynecologic Applications

    SciTech Connect

    Levin, Daphne Menhel, Janna; Rabin, Tanya; Pfeffer, M. Raphael; Symon, Zvi

    2008-01-01

    We evaluated dosimetric differences in tandem and ovoid (TO) and tandem and ring (TR) gynecologic brachytherapy applicators. Seventeen patients with cervical cancer (Stages II-IV) receiving 3 high-dose-rate (HDR) brachytherapy applications (both TO and TR) were studied. Patients underwent computed tomography (CT) scans with contrast in bladder, and were prescribed 8 Gy to ICRU points A, with additional optimization goals of maintaining the pear-shaped dose distribution and minimizing bladder and rectum doses. Bladder and rectum point doses, mean, and maximum doses were calculated. Total treatment time and volumes treated to 95%, 85%, 50%, and 20% or the prescription dose were compared. There were no significant differences between TO and TR applicators in doses to prescription points or critical organs. However, there were significant differences (p < 0.001) between the applicators in treated volumes and total treatment time. The TO treated larger volumes over a longer time. Within each patient, when the applicators were compared, treated volumes were also found to be significantly different (p < 0.01, {chi}{sup 2}). Our results demonstrate that the 2 applicators, while delivering the prescribed dose to points A and keeping critical organ doses below tolerance, treat significantly different volumes. It is unclear if this difference is clinically meaningful. TO applicators may be treating surrounding healthy tissue unnecessarily, or TR applicators may be underdosing tumor tissue. Further investigation with appropriate imaging modalities is required for accurate delineation of target volumes. Clearly, the TO and TR are not identical, and should not be used interchangeably without further study.

  2. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  3. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  4. A periodic table of symmetric tandem mismatches in RNA.

    PubMed

    Wu, M; McDowell, J A; Turner, D H

    1995-03-14

    The stabilities and structures of a series of RNA octamers containing symmetric tandem mismatches were studied by UV melting and imino proton NMR. The free energy increments for tandem mismatch formation are found to depend upon both mismatch sequence and adjacent base pairs. The observed sequence dependence of tandem mismatch stability is UGGU > GUUG > GAAG > or = AGGA > UUUU > CAAC > or = CUUC approximately UCCU approximately CCCC approximately ACCA approximately AAAA, and the closing base pair dependence is 5'G3'C > 5'C3'G > 5'U3'A approximately 5'A3'U. These results differ from expectations based on models used in RNA folding algorithms and from the sequence dependence observed for folding of RNA hairpins. Imino proton NMR results indicate the sequence dependence is partially due to hydrogen bonding within mismatches.

  5. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  6. Highly Loaded Fan by Using Tandem Cascade Rotor Blade

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroaki; Suga, Shinya; Matsuoka, Akinori

    For axial flow compressors and fans in the aircraft engines higher pressure ratio is required in order to attain the high thrust engines. In this study, the fan with the tandem cascades was introduced to increase the fan pressure ratio. The use of tandem cascades in the fan allows savings in length and weight and therefore a compact fan could be built. The design of fan with tandem cascades and the fan testing were carried out to develop the high pressure ratio fan for the Air Turbo Ramjet (ATR) propulsion system. The ATR is a combined cycle engine which performs like a turbojet engine at subsonic speeds and a ramjet at supersonic speeds. In particular, high fan pressure ratio contributes to increase the engine thrust during subsonic flight at which the engine does not make use of ram effect. The results of the fan testing indicate that the pressure ratio of 2.2 is achieved in single stage fan.

  7. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  8. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  9. mreps: efficient and flexible detection of tandem repeats in DNA

    PubMed Central

    Kolpakov, Roman; Bana, Ghizlane; Kucherov, Gregory

    2003-01-01

    The presence of repeated sequences is a fundamental feature of genomes. Tandemly repeated DNA appears in both eukaryotic and prokaryotic genomes, it is associated with various regulatory mechanisms and plays an important role in genomic fingerprinting. In this paper, we describe mreps, a powerful software tool for a fast identification of tandemly repeated structures in DNA sequences. mreps is able to identify all types of tandem repeats within a single run on a whole genomic sequence. It has a resolution parameter that allows the program to identify ‘fuzzy’ repeats. We introduce main algorithmic solutions behind mreps, describe its usage, give some execution time benchmarks and present several case studies to illustrate its capabilities. The mreps web interface is accessible through http://www.loria.fr/mreps/. PMID:12824391

  10. Structural analysis of a multifunctional, tandemly repeated inositol polyphosphatase.

    PubMed

    Gruninger, Robert J; Selinger, L Brent; Mosimann, Steven C

    2009-09-11

    Mitsuokella multacida expresses a unique inositol polyphosphatase (PhyAmm) that is composed of tandem repeats (TRs). Each repeat possesses a protein tyrosine phosphatase (PTP) active-site signature sequence and fold. Using a combination of structural, mutational, and kinetic studies, we show that the N-terminal (D1) and C-terminal (D2) active sites of the TR have diverged and possess significantly different specificities for inositol polyphosphate. Structural analysis and molecular docking calculations identify steric and electrostatic differences within the substrate binding pocket of each TR that may be involved in the altered substrate specificity. The implications of our results for the biological function of related PTP-like phytases are discussed. Finally, the structures and activities of PhyAmm and tandemly repeated receptor PTPs are compared and discussed. To our knowledge, this is the first example of an inositol phosphatase with tandem PTP domains possessing substrate specificity for different inositol phosphates.

  11. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  12. Tandem repeat distribution of gene transcripts in three plant families

    PubMed Central

    2009-01-01

    Tandem repeats (microsatellites or SSRs) are molecular markers with great potential for plant genetic studies. Modern strategies include the transfer of these markers among widely studied and orphan species. In silico analyses allow for studying distribution patterns of microsatellites and predicting which motifs would be more amenable to interspecies transfer. Transcribed sequences (Unigene) from ten species of three plant families were surveyed for the occurrence of micro and minisatellites. Transcripts from different species displayed different rates of tandem repeat occurrence, ranging from 1.47% to 11.28%. Both similar and different patterns were found within and among plant families. The results also indicate a lack of association between genome size and tandem repeat fractions in expressed regions. The conservation of motifs among species and its implication on genome evolution and dynamics are discussed. PMID:21637460

  13. Axionic suppression of plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Burton, D. A.; Noble, A.; Walton, T. J.

    2016-09-01

    Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.

  14. Is schizophrenia a syndrome of accelerated aging?

    PubMed

    Kirkpatrick, Brian; Messias, Erick; Harvey, Philip D; Fernandez-Egea, Emilio; Bowie, Christopher R

    2008-11-01

    Schizophrenia is associated with a number of anatomical and physiological abnormalities outside of the brain, as well as with a decrease in average life span estimated at 20% in the United States. Some studies suggest that this increased mortality is not entirely due to associated causes such as suicide and the use of psychotropic medications. In this article, in order to focus greater attention on the increased mortality associated with schizophrenia, we present a special case of the hypothesis that physiological abnormalities associated with schizophrenia make a contribution to the increased mortality of schizophrenia: specifically, the hypothesis that schizophrenia is a syndrome of accelerated aging. Evidence consistent with this hypothesis comes from several areas. The biological plausibility of the hypothesis is supported by the existence of established syndromes of accelerated aging and by the sharing of risk factors between schizophrenia and other age-related conditions. We propose methods for testing the hypothesis.

  15. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  16. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  17. Accelerator mass spectrometer with ion selection in high-voltage terminal

    NASA Astrophysics Data System (ADS)

    Rastigeev, S. A.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.; Frolov, A. R.

    2016-12-01

    The folded electrostatic tandem accelerator with ion selection in a high-voltage terminal is the basis of accelerator mass spectrometry (AMS) at the BINP. Additional features of the BINP AMS are the target based on magnesium vapors as a stripper without vacuum deterioration and a time-of-flight telescope with thin films for reliable ion identification. The acceleration complex demonstrates reliable operation in a mode of 1 MV with 50 Hz counting rate of 14C+3 radiocarbon for modern samples (14C/12C 1.2 × 10-12). The current state of the AMS has been considered and the experimental results of the radiocarbon concentration measurements in test samples have been presented.

  18. Tandem riboswitch architectures exhibit complex gene control functions.

    PubMed

    Sudarsan, Narasimhan; Hammond, Ming C; Block, Kirsten F; Welz, Rüdiger; Barrick, Jeffrey E; Roth, Adam; Breaker, Ronald R

    2006-10-13

    Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors.

  19. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    PubMed

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration.

  20. Trimethylenemethane diyl mediated tandem cycloaddition reactions: mechanism based design of synthetic strategies.

    PubMed

    Lee, Hee-Yoon

    2015-08-18

    Several criteria for the measure of synthetic strategies toward "ideal synthesis" are available to guide the design and evaluation of the synthetic strategies toward the target molecules. One strategy toward "ideal synthesis" is developing a multistep reaction that involves dramatic change in complexity. Biogenesis of natural products and mechanistic investigation of complicated organic transformation provide good inspiration for design of new synthetic strategies. Trimethylenemethane diradical (TMM diyl), first introduced only as a theoretically interesting structure 60 years ago, gained interests of physical organic chemistry when it was first detected by Dowd. Study of characteristics and properties of TMM diyl was accelerated in a great deal when Koebrich observed dimeric hydrocarbon products from the reaction of 1,1-dibromo-2-methylhexa-1,5-diene with MeLi. Berson followed the mechanistic investigation of the reaction that involved 2-methylenecyclopentane-1,3-diyl, and thoroughly studied physical and chemical properties of the TMM diyl. This lead to the development of intramolecular [2 + 3] TMM diyl cycloaddition reaction for the construction of linearly fused triquinanes by Little. We envisioned that the generation of a TMM diyl through cycloaddition reaction discovered by Koebrich and [2 + 3] cycloaddition reaction of the TMM diyl could be combined together to form polyquinane structures. A cycloaddition reaction sequence of generating a TMM diyl from a alkylidene carbene of 2-methylhexa-1,5-diene structure in the presence of another olefin was designed and executed to produce linearly fused and angularly fused triquinanes depending on the connectivity of the second double bond. The successful transformation also inspired design of a tandem cycloaddition reaction strategy of using unprecedented tetrahydrocyclopentapyrazole to TMM diyl transformation. The new design involves two [2 + 3] cycloaddition reactions of 6-diazohexa-1,2-diene with an olefin attached

  1. XACC - eXtreme-scale Accelerator Programming Framework

    SciTech Connect

    McCaskey, Alexander J.

    2016-11-18

    Hybrid programming models for beyond-CMOS technologies will prove critical for integrating new computing technologies alongside our existing infrastructure. Unfortunately the software infrastructure required to enable this is lacking or not available. XACC is a programming framework for extreme-scale, post-exascale accelerator architectures that integrates alongside existing conventional applications. It is a pluggable framework for programming languages developed for next-gen computing hardware architectures like quantum and neuromorphic computing. It lets computational scientists efficiently off-load classically intractable work to attached accelerators through user-friendly Kernel definitions. XACC makes post-exascale hybrid programming approachable for domain computational scientists.

  2. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry.

    PubMed

    Yoon, Hye-Ran

    2015-09-01

    The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and the major factors that influence the results of biochemical analysis. Compared to regular biochemical testing, this is a complex process carried out by a medical physician specialist. It is comprised of an integrated program requiring multidisciplinary approach such as, pediatric specialist, expert scientist, clinical laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful tool to improve screening of newborns for diverse metabolic diseases. It is likely to be used to analyze other treatable disorders or significantly improve existing newborn tests to allow broad scale and precise testing. This new era of various screening programs, new treatments, and the availability of detection technology will prove to be beneficial for the future generations.

  3. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials.

  4. Vortex wake interactions and energy harvesting from tandem pitching and heaving hydrofoils

    NASA Astrophysics Data System (ADS)

    Su, Yunxing; Cardona, Jennifer; Miller, Michael; Mandre, Shreyas; Breuer, Kenneth

    2016-11-01

    Measurements of flow structure and power extraction by tandem pitching and heaving hydrofoils are conducted in a flume. The leading and trailing hydrofoils are synchronized and aligned parallel to the oncoming flow. Force measurements and time-resolved PIV are used to characterize the system. The system efficiency of tandem foils with the same kinematics is quantified as a function of the phase difference between the foils and there exist favorable and unfavorable phase angles and that system efficiencies can be as large as 0.45. For unfavorable phase angles, PIV indicates that the leading edge vortex generated by the trailing foil, which is critical to good energy harvesting, is weakened by the oncoming wake from the leading foil. Conversely, at a favorable phase, the vortex shed from the leading foil enhances the performance of the trailing foil, compensating for the otherwise negative aspects of operating in the wake. A model, combining frequency, separation distance and a characteristic convection velocity, is introduced to predict the optimal phase region and is validated over a range of parameters. By changing the pitching amplitude and phase angle in trailing foil we show that relatively larger pitching amplitudes can further improve the system efficiency. ARPA-e.

  5. Flow-induced oscillations of tandem tethered cylinders in a channel flow

    NASA Astrophysics Data System (ADS)

    Nave, Gary; Michael, Tyler; Vlachos, Pavlos; Stremler, Mark

    2014-11-01

    In single degree-of-freedom (DOF) flow-induced oscillation studies of tandem rigid cylinders, the system most often consists of a front fixed cylinder and a trailing cylinder that is constrained to move perpendicular to the flow. We have conducted experiments in a water channel to investigate the behavior of a single DOF system of cylinders in which the trailing cylinder is constrained to move in a circular arc about the leading cylinder. We will discuss the dynamic response of the trailing cylinder for Reynolds numbers ranging from 10,000 to 20,000 and for inter-cylinder spacings from 3D to 5D, where D is the diameter of the cylinders. The experiments show a multi-frequency response that cannot be classified as a simple harmonic oscillator, as is assumed in typical tandem cylinder models. We compare our results with existing work on transversely constrained cylinders to determine the effect of tethering the cylinders. Work made possible by funding from the Virginia Commonwealth Research Commercialization Fund.

  6. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats

    PubMed Central

    Curtis, Edward A; Liu, David R

    2014-01-01

    Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the “CA motif.” The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats. PMID:24824832

  7. Two-dimensional wakes of oscillating and tandem cylinders at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Stremler, Mark

    2015-11-01

    Transverse flow past an oscillating bluff body or multiple stationary bodies can produce wakes with complicated spatio-temporal structure. Previous work by others has characterized the wake structure as a function of system parameters. These are typically 2D characterizations, despite the fact that instabilities often cause such wakes to become strongly 3D. We use a flowing soap film system to investigate the connections and differences between (quasi) 2D wakes and 3D wakes generated behind oscillating and tandem cylinders. Wake structure is identified through flow visualization. Inspired by the work of Williamson and collaborators, we investigate the wake structure behind a circular cylinder forced to oscillate transverse to the flow. We map the boundaries of the different wake modes with variations in the amplitude and frequency of oscillation, and we discuss how our quasi-2D results compare with 3D results from the literature. We also consider the wake interaction of two stationary cylinders arranged in tandem. Existing literature disagrees on the critical cylinder spacing that gives changes in the wake mode. We examine this point and discuss the connections and distinctions between our quasi-2D experiments, 2D simulations, and results from the literature.

  8. Sites in the AAV5 capsid tolerant to deletions and tandem duplications

    PubMed Central

    Hida, Kaoru; Won, Sang Y.; Di Pasquale, Giovanni; Hanes, Justin; Chiorini, John A.; Ostermeier, Marc

    2010-01-01

    Gene therapy vectors based on adeno-associated virus (AAV) have shown much promise in clinical trials for the treatment of a variety of diseases. However, the ability to manipulate and engineer the viral surface for enhanced efficiency is necessary to overcome such barriers as pre-existing immunity and transduction of non-target cells that currently limit AAV applications. Although single amino acid changes and peptide insertions at select sites have been explored previously, the tolerance of AAV to small deletions and tandem duplications of sequence has not been globally addressed. Here, we have generated a large, diverse library of >105 members containing deletions and tandem duplications throughout the viral capsid of AAV5. Four unique mutants were identified that maintain the ability to form viral particles, with one showing improved transduction on both 293T and BEAS-2B cells. This approach may find potential use for the generation of novel variants with improved and altered properties or in the identification of sites that are tolerant to insertions of targeting ligands. PMID:20102698

  9. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  10. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  11. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  12. Accelerator simulation of astrophysical processes

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1983-01-01

    Phenomena that involve accelerated ions in stellar processes that can be simulated with laboratory accelerators are described. Stellar evolutionary phases, such as the CNO cycle, have been partially explored with accelerators, up to the consumption of He by alpha particle radiative capture reactions. Further experimentation is indicated on reactions featuring N-13(p,gamma)O-14, O-15(alpha, gamma)Ne-19, and O-14(alpha,p)F-17. Accelerated beams interacting with thin foils produce reaction products that permit a determination of possible elemental abundances in stellar objects. Additionally, isotopic ratios observed in chondrites can be duplicated with accelerator beam interactions and thus constraints can be set on the conditions producing the meteorites. Data from isotopic fractionation from sputtering, i.e., blasting surface atoms from a material using a low energy ion beam, leads to possible models for processes occurring in supernova explosions. Finally, molecules can be synthesized with accelerators and compared with spectroscopic observations of stellar winds.

  13. Laser acceleration and its future

    PubMed Central

    Tajima, Toshiki

    2010-01-01

    Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their extreme accelerating fields that distinguish the laser wakefield from others, amounting to tiny emittance and compact accelerator. The current research largely falls on how to master the control of acceleration process in spatial and temporal scales several orders of magnitude smaller than the conventional method. The efforts over the last several years have come to a fruition of generating good beam properties with GeV energies on a table top, leading to many applications, such as ultrafast radiolysis, intraoperative radiation therapy, injection to X-ray free electron laser, and a candidate for future high energy accelerators. PMID:20228616

  14. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  15. Accelerated Decay of Radioisotopes

    DTIC Science & Technology

    2013-01-01

    00-01 -2013 Technical June20 l l-June 2012 4 . TITLE AND SUBTITLE Sa. CONTRACT NUMBER DTRA MIPR 11-2362M Accelerated Decay of Radioisotopes Sb...268 x E +2 4.788 026 x E -2 6.894 757 4.535 924 x E -1 4.214 011 x E -2 1.601 846 x E +1 1.000 000 x E -2 2.579 760 x E - 4 1.000 000 x E -8...c a y o f R a d i o i s o t o p e s " P r o p o s a l # B R C A L L 0 7 - N - 2 - 0 0 4 7 I l l u s t r a t i o n o f \\ P F R P a s p o

  16. Understanding projectile acceleration.

    PubMed

    Hecht, H; Bertamini, M

    2000-04-01

    Throwing and catching balls or other objects is a generally highly practiced skill; however, conceptual as well as perceptual understanding of the mechanics that underlie this skill is surprisingly poor. In 5 experiments, we investigated conceptual and perceptual understanding of simple ballistic motion. Paper-and-pencil tests revealed that up to half of all participants mistakenly believed that a ball would continue to accelerate after it left the thrower's hand. Observers also showed a remarkable tolerance for anomalous trajectory shapes. Perceptual judgments based on graphics animations replicated these erroneous beliefs for shallow release angles. Observers' tolerance for anomalies tended to decrease with their distance from the actor. The findings are at odds with claims of the naive physics literature that liken intuitive understanding to Aristotelian or medieval physics theories. Instead, observers seem to project their intentions to the ball itself (externalization) or even feel that they have power over the ball when it is still close.

  17. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  18. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  19. Linac-accelerator-radiosurgery.

    PubMed

    Sturm, V; Schlegel, W; Pastyr, O; Treuer, H; Voges, J; Müller, R P; Lorenz, W J

    1993-01-01

    A survey is given of the actual possibilities and limitations of the use of linear accelerators (Linac radiosurgery systems) for intra = cranial radiosurgery. Depending on the collimator size, spherical fields from 5-54 mm in diameter can be irradiated with dose gradients from 10% (large fields) to 20% (small fields) per millimeter distance between surface and treatment volume. This is comparable to the possibilities of Gamma-Knife and Proton-irradiation. Optimal mechanical adjustment of gantry and linac table are necessary for the required stability of the isocenter. Mechanical inaccuracy should be smaller than 0.8 mm. Advanced computerized 3D-treatment planning systems are indispensable prerequisites for accurate treatment and use of the flexibility of the linac system. Future developments are outlined.

  20. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  1. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  2. Lectures in accelerator theory

    SciTech Connect

    Month, M

    1980-01-01

    Lecture I deals with the behavior of particles in the nonlinear field arising from the electromagnetic interaction of colliding beams. The case treated, that of counter-rotating proton beams crossing each other at a non-zero angle, has the simple feature that the force between the beam is one dimensional. In lecture II, an analysis of the development of traveling waves on particle beams is presented. The situation studied is that of a uniform beam current in a circular accelerator and the excitation for the coherent motion is induced by the resistivity of the vacuum chamber wall. Finally, in lecture III, a description of the current accumulation process used at the proton storage rings at CERN (The ISR) is given. Particle pulses of rather low average current are injected and stored along the length and width of the vacuum chamber. The efficiency is very high and large currents (over 40 amperes) have been achieved.

  3. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  4. Development of high band gap materials for tandem solar cells and simulation studies on mechanical tandem solar cells

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Vishnuvardhanan

    Development of low cost, high efficiency tandem solar cells is essential for large scale adoption of solar energy especially in densely populated regions of the world. In this thesis four-terminal mechanical (stack like) tandem solar cells were evaluated using detailed simulation models and design criteria for selecting candidate materials were established. Since silicon solar cells are low cost and have a multi-giga watt global manufacturing and supply chain capacity already in place then only tandem stacks incorporating silicon as one of the layers in the device was investigated. Two candidate materials which have high band gaps that could be used as top cells in the mechanical tandem device were explored as part of the thesis. Dye-sensitized solar cells (DSSC) sensitized with N719 dye (one of the candidates for the top cell) were fabricated with the goal of enabling a flexible processing path to lower cost. Stainless steel (SS) mesh substrates were used to fabricate anodes for flexible DSSC in order to evaluate them as replacements for more expensive Transparent Conducting Oxides (TCO's). Loss mechanisms in DSSC's due to SS mesh oxidation were quantified and protective coatings to prevent oxidation of SS mesh were developed. The second material which was evaluated for use as the top cell was copper zinc tin sulfide (CZTS). CZTS was deposited through a solution deposition route. Detailed investigations were done on the deposited films to understand the chemistry, crystal structure and its opto-electronic properties. Deposited CZTS films were found to be highly crystalline in <112> direction. The films had a direct band gap of 1.5 eV with absorption coefficient greater than 104 cm -1 in agreement with published values. In the second part of the thesis detailed electrical and optical simulation models of the mechanical tandem solar cells were developed based on the most up-to-date materials physical constants available for each layer. The modeling was used to

  5. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  6. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  7. NIIEFA accelerators for applied purposes

    NASA Astrophysics Data System (ADS)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  8. Collective accelerator for electron colliders

    SciTech Connect

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  9. Basic concepts in plasma accelerators.

    PubMed

    Bingham, Robert

    2006-03-15

    In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse ( approximately 100 ps) modest intensity lasers (I approximately 10(14)-10(16) W cm(-2)), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10(18) W cm(-2), self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm(-1) have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.

  10. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  11. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  12. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  13. Accelerators for research and applications

    SciTech Connect

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  14. ADS Based on Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Pan, Weimin; Dai, Jianping

    An accelerator-driven system (ADS), which combines a particle accelerator with a subcritical core, is commonly regarded as a promising device for the transmutation of nuclear waste, as well as a potential scheme for thorium-based energy production. So far the predominant choice of the accelerator for ADS is a superconducting linear accelerator (linac). This article gives a brief overview of ADS based on linacs, including the motivation, principle, challenges and research activities around the world. The status and future plan of the Chinease ADS (C-ADS) project will be highlighted and discussed in depth as an example.

  15. Geographic variation within a tandemly repeated mitochondrial DNA D-loop region of a North American freshwater fish, Pylodictis olivaris.

    PubMed

    Padhi, Abinash

    2014-03-15

    The present study reports the distribution of a 35-bp mitochondrial DNA (mtDNA) D-loop tandemly repeated sequence in the populations of a North American freshwater catfish, Pylodictis olivaris, and the important role of a past geological event in the phylogeographic pattern of this species. A total of 330 individuals of flathead catfish, representing 34 drainages throughout the species' native range in the United States, were collected. While more than 70% of individuals sampled from the Southeastern Gulf Coast drainages were characterized by the presence of a 35-bp mtDNA D-loop tandem repeat proximal to the 5' end, more than 95% of samples from the Mississippi River and its tributaries, as well as from the drainages of the Southwest Gulf Coast region, lack this tandem repeat. Concomitantly, phylogenetic analyses revealed the existence of two distinct matrilineal lineages (lineage I and II) of P. olivaris, which were estimated to have diverged from a common ancestor sometime between 0.70 and 2.05myr ago. While one lineage is comprised of samples from the Mississippi River and its tributaries and rivers draining to the Southwest Gulf Coast, the other lineage is comprised of samples from the Southeastern Gulf Coast drainages. Each lineage also has two sub-lineages, which also showed geographic specificity.

  16. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  17. Computational needs for modelling accelerator components

    SciTech Connect

    Hanerfeld, H.

    1985-06-01

    The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs.

  18. Optochemokine Tandem for Light-Control of Intracellular Ca2+

    PubMed Central

    Weissbecker, Juliane; Sauer, Frank; Wood, Phillip G.; Bamberg, Ernst

    2016-01-01

    An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light. PMID:27768773

  19. PCR-free digital minisatellite tandem repeat genotyping.

    PubMed

    Chen, Yuchao; Seo, Tae Seok

    2011-06-01

    We demonstrated a proof-of-concept for novel minisatellite tandem repeat typing, called PCR-free digital VNTR (variable number tandem repeat) typing, which is composed of three steps: a ligation reaction instead of PCR thermal cycling, magnetic bead-based solid-phase capture for purification, and an elongated sample stacking microcapillary electrophoresis (μCE) for sensitive digital coding of repeat number. We designed a 16-bp fluorescently labeled ligation probe which is complementary to a repeat unit of a biotinylated synthetic template mimicking the human D1S80 VNTR locus and is randomly hybridized with the minisatellite tandem repeats. A quick isothermal ligation reaction was followed to link the adjacent ligation probes on the DNA templates, and then the ligated products were purified by streptavidin-coated magnetic beads. After a denaturing step, a large amount of ligated products whose size difference was equivalent to the repeat unit were released and recovered. Through the elongated sample stacking μCE separation on a microdevice, the fluorescence signal of the ligated products was generated in the electropherogram and the peak number was directly counted which was exactly matched with the repeat number of VNTR locus. We could successfully identify the minisatellite tandem repeat number with only 5 fmol of DNA template in 30 min.

  20. The "Bologna-München" Tandem--Experiencing Interculturality

    ERIC Educational Resources Information Center

    De Martino, Sandro

    2016-01-01

    This case study describes the "Bologna-München" Tandem, a cross-border collaboration which began in 2011. The aim of the collaboration is to give students studying Italian at the Ludwig- Maximilians-University in Munich and students studying German at the University of Bologna the opportunity to experience interculturality through…

  1. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-09

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique.

  2. II-IV-V Based Thin Film Tandem Photovoltaic Cell

    SciTech Connect

    Newman, Nathan; van Schilfgaarde, Mark

    2012-10-04

    [Through a combination of theory and experiment that, absent unknown mitigating factors, a tandem cell whose (wide-gap. 1.8 eV) top layer is made of ZnSnP2 and whose (narrow gap, 1.1 eV) bottom layer consisting of ZnGeAs2 are near-ideal materials for a tandem cell. Not only are there gaps optimally adjusted to the solar spectrum, but the two compounds are lattice-matched, and their energy band structure and optical absorption are also near-ideal (they closely resemble that of GaAs). Our first major challenge is to establish that high-quality II-IV-V thin films can be synthesized. We have begun growing and characterizing films of ZnGeAs2 and ZnSnP2, initially grown on Ge substrates (the lattice constant of Ge matches these compounds) by pulsed laser ablation and sputtering. In tandem are theoretical calculations to guide the experiments. The goal is to develop methods that can be used to produce a pair of lattice-matched thin films that will be useful in tandem cells.

  3. High efficiency GaAs/Ge monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Tobin, S. P.; Vernon, S. M.; Bajgar, C.; Haven, V. E.; Geoffroy, L. M.; Sanfacon, M. M.; Lillington, D. R.; Hart, R. E., Jr.

    1988-01-01

    Two-terminal monolithic tandem cells consisting of a GaAs solar cell grown epitaxially on a Ge solar cell substrate are very attractive for space applications. Tandem cells of GaAs grown by metal-organic chemical vapor deposition on thin Ge were investigated to address both higher efficiency and reduced weight. Two materials growth issues associated with this heteroepitaxial system, autodoping of the GaAs layers by Ge and diffusion of Ga and As into the Ge substrate, were addressed. The latter appears to result in information of an unintentional p-n junction in the Ge. Early simulator measurements gave efficiencies as high as 21.7 percent for 4 cm2 GaAs/Ge cells, but recent high-altitude testing has given efficiencies of 18 percent. Sources of errors in simulator measurements of two-terminal tandem cells are discussed. A limiting efficiency of about 36 percent for the tandem cell at AMO was calculated. Ways to improve the performance of present cells, primarily by increasing the Isc and Voc of the Ge cell, are proposed.

  4. Design considerations for the Tandem Junction Solar Cell

    NASA Technical Reports Server (NTRS)

    Matzen, W. T.; Carbajal, B. G.; Hardy, R. W.

    1979-01-01

    Structure and operation of the tandem junction cell (TJC) are described. The impact of using only back contacts is discussed. A model is presented which explains operation of the TJC in terms of transistor action. The model is applied to predict TJC performance as a function of physical parameters.

  5. Propulsion Research on the Variable Tandem Mirror Plasma Rocket.

    DTIC Science & Technology

    1994-02-07

    T.F. Yang. and F.R. Chang-Diaz. An icrh beach effect in a tandem mirror device. To be submitted to Physics of Fluid. 9; Scott Peng, , J. Freidberg ...mirror plasma propulsion device. Technical Report To be Published, MIT Plasma Fusion Center, 1990. 14j J. F. Freidberg . Ideal magnetohydrodynamic theory

  6. The Dynamics of Social Interaction in Telecollaborative Tandem Exchanges

    ERIC Educational Resources Information Center

    Janssen Sanchez, Brianna

    2015-01-01

    Using both quantitative and qualitative methods of inquiry, this dissertation study undertakes an exploration of the dynamics of the social interaction in discourse co-constructed by pairs of college students in telecollaborative tandem exchanges. Two groups of participants, Mexican learners of English as a foreign language and American learners…

  7. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  8. 14 CFR 105.45 - Use of tandem parachute systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Has completed a minimum of 500 freefall parachute jumps using a ram-air parachute, and (iii) Holds a... parachute jump with a tandem parachute system unless— (1) The main parachute has been packed by a certificated parachute rigger, the parachutist in command making the next jump with that parachute, or a...

  9. Tandem warhead considerations for electronic safety and arming devices

    SciTech Connect

    Dell, D.; Medina, A.

    1990-01-01

    There are four issues that an ESA designer must address when designing a tandem system: (1) warhead detonation shock, (2) warhead detonation ion cloud, (3) warhead detonation electromagnetic pulse, and (4) slapper/sparkgap electromagnetic pulse. Each of these hazards can upset the ESA time delay circuitry which would then either dud the munition or prematurely detonate the main charge. 14 figs.

  10. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  11. Technical assessment of the Loma Linda University proton therapy accelerator

    SciTech Connect

    Not Available

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ.

  12. Accelerator technology program. Progress report, January-June 1981

    SciTech Connect

    Knapp, E.A.; Jameson, R.A.

    1982-05-01

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report.

  13. Determination of carbocysteine in human plasma by liquid chromatography/tandem mass spectrometry employing precolumn derivatization.

    PubMed

    Chen, Xiaoyan; Zhong, Dafang; Han, Ying; Xie, Zhiyong

    2003-01-01

    A sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed to determine carbocysteine in human plasma using 2-pyridylacetic acid as the internal standard (IS). The method employed derivatization with 10 M hydrochloric acid/methanol, which significantly improved the ionization efficiency of carbocysteine. After methanol-induced protein precipitation of plasma samples, carbocysteine and the IS were derivatized and subjected to LC/MS/MS analysis using atmospheric pressure chemical ionization. The method has a lower limit of quantitation of 20 ng/mL for a 0.2-mL plasma aliquot. The intra- and inter-day precision (RSD), calculated from quality control (QC) samples, was less than 7%. The accuracy, determined using QC samples, was within +/- 1%. The method offered increased sensitivity, selectivity and speed of analysis over existing methods. The method was utilized to support clinical pharmacokinetic studies of carbocysteine in volunteers following oral administration.

  14. Plasma lipid analysis by hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Sonomura, Kazuhiro; Kudoh, Shinobu; Sato, Taka-Aki; Matsuda, Fumihiko

    2015-06-01

    A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono-hexsosyl ceramide groups with good peak area repeatability (RSD% < 10) and linearity (R(2) > 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co-existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.

  15. 28 CFR 41.57 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Existing facilities. 41.57 Section 41.57... Practices Program Accessibility § 41.57 Existing facilities. (a) A recipient shall operate each program or... existing facilities or every part of an existing facility accessible to and usable by handicapped...

  16. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  17. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  18. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  19. 24 CFR 200.24 - Existing projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Existing projects. 200.24 Section... Eligibility Requirements for Existing Projects Miscellaneous Project Mortgage Insurance § 200.24 Existing projects. A mortgage financing the purchase or refinance of an existing rental housing project...

  20. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.